Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening

Diabetic retinopathy (DR), the leading cause of blindness for working-age adults, is generally intervened by early screening to reduce vision loss. A series of automated deep-learning-based algorithms for DR screening have been proposed and achieved high sensitivity and specificity ( > 90%). Howe...

Full description

Saved in:
Bibliographic Details
Published inInformation sciences Vol. 501; pp. 511 - 522
Main Authors Li, Tao, Gao, Yingqi, Wang, Kai, Guo, Song, Liu, Hanruo, Kang, Hong
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.10.2019
Subjects
Online AccessGet full text
ISSN0020-0255
1872-6291
DOI10.1016/j.ins.2019.06.011

Cover

Abstract Diabetic retinopathy (DR), the leading cause of blindness for working-age adults, is generally intervened by early screening to reduce vision loss. A series of automated deep-learning-based algorithms for DR screening have been proposed and achieved high sensitivity and specificity ( > 90%). However, these deep learning models do not perform well in clinical applications due to the limitations of the existing publicly available fundus image datasets. In order to evaluate these methods in clinical situations, we collected 13,673 fundus images from 9598 patients. These images were divided into six classes by seven graders according to image quality and DR level. Moreover, 757 images with DR were selected to annotate four types of DR-related lesions. Finally, we evaluated state-of-the-art deep learning algorithms on collected images, including image classification, semantic segmentation and object detection. Although we obtain an accuracy of 0.8284 for DR classification, these algorithms perform poorly on lesion segmentation and detection, indicating that lesion segmentation and detection are quite challenging. In summary, we are providing a new dataset named DDR for assessing deep learning models and further exploring the clinical applications, particularly for lesion recognition.
AbstractList Diabetic retinopathy (DR), the leading cause of blindness for working-age adults, is generally intervened by early screening to reduce vision loss. A series of automated deep-learning-based algorithms for DR screening have been proposed and achieved high sensitivity and specificity ( > 90%). However, these deep learning models do not perform well in clinical applications due to the limitations of the existing publicly available fundus image datasets. In order to evaluate these methods in clinical situations, we collected 13,673 fundus images from 9598 patients. These images were divided into six classes by seven graders according to image quality and DR level. Moreover, 757 images with DR were selected to annotate four types of DR-related lesions. Finally, we evaluated state-of-the-art deep learning algorithms on collected images, including image classification, semantic segmentation and object detection. Although we obtain an accuracy of 0.8284 for DR classification, these algorithms perform poorly on lesion segmentation and detection, indicating that lesion segmentation and detection are quite challenging. In summary, we are providing a new dataset named DDR for assessing deep learning models and further exploring the clinical applications, particularly for lesion recognition.
Author Gao, Yingqi
Li, Tao
Wang, Kai
Kang, Hong
Guo, Song
Liu, Hanruo
Author_xml – sequence: 1
  givenname: Tao
  surname: Li
  fullname: Li, Tao
  organization: Nankai University, China
– sequence: 2
  givenname: Yingqi
  surname: Gao
  fullname: Gao, Yingqi
  organization: Nankai University, China
– sequence: 3
  givenname: Kai
  surname: Wang
  fullname: Wang, Kai
  organization: Nankai University, China
– sequence: 4
  givenname: Song
  orcidid: 0000-0001-6841-753X
  surname: Guo
  fullname: Guo, Song
  organization: Nankai University, China
– sequence: 5
  givenname: Hanruo
  surname: Liu
  fullname: Liu, Hanruo
  organization: Beijing Tongren Hospital, Capital Medical University, China
– sequence: 6
  givenname: Hong
  surname: Kang
  fullname: Kang, Hong
  email: kanghong@nankai.edu.cn
  organization: Nankai University, China
BookMark eNp9kMtqwzAQRUVJoWnaD-hOP2B3JNtjm65K-oRAN-layPI4UXCkIIlC_r4O6aqLbGY291y455bNnHfE2IOAXIDAx11uXcwliDYHzEGIKzYXTS0zlK2YsTmAhAxkVd2w2xh3AFDWiHO2frF643xM1nAdI8W4J5e4H3hPdOAj6eCs23A9bnywabuPfPCB91Z3dGLCdJ0_6LQ98mgC0Sl9x64HPUa6__sL9v32ul5-ZKuv98_l8yozsq1T1nSVJAPY6Qol9lWB7QBNjVBIA31jRIdQYVm2paRy2jFFEagqqC6Lsh-wWLD63GuCjzHQoIxNOlnvUtB2VALUSY7aqUmOOslRgGqSM5HiH3kIdq_D8SLzdGZomvRjKahoLDlDvQ1kkuq9vUD_AlHRf6E
CitedBy_id crossref_primary_10_1007_s11042_023_17254_0
crossref_primary_10_3390_batteries9030177
crossref_primary_10_4103_sjopt_sjopt_91_23
crossref_primary_10_1109_TMI_2020_3023463
crossref_primary_10_3390_app14114428
crossref_primary_10_1109_JBHI_2023_3313785
crossref_primary_10_32604_cmes_2024_030052
crossref_primary_10_1038_s41598_025_92510_x
crossref_primary_10_4103_tjo_TJO_D_24_00064
crossref_primary_10_1002_ima_22419
crossref_primary_10_4236_ojapps_2025_153044
crossref_primary_10_32604_csse_2022_024695
crossref_primary_10_1007_s00779_020_01519_8
crossref_primary_10_1109_TMI_2022_3143833
crossref_primary_10_3390_math11133021
crossref_primary_10_1038_s41598_025_92665_7
crossref_primary_10_1038_s41598_021_04750_2
crossref_primary_10_1049_ipr2_13275
crossref_primary_10_1142_S0218348X24500609
crossref_primary_10_1007_s11277_024_10968_w
crossref_primary_10_3390_diagnostics12010134
crossref_primary_10_1016_j_bspc_2025_107813
crossref_primary_10_1007_s11042_023_14831_1
crossref_primary_10_1177_15353702231171898
crossref_primary_10_1016_j_media_2021_101971
crossref_primary_10_1016_j_bspc_2024_106790
crossref_primary_10_1088_1361_6579_ada86a
crossref_primary_10_1002_ima_23163
crossref_primary_10_1007_s11831_022_09862_0
crossref_primary_10_2139_ssrn_4062898
crossref_primary_10_3389_fendo_2022_946915
crossref_primary_10_1016_j_compbiomed_2019_103537
crossref_primary_10_3390_diagnostics13172783
crossref_primary_10_1016_j_bspc_2025_107721
crossref_primary_10_1016_j_patcog_2024_110636
crossref_primary_10_1109_ACCESS_2023_3271895
crossref_primary_10_3390_jimaging7090165
crossref_primary_10_1016_j_inffus_2021_10_003
crossref_primary_10_1016_j_patcog_2025_111484
crossref_primary_10_48084_etasr_8408
crossref_primary_10_1109_TPAMI_2023_3322735
crossref_primary_10_1155_2022_1133575
crossref_primary_10_1049_ipr2_12987
crossref_primary_10_1109_JBHI_2021_3094578
crossref_primary_10_1007_s11042_023_16923_4
crossref_primary_10_1007_s11042_023_17244_2
crossref_primary_10_1007_s40123_023_00691_3
crossref_primary_10_1016_j_bspc_2023_105050
crossref_primary_10_1038_s41598_023_28347_z
crossref_primary_10_1109_ACCESS_2022_3178372
crossref_primary_10_35378_gujs_1081546
crossref_primary_10_1016_j_bspc_2024_107415
crossref_primary_10_1016_j_bspc_2024_106564
crossref_primary_10_1002_ima_70063
crossref_primary_10_3390_app13085111
crossref_primary_10_1088_1361_6560_ac9fa0
crossref_primary_10_1016_j_ins_2021_02_004
crossref_primary_10_3390_app142411926
crossref_primary_10_1007_s12652_023_04648_z
crossref_primary_10_32604_cmc_2023_040710
crossref_primary_10_1007_s00521_022_07471_3
crossref_primary_10_1007_s10462_023_10557_6
crossref_primary_10_3934_mbe_2022248
crossref_primary_10_1167_tvst_11_7_12
crossref_primary_10_3390_electronics9091337
crossref_primary_10_3233_JIFS_220772
crossref_primary_10_1016_j_engappai_2024_108907
crossref_primary_10_1007_s11042_024_19681_z
crossref_primary_10_1016_j_compbiomed_2022_105989
crossref_primary_10_3390_biomimetics8020187
crossref_primary_10_1186_s40662_020_00182_7
crossref_primary_10_1038_s41433_023_02717_3
crossref_primary_10_1016_j_imu_2020_100377
crossref_primary_10_1016_j_imavis_2023_104821
crossref_primary_10_1145_3681796
crossref_primary_10_3233_JIFS_240788
crossref_primary_10_1007_s11277_021_08817_1
crossref_primary_10_1109_JBHI_2021_3119519
crossref_primary_10_1016_j_artmed_2024_102782
crossref_primary_10_1016_j_media_2022_102725
crossref_primary_10_1007_s11042_023_17280_y
crossref_primary_10_1007_s11042_024_18627_9
crossref_primary_10_1016_j_bspc_2024_107352
crossref_primary_10_1016_j_eswa_2024_123523
crossref_primary_10_1038_s41598_024_71650_6
crossref_primary_10_1016_j_bspc_2024_106700
crossref_primary_10_3390_vision8030048
crossref_primary_10_1109_TIM_2024_3381663
crossref_primary_10_1002_jbio_202300321
crossref_primary_10_3390_s19224949
crossref_primary_10_3390_bdcc6040152
crossref_primary_10_3390_diagnostics13040774
crossref_primary_10_1016_j_bspc_2022_104123
crossref_primary_10_3390_sym15020287
crossref_primary_10_1016_j_compeleceng_2024_109782
crossref_primary_10_3390_s22186780
crossref_primary_10_1134_S1054661822020195
crossref_primary_10_1109_ACCESS_2023_3326528
crossref_primary_10_1007_s10462_022_10231_3
crossref_primary_10_1007_s40747_021_00630_4
crossref_primary_10_1016_j_rio_2024_100700
crossref_primary_10_1007_s00417_023_06052_x
crossref_primary_10_1016_j_compbiomed_2024_108001
crossref_primary_10_1038_s41598_024_72481_1
crossref_primary_10_1016_j_bspc_2024_107328
crossref_primary_10_1364_BOE_472176
crossref_primary_10_1016_j_bspc_2022_104375
crossref_primary_10_1007_s10527_025_10444_0
crossref_primary_10_1007_s11042_023_16835_3
crossref_primary_10_3390_app122312071
crossref_primary_10_1016_j_compbiomed_2021_104599
crossref_primary_10_1109_ACCESS_2021_3054743
crossref_primary_10_29194_NJES_27020155
crossref_primary_10_1016_j_neunet_2025_107168
crossref_primary_10_3390_electronics12244940
crossref_primary_10_22399_ijcesen_649
crossref_primary_10_1109_ACCESS_2023_3294443
crossref_primary_10_21015_vtse_v11i2_1206
crossref_primary_10_1109_JBHI_2021_3108169
crossref_primary_10_1177_14604582241259328
crossref_primary_10_1016_j_bspc_2024_106489
crossref_primary_10_32604_cmc_2021_014691
crossref_primary_10_3390_app14167262
crossref_primary_10_14201_adcaij_31737
crossref_primary_10_1007_s11042_020_10238_4
crossref_primary_10_1109_JBHI_2024_3362878
crossref_primary_10_1038_s41598_024_63844_9
crossref_primary_10_1016_j_compbiomed_2024_109352
crossref_primary_10_3390_app14166941
crossref_primary_10_3390_s22051803
crossref_primary_10_1007_s11042_024_18403_9
crossref_primary_10_3390_app12178749
crossref_primary_10_1016_j_bspc_2024_106293
crossref_primary_10_1136_bjo_2023_323400
crossref_primary_10_1109_TMI_2024_3485064
crossref_primary_10_12677_hjbm_2025_151027
crossref_primary_10_1016_j_bspc_2023_104830
crossref_primary_10_3390_electronics11172740
crossref_primary_10_1002_ima_22933
crossref_primary_10_1016_j_compbiomed_2022_105302
crossref_primary_10_1109_ACCESS_2024_3383014
crossref_primary_10_1016_j_eswa_2023_122889
crossref_primary_10_1109_ACCESS_2023_3333364
crossref_primary_10_1038_s41433_021_01552_8
crossref_primary_10_1002_ima_22482
crossref_primary_10_1038_s41598_023_38320_5
crossref_primary_10_1049_cvi2_12308
crossref_primary_10_1002_ima_23213
crossref_primary_10_3390_a17040164
crossref_primary_10_1007_s10489_022_03490_8
crossref_primary_10_1016_j_compeleceng_2024_109746
crossref_primary_10_3390_diagnostics12122918
crossref_primary_10_1109_ACCESS_2021_3101142
crossref_primary_10_1109_TMI_2022_3193146
crossref_primary_10_1016_j_bspc_2023_105349
crossref_primary_10_21122_2309_4923_2022_3_12_21
crossref_primary_10_1016_j_matpr_2022_01_466
crossref_primary_10_1016_j_cmpb_2020_105629
crossref_primary_10_3390_diagnostics13101664
crossref_primary_10_1038_s41598_024_56389_4
crossref_primary_10_1016_j_knosys_2025_113242
crossref_primary_10_1016_j_compbiomed_2024_107993
crossref_primary_10_1109_TMI_2024_3367367
crossref_primary_10_1109_LSENS_2023_3290597
crossref_primary_10_1080_08164622_2023_2197578
crossref_primary_10_1016_j_engappai_2025_110364
crossref_primary_10_31590_ejosat_1263514
crossref_primary_10_1016_j_neucom_2025_129456
crossref_primary_10_1016_j_eswa_2023_122742
crossref_primary_10_1371_journal_pone_0299265
crossref_primary_10_1109_TMI_2024_3429148
crossref_primary_10_2139_ssrn_4098657
crossref_primary_10_1007_s42600_022_00200_8
crossref_primary_10_1016_j_procs_2023_01_389
crossref_primary_10_1007_s11042_023_14785_4
crossref_primary_10_1371_journal_pone_0271156
crossref_primary_10_1016_j_bspc_2023_105210
crossref_primary_10_1016_j_compbiomed_2022_106408
crossref_primary_10_1016_j_measurement_2020_108052
crossref_primary_10_1109_TMI_2024_3383827
crossref_primary_10_1016_j_asoc_2022_109462
crossref_primary_10_1007_s11831_023_10002_5
crossref_primary_10_1364_OE_430508
crossref_primary_10_1155_2023_1305583
crossref_primary_10_1016_j_dsp_2024_104888
crossref_primary_10_3390_biomedicines12122753
crossref_primary_10_1016_j_bspc_2025_107581
crossref_primary_10_7759_cureus_53586
crossref_primary_10_1016_j_bspc_2024_106777
crossref_primary_10_1007_s42154_022_00197_x
crossref_primary_10_1007_s11263_024_02246_w
crossref_primary_10_1016_j_bspc_2021_102600
crossref_primary_10_1007_s10489_024_05274_8
crossref_primary_10_1007_s13748_024_00325_0
crossref_primary_10_1109_TDSC_2024_3376790
crossref_primary_10_1109_ACCESS_2024_3361944
crossref_primary_10_1155_2023_2728719
crossref_primary_10_3788_CJL240731
crossref_primary_10_1016_j_bspc_2024_107078
crossref_primary_10_3390_jcm13030807
crossref_primary_10_1016_j_patcog_2022_109191
crossref_primary_10_1002_cpe_7138
crossref_primary_10_1109_TIM_2023_3322497
crossref_primary_10_1016_j_neucom_2024_127816
crossref_primary_10_1007_s10489_022_03204_0
crossref_primary_10_1016_j_compbiomed_2023_106967
crossref_primary_10_1109_ACCESS_2024_3469537
crossref_primary_10_3390_s22093490
crossref_primary_10_1109_TIM_2024_3500044
crossref_primary_10_1109_ACCESS_2022_3157632
crossref_primary_10_1007_s10489_022_04295_5
crossref_primary_10_1007_s13721_023_00438_x
crossref_primary_10_3390_s21113704
crossref_primary_10_32628_CSEIT228113
crossref_primary_10_1007_s11042_023_15110_9
crossref_primary_10_3390_technologies12120256
crossref_primary_10_1016_j_bbe_2022_12_005
crossref_primary_10_1177_20552076231194942
crossref_primary_10_1002_jbio_202300052
crossref_primary_10_1016_j_compbiomed_2024_108523
crossref_primary_10_1016_j_bspc_2022_103682
crossref_primary_10_3390_biomedicines11061566
crossref_primary_10_1002_jemt_24345
crossref_primary_10_1007_s11042_022_14234_8
crossref_primary_10_3390_electronics11010023
crossref_primary_10_1109_ACCESS_2020_3029117
crossref_primary_10_1007_s00521_024_09564_7
crossref_primary_10_1007_s11042_022_13837_5
crossref_primary_10_1038_s41597_024_03739_6
crossref_primary_10_3390_jcm12103587
crossref_primary_10_1109_ACCESS_2024_3415617
crossref_primary_10_3389_fcell_2023_1124005
crossref_primary_10_3390_s22176441
crossref_primary_10_2147_DMSO_S288419
crossref_primary_10_1016_j_health_2023_100174
crossref_primary_10_1109_TMI_2022_3177803
crossref_primary_10_1007_s11042_023_16449_9
crossref_primary_10_1109_TMI_2023_3298093
crossref_primary_10_54097_hset_v12i_1448
crossref_primary_10_1016_j_eswa_2022_117583
crossref_primary_10_1016_j_cmpbup_2021_100013
crossref_primary_10_1007_s42600_023_00320_9
crossref_primary_10_1007_s11042_022_13841_9
crossref_primary_10_1016_j_media_2024_103357
crossref_primary_10_1016_j_compeleceng_2024_109243
crossref_primary_10_1007_s11042_023_18089_5
crossref_primary_10_1038_s41598_023_36311_0
crossref_primary_10_1108_IJICC_11_2019_0119
crossref_primary_10_1186_s12938_024_01212_4
crossref_primary_10_1007_s12596_024_02019_1
crossref_primary_10_1016_j_heliyon_2023_e17217
crossref_primary_10_1007_s12652_020_02417_w
Cites_doi 10.1001/jama.2016.17216
10.2337/dc11-1909
10.1109/TMI.2018.2837012
10.1016/j.ophtha.2017.02.008
10.1016/j.ins.2017.08.050
10.1016/S0161-6420(03)00475-5
10.1109/TPAMI.2016.2577031
10.1109/TMI.2004.825627
10.1001/jama.2017.18152
10.1586/eop.12.52
10.1109/TMI.2018.2791488
10.5566/ias.1155
10.1109/TMI.2009.2033909
10.3390/data3030025
10.1038/nature14539
10.1167/iovs.16-19964
10.1016/j.irbm.2013.01.010
10.1109/42.845178
10.1111/ceo.12696
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright_xml – notice: 2019 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2019.06.011
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 522
ExternalDocumentID 10_1016_j_ins_2019_06_011
S0020025519305377
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-8b52ec06ba5626d5369f0876032c0d8c1b605644942e4629c0660e53e7434df63
IEDL.DBID .~1
ISSN 0020-0255
IngestDate Wed Oct 01 05:18:57 EDT 2025
Thu Apr 24 22:56:48 EDT 2025
Fri Feb 23 02:25:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fundus image
Deep learning
Diabetic retinopathy
Semantic segmentation
Image classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-8b52ec06ba5626d5369f0876032c0d8c1b605644942e4629c0660e53e7434df63
ORCID 0000-0001-6841-753X
PageCount 12
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2019_06_011
crossref_primary_10_1016_j_ins_2019_06_011
elsevier_sciencedirect_doi_10_1016_j_ins_2019_06_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2019
2019-10-00
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: October 2019
PublicationDecade 2010
PublicationTitle Information sciences
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Ting, Cheung, Lim, Tan, Quang, Gan, Hamzah, Garcia-Franco, Yeo, Lee (bib0031) 2017; 318
Fu, Cheng, Xu, Wong, Liu, Cao (bib0008) 2018; 37
Simonyan, Zisserman (bib0027) 2015
International Council of Ophthalmology, ICO Guidelines for Diabetic Eye Care, 2017.
Gulshan, Peng, Coram, Stumpe, Wu, Narayanaswamy, Venugopalan, Widner, Madams, Cuadros (bib0011) 2016; 316
Xie, Tu (bib0034) 2016
Redmon, Divvala, Girshick, Farhadi (bib0025) 2016
Abadi, Barham, Chen, Chen, Davis, Dean, Devin, Ghemawat, Irving, Isard (bib0001) 2016
Huang, Liu, Maaten, Weinberger (bib0015) 2017
Cun, Bengio, Hinton (bib0020) 2015; 521
Tan, Fujita, Sivaprasad, Bhandary, Rao, Chua, Acharya (bib0030) 2017; 420
Jia, Shelhamer, Donahue, Karayev, Long, Girshick, Guadarrama, Darrell (bib0017) 2014
Staal, Abramoff, Niemeijer, Viergever, Ginneken (bib0028) 2004; 23
Fu, Cheng, Xu, Zhang, Wong, Liu, Cao (bib0009) 2018; 37
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib0029) 2015
Kauppi, Kalesnykiene, Kamarainen, Lensu, Sorri, Raninen, Voutilainen, Pietilä, Kälviäinen, Uusitalo (bib0019) 2007
Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg (bib0021) 2016
Porwal, Pachade, Kamble, Kokare, Deshmukh, Sahasrabuddhe, Meriaudeau (bib0023) 2018; 3
Decenciere, Cazuguel, Zhang, Thibault, Klein, Meyer, Marcotegui, Quellec, Lamard, Danno (bib0006) 2013; 34
Hu, Shen, Sun (bib0014) 2018
Wilkinson, Ferris, Klein, Lee, Agardh, Davis, Dills, Kampik, Pararajasegaram, Verdaguer (bib0033) 2003; 110
Gargeya, Leng (bib0010) 2017; 124
Chakrabarti, Harper, Keeffe (bib0003) 2012; 7
Niemeijer, Ginneken, Cree, Mizutani, Quellec, Sanchez, Zhang, Hornero, Lamard, Muramatsu (bib0022) 2010; 29
Yau, Rogers, Kawasaki, Lamoureux, Kowalski, Bek, Chen, Dekker, Fletcher, Grauslund (bib0035) 2012; 35
Chen, Zhu, Papandreou, Schroff, Adam (bib0004) 2018
Ren, He, Girshick, Sun (bib0026) 2017; 39
.
He, Zhang, Ren, Sun (bib0012) 2016
Decencière, Zhang, Cazuguel, Lay, Cochener, Trone, Gain, Ordonez, Massin, Erginay (bib0007) 2014; 33
Abràmoff, Lou, Erginay, Clarida, Amelon, Folk, Niemeijer (bib0002) 2016; 57
Hoover, Kouznetsova, Goldbaum (bib0013) 2000; 19
Kaggle Diabetic Retinopathy Detection Competition, [Accessed 18-October-2018]
Dai, Sheng, Wu, Li, Hou, Jia, Fang (bib0005) 2017
Prentašić, Lončarić, Vatavuk, Benčić, Subašić, Petković, Dujmović, Malenica-Ravlić, Budimlija, Tadić (bib0024) 2013
Ting, Cheung, Wong (bib0032) 2016; 44
Huang (10.1016/j.ins.2019.06.011_bib0015) 2017
Chen (10.1016/j.ins.2019.06.011_bib0004) 2018
Kauppi (10.1016/j.ins.2019.06.011_bib0019) 2007
Porwal (10.1016/j.ins.2019.06.011_bib0023) 2018; 3
Abràmoff (10.1016/j.ins.2019.06.011_bib0002) 2016; 57
Xie (10.1016/j.ins.2019.06.011_bib0034) 2016
Hoover (10.1016/j.ins.2019.06.011_bib0013) 2000; 19
Fu (10.1016/j.ins.2019.06.011_bib0009) 2018; 37
Jia (10.1016/j.ins.2019.06.011_bib0017) 2014
Liu (10.1016/j.ins.2019.06.011_bib0021) 2016
Staal (10.1016/j.ins.2019.06.011_bib0028) 2004; 23
Chakrabarti (10.1016/j.ins.2019.06.011_bib0003) 2012; 7
Ren (10.1016/j.ins.2019.06.011_bib0026) 2017; 39
Szegedy (10.1016/j.ins.2019.06.011_bib0029) 2015
Decencière (10.1016/j.ins.2019.06.011_bib0007) 2014; 33
Gulshan (10.1016/j.ins.2019.06.011_bib0011) 2016; 316
Abadi (10.1016/j.ins.2019.06.011_bib0001) 2016
Cun (10.1016/j.ins.2019.06.011_bib0020) 2015; 521
Niemeijer (10.1016/j.ins.2019.06.011_bib0022) 2010; 29
10.1016/j.ins.2019.06.011_bib0018
10.1016/j.ins.2019.06.011_bib0016
Ting (10.1016/j.ins.2019.06.011_bib0031) 2017; 318
Redmon (10.1016/j.ins.2019.06.011_bib0025) 2016
Ting (10.1016/j.ins.2019.06.011_bib0032) 2016; 44
Prentašić (10.1016/j.ins.2019.06.011_bib0024) 2013
Simonyan (10.1016/j.ins.2019.06.011_bib0027) 2015
Wilkinson (10.1016/j.ins.2019.06.011_bib0033) 2003; 110
Decenciere (10.1016/j.ins.2019.06.011_bib0006) 2013; 34
Fu (10.1016/j.ins.2019.06.011_bib0008) 2018; 37
Hu (10.1016/j.ins.2019.06.011_bib0014) 2018
Dai (10.1016/j.ins.2019.06.011_bib0005) 2017
Gargeya (10.1016/j.ins.2019.06.011_bib0010) 2017; 124
Tan (10.1016/j.ins.2019.06.011_bib0030) 2017; 420
Yau (10.1016/j.ins.2019.06.011_bib0035) 2012; 35
He (10.1016/j.ins.2019.06.011_bib0012) 2016
References_xml – volume: 57
  start-page: 5200
  year: 2016
  end-page: 5206
  ident: bib0002
  article-title: Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning
  publication-title: Invest. Ophthalmol. Visual Sci.
– volume: 19
  start-page: 203
  year: 2000
  end-page: 210
  ident: bib0013
  article-title: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response
  publication-title: IEEE Trans. Med. Imaging
– volume: 34
  start-page: 196
  year: 2013
  end-page: 203
  ident: bib0006
  article-title: TeleOphta: machine learning and image processing methods for teleophthalmology
  publication-title: Irbm
– volume: 420
  start-page: 66
  year: 2017
  end-page: 76
  ident: bib0030
  article-title: Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network
  publication-title: Inf. Sci.
– start-page: 675
  year: 2014
  end-page: 678
  ident: bib0017
  article-title: Caffe: convolutional architecture for fast feature embedding
  publication-title: 22nd ACM international conference on Multimedia
– volume: 7
  start-page: 417
  year: 2012
  end-page: 439
  ident: bib0003
  article-title: Diabetic retinopathy management guidelines
  publication-title: Expert Rev. Ophthalmol.
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0012
  article-title: Deep residual learning for image recognition
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 3
  start-page: 25
  year: 2018
  end-page: 32
  ident: bib0023
  article-title: Indian diabetic retinopathy image dataset (IDRiD): a database for diabetic retinopathy screening research
  publication-title: Data
– volume: 318
  start-page: 2211
  year: 2017
  end-page: 2223
  ident: bib0031
  article-title: Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes
  publication-title: JAMA
– volume: 35
  start-page: 556
  year: 2012
  end-page: 564
  ident: bib0035
  article-title: Global prevalence and major risk factors of diabetic retinopathy
  publication-title: Diabetes Care
– start-page: 61
  year: 2007
  end-page: 65
  ident: bib0019
  article-title: DIARETDB1 diabetic retinopathy database and evaluation protocol
  publication-title: Medical Image Understanding and Analysis
– start-page: 2261
  year: 2017
  end-page: 2269
  ident: bib0015
  article-title: Densely connected convolutional networks
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 37
  start-page: 1597
  year: 2018
  end-page: 1605
  ident: bib0008
  article-title: Joint optic disc and cup segmentation based on multi-label deep network and polar transformation
  publication-title: IEEE Trans. Med. Imaging
– volume: 124
  start-page: 962
  year: 2017
  end-page: 969
  ident: bib0010
  article-title: Automated identification of diabetic retinopathy using deep learning
  publication-title: Ophthalmology
– reference: Kaggle Diabetic Retinopathy Detection Competition, [Accessed 18-October-2018]
– volume: 33
  start-page: 231
  year: 2014
  end-page: 234
  ident: bib0007
  article-title: Feedback on a publicly distributed image database: the messidor database
  publication-title: Image Anal. Stereol.
– start-page: 779
  year: 2016
  end-page: 788
  ident: bib0025
  article-title: You only look once: unified, real-time object detection
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 316
  start-page: 2402
  year: 2016
  end-page: 2410
  ident: bib0011
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
– start-page: 1
  year: 2015
  end-page: 9
  ident: bib0029
  article-title: Going deeper with convolutions
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 44
  start-page: 260
  year: 2016
  end-page: 277
  ident: bib0032
  article-title: Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review
  publication-title: Clin. Exp. Ophthalmol.
– volume: 37
  start-page: 2493
  year: 2018
  end-page: 2501
  ident: bib0009
  article-title: Disc-aware ensemble network for glaucoma screening from fundus image
  publication-title: IEEE Trans. Med. Imaging
– start-page: 7132
  year: 2018
  end-page: 7141
  ident: bib0014
  article-title: Squeeze-and-excitation networks
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 525
  year: 2017
  end-page: 532
  ident: bib0005
  article-title: Retinal microaneurysm detection using clinical report guided multi-sieving CNN
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– reference: .
– start-page: 21
  year: 2016
  end-page: 37
  ident: bib0021
  article-title: SSD: single shot multibox detector
  publication-title: European Conference on Computer Vision
– volume: 110
  start-page: 1677
  year: 2003
  end-page: 1682
  ident: bib0033
  article-title: Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales
  publication-title: Ophthalmology
– start-page: 801
  year: 2018
  end-page: 818
  ident: bib0004
  article-title: Encoder-decoder with Atrous separable convolution for semantic image segmentation
  publication-title: European Conference on Computer Vision
– start-page: 265
  year: 2016
  end-page: 283
  ident: bib0001
  article-title: TensorFlow: a system for large-scale machine learning
  publication-title: 12th USENIX Symposium on Operating Systems Design and Implementation
– volume: 23
  start-page: 501
  year: 2004
  end-page: 509
  ident: bib0028
  article-title: Ridge-based vessel segmentation in color images of the retina
  publication-title: IEEE Trans. Med. Imaging
– start-page: 3
  year: 2016
  end-page: 18
  ident: bib0034
  article-title: Holistically-nested edge detection
  publication-title: IEEE International Conference on Computer Vision
– volume: 29
  start-page: 185
  year: 2010
  end-page: 195
  ident: bib0022
  article-title: Retinopathy online challenge: automatic detection of microaneurysms in digital color fundus photographs
  publication-title: IEEE Trans. Med. Imaging
– start-page: 711
  year: 2013
  end-page: 716
  ident: bib0024
  article-title: Diabetic retinopathy image database (DRiDB): a new database for diabetic retinopathy screening programs research
  publication-title: International Symposium on Image and Signal Processing and Analysis
– volume: 39
  start-page: 1137
  year: 2017
  end-page: 1149
  ident: bib0026
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: International Council of Ophthalmology, ICO Guidelines for Diabetic Eye Care, 2017.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib0020
  article-title: Deep learning
  publication-title: Nature
– year: 2015
  ident: bib0027
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: International Conference on Learning Representations
– volume: 316
  start-page: 2402
  issue: 22
  year: 2016
  ident: 10.1016/j.ins.2019.06.011_bib0011
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– start-page: 525
  year: 2017
  ident: 10.1016/j.ins.2019.06.011_bib0005
  article-title: Retinal microaneurysm detection using clinical report guided multi-sieving CNN
– start-page: 801
  year: 2018
  ident: 10.1016/j.ins.2019.06.011_bib0004
  article-title: Encoder-decoder with Atrous separable convolution for semantic image segmentation
– start-page: 779
  year: 2016
  ident: 10.1016/j.ins.2019.06.011_bib0025
  article-title: You only look once: unified, real-time object detection
– volume: 35
  start-page: 556
  issue: 3
  year: 2012
  ident: 10.1016/j.ins.2019.06.011_bib0035
  article-title: Global prevalence and major risk factors of diabetic retinopathy
  publication-title: Diabetes Care
  doi: 10.2337/dc11-1909
– volume: 37
  start-page: 2493
  issue: 11
  year: 2018
  ident: 10.1016/j.ins.2019.06.011_bib0009
  article-title: Disc-aware ensemble network for glaucoma screening from fundus image
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2837012
– volume: 124
  start-page: 962
  issue: 7
  year: 2017
  ident: 10.1016/j.ins.2019.06.011_bib0010
  article-title: Automated identification of diabetic retinopathy using deep learning
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2017.02.008
– volume: 420
  start-page: 66
  year: 2017
  ident: 10.1016/j.ins.2019.06.011_bib0030
  article-title: Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.08.050
– start-page: 711
  year: 2013
  ident: 10.1016/j.ins.2019.06.011_bib0024
  article-title: Diabetic retinopathy image database (DRiDB): a new database for diabetic retinopathy screening programs research
– volume: 110
  start-page: 1677
  issue: 9
  year: 2003
  ident: 10.1016/j.ins.2019.06.011_bib0033
  article-title: Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales
  publication-title: Ophthalmology
  doi: 10.1016/S0161-6420(03)00475-5
– volume: 39
  start-page: 1137
  issue: 6
  year: 2017
  ident: 10.1016/j.ins.2019.06.011_bib0026
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– volume: 23
  start-page: 501
  issue: 4
  year: 2004
  ident: 10.1016/j.ins.2019.06.011_bib0028
  article-title: Ridge-based vessel segmentation in color images of the retina
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2004.825627
– volume: 318
  start-page: 2211
  issue: 22
  year: 2017
  ident: 10.1016/j.ins.2019.06.011_bib0031
  article-title: Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes
  publication-title: JAMA
  doi: 10.1001/jama.2017.18152
– start-page: 7132
  year: 2018
  ident: 10.1016/j.ins.2019.06.011_bib0014
  article-title: Squeeze-and-excitation networks
– start-page: 21
  year: 2016
  ident: 10.1016/j.ins.2019.06.011_bib0021
  article-title: SSD: single shot multibox detector
– ident: 10.1016/j.ins.2019.06.011_bib0018
– volume: 7
  start-page: 417
  issue: 5
  year: 2012
  ident: 10.1016/j.ins.2019.06.011_bib0003
  article-title: Diabetic retinopathy management guidelines
  publication-title: Expert Rev. Ophthalmol.
  doi: 10.1586/eop.12.52
– volume: 37
  start-page: 1597
  issue: 7
  year: 2018
  ident: 10.1016/j.ins.2019.06.011_bib0008
  article-title: Joint optic disc and cup segmentation based on multi-label deep network and polar transformation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2791488
– ident: 10.1016/j.ins.2019.06.011_bib0016
– volume: 33
  start-page: 231
  issue: 3
  year: 2014
  ident: 10.1016/j.ins.2019.06.011_bib0007
  article-title: Feedback on a publicly distributed image database: the messidor database
  publication-title: Image Anal. Stereol.
  doi: 10.5566/ias.1155
– start-page: 770
  year: 2016
  ident: 10.1016/j.ins.2019.06.011_bib0012
  article-title: Deep residual learning for image recognition
– volume: 29
  start-page: 185
  issue: 1
  year: 2010
  ident: 10.1016/j.ins.2019.06.011_bib0022
  article-title: Retinopathy online challenge: automatic detection of microaneurysms in digital color fundus photographs
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2033909
– start-page: 265
  year: 2016
  ident: 10.1016/j.ins.2019.06.011_bib0001
  article-title: TensorFlow: a system for large-scale machine learning
– volume: 3
  start-page: 25
  issue: 3
  year: 2018
  ident: 10.1016/j.ins.2019.06.011_bib0023
  article-title: Indian diabetic retinopathy image dataset (IDRiD): a database for diabetic retinopathy screening research
  publication-title: Data
  doi: 10.3390/data3030025
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.ins.2019.06.011_bib0020
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– year: 2015
  ident: 10.1016/j.ins.2019.06.011_bib0027
  article-title: Very deep convolutional networks for large-scale image recognition
– volume: 57
  start-page: 5200
  issue: 13
  year: 2016
  ident: 10.1016/j.ins.2019.06.011_bib0002
  article-title: Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning
  publication-title: Invest. Ophthalmol. Visual Sci.
  doi: 10.1167/iovs.16-19964
– volume: 34
  start-page: 196
  issue: 2
  year: 2013
  ident: 10.1016/j.ins.2019.06.011_bib0006
  article-title: TeleOphta: machine learning and image processing methods for teleophthalmology
  publication-title: Irbm
  doi: 10.1016/j.irbm.2013.01.010
– start-page: 61
  year: 2007
  ident: 10.1016/j.ins.2019.06.011_bib0019
  article-title: DIARETDB1 diabetic retinopathy database and evaluation protocol
– start-page: 675
  year: 2014
  ident: 10.1016/j.ins.2019.06.011_bib0017
  article-title: Caffe: convolutional architecture for fast feature embedding
– volume: 19
  start-page: 203
  issue: 3
  year: 2000
  ident: 10.1016/j.ins.2019.06.011_bib0013
  article-title: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.845178
– start-page: 2261
  year: 2017
  ident: 10.1016/j.ins.2019.06.011_bib0015
  article-title: Densely connected convolutional networks
– start-page: 3
  year: 2016
  ident: 10.1016/j.ins.2019.06.011_bib0034
  article-title: Holistically-nested edge detection
– volume: 44
  start-page: 260
  issue: 4
  year: 2016
  ident: 10.1016/j.ins.2019.06.011_bib0032
  article-title: Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review
  publication-title: Clin. Exp. Ophthalmol.
  doi: 10.1111/ceo.12696
– start-page: 1
  year: 2015
  ident: 10.1016/j.ins.2019.06.011_bib0029
  article-title: Going deeper with convolutions
SSID ssj0004766
Score 2.678033
Snippet Diabetic retinopathy (DR), the leading cause of blindness for working-age adults, is generally intervened by early screening to reduce vision loss. A series of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 511
SubjectTerms Deep learning
Diabetic retinopathy
Fundus image
Image classification
Semantic segmentation
Title Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening
URI https://dx.doi.org/10.1016/j.ins.2019.06.011
Volume 501
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AKRWK
  dateStart: 19681201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqssCAoIAo0MoDYkAKzYfj1GNVqApInVqpWxQ7TgkqSVXCwMJv5y5xSpGAgTHWnRWdnfO7-O4dIZeusv1YysgSPJYWIGJhQRjhWV6SOCxWQZ8lZbbFhI9n7GHuzxtkWNfCYFql8f2VTy-9tRnpGWv2VmmKNb5uiYgBgiApCVaUMxZgF4Obj680DxZU95UYJqF0fbNZ5nilGTJ2O6Kk8HScn8-mrfNmdED2DVCkg-pdDklDZy2yt0Uf2CIdU3RAr6ipKkIrU_O5HpHpbZVHBzPQaMPASfOExlqvqGkYsaDRcpGv0-Lp5ZXCLLT6HQs6WOCY5diz-J2Cd4GIF6SPyWx0Nx2OLdNFwVKuCAqrL31XK5vLCKAOj32PiwR56GwP1inuK0dCRAOoSDBXM-4KEOW29j0N2ILFCfdOSDPLM31KqK8jKSDCipSSTOHFN4z4wo6Vx1XEWJvYtf1CZSjGsdPFMqxzyZ5DMHmIJg8xn85x2uR6o7Kq-DX-Emb1ooTfNkkI_v93tbP_qZ2TXXyqMvcuSLNYv-kOIJBCdsst1iU7g_vH8eQTVCfajw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED2VMgADggKiQMEDYkAKzYfj1CMqVAVKp1bqFsWOU4JKWpUysPDbOSdOKRIwsDp3VnR2znfxu3cA5660_ViIyOIsFhZGxNzCNMKzvCRxaCyDFk1ytEWfdYf0fuSPKtAua2E0rNL4_sKn597ajDSNNZuzNNU1vm4eEWMIoklJgjVYp74b6Azs6uML50GD4sJS50lavLzazEFeaaYpux2ec3g6zs-H08qB09mBbRMpkuviZXahorIabK3wB9agYaoOyAUxZUXazMR8r3swuCmAdDgDiZYUnGSakFipGTEdI8Ykmoyn83Tx9PJKcBZS_I9FHV3hmE110-J3gu4FU16U3odh53bQ7lqmjYIlXR4srJbwXSVtJiKMdVjse4wnmojO9nCh4pZ0BKY0GBZx6irKXI6izFa-pzC4oHHCvAOoZtNMHQLxVSQ4pliRlIJKffONIz63Y-kxGVFaB7u0XygNx7hudTEJSzDZc4gmD7XJQw2oc5w6XC5VZgXBxl_CtFyU8NsuCfEA-F3t6H9qZ7DRHTz2wt5d_-EYNvWTAsZ3AtXF_E01MBxZiNN8u30ChFHcJA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnostic+assessment+of+deep+learning+algorithms+for+diabetic+retinopathy+screening&rft.jtitle=Information+sciences&rft.au=Li%2C+Tao&rft.au=Gao%2C+Yingqi&rft.au=Wang%2C+Kai&rft.au=Guo%2C+Song&rft.date=2019-10-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=501&rft.spage=511&rft.epage=522&rft_id=info:doi/10.1016%2Fj.ins.2019.06.011&rft.externalDocID=S0020025519305377
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon