TRIQS/SOM 2.0: Implementation of the stochastic optimization with consistent constraints for analytic continuation

TRIQS /SOMis a numerical analytic continuation package first presented in [Comp. Phys. Comm. 239 (2019) 166–183]. Version 2.0 brings a number of new features, most notably a complete implementation of the Stochastic Optimization with Consistent Constraints protocol. Other additions include support f...

Full description

Saved in:
Bibliographic Details
Published inComputer physics communications Vol. 280; p. 108491
Main Authors Krivenko, Igor, Mishchenko, Andrey S.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2022
Subjects
Online AccessGet full text
ISSN0010-4655
DOI10.1016/j.cpc.2022.108491

Cover

Abstract TRIQS /SOMis a numerical analytic continuation package first presented in [Comp. Phys. Comm. 239 (2019) 166–183]. Version 2.0 brings a number of new features, most notably a complete implementation of the Stochastic Optimization with Consistent Constraints protocol. Other additions include support for user-supplied covariance matrices of correlated input data, and a new family of integral kernels for fermionic Green's functions with enforced particle-hole symmetry. The code base has been updated to rely on the recent version 3.1 of the TRIQSlibrary, which also implies moving away from the discontinued Python 2.7 to Python 3. Program Title:TRIQS /SOM CPC Library link to program files:https://doi.org/10.17632/fcjzyhrwpw.2 Developer's repository link:https://github.com/krivenko/som Licensing provisions: GPLv3 Programming language:C++/Python Journal reference of previous version: Comp. Phys. Comm. 239 (2019) 166–183 Does the new version supersede the previous version?: Yes Reasons for the new version: Implementation of the stochastic optimization with consistent constraints protocol as well as of other new features; Complete port to Python 3 and the TRIQSlibrary [1] version 3.1. Nature of problem: Quantum Monte Carlo methods (QMC) are powerful numerical techniques widely used to study quantum many-body effects and electronic structure of correlated materials. Obtaining physically relevant spectral functions from noisy QMC results in the imaginary time/Matsubara frequency domains requires solution of an ill-posed analytic continuation problem as a post-processing step. Solution method: We present an efficient C++/Python open-source implementation of the stochastic optimization method for analytic continuation, both in its original formulation (SOM) [2] and with the consistent constraints extensions (SOCC) [3,4]. Summary of revisions: TRIQS /SOM has been ported from the long-deprecated TRIQS library branch 1.4.x to the recently released version 3.1 (requires a C++20 compiler). As a consequence, support for the retired Python 2.7 has been dropped in favor of Python 3. For consistency with the Maximum Entropy method and other approaches to numerical analytic continuation, we now search for a spectral function A(ϵ) minimizing the “goodness of fit” functionalχ2[A(ϵ)]=1N∑n=1N|Δ(n)σ(n)|2, as opposed to the previously usedD[A(ϵ)]=∑n=1N|Δ(n)σ(n)|.Δ(n) are discrepancies derived from the integral equation of the analytic continuation problem,Δ(n)=∫ϵminϵmaxK(n,ϵ)A(ϵ)dϵ−G(n), and σ(n) are user-provided estimated error bars on the input quantity G(n). Adoption of the χ2-functional has made it possible to support general N×N covariance matrices Σˆ of correlated input data as an alternative to the simple estimated error bars,χ2[A(ϵ)]=1NΔ†Σˆ−1Δ,Δ={Δ(n)}. The most prominent new feature of TRIQS /SOM 2.0 is a complete implementation of the Stochastic Optimization with Consistent Constraints protocol proposed by Goulko et al. in [4]. It includes three major aspects.•The Consistent Constraints update in the Markov chain [4, Sec. II.A] used to speed up accumulation of particular solutions. Unlike the elementary updates, it drastically changes heights of all rectangles in current configuration by minimizing a sum of the χ2-functional and a few quadratic regularization terms. These extra terms depend on a set of regularization parameters, whose values are determined in a self-consistent manner in the course of an iterative optimization procedure.•The Consistent Constraints (CC) protocol for constructing final solutions out of particular solutions [4, Sec. II.B]. In the original formulation of SOM, a final solution is constructed as a simple equal-weight sum of all “good” (delivering deep minima to χ2) particular solutions. The CC protocol aims at constructing a smoother final solution as a general superposition of J good particular solutions A(ϵ)=∑j=1JcjAj(ϵ), where expansion coefficients cj are subject to ∑j=1Jcj=1. A sophisticated and customizable iterative procedure is employed to minimize a certain quadratic function of cj, while self-consistently adjusting values of regularization parameters this function depends on. One may also use this algorithms to bias the final solution towards a certain “target” spectral function AT(ϵ).•A solution quality assessment technique [4, Sec. I-II] implemented in a new Python module som.spectral_stats. Functions from this module make it possible to perform statistical analysis of ensembles of accumulated particular solutions. Statistical averages over such ensembles may serve as estimates of true spectral functions, while dispersions and two-point correlations contain information about uncertainties of the estimated spectra. A new family of integral kernels K(n,ϵ) for particle-hole symmetric fermionic Green's functions has been introduced. The corresponding observable is called FermionGfSymm. The BosonAutoCorr kernels have been changed to more closely reproduce results of the BosonCorr kernels when applied to the same input data. Both kernel families are defined on the whole energy axis (ϵmin=−∞,ϵmax=+∞) and expect the same spectrum normalization constant now. Projection of an observable G(ϵ) onto a real frequency grid ϵi can now be performed using binning (enabled by default). In this mode, the projected observable is averaged over bins centered around points of the grid, Gi=1δ∫ϵi−δ/2ϵi+δ/2G(ϵ)dϵ, instead of being simply evaluated at those points, Gi=G(ϵi). The online documentation website has undergone a complete overhaul. Now, it includes a step-by-step tutorial for new users, a detailed user guide covering all major features of the package, an auto-generated Python API reference and a handful of usage examples. There is also a Python script porting guide for those switching from TRIQS /SOM 1.x. A detailed list of all changes in version 2.0 is available at http://krivenko.github.io/som/ChangeLog.html. [1]O. Parcollet, M. Ferrero, T. Ayral, H. Hafermann, I. Krivenko, L. Messio, P. Seth, TRIQS: A toolbox for research on interacting quantum systems, Comp. Phys. Comm. 196 (2015) 398–415.[2]A.S. Mishchenko, N.V. Prokof'ev, A. Sakamoto, B.V. Svistunov, Diagrammatic quantum Monte Carlo study of the Frölich polaron, Phys. Rev. B 62 (2000) 6317.[3]N.V. Prokof'ev, B.V. Svistunov, Spectral Analysis by the Method of Consistent Constraints, JETP Lett. 97(11) (2013) 649–653.[4]O. Goulko, A.S. Mishchenko, L. Pollet, N. Prokof'ev, B. Svistunov, Numerical analytic continuation: Answers to well-posed questions, Phys. Rev. B 95 (2017) 014102.
AbstractList TRIQS /SOMis a numerical analytic continuation package first presented in [Comp. Phys. Comm. 239 (2019) 166–183]. Version 2.0 brings a number of new features, most notably a complete implementation of the Stochastic Optimization with Consistent Constraints protocol. Other additions include support for user-supplied covariance matrices of correlated input data, and a new family of integral kernels for fermionic Green's functions with enforced particle-hole symmetry. The code base has been updated to rely on the recent version 3.1 of the TRIQSlibrary, which also implies moving away from the discontinued Python 2.7 to Python 3. Program Title:TRIQS /SOM CPC Library link to program files:https://doi.org/10.17632/fcjzyhrwpw.2 Developer's repository link:https://github.com/krivenko/som Licensing provisions: GPLv3 Programming language:C++/Python Journal reference of previous version: Comp. Phys. Comm. 239 (2019) 166–183 Does the new version supersede the previous version?: Yes Reasons for the new version: Implementation of the stochastic optimization with consistent constraints protocol as well as of other new features; Complete port to Python 3 and the TRIQSlibrary [1] version 3.1. Nature of problem: Quantum Monte Carlo methods (QMC) are powerful numerical techniques widely used to study quantum many-body effects and electronic structure of correlated materials. Obtaining physically relevant spectral functions from noisy QMC results in the imaginary time/Matsubara frequency domains requires solution of an ill-posed analytic continuation problem as a post-processing step. Solution method: We present an efficient C++/Python open-source implementation of the stochastic optimization method for analytic continuation, both in its original formulation (SOM) [2] and with the consistent constraints extensions (SOCC) [3,4]. Summary of revisions: TRIQS /SOM has been ported from the long-deprecated TRIQS library branch 1.4.x to the recently released version 3.1 (requires a C++20 compiler). As a consequence, support for the retired Python 2.7 has been dropped in favor of Python 3. For consistency with the Maximum Entropy method and other approaches to numerical analytic continuation, we now search for a spectral function A(ϵ) minimizing the “goodness of fit” functionalχ2[A(ϵ)]=1N∑n=1N|Δ(n)σ(n)|2, as opposed to the previously usedD[A(ϵ)]=∑n=1N|Δ(n)σ(n)|.Δ(n) are discrepancies derived from the integral equation of the analytic continuation problem,Δ(n)=∫ϵminϵmaxK(n,ϵ)A(ϵ)dϵ−G(n), and σ(n) are user-provided estimated error bars on the input quantity G(n). Adoption of the χ2-functional has made it possible to support general N×N covariance matrices Σˆ of correlated input data as an alternative to the simple estimated error bars,χ2[A(ϵ)]=1NΔ†Σˆ−1Δ,Δ={Δ(n)}. The most prominent new feature of TRIQS /SOM 2.0 is a complete implementation of the Stochastic Optimization with Consistent Constraints protocol proposed by Goulko et al. in [4]. It includes three major aspects.•The Consistent Constraints update in the Markov chain [4, Sec. II.A] used to speed up accumulation of particular solutions. Unlike the elementary updates, it drastically changes heights of all rectangles in current configuration by minimizing a sum of the χ2-functional and a few quadratic regularization terms. These extra terms depend on a set of regularization parameters, whose values are determined in a self-consistent manner in the course of an iterative optimization procedure.•The Consistent Constraints (CC) protocol for constructing final solutions out of particular solutions [4, Sec. II.B]. In the original formulation of SOM, a final solution is constructed as a simple equal-weight sum of all “good” (delivering deep minima to χ2) particular solutions. The CC protocol aims at constructing a smoother final solution as a general superposition of J good particular solutions A(ϵ)=∑j=1JcjAj(ϵ), where expansion coefficients cj are subject to ∑j=1Jcj=1. A sophisticated and customizable iterative procedure is employed to minimize a certain quadratic function of cj, while self-consistently adjusting values of regularization parameters this function depends on. One may also use this algorithms to bias the final solution towards a certain “target” spectral function AT(ϵ).•A solution quality assessment technique [4, Sec. I-II] implemented in a new Python module som.spectral_stats. Functions from this module make it possible to perform statistical analysis of ensembles of accumulated particular solutions. Statistical averages over such ensembles may serve as estimates of true spectral functions, while dispersions and two-point correlations contain information about uncertainties of the estimated spectra. A new family of integral kernels K(n,ϵ) for particle-hole symmetric fermionic Green's functions has been introduced. The corresponding observable is called FermionGfSymm. The BosonAutoCorr kernels have been changed to more closely reproduce results of the BosonCorr kernels when applied to the same input data. Both kernel families are defined on the whole energy axis (ϵmin=−∞,ϵmax=+∞) and expect the same spectrum normalization constant now. Projection of an observable G(ϵ) onto a real frequency grid ϵi can now be performed using binning (enabled by default). In this mode, the projected observable is averaged over bins centered around points of the grid, Gi=1δ∫ϵi−δ/2ϵi+δ/2G(ϵ)dϵ, instead of being simply evaluated at those points, Gi=G(ϵi). The online documentation website has undergone a complete overhaul. Now, it includes a step-by-step tutorial for new users, a detailed user guide covering all major features of the package, an auto-generated Python API reference and a handful of usage examples. There is also a Python script porting guide for those switching from TRIQS /SOM 1.x. A detailed list of all changes in version 2.0 is available at http://krivenko.github.io/som/ChangeLog.html. [1]O. Parcollet, M. Ferrero, T. Ayral, H. Hafermann, I. Krivenko, L. Messio, P. Seth, TRIQS: A toolbox for research on interacting quantum systems, Comp. Phys. Comm. 196 (2015) 398–415.[2]A.S. Mishchenko, N.V. Prokof'ev, A. Sakamoto, B.V. Svistunov, Diagrammatic quantum Monte Carlo study of the Frölich polaron, Phys. Rev. B 62 (2000) 6317.[3]N.V. Prokof'ev, B.V. Svistunov, Spectral Analysis by the Method of Consistent Constraints, JETP Lett. 97(11) (2013) 649–653.[4]O. Goulko, A.S. Mishchenko, L. Pollet, N. Prokof'ev, B. Svistunov, Numerical analytic continuation: Answers to well-posed questions, Phys. Rev. B 95 (2017) 014102.
ArticleNumber 108491
Author Krivenko, Igor
Mishchenko, Andrey S.
Author_xml – sequence: 1
  givenname: Igor
  orcidid: 0000-0002-9904-1229
  surname: Krivenko
  fullname: Krivenko, Igor
  email: ikrivenk@physnet.uni-hamburg.de
  organization: I. Institut für Theoretische Physik, Uni. Hamburg, Notkestraße 9, 22607 Hamburg, Germany
– sequence: 2
  givenname: Andrey S.
  surname: Mishchenko
  fullname: Mishchenko, Andrey S.
  organization: RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
BookMark eNp9kMtOwzAQRb0oEm3hA9j5B5KOnTgPWKGKR6WiClrWlnEc1VViR7YBla8naVix6GYeujqjuXeGJsYahdANgZgAyRaHWHYypkBpvxdpSSZoCkAgSjPGLtHM-wMA5HmZTJHbva1et4vt5gXTGG7xqu0a1SoTRNDWYFvjsFfYByv3wgctse2CbvXPKH_rsMfSGq996JnTGJzQJnhcW4eFEc1xoHohaPN5oq7QRS0ar67_-hy9Pz7sls_RevO0Wt6vI0nLPERFkaZKJJVMKWNJlrEKKpIRAAUFy1MpmVAfRLK-ADDKSlYWWcpIkpWspjRJ5igf70pnvXeq5lKPtoYXG06AD3HxA-_j4kNcfIyrJ8k_snO6Fe54lrkbGdVb-tLKcS-1MlJV2ikZeGX1GfoXUb-HRw
CitedBy_id crossref_primary_10_1103_PhysRevB_111_125139
crossref_primary_10_1016_j_cpc_2023_108863
crossref_primary_10_1103_PhysRevB_108_235143
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cpc.2022.108491
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
ExternalDocumentID 10_1016_j_cpc_2022_108491
S0010465522002107
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABNEU
ABQEM
ABQYD
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACLVX
ACNNM
ACRLP
ACRPL
ACSBN
ACZNC
ADBBV
ADECG
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LZ4
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCB
SDF
SDG
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSE
SSH
SSK
SSQ
SSV
SSZ
T5K
TN5
UPT
VH1
WUQ
ZMT
~02
~G-
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c297t-8844ea3dc42553665d0d16100e08574cc5aeb1c5eb100525959864513695f2233
IEDL.DBID .~1
ISSN 0010-4655
IngestDate Wed Oct 01 05:16:32 EDT 2025
Thu Apr 24 22:57:01 EDT 2025
Sun Apr 06 06:54:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Quantum Monte Carlo
Stochastic optimization
Analytic continuation
Python
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-8844ea3dc42553665d0d16100e08574cc5aeb1c5eb100525959864513695f2233
ORCID 0000-0002-9904-1229
ParticipantIDs crossref_citationtrail_10_1016_j_cpc_2022_108491
crossref_primary_10_1016_j_cpc_2022_108491
elsevier_sciencedirect_doi_10_1016_j_cpc_2022_108491
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationTitle Computer physics communications
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
SSID ssj0007793
Score 2.413413
Snippet TRIQS /SOMis a numerical analytic continuation package first presented in [Comp. Phys. Comm. 239 (2019) 166–183]. Version 2.0 brings a number of new features,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108491
SubjectTerms Analytic continuation
Python
Quantum Monte Carlo
Stochastic optimization
Title TRIQS/SOM 2.0: Implementation of the stochastic optimization with consistent constraints for analytic continuation
URI https://dx.doi.org/10.1016/j.cpc.2022.108491
Volume 280
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0010-4655
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007793
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0010-4655
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007793
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  issn: 0010-4655
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007793
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  issn: 0010-4655
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007793
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0010-4655
  databaseCode: AKRWK
  dateStart: 19690701
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007793
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5DEXwRrzgvIw8-Cd26NmlT38ZwbI5N1A33VrI0xYnrxlZf_e2ek6ZeQH3wpTdyIJykJ1-S73wh5EJwFHnSzPHCIHAYj4QjhFQwVRFCT1MvlSkmCg-GQXfMbiZ8UiHtMhcGaZU29hcx3URr-6VhvdlYzmaY44v7kxwAhJm4YEY5YyGeYlB_-6R5hKEV3oV4g6XLnU3D8VJLVDH0PGTasaj589j0Zbzp7JIdCxRpq6jLHqnobJ9sGcKmWh-Q1ei-d_fQeLgdUK_uXlGj8ju3iUQZXaQUkB0FZKeeJEox0wXEhrlNuqS4-koVcmOhkbPcPJrDIvI1BRRLJUqVoBUy2WdZIQd-SMad61G769jzExzlRWEOTmdMSz9R8F9yPwh44iYA8FxXo6w9U4pLiNSKwwVXh3lktNp50w8ingJs8I_IRrbI9DGhkeCeSgRXrquYkL6cSq1VGERTnSbS51Xilp6LlRUXx2q_xCWL7DkGZ8fo7LhwdpVcfpgsC2WNvwqzsjnib90jhsj_u9nJ_8xOyTa-FSmHZ2QjX73qc8Ae-bRmOleNbLZ6_e4Q7_37x_47T-vZMw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zInoRP3F-5uBJ6FbbpE29yXBM3Sa6DbyVLE1x4rqx1at_u--lqR-gHryU0uRBeElffkl-7xdCTgVHkSfNHC8MAofxSDhCSAVLFSH0KPVSmWKicLcXtIfs5pE_VkizzIVBWqWN_UVMN9HafmlYbzZm4zHm-OL5JAcAYRYu4RJZZtwLcQVWf_vkeYShVd6FgIPVy6NNQ_JSM5Qx9Dyk2rHo_OfJ6cuE09og6xYp0suiMZukorMtsmIYm2qxTeaDh-v7fqN_16Ve3b2gRuZ3YjOJMjpNKUA7CtBOPUnUYqZTCA4Tm3VJcfuVKiTHQi9nuXk1t0XkCwowlkrUKkErpLKPs0IPfIcMW1eDZtuxFyg4yovCHLzOmJZ-ouDH5H4Q8MRNAOG5rkZde6YUlxCqFYcHbg_zyIi183M_iHgKuMHfJdVsmuk9QiPBPZUIrlxXMSF9OZJaqzCIRjpNpM9rxC09FyurLo7NfolLGtlzDM6O0dlx4ewaOfswmRXSGn9VZmV3xN_GRwyh_3ez_f-ZnZDV9qDbiTvXvdsDsoYlRf7hIanm81d9BEAkHx2bgfYOsFfZJQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TRIQS%2FSOM+2.0%3A+Implementation+of+the+stochastic+optimization+with+consistent+constraints+for+analytic+continuation&rft.jtitle=Computer+physics+communications&rft.au=Krivenko%2C+Igor&rft.au=Mishchenko%2C+Andrey+S.&rft.date=2022-11-01&rft.pub=Elsevier+B.V&rft.issn=0010-4655&rft.volume=280&rft_id=info:doi/10.1016%2Fj.cpc.2022.108491&rft.externalDocID=S0010465522002107
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon