Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening
Diabetic retinopathy (DR), the leading cause of blindness for working-age adults, is generally intervened by early screening to reduce vision loss. A series of automated deep-learning-based algorithms for DR screening have been proposed and achieved high sensitivity and specificity ( > 90%). Howe...
        Saved in:
      
    
          | Published in | Information sciences Vol. 501; pp. 511 - 522 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Inc
    
        01.10.2019
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0020-0255 1872-6291  | 
| DOI | 10.1016/j.ins.2019.06.011 | 
Cover
| Abstract | Diabetic retinopathy (DR), the leading cause of blindness for working-age adults, is generally intervened by early screening to reduce vision loss. A series of automated deep-learning-based algorithms for DR screening have been proposed and achieved high sensitivity and specificity ( > 90%). However, these deep learning models do not perform well in clinical applications due to the limitations of the existing publicly available fundus image datasets. In order to evaluate these methods in clinical situations, we collected 13,673 fundus images from 9598 patients. These images were divided into six classes by seven graders according to image quality and DR level. Moreover, 757 images with DR were selected to annotate four types of DR-related lesions. Finally, we evaluated state-of-the-art deep learning algorithms on collected images, including image classification, semantic segmentation and object detection. Although we obtain an accuracy of 0.8284 for DR classification, these algorithms perform poorly on lesion segmentation and detection, indicating that lesion segmentation and detection are quite challenging. In summary, we are providing a new dataset named DDR for assessing deep learning models and further exploring the clinical applications, particularly for lesion recognition. | 
    
|---|---|
| AbstractList | Diabetic retinopathy (DR), the leading cause of blindness for working-age adults, is generally intervened by early screening to reduce vision loss. A series of automated deep-learning-based algorithms for DR screening have been proposed and achieved high sensitivity and specificity ( > 90%). However, these deep learning models do not perform well in clinical applications due to the limitations of the existing publicly available fundus image datasets. In order to evaluate these methods in clinical situations, we collected 13,673 fundus images from 9598 patients. These images were divided into six classes by seven graders according to image quality and DR level. Moreover, 757 images with DR were selected to annotate four types of DR-related lesions. Finally, we evaluated state-of-the-art deep learning algorithms on collected images, including image classification, semantic segmentation and object detection. Although we obtain an accuracy of 0.8284 for DR classification, these algorithms perform poorly on lesion segmentation and detection, indicating that lesion segmentation and detection are quite challenging. In summary, we are providing a new dataset named DDR for assessing deep learning models and further exploring the clinical applications, particularly for lesion recognition. | 
    
| Author | Gao, Yingqi Li, Tao Wang, Kai Kang, Hong Guo, Song Liu, Hanruo  | 
    
| Author_xml | – sequence: 1 givenname: Tao surname: Li fullname: Li, Tao organization: Nankai University, China – sequence: 2 givenname: Yingqi surname: Gao fullname: Gao, Yingqi organization: Nankai University, China – sequence: 3 givenname: Kai surname: Wang fullname: Wang, Kai organization: Nankai University, China – sequence: 4 givenname: Song orcidid: 0000-0001-6841-753X surname: Guo fullname: Guo, Song organization: Nankai University, China – sequence: 5 givenname: Hanruo surname: Liu fullname: Liu, Hanruo organization: Beijing Tongren Hospital, Capital Medical University, China – sequence: 6 givenname: Hong surname: Kang fullname: Kang, Hong email: kanghong@nankai.edu.cn organization: Nankai University, China  | 
    
| BookMark | eNp9kMtqwzAQRUVJoWnaD-hOP2B3JNtjm65K-oRAN-layPI4UXCkIIlC_r4O6aqLbGY291y455bNnHfE2IOAXIDAx11uXcwliDYHzEGIKzYXTS0zlK2YsTmAhAxkVd2w2xh3AFDWiHO2frF643xM1nAdI8W4J5e4H3hPdOAj6eCs23A9bnywabuPfPCB91Z3dGLCdJ0_6LQ98mgC0Sl9x64HPUa6__sL9v32ul5-ZKuv98_l8yozsq1T1nSVJAPY6Qol9lWB7QBNjVBIA31jRIdQYVm2paRy2jFFEagqqC6Lsh-wWLD63GuCjzHQoIxNOlnvUtB2VALUSY7aqUmOOslRgGqSM5HiH3kIdq_D8SLzdGZomvRjKahoLDlDvQ1kkuq9vUD_AlHRf6E | 
    
| CitedBy_id | crossref_primary_10_1007_s11042_023_17254_0 crossref_primary_10_3390_batteries9030177 crossref_primary_10_4103_sjopt_sjopt_91_23 crossref_primary_10_1109_TMI_2020_3023463 crossref_primary_10_3390_app14114428 crossref_primary_10_1109_JBHI_2023_3313785 crossref_primary_10_32604_cmes_2024_030052 crossref_primary_10_1038_s41598_025_92510_x crossref_primary_10_4103_tjo_TJO_D_24_00064 crossref_primary_10_1002_ima_22419 crossref_primary_10_4236_ojapps_2025_153044 crossref_primary_10_32604_csse_2022_024695 crossref_primary_10_1007_s00779_020_01519_8 crossref_primary_10_1109_TMI_2022_3143833 crossref_primary_10_3390_math11133021 crossref_primary_10_1038_s41598_025_92665_7 crossref_primary_10_1038_s41598_021_04750_2 crossref_primary_10_1049_ipr2_13275 crossref_primary_10_1142_S0218348X24500609 crossref_primary_10_1007_s11277_024_10968_w crossref_primary_10_3390_diagnostics12010134 crossref_primary_10_1016_j_bspc_2025_107813 crossref_primary_10_1007_s11042_023_14831_1 crossref_primary_10_1177_15353702231171898 crossref_primary_10_1016_j_media_2021_101971 crossref_primary_10_1016_j_bspc_2024_106790 crossref_primary_10_1088_1361_6579_ada86a crossref_primary_10_1002_ima_23163 crossref_primary_10_1007_s11831_022_09862_0 crossref_primary_10_2139_ssrn_4062898 crossref_primary_10_3389_fendo_2022_946915 crossref_primary_10_1016_j_compbiomed_2019_103537 crossref_primary_10_3390_diagnostics13172783 crossref_primary_10_1016_j_bspc_2025_107721 crossref_primary_10_1016_j_patcog_2024_110636 crossref_primary_10_1109_ACCESS_2023_3271895 crossref_primary_10_3390_jimaging7090165 crossref_primary_10_1016_j_inffus_2021_10_003 crossref_primary_10_1016_j_patcog_2025_111484 crossref_primary_10_48084_etasr_8408 crossref_primary_10_1109_TPAMI_2023_3322735 crossref_primary_10_1155_2022_1133575 crossref_primary_10_1049_ipr2_12987 crossref_primary_10_1109_JBHI_2021_3094578 crossref_primary_10_1007_s11042_023_16923_4 crossref_primary_10_1007_s11042_023_17244_2 crossref_primary_10_1007_s40123_023_00691_3 crossref_primary_10_1016_j_bspc_2023_105050 crossref_primary_10_1038_s41598_023_28347_z crossref_primary_10_1109_ACCESS_2022_3178372 crossref_primary_10_35378_gujs_1081546 crossref_primary_10_1016_j_bspc_2024_107415 crossref_primary_10_1016_j_bspc_2024_106564 crossref_primary_10_1002_ima_70063 crossref_primary_10_3390_app13085111 crossref_primary_10_1088_1361_6560_ac9fa0 crossref_primary_10_1016_j_ins_2021_02_004 crossref_primary_10_3390_app142411926 crossref_primary_10_1007_s12652_023_04648_z crossref_primary_10_32604_cmc_2023_040710 crossref_primary_10_1007_s00521_022_07471_3 crossref_primary_10_1007_s10462_023_10557_6 crossref_primary_10_3934_mbe_2022248 crossref_primary_10_1167_tvst_11_7_12 crossref_primary_10_3390_electronics9091337 crossref_primary_10_3233_JIFS_220772 crossref_primary_10_1016_j_engappai_2024_108907 crossref_primary_10_1007_s11042_024_19681_z crossref_primary_10_1016_j_compbiomed_2022_105989 crossref_primary_10_3390_biomimetics8020187 crossref_primary_10_1186_s40662_020_00182_7 crossref_primary_10_1038_s41433_023_02717_3 crossref_primary_10_1016_j_imu_2020_100377 crossref_primary_10_1016_j_imavis_2023_104821 crossref_primary_10_1145_3681796 crossref_primary_10_3233_JIFS_240788 crossref_primary_10_1007_s11277_021_08817_1 crossref_primary_10_1109_JBHI_2021_3119519 crossref_primary_10_1016_j_artmed_2024_102782 crossref_primary_10_1016_j_media_2022_102725 crossref_primary_10_1007_s11042_023_17280_y crossref_primary_10_1007_s11042_024_18627_9 crossref_primary_10_1016_j_bspc_2024_107352 crossref_primary_10_1016_j_eswa_2024_123523 crossref_primary_10_1038_s41598_024_71650_6 crossref_primary_10_1016_j_bspc_2024_106700 crossref_primary_10_3390_vision8030048 crossref_primary_10_1109_TIM_2024_3381663 crossref_primary_10_1002_jbio_202300321 crossref_primary_10_3390_s19224949 crossref_primary_10_3390_bdcc6040152 crossref_primary_10_3390_diagnostics13040774 crossref_primary_10_1016_j_bspc_2022_104123 crossref_primary_10_3390_sym15020287 crossref_primary_10_1016_j_compeleceng_2024_109782 crossref_primary_10_3390_s22186780 crossref_primary_10_1134_S1054661822020195 crossref_primary_10_1109_ACCESS_2023_3326528 crossref_primary_10_1007_s10462_022_10231_3 crossref_primary_10_1007_s40747_021_00630_4 crossref_primary_10_1016_j_rio_2024_100700 crossref_primary_10_1007_s00417_023_06052_x crossref_primary_10_1016_j_compbiomed_2024_108001 crossref_primary_10_1038_s41598_024_72481_1 crossref_primary_10_1016_j_bspc_2024_107328 crossref_primary_10_1364_BOE_472176 crossref_primary_10_1016_j_bspc_2022_104375 crossref_primary_10_1007_s10527_025_10444_0 crossref_primary_10_1007_s11042_023_16835_3 crossref_primary_10_3390_app122312071 crossref_primary_10_1016_j_compbiomed_2021_104599 crossref_primary_10_1109_ACCESS_2021_3054743 crossref_primary_10_29194_NJES_27020155 crossref_primary_10_1016_j_neunet_2025_107168 crossref_primary_10_3390_electronics12244940 crossref_primary_10_22399_ijcesen_649 crossref_primary_10_1109_ACCESS_2023_3294443 crossref_primary_10_21015_vtse_v11i2_1206 crossref_primary_10_1109_JBHI_2021_3108169 crossref_primary_10_1177_14604582241259328 crossref_primary_10_1016_j_bspc_2024_106489 crossref_primary_10_32604_cmc_2021_014691 crossref_primary_10_3390_app14167262 crossref_primary_10_14201_adcaij_31737 crossref_primary_10_1007_s11042_020_10238_4 crossref_primary_10_1109_JBHI_2024_3362878 crossref_primary_10_1038_s41598_024_63844_9 crossref_primary_10_1016_j_compbiomed_2024_109352 crossref_primary_10_3390_app14166941 crossref_primary_10_3390_s22051803 crossref_primary_10_1007_s11042_024_18403_9 crossref_primary_10_3390_app12178749 crossref_primary_10_1016_j_bspc_2024_106293 crossref_primary_10_1136_bjo_2023_323400 crossref_primary_10_1109_TMI_2024_3485064 crossref_primary_10_12677_hjbm_2025_151027 crossref_primary_10_1016_j_bspc_2023_104830 crossref_primary_10_3390_electronics11172740 crossref_primary_10_1002_ima_22933 crossref_primary_10_1016_j_compbiomed_2022_105302 crossref_primary_10_1109_ACCESS_2024_3383014 crossref_primary_10_1016_j_eswa_2023_122889 crossref_primary_10_1109_ACCESS_2023_3333364 crossref_primary_10_1038_s41433_021_01552_8 crossref_primary_10_1002_ima_22482 crossref_primary_10_1038_s41598_023_38320_5 crossref_primary_10_1049_cvi2_12308 crossref_primary_10_1002_ima_23213 crossref_primary_10_3390_a17040164 crossref_primary_10_1007_s10489_022_03490_8 crossref_primary_10_1016_j_compeleceng_2024_109746 crossref_primary_10_3390_diagnostics12122918 crossref_primary_10_1109_ACCESS_2021_3101142 crossref_primary_10_1109_TMI_2022_3193146 crossref_primary_10_1016_j_bspc_2023_105349 crossref_primary_10_21122_2309_4923_2022_3_12_21 crossref_primary_10_1016_j_matpr_2022_01_466 crossref_primary_10_1016_j_cmpb_2020_105629 crossref_primary_10_3390_diagnostics13101664 crossref_primary_10_1038_s41598_024_56389_4 crossref_primary_10_1016_j_knosys_2025_113242 crossref_primary_10_1016_j_compbiomed_2024_107993 crossref_primary_10_1109_TMI_2024_3367367 crossref_primary_10_1109_LSENS_2023_3290597 crossref_primary_10_1080_08164622_2023_2197578 crossref_primary_10_1016_j_engappai_2025_110364 crossref_primary_10_31590_ejosat_1263514 crossref_primary_10_1016_j_neucom_2025_129456 crossref_primary_10_1016_j_eswa_2023_122742 crossref_primary_10_1371_journal_pone_0299265 crossref_primary_10_1109_TMI_2024_3429148 crossref_primary_10_2139_ssrn_4098657 crossref_primary_10_1007_s42600_022_00200_8 crossref_primary_10_1016_j_procs_2023_01_389 crossref_primary_10_1007_s11042_023_14785_4 crossref_primary_10_1371_journal_pone_0271156 crossref_primary_10_1016_j_bspc_2023_105210 crossref_primary_10_1016_j_compbiomed_2022_106408 crossref_primary_10_1016_j_measurement_2020_108052 crossref_primary_10_1109_TMI_2024_3383827 crossref_primary_10_1016_j_asoc_2022_109462 crossref_primary_10_1007_s11831_023_10002_5 crossref_primary_10_1364_OE_430508 crossref_primary_10_1155_2023_1305583 crossref_primary_10_1016_j_dsp_2024_104888 crossref_primary_10_3390_biomedicines12122753 crossref_primary_10_1016_j_bspc_2025_107581 crossref_primary_10_7759_cureus_53586 crossref_primary_10_1016_j_bspc_2024_106777 crossref_primary_10_1007_s42154_022_00197_x crossref_primary_10_1007_s11263_024_02246_w crossref_primary_10_1016_j_bspc_2021_102600 crossref_primary_10_1007_s10489_024_05274_8 crossref_primary_10_1007_s13748_024_00325_0 crossref_primary_10_1109_TDSC_2024_3376790 crossref_primary_10_1109_ACCESS_2024_3361944 crossref_primary_10_1155_2023_2728719 crossref_primary_10_3788_CJL240731 crossref_primary_10_1016_j_bspc_2024_107078 crossref_primary_10_3390_jcm13030807 crossref_primary_10_1016_j_patcog_2022_109191 crossref_primary_10_1002_cpe_7138 crossref_primary_10_1109_TIM_2023_3322497 crossref_primary_10_1016_j_neucom_2024_127816 crossref_primary_10_1007_s10489_022_03204_0 crossref_primary_10_1016_j_compbiomed_2023_106967 crossref_primary_10_1109_ACCESS_2024_3469537 crossref_primary_10_3390_s22093490 crossref_primary_10_1109_TIM_2024_3500044 crossref_primary_10_1109_ACCESS_2022_3157632 crossref_primary_10_1007_s10489_022_04295_5 crossref_primary_10_1007_s13721_023_00438_x crossref_primary_10_3390_s21113704 crossref_primary_10_32628_CSEIT228113 crossref_primary_10_1007_s11042_023_15110_9 crossref_primary_10_3390_technologies12120256 crossref_primary_10_1016_j_bbe_2022_12_005 crossref_primary_10_1177_20552076231194942 crossref_primary_10_1002_jbio_202300052 crossref_primary_10_1016_j_compbiomed_2024_108523 crossref_primary_10_1016_j_bspc_2022_103682 crossref_primary_10_3390_biomedicines11061566 crossref_primary_10_1002_jemt_24345 crossref_primary_10_1007_s11042_022_14234_8 crossref_primary_10_3390_electronics11010023 crossref_primary_10_1109_ACCESS_2020_3029117 crossref_primary_10_1007_s00521_024_09564_7 crossref_primary_10_1007_s11042_022_13837_5 crossref_primary_10_1038_s41597_024_03739_6 crossref_primary_10_3390_jcm12103587 crossref_primary_10_1109_ACCESS_2024_3415617 crossref_primary_10_3389_fcell_2023_1124005 crossref_primary_10_3390_s22176441 crossref_primary_10_2147_DMSO_S288419 crossref_primary_10_1016_j_health_2023_100174 crossref_primary_10_1109_TMI_2022_3177803 crossref_primary_10_1007_s11042_023_16449_9 crossref_primary_10_1109_TMI_2023_3298093 crossref_primary_10_54097_hset_v12i_1448 crossref_primary_10_1016_j_eswa_2022_117583 crossref_primary_10_1016_j_cmpbup_2021_100013 crossref_primary_10_1007_s42600_023_00320_9 crossref_primary_10_1007_s11042_022_13841_9 crossref_primary_10_1016_j_media_2024_103357 crossref_primary_10_1016_j_compeleceng_2024_109243 crossref_primary_10_1007_s11042_023_18089_5 crossref_primary_10_1038_s41598_023_36311_0 crossref_primary_10_1108_IJICC_11_2019_0119 crossref_primary_10_1186_s12938_024_01212_4 crossref_primary_10_1007_s12596_024_02019_1 crossref_primary_10_1016_j_heliyon_2023_e17217 crossref_primary_10_1007_s12652_020_02417_w  | 
    
| Cites_doi | 10.1001/jama.2016.17216 10.2337/dc11-1909 10.1109/TMI.2018.2837012 10.1016/j.ophtha.2017.02.008 10.1016/j.ins.2017.08.050 10.1016/S0161-6420(03)00475-5 10.1109/TPAMI.2016.2577031 10.1109/TMI.2004.825627 10.1001/jama.2017.18152 10.1586/eop.12.52 10.1109/TMI.2018.2791488 10.5566/ias.1155 10.1109/TMI.2009.2033909 10.3390/data3030025 10.1038/nature14539 10.1167/iovs.16-19964 10.1016/j.irbm.2013.01.010 10.1109/42.845178 10.1111/ceo.12696  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2019 Elsevier Inc. | 
    
| Copyright_xml | – notice: 2019 Elsevier Inc. | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.ins.2019.06.011 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Library & Information Science  | 
    
| EISSN | 1872-6291 | 
    
| EndPage | 522 | 
    
| ExternalDocumentID | 10_1016_j_ins_2019_06_011 S0020025519305377  | 
    
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- 77I AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD  | 
    
| ID | FETCH-LOGICAL-c297t-8b52ec06ba5626d5369f0876032c0d8c1b605644942e4629c0660e53e7434df63 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0020-0255 | 
    
| IngestDate | Wed Oct 01 05:18:57 EDT 2025 Thu Apr 24 22:56:48 EDT 2025 Fri Feb 23 02:25:15 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Fundus image Deep learning Diabetic retinopathy Semantic segmentation Image classification  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c297t-8b52ec06ba5626d5369f0876032c0d8c1b605644942e4629c0660e53e7434df63 | 
    
| ORCID | 0000-0001-6841-753X | 
    
| PageCount | 12 | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_ins_2019_06_011 crossref_primary_10_1016_j_ins_2019_06_011 elsevier_sciencedirect_doi_10_1016_j_ins_2019_06_011  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | October 2019 2019-10-00  | 
    
| PublicationDateYYYYMMDD | 2019-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2019 text: October 2019  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Information sciences | 
    
| PublicationYear | 2019 | 
    
| Publisher | Elsevier Inc | 
    
| Publisher_xml | – name: Elsevier Inc | 
    
| References | Ting, Cheung, Lim, Tan, Quang, Gan, Hamzah, Garcia-Franco, Yeo, Lee (bib0031) 2017; 318 Fu, Cheng, Xu, Wong, Liu, Cao (bib0008) 2018; 37 Simonyan, Zisserman (bib0027) 2015 International Council of Ophthalmology, ICO Guidelines for Diabetic Eye Care, 2017. Gulshan, Peng, Coram, Stumpe, Wu, Narayanaswamy, Venugopalan, Widner, Madams, Cuadros (bib0011) 2016; 316 Xie, Tu (bib0034) 2016 Redmon, Divvala, Girshick, Farhadi (bib0025) 2016 Abadi, Barham, Chen, Chen, Davis, Dean, Devin, Ghemawat, Irving, Isard (bib0001) 2016 Huang, Liu, Maaten, Weinberger (bib0015) 2017 Cun, Bengio, Hinton (bib0020) 2015; 521 Tan, Fujita, Sivaprasad, Bhandary, Rao, Chua, Acharya (bib0030) 2017; 420 Jia, Shelhamer, Donahue, Karayev, Long, Girshick, Guadarrama, Darrell (bib0017) 2014 Staal, Abramoff, Niemeijer, Viergever, Ginneken (bib0028) 2004; 23 Fu, Cheng, Xu, Zhang, Wong, Liu, Cao (bib0009) 2018; 37 Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib0029) 2015 Kauppi, Kalesnykiene, Kamarainen, Lensu, Sorri, Raninen, Voutilainen, Pietilä, Kälviäinen, Uusitalo (bib0019) 2007 Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg (bib0021) 2016 Porwal, Pachade, Kamble, Kokare, Deshmukh, Sahasrabuddhe, Meriaudeau (bib0023) 2018; 3 Decenciere, Cazuguel, Zhang, Thibault, Klein, Meyer, Marcotegui, Quellec, Lamard, Danno (bib0006) 2013; 34 Hu, Shen, Sun (bib0014) 2018 Wilkinson, Ferris, Klein, Lee, Agardh, Davis, Dills, Kampik, Pararajasegaram, Verdaguer (bib0033) 2003; 110 Gargeya, Leng (bib0010) 2017; 124 Chakrabarti, Harper, Keeffe (bib0003) 2012; 7 Niemeijer, Ginneken, Cree, Mizutani, Quellec, Sanchez, Zhang, Hornero, Lamard, Muramatsu (bib0022) 2010; 29 Yau, Rogers, Kawasaki, Lamoureux, Kowalski, Bek, Chen, Dekker, Fletcher, Grauslund (bib0035) 2012; 35 Chen, Zhu, Papandreou, Schroff, Adam (bib0004) 2018 Ren, He, Girshick, Sun (bib0026) 2017; 39 . He, Zhang, Ren, Sun (bib0012) 2016 Decencière, Zhang, Cazuguel, Lay, Cochener, Trone, Gain, Ordonez, Massin, Erginay (bib0007) 2014; 33 Abràmoff, Lou, Erginay, Clarida, Amelon, Folk, Niemeijer (bib0002) 2016; 57 Hoover, Kouznetsova, Goldbaum (bib0013) 2000; 19 Kaggle Diabetic Retinopathy Detection Competition, [Accessed 18-October-2018] Dai, Sheng, Wu, Li, Hou, Jia, Fang (bib0005) 2017 Prentašić, Lončarić, Vatavuk, Benčić, Subašić, Petković, Dujmović, Malenica-Ravlić, Budimlija, Tadić (bib0024) 2013 Ting, Cheung, Wong (bib0032) 2016; 44 Huang (10.1016/j.ins.2019.06.011_bib0015) 2017 Chen (10.1016/j.ins.2019.06.011_bib0004) 2018 Kauppi (10.1016/j.ins.2019.06.011_bib0019) 2007 Porwal (10.1016/j.ins.2019.06.011_bib0023) 2018; 3 Abràmoff (10.1016/j.ins.2019.06.011_bib0002) 2016; 57 Xie (10.1016/j.ins.2019.06.011_bib0034) 2016 Hoover (10.1016/j.ins.2019.06.011_bib0013) 2000; 19 Fu (10.1016/j.ins.2019.06.011_bib0009) 2018; 37 Jia (10.1016/j.ins.2019.06.011_bib0017) 2014 Liu (10.1016/j.ins.2019.06.011_bib0021) 2016 Staal (10.1016/j.ins.2019.06.011_bib0028) 2004; 23 Chakrabarti (10.1016/j.ins.2019.06.011_bib0003) 2012; 7 Ren (10.1016/j.ins.2019.06.011_bib0026) 2017; 39 Szegedy (10.1016/j.ins.2019.06.011_bib0029) 2015 Decencière (10.1016/j.ins.2019.06.011_bib0007) 2014; 33 Gulshan (10.1016/j.ins.2019.06.011_bib0011) 2016; 316 Abadi (10.1016/j.ins.2019.06.011_bib0001) 2016 Cun (10.1016/j.ins.2019.06.011_bib0020) 2015; 521 Niemeijer (10.1016/j.ins.2019.06.011_bib0022) 2010; 29 10.1016/j.ins.2019.06.011_bib0018 10.1016/j.ins.2019.06.011_bib0016 Ting (10.1016/j.ins.2019.06.011_bib0031) 2017; 318 Redmon (10.1016/j.ins.2019.06.011_bib0025) 2016 Ting (10.1016/j.ins.2019.06.011_bib0032) 2016; 44 Prentašić (10.1016/j.ins.2019.06.011_bib0024) 2013 Simonyan (10.1016/j.ins.2019.06.011_bib0027) 2015 Wilkinson (10.1016/j.ins.2019.06.011_bib0033) 2003; 110 Decenciere (10.1016/j.ins.2019.06.011_bib0006) 2013; 34 Fu (10.1016/j.ins.2019.06.011_bib0008) 2018; 37 Hu (10.1016/j.ins.2019.06.011_bib0014) 2018 Dai (10.1016/j.ins.2019.06.011_bib0005) 2017 Gargeya (10.1016/j.ins.2019.06.011_bib0010) 2017; 124 Tan (10.1016/j.ins.2019.06.011_bib0030) 2017; 420 Yau (10.1016/j.ins.2019.06.011_bib0035) 2012; 35 He (10.1016/j.ins.2019.06.011_bib0012) 2016  | 
    
| References_xml | – volume: 57 start-page: 5200 year: 2016 end-page: 5206 ident: bib0002 article-title: Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning publication-title: Invest. Ophthalmol. Visual Sci. – volume: 19 start-page: 203 year: 2000 end-page: 210 ident: bib0013 article-title: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response publication-title: IEEE Trans. Med. Imaging – volume: 34 start-page: 196 year: 2013 end-page: 203 ident: bib0006 article-title: TeleOphta: machine learning and image processing methods for teleophthalmology publication-title: Irbm – volume: 420 start-page: 66 year: 2017 end-page: 76 ident: bib0030 article-title: Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network publication-title: Inf. Sci. – start-page: 675 year: 2014 end-page: 678 ident: bib0017 article-title: Caffe: convolutional architecture for fast feature embedding publication-title: 22nd ACM international conference on Multimedia – volume: 7 start-page: 417 year: 2012 end-page: 439 ident: bib0003 article-title: Diabetic retinopathy management guidelines publication-title: Expert Rev. Ophthalmol. – start-page: 770 year: 2016 end-page: 778 ident: bib0012 article-title: Deep residual learning for image recognition publication-title: IEEE Conference on Computer Vision and Pattern Recognition – volume: 3 start-page: 25 year: 2018 end-page: 32 ident: bib0023 article-title: Indian diabetic retinopathy image dataset (IDRiD): a database for diabetic retinopathy screening research publication-title: Data – volume: 318 start-page: 2211 year: 2017 end-page: 2223 ident: bib0031 article-title: Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes publication-title: JAMA – volume: 35 start-page: 556 year: 2012 end-page: 564 ident: bib0035 article-title: Global prevalence and major risk factors of diabetic retinopathy publication-title: Diabetes Care – start-page: 61 year: 2007 end-page: 65 ident: bib0019 article-title: DIARETDB1 diabetic retinopathy database and evaluation protocol publication-title: Medical Image Understanding and Analysis – start-page: 2261 year: 2017 end-page: 2269 ident: bib0015 article-title: Densely connected convolutional networks publication-title: IEEE Conference on Computer Vision and Pattern Recognition – volume: 37 start-page: 1597 year: 2018 end-page: 1605 ident: bib0008 article-title: Joint optic disc and cup segmentation based on multi-label deep network and polar transformation publication-title: IEEE Trans. Med. Imaging – volume: 124 start-page: 962 year: 2017 end-page: 969 ident: bib0010 article-title: Automated identification of diabetic retinopathy using deep learning publication-title: Ophthalmology – reference: Kaggle Diabetic Retinopathy Detection Competition, [Accessed 18-October-2018] – volume: 33 start-page: 231 year: 2014 end-page: 234 ident: bib0007 article-title: Feedback on a publicly distributed image database: the messidor database publication-title: Image Anal. Stereol. – start-page: 779 year: 2016 end-page: 788 ident: bib0025 article-title: You only look once: unified, real-time object detection publication-title: IEEE Conference on Computer Vision and Pattern Recognition – volume: 316 start-page: 2402 year: 2016 end-page: 2410 ident: bib0011 article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs publication-title: JAMA – start-page: 1 year: 2015 end-page: 9 ident: bib0029 article-title: Going deeper with convolutions publication-title: IEEE Conference on Computer Vision and Pattern Recognition – volume: 44 start-page: 260 year: 2016 end-page: 277 ident: bib0032 article-title: Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review publication-title: Clin. Exp. Ophthalmol. – volume: 37 start-page: 2493 year: 2018 end-page: 2501 ident: bib0009 article-title: Disc-aware ensemble network for glaucoma screening from fundus image publication-title: IEEE Trans. Med. Imaging – start-page: 7132 year: 2018 end-page: 7141 ident: bib0014 article-title: Squeeze-and-excitation networks publication-title: IEEE Conference on Computer Vision and Pattern Recognition – start-page: 525 year: 2017 end-page: 532 ident: bib0005 article-title: Retinal microaneurysm detection using clinical report guided multi-sieving CNN publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – reference: . – start-page: 21 year: 2016 end-page: 37 ident: bib0021 article-title: SSD: single shot multibox detector publication-title: European Conference on Computer Vision – volume: 110 start-page: 1677 year: 2003 end-page: 1682 ident: bib0033 article-title: Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales publication-title: Ophthalmology – start-page: 801 year: 2018 end-page: 818 ident: bib0004 article-title: Encoder-decoder with Atrous separable convolution for semantic image segmentation publication-title: European Conference on Computer Vision – start-page: 265 year: 2016 end-page: 283 ident: bib0001 article-title: TensorFlow: a system for large-scale machine learning publication-title: 12th USENIX Symposium on Operating Systems Design and Implementation – volume: 23 start-page: 501 year: 2004 end-page: 509 ident: bib0028 article-title: Ridge-based vessel segmentation in color images of the retina publication-title: IEEE Trans. Med. Imaging – start-page: 3 year: 2016 end-page: 18 ident: bib0034 article-title: Holistically-nested edge detection publication-title: IEEE International Conference on Computer Vision – volume: 29 start-page: 185 year: 2010 end-page: 195 ident: bib0022 article-title: Retinopathy online challenge: automatic detection of microaneurysms in digital color fundus photographs publication-title: IEEE Trans. Med. Imaging – start-page: 711 year: 2013 end-page: 716 ident: bib0024 article-title: Diabetic retinopathy image database (DRiDB): a new database for diabetic retinopathy screening programs research publication-title: International Symposium on Image and Signal Processing and Analysis – volume: 39 start-page: 1137 year: 2017 end-page: 1149 ident: bib0026 article-title: Faster R-CNN: towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: International Council of Ophthalmology, ICO Guidelines for Diabetic Eye Care, 2017. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib0020 article-title: Deep learning publication-title: Nature – year: 2015 ident: bib0027 article-title: Very deep convolutional networks for large-scale image recognition publication-title: International Conference on Learning Representations – volume: 316 start-page: 2402 issue: 22 year: 2016 ident: 10.1016/j.ins.2019.06.011_bib0011 article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs publication-title: JAMA doi: 10.1001/jama.2016.17216 – start-page: 525 year: 2017 ident: 10.1016/j.ins.2019.06.011_bib0005 article-title: Retinal microaneurysm detection using clinical report guided multi-sieving CNN – start-page: 801 year: 2018 ident: 10.1016/j.ins.2019.06.011_bib0004 article-title: Encoder-decoder with Atrous separable convolution for semantic image segmentation – start-page: 779 year: 2016 ident: 10.1016/j.ins.2019.06.011_bib0025 article-title: You only look once: unified, real-time object detection – volume: 35 start-page: 556 issue: 3 year: 2012 ident: 10.1016/j.ins.2019.06.011_bib0035 article-title: Global prevalence and major risk factors of diabetic retinopathy publication-title: Diabetes Care doi: 10.2337/dc11-1909 – volume: 37 start-page: 2493 issue: 11 year: 2018 ident: 10.1016/j.ins.2019.06.011_bib0009 article-title: Disc-aware ensemble network for glaucoma screening from fundus image publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2837012 – volume: 124 start-page: 962 issue: 7 year: 2017 ident: 10.1016/j.ins.2019.06.011_bib0010 article-title: Automated identification of diabetic retinopathy using deep learning publication-title: Ophthalmology doi: 10.1016/j.ophtha.2017.02.008 – volume: 420 start-page: 66 year: 2017 ident: 10.1016/j.ins.2019.06.011_bib0030 article-title: Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.08.050 – start-page: 711 year: 2013 ident: 10.1016/j.ins.2019.06.011_bib0024 article-title: Diabetic retinopathy image database (DRiDB): a new database for diabetic retinopathy screening programs research – volume: 110 start-page: 1677 issue: 9 year: 2003 ident: 10.1016/j.ins.2019.06.011_bib0033 article-title: Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales publication-title: Ophthalmology doi: 10.1016/S0161-6420(03)00475-5 – volume: 39 start-page: 1137 issue: 6 year: 2017 ident: 10.1016/j.ins.2019.06.011_bib0026 article-title: Faster R-CNN: towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – volume: 23 start-page: 501 issue: 4 year: 2004 ident: 10.1016/j.ins.2019.06.011_bib0028 article-title: Ridge-based vessel segmentation in color images of the retina publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2004.825627 – volume: 318 start-page: 2211 issue: 22 year: 2017 ident: 10.1016/j.ins.2019.06.011_bib0031 article-title: Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes publication-title: JAMA doi: 10.1001/jama.2017.18152 – start-page: 7132 year: 2018 ident: 10.1016/j.ins.2019.06.011_bib0014 article-title: Squeeze-and-excitation networks – start-page: 21 year: 2016 ident: 10.1016/j.ins.2019.06.011_bib0021 article-title: SSD: single shot multibox detector – ident: 10.1016/j.ins.2019.06.011_bib0018 – volume: 7 start-page: 417 issue: 5 year: 2012 ident: 10.1016/j.ins.2019.06.011_bib0003 article-title: Diabetic retinopathy management guidelines publication-title: Expert Rev. Ophthalmol. doi: 10.1586/eop.12.52 – volume: 37 start-page: 1597 issue: 7 year: 2018 ident: 10.1016/j.ins.2019.06.011_bib0008 article-title: Joint optic disc and cup segmentation based on multi-label deep network and polar transformation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2791488 – ident: 10.1016/j.ins.2019.06.011_bib0016 – volume: 33 start-page: 231 issue: 3 year: 2014 ident: 10.1016/j.ins.2019.06.011_bib0007 article-title: Feedback on a publicly distributed image database: the messidor database publication-title: Image Anal. Stereol. doi: 10.5566/ias.1155 – start-page: 770 year: 2016 ident: 10.1016/j.ins.2019.06.011_bib0012 article-title: Deep residual learning for image recognition – volume: 29 start-page: 185 issue: 1 year: 2010 ident: 10.1016/j.ins.2019.06.011_bib0022 article-title: Retinopathy online challenge: automatic detection of microaneurysms in digital color fundus photographs publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2009.2033909 – start-page: 265 year: 2016 ident: 10.1016/j.ins.2019.06.011_bib0001 article-title: TensorFlow: a system for large-scale machine learning – volume: 3 start-page: 25 issue: 3 year: 2018 ident: 10.1016/j.ins.2019.06.011_bib0023 article-title: Indian diabetic retinopathy image dataset (IDRiD): a database for diabetic retinopathy screening research publication-title: Data doi: 10.3390/data3030025 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.ins.2019.06.011_bib0020 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – year: 2015 ident: 10.1016/j.ins.2019.06.011_bib0027 article-title: Very deep convolutional networks for large-scale image recognition – volume: 57 start-page: 5200 issue: 13 year: 2016 ident: 10.1016/j.ins.2019.06.011_bib0002 article-title: Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning publication-title: Invest. Ophthalmol. Visual Sci. doi: 10.1167/iovs.16-19964 – volume: 34 start-page: 196 issue: 2 year: 2013 ident: 10.1016/j.ins.2019.06.011_bib0006 article-title: TeleOphta: machine learning and image processing methods for teleophthalmology publication-title: Irbm doi: 10.1016/j.irbm.2013.01.010 – start-page: 61 year: 2007 ident: 10.1016/j.ins.2019.06.011_bib0019 article-title: DIARETDB1 diabetic retinopathy database and evaluation protocol – start-page: 675 year: 2014 ident: 10.1016/j.ins.2019.06.011_bib0017 article-title: Caffe: convolutional architecture for fast feature embedding – volume: 19 start-page: 203 issue: 3 year: 2000 ident: 10.1016/j.ins.2019.06.011_bib0013 article-title: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.845178 – start-page: 2261 year: 2017 ident: 10.1016/j.ins.2019.06.011_bib0015 article-title: Densely connected convolutional networks – start-page: 3 year: 2016 ident: 10.1016/j.ins.2019.06.011_bib0034 article-title: Holistically-nested edge detection – volume: 44 start-page: 260 issue: 4 year: 2016 ident: 10.1016/j.ins.2019.06.011_bib0032 article-title: Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review publication-title: Clin. Exp. Ophthalmol. doi: 10.1111/ceo.12696 – start-page: 1 year: 2015 ident: 10.1016/j.ins.2019.06.011_bib0029 article-title: Going deeper with convolutions  | 
    
| SSID | ssj0004766 | 
    
| Score | 2.678033 | 
    
| Snippet | Diabetic retinopathy (DR), the leading cause of blindness for working-age adults, is generally intervened by early screening to reduce vision loss. A series of... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 511 | 
    
| SubjectTerms | Deep learning Diabetic retinopathy Fundus image Image classification Semantic segmentation  | 
    
| Title | Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening | 
    
| URI | https://dx.doi.org/10.1016/j.ins.2019.06.011 | 
    
| Volume | 501 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AKRWK dateStart: 19681201 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqssCAoIAo0MoDYkAKzYfj1GNVqApInVqpWxQ7TgkqSVXCwMJv5y5xSpGAgTHWnRWdnfO7-O4dIZeusv1YysgSPJYWIGJhQRjhWV6SOCxWQZ8lZbbFhI9n7GHuzxtkWNfCYFql8f2VTy-9tRnpGWv2VmmKNb5uiYgBgiApCVaUMxZgF4Obj680DxZU95UYJqF0fbNZ5nilGTJ2O6Kk8HScn8-mrfNmdED2DVCkg-pdDklDZy2yt0Uf2CIdU3RAr6ipKkIrU_O5HpHpbZVHBzPQaMPASfOExlqvqGkYsaDRcpGv0-Lp5ZXCLLT6HQs6WOCY5diz-J2Cd4GIF6SPyWx0Nx2OLdNFwVKuCAqrL31XK5vLCKAOj32PiwR56GwP1inuK0dCRAOoSDBXM-4KEOW29j0N2ILFCfdOSDPLM31KqK8jKSDCipSSTOHFN4z4wo6Vx1XEWJvYtf1CZSjGsdPFMqxzyZ5DMHmIJg8xn85x2uR6o7Kq-DX-Emb1ooTfNkkI_v93tbP_qZ2TXXyqMvcuSLNYv-kOIJBCdsst1iU7g_vH8eQTVCfajw | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED2VMgADggKiQMEDYkAKzYfj1CMqVAVKp1bqFsWOU4JKWpUysPDbOSdOKRIwsDp3VnR2znfxu3cA5660_ViIyOIsFhZGxNzCNMKzvCRxaCyDFk1ytEWfdYf0fuSPKtAua2E0rNL4_sKn597ajDSNNZuzNNU1vm4eEWMIoklJgjVYp74b6Azs6uML50GD4sJS50lavLzazEFeaaYpux2ec3g6zs-H08qB09mBbRMpkuviZXahorIabK3wB9agYaoOyAUxZUXazMR8r3swuCmAdDgDiZYUnGSakFipGTEdI8Ykmoyn83Tx9PJKcBZS_I9FHV3hmE110-J3gu4FU16U3odh53bQ7lqmjYIlXR4srJbwXSVtJiKMdVjse4wnmojO9nCh4pZ0BKY0GBZx6irKXI6izFa-pzC4oHHCvAOoZtNMHQLxVSQ4pliRlIJKffONIz63Y-kxGVFaB7u0XygNx7hudTEJSzDZc4gmD7XJQw2oc5w6XC5VZgXBxl_CtFyU8NsuCfEA-F3t6H9qZ7DRHTz2wt5d_-EYNvWTAsZ3AtXF_E01MBxZiNN8u30ChFHcJA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnostic+assessment+of+deep+learning+algorithms+for+diabetic+retinopathy+screening&rft.jtitle=Information+sciences&rft.au=Li%2C+Tao&rft.au=Gao%2C+Yingqi&rft.au=Wang%2C+Kai&rft.au=Guo%2C+Song&rft.date=2019-10-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=501&rft.spage=511&rft.epage=522&rft_id=info:doi/10.1016%2Fj.ins.2019.06.011&rft.externalDocID=S0020025519305377 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |