Machine learning algorithm for the structural design of MEMS resonators
MEMS resonators have become core devices in many fields, their geometric designs can profoundly affect performance. However, the theoretical modeling of MEMS resonators with complex structures is becoming more and more difficult, and the time consumption of using numerical simulation methods to solv...
Saved in:
| Published in | Microelectronic engineering Vol. 271-272; p. 111950 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.03.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0167-9317 1873-5568 |
| DOI | 10.1016/j.mee.2023.111950 |
Cover
| Abstract | MEMS resonators have become core devices in many fields, their geometric designs can profoundly affect performance. However, the theoretical modeling of MEMS resonators with complex structures is becoming more and more difficult, and the time consumption of using numerical simulation methods to solve the accurate analytical solution of performance is also increasing. In this paper, we report a working mode identification and a machine learning algorithm, which dramatically shorten the MEMS design cycle by constructing datasets and predicting physical properties with high speed and high accuracy. As an example, we apply the algorithms to the performance prediction of flower-like disk resonator. The typical structural parameters of MEMS resonators are used as the input layer of the neural network, and performance generated by finite element analysis methods are used as the output layer. For 50,000 modal shapes with 5000 different structural parameters, the accuracy of the working mode identification algorithm proposed in this paper to identify elliptical modes is 100%. After sufficient training, the obtained neural network calculators can predict the resonant frequency, thermoelastic quality factor, mechanical sensitivity and mechanical thermal noise of the MEMS resonator. Compared with traditional numerical simulation methods, the identification of resonant frequency and thermoelastic quality factor is 11,341 times faster, the identification of mechanical sensitivity and mechanical thermal noise is 1813 times faster, and the prediction regression accuracy is all greater than 96%. This high-speed and high-accuracy performance prediction method can effectively improve the design efficiency of MEMS resonators with complex structures, providing a promising tool for enhancing MEMS resonator performance.
[Display omitted]
•HU moment invariants can be used to identify the working mode of MEMS resonators.•ML calculator can quickly predict the performance of MEMS resonator.•ML technology can improve the design efficiency of MEMS devices. |
|---|---|
| AbstractList | MEMS resonators have become core devices in many fields, their geometric designs can profoundly affect performance. However, the theoretical modeling of MEMS resonators with complex structures is becoming more and more difficult, and the time consumption of using numerical simulation methods to solve the accurate analytical solution of performance is also increasing. In this paper, we report a working mode identification and a machine learning algorithm, which dramatically shorten the MEMS design cycle by constructing datasets and predicting physical properties with high speed and high accuracy. As an example, we apply the algorithms to the performance prediction of flower-like disk resonator. The typical structural parameters of MEMS resonators are used as the input layer of the neural network, and performance generated by finite element analysis methods are used as the output layer. For 50,000 modal shapes with 5000 different structural parameters, the accuracy of the working mode identification algorithm proposed in this paper to identify elliptical modes is 100%. After sufficient training, the obtained neural network calculators can predict the resonant frequency, thermoelastic quality factor, mechanical sensitivity and mechanical thermal noise of the MEMS resonator. Compared with traditional numerical simulation methods, the identification of resonant frequency and thermoelastic quality factor is 11,341 times faster, the identification of mechanical sensitivity and mechanical thermal noise is 1813 times faster, and the prediction regression accuracy is all greater than 96%. This high-speed and high-accuracy performance prediction method can effectively improve the design efficiency of MEMS resonators with complex structures, providing a promising tool for enhancing MEMS resonator performance.
[Display omitted]
•HU moment invariants can be used to identify the working mode of MEMS resonators.•ML calculator can quickly predict the performance of MEMS resonator.•ML technology can improve the design efficiency of MEMS devices. |
| ArticleNumber | 111950 |
| Author | Wu, Yuting Fan, Chongyang Gu, Liutao Zhang, Weiping Lu, Haolin |
| Author_xml | – sequence: 1 givenname: Liutao surname: Gu fullname: Gu, Liutao organization: National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China – sequence: 2 givenname: Weiping surname: Zhang fullname: Zhang, Weiping email: zhangwp@sjtu.edu.cn organization: National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China – sequence: 3 givenname: Haolin surname: Lu fullname: Lu, Haolin organization: National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China – sequence: 4 givenname: Yuting surname: Wu fullname: Wu, Yuting organization: National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China – sequence: 5 givenname: Chongyang surname: Fan fullname: Fan, Chongyang organization: National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China |
| BookMark | eNp9kM1KAzEUhYNUsFYfwF1eYMb8zEwyuJJSq9DiQl2HmNy0KdNEklTw7Z1SVy66Olw434XzXaNJiAEQuqOkpoR297t6D1AzwnhNKe1bcoGmVApetW0nJ2g6dkTVcyqu0HXOOzLeDZFTtFxrs_UB8AA6BR82WA-bmHzZ7rGLCZct4FzSwZRD0gO2kP0m4OjwerF-wwlyDLrElG_QpdNDhtu_nKGPp8X7_LlavS5f5o-ryrBelEoK4KKVckwnG9EZAm0jzCdnXBDXu15b0bGOMttQaokzUjAtWg2649yC5TNET39NijkncOor-b1OP4oSdTShdmo0oY4m1MnEyIh_jPFFFx9DSdoPZ8mHEwnjpG8PSWXjIRiwPoEpykZ_hv4FOPR6MQ |
| CitedBy_id | crossref_primary_10_1109_JSEN_2024_3471618 crossref_primary_10_1038_s41378_024_00792_4 crossref_primary_10_3390_mi15111368 |
| Cites_doi | 10.1109/TITS.2021.3054625 10.1103/PhysRev.53.90 10.1016/j.ijmecsci.2016.08.020 10.1109/JMEMS.2017.2679726 10.1109/JMEMS.2016.2558197 10.1016/j.mee.2022.111845 10.1002/rob.21918 10.1063/5.0100376 10.1109/JMEMS.2017.2715319 10.1016/j.mee.2022.111793 10.1109/JMEMS.2021.3088940 10.1007/s00542-020-05047-6 10.1038/s41378-020-00214-1 10.1038/s41467-022-29995-x 10.1109/JMEMS.2018.2820101 10.1109/TIT.1962.1057692 10.3390/mi7090160 10.1016/j.eml.2020.101002 10.3390/polym12010163 10.1002/adem.201901266 10.1109/84.925732 10.1016/j.mechrescom.2014.08.006 10.1016/j.nanoen.2021.106337 10.1155/2016/9563938 10.1186/s12911-019-1004-8 10.1038/s41378-022-00432-9 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. |
| Copyright_xml | – notice: 2023 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.mee.2023.111950 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-5568 |
| ExternalDocumentID | 10_1016_j_mee_2023_111950 S0167931723000151 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABNEU ABXRA ABYKQ ACDAQ ACFVG ACGFO ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M24 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SSM SSQ SST SSV SSZ T5K ZMT ~G- 29M AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION EFKBS EJD F0J FEDTE FGOYB G-2 HLZ HMV HVGLF HX~ HZ~ NDZJH R2- SBC SET SMS SPG UHS WUQ ~HD |
| ID | FETCH-LOGICAL-c297t-87e3758887ef8476c0e547cb32370f9f9ad762612d411d0fc872a75aea633ded3 |
| IEDL.DBID | .~1 |
| ISSN | 0167-9317 |
| IngestDate | Thu Apr 24 23:11:16 EDT 2025 Thu Oct 02 04:24:30 EDT 2025 Fri Feb 23 02:38:56 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | MEMS resonator Working mode identification algorithm Flower-like disk resonator Finite element analysis method Machine learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c297t-87e3758887ef8476c0e547cb32370f9f9ad762612d411d0fc872a75aea633ded3 |
| ParticipantIDs | crossref_primary_10_1016_j_mee_2023_111950 crossref_citationtrail_10_1016_j_mee_2023_111950 elsevier_sciencedirect_doi_10_1016_j_mee_2023_111950 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-03-01 2023-03-00 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Microelectronic engineering |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Guo, Xu, Wang, Sui, Lin (bb0120) 2021 Gerrard, Ahn, Flader, Chen, Ng, Yang, Kenny (bb0045) 2016 Zener (bb0170) 1938; 53 Xiao, Zhou, Li, Hou, Xi, Wu, Wu (bb0150) 2016; 25 Jiao, Song, Guo (bb0175) 2014; 62 Li, Tan, Wen, Song, Yang (bb0180) 2022; 263 Li, Lu, Wu, Zhang, Sun, Wu, Xiao (bb0125) 2021; 12 Dennis, Rabih, Md Khir, Ahmed, Ahmed (bb0040) 2016; 2016 Miao, Zhou, Wu, Li, Hou, Hu, Wang, Xiao (bb0035) 2022; 13 Dahiwade, Patle, Meshram (bb0095) 2019 Gerrard, Chen, Chandorkar, Yu, Rodriguez, Flader, Shin, Meinhart, Sigmund, Kenny (bb0050) 2017 Zhou, Xiao, Hou, Li, Wu, Wu (bb0060) 2017; 26 Chen, Shen, Iyer, Ghumman, Tang, Bi, Chen, Li (bb0105) 2020; 12 Darvishian, Nagourney, Cho, Shiari, Najafi (bb0155) 2017; 26 Gu, Zhang, Lu, Wu, Fan (bb0145) 2022; 93 Wang, Song, Fang, Chen, Zeimpekis, Wang, Quan, Bai, Liu, Schropfer, Welham, Kraft (bb0070) 2020; 6 Zhai, Li, Tao, Cao, Yang, Che, Xu (bb0020) 2022; 260 Uddin, Khan, Hossain, Moni (bb0100) 2019; 19 Wang, Lin, Han, Cai, Wu, Yu, Li (bb0110) 2021; 89 Wang, Song, Wang, Quan, Wang, Gidts, Sadeghpour, Bai, Liu, Kraft (bb0075) 2021 Guo, Sui, Yue, Wang, Pala, Li, Xu, Lin (bb0140) 2022; 8 Grigorescu, Trasnea, Cocias, Macesanu (bb0085) 2020; 37 Li, Xiao, Zhou, Hou, Xu, Wu (bb0065) 2018; 27 Gadola, Buffoli, Sansa, Berthelot, Robert, Langfelder (bb0010) 2021; 30 Wilt, Yang, Gu (bb0115) 2020; 22 Shin, Cupertino, de Jong, Steeneken, Bessa, Norte (bb0135) 2022; 34 Zhou, Wu, Xiao, Hou, Li, Yu, Wu (bb0080) 2016; 117 Cho, Singh, Woo, He, Najafi (bb0005) 2020/03 Feng, Zhang, Gu, Liu (bb0015) 2020; 27 Ayazi, Najafi (bb0160) 2001; 10 Johnson, Albrecht, Braman, Christ, Duffy, Endean, Gnerlich, Reinke (bb0025) 2021 Abdolvand, Bahreyni, Lee, Nabki (bb0030) 2016; 7 Liu, Jiang, Wang, Wang (bb0130) 2020; 41 Ming-Kuei (bb0165) 1962; 8 Gerrard, Rodriguez, Ortiz, Chandorkar, Flader, Chen, Shin, Kenny (bb0055) 2017 Kiran, Sobh, Talpaert, Mannion, Sallab, Yogamani, Perez (bb0090) 2022; 23 Chen (10.1016/j.mee.2023.111950_bb0105) 2020; 12 Liu (10.1016/j.mee.2023.111950_bb0130) 2020; 41 Jiao (10.1016/j.mee.2023.111950_bb0175) 2014; 62 Shin (10.1016/j.mee.2023.111950_bb0135) 2022; 34 Li (10.1016/j.mee.2023.111950_bb0065) 2018; 27 Dennis (10.1016/j.mee.2023.111950_bb0040) 2016; 2016 Zener (10.1016/j.mee.2023.111950_bb0170) 1938; 53 Wang (10.1016/j.mee.2023.111950_bb0110) 2021; 89 Cho (10.1016/j.mee.2023.111950_bb0005) 2020 Feng (10.1016/j.mee.2023.111950_bb0015) 2020; 27 Johnson (10.1016/j.mee.2023.111950_bb0025) 2021 Guo (10.1016/j.mee.2023.111950_bb0120) 2021 Wilt (10.1016/j.mee.2023.111950_bb0115) 2020; 22 Uddin (10.1016/j.mee.2023.111950_bb0100) 2019; 19 Zhou (10.1016/j.mee.2023.111950_bb0080) 2016; 117 Abdolvand (10.1016/j.mee.2023.111950_bb0030) 2016; 7 Kiran (10.1016/j.mee.2023.111950_bb0090) 2022; 23 Wang (10.1016/j.mee.2023.111950_bb0075) 2021 Grigorescu (10.1016/j.mee.2023.111950_bb0085) 2020; 37 Zhou (10.1016/j.mee.2023.111950_bb0060) 2017; 26 Guo (10.1016/j.mee.2023.111950_bb0140) 2022; 8 Ayazi (10.1016/j.mee.2023.111950_bb0160) 2001; 10 Wang (10.1016/j.mee.2023.111950_bb0070) 2020; 6 Ming-Kuei (10.1016/j.mee.2023.111950_bb0165) 1962; 8 Zhai (10.1016/j.mee.2023.111950_bb0020) 2022; 260 Darvishian (10.1016/j.mee.2023.111950_bb0155) 2017; 26 Gerrard (10.1016/j.mee.2023.111950_bb0045) 2016 Gu (10.1016/j.mee.2023.111950_bb0145) 2022; 93 Dahiwade (10.1016/j.mee.2023.111950_bb0095) 2019 Li (10.1016/j.mee.2023.111950_bb0180) 2022; 263 Li (10.1016/j.mee.2023.111950_bb0125) 2021; 12 Gadola (10.1016/j.mee.2023.111950_bb0010) 2021; 30 Gerrard (10.1016/j.mee.2023.111950_bb0050) 2017 Xiao (10.1016/j.mee.2023.111950_bb0150) 2016; 25 Miao (10.1016/j.mee.2023.111950_bb0035) 2022; 13 Gerrard (10.1016/j.mee.2023.111950_bb0055) 2017 |
| References_xml | – volume: 8 start-page: 179 year: 1962 end-page: 187 ident: bb0165 article-title: Visual pattern recognition by moment invariants publication-title: IEEE Trans. Inf. Theory – volume: 37 start-page: 362 year: 2020 end-page: 386 ident: bb0085 article-title: A survey of deep learning techniques for autonomous driving publication-title: J. Field Robot. – volume: 22 start-page: 1901266 year: 2020 ident: bb0115 article-title: Accelerating Auxetic metamaterial design with deep learning publication-title: Adv. Eng. Mater. – volume: 93 year: 2022 ident: bb0145 article-title: Flower-like disk resonator for gyroscopic application publication-title: Rev. Sci. Instrum. – volume: 263 year: 2022 ident: bb0180 article-title: Study of nonlinear vibration of resonant gyroscope based on uncertainty analysis method publication-title: Microelectron. Eng. – volume: 12 year: 2021 ident: bb0125 article-title: A novel high-speed and high-accuracy mathematical modeling method of complex MEMS resonator structures based on the multilayer perceptron neural network publication-title: Micromachines (Basel) – volume: 12 start-page: 163 year: 2020 ident: bb0105 article-title: Machine-learning-assisted De Novo design of organic molecules and polymers: opportunities and challenges publication-title: Polymers (Basel) – year: 2021 ident: bb0075 article-title: Genetic algorithm for the design of freeform geometries in a large-range rotary microgripper publication-title: 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS) – volume: 2016 start-page: 1 year: 2016 end-page: 14 ident: bb0040 article-title: Modeling and finite element analysis simulation of MEMS based acetone vapor sensor for noninvasive screening of diabetes publication-title: J. Sens. – start-page: 994 year: 2016 end-page: 997 ident: bb0045 article-title: Q-factor optimization in disk resonator gyroscopes via geometric parameterization publication-title: 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS) – volume: 19 start-page: 281 year: 2019 ident: bb0100 article-title: Comparing different supervised machine learning algorithms for disease prediction publication-title: BMC Med. Inform Decis. Mak. – year: 2017 ident: bb0050 article-title: Topology optimization for reduction of thermo-elastic dissipation in MEMS resonators publication-title: 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) – volume: 27 start-page: 414 year: 2018 end-page: 423 ident: bb0065 article-title: Quality factor improvement in the disk resonator gyroscope by optimizing the spoke length distribution publication-title: J. Microelectromech. Syst. – volume: 6 start-page: 104 year: 2020 ident: bb0070 article-title: Design of freeform geometries in a MEMS accelerometer with a mechanical motion preamplifier based on a genetic algorithm publication-title: Microsyst. Nanoeng. – year: 2019 ident: bb0095 article-title: Designing disease prediction model using machine learning approach publication-title: 3rd International Conference on Computing Methodologies and Communication (ICCMC) – volume: 13 start-page: 2352 year: 2022 ident: bb0035 article-title: Nonlinearity-mediated digitization and amplification in electromechanical phonon-cavity systems publication-title: Nat. Commun. – volume: 34 year: 2022 ident: bb0135 article-title: Spiderweb nanomechanical resonators via Bayesian optimization: inspired by nature and guided by machine learning publication-title: Adv. Mater. – year: 2021 ident: bb0120 article-title: Accelerating mems design process through machine learning from pixelated binary images publication-title: 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS) – year: 2020/03 ident: bb0005 article-title: 0.00016 deg/√hr Angle Random Walk (ARW) and 0.0014 deg/hr Bias Instability (BI) from a 5.2M-Q and 1-cm Precision Shell Integrating (PSI) Gyroscope publication-title: 2020 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL) – volume: 7 start-page: 160 year: 2016 ident: bb0030 article-title: Micromachined resonators: a review publication-title: Micromachines (Basel) – volume: 260 year: 2022 ident: bb0020 article-title: Design, fabrication and test of a bulk SiC MEMS accelerometer publication-title: Microelectron. Eng. – volume: 26 start-page: 519 year: 2017 end-page: 527 ident: bb0060 article-title: Influences of the structure parameters on sensitivity and Brownian noise of the disk resonator gyroscope publication-title: J. Microelectromech. Syst. – volume: 26 start-page: 758 year: 2017 end-page: 772 ident: bb0155 article-title: Thermoelastic dissipation in micromachined birdbath Shell resonators publication-title: J. Microelectromech. Syst. – year: 2021 ident: bb0025 article-title: Development of a navigation-grade MEMS IMU publication-title: IEEE International Symposium on Inertial Sensors and Systems (INERTIAL) – volume: 89 year: 2021 ident: bb0110 article-title: Harnessing artificial intelligence to holistic design and identification for solid electrolytes publication-title: Nano Energy – volume: 117 start-page: 174 year: 2016 end-page: 181 ident: bb0080 article-title: An investigation on the ring thickness distribution of disk resonator gyroscope with high mechanical sensitivity publication-title: Int. J. Mech. Sci. – volume: 62 start-page: 31 year: 2014 end-page: 36 ident: bb0175 article-title: Thermoelastic damping of micro resonators operating in the longitudinal vibration mode: in comparison with the case of flexural vibration publication-title: Mech. Res. Commun. – volume: 27 start-page: 2715 year: 2020 end-page: 2722 ident: bb0015 article-title: Design of a novel gear-like disk resonator gyroscope with high mechanical sensitivity publication-title: Microsyst. Technol. – volume: 8 start-page: 91 year: 2022 ident: bb0140 article-title: Deep learning for non-parameterized MEMS structural design publication-title: Microsyst. Nanoeng. – start-page: 1130 year: 2017 end-page: 1133 ident: bb0055 article-title: Manipulation of heat flux paths in thermo-elastically damped resonators for Q optimization publication-title: 30th IEEE International Conference on Micro Electro Mechanical Systems (Mems 2017) – volume: 41 year: 2020 ident: bb0130 article-title: Machine learning-based design and optimization of curved beams for multistable structures and metamaterials publication-title: Extreme Mech. Lett. – volume: 53 start-page: 90 year: 1938 end-page: 99 ident: bb0170 article-title: Internal friction in solids II. General theory of thermoelastic internal friction publication-title: Phys. Rev. – volume: 25 start-page: 606 year: 2016 end-page: 616 ident: bb0150 article-title: Design of a disk resonator gyroscope with high mechanical sensitivity by optimizing the ring thickness distribution publication-title: J. Microelectromech. Syst. – volume: 23 start-page: 4909 year: 2022 end-page: 4926 ident: bb0090 article-title: Deep reinforcement learning for autonomous driving: a survey publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 10 start-page: 169 year: 2001 end-page: 179 ident: bb0160 article-title: A HARPSS polysilicon vibrating ring gyroscope publication-title: J. Microelectromech. Syst. – volume: 30 start-page: 513 year: 2021 end-page: 520 ident: bb0010 article-title: 1.3 mm publication-title: J. Microelectromech. Syst. – volume: 23 start-page: 4909 year: 2022 ident: 10.1016/j.mee.2023.111950_bb0090 article-title: Deep reinforcement learning for autonomous driving: a survey publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2021.3054625 – start-page: 994 year: 2016 ident: 10.1016/j.mee.2023.111950_bb0045 article-title: Q-factor optimization in disk resonator gyroscopes via geometric parameterization – volume: 53 start-page: 90 year: 1938 ident: 10.1016/j.mee.2023.111950_bb0170 article-title: Internal friction in solids II. General theory of thermoelastic internal friction publication-title: Phys. Rev. doi: 10.1103/PhysRev.53.90 – volume: 117 start-page: 174 year: 2016 ident: 10.1016/j.mee.2023.111950_bb0080 article-title: An investigation on the ring thickness distribution of disk resonator gyroscope with high mechanical sensitivity publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2016.08.020 – year: 2020 ident: 10.1016/j.mee.2023.111950_bb0005 article-title: 0.00016 deg/√hr Angle Random Walk (ARW) and 0.0014 deg/hr Bias Instability (BI) from a 5.2M-Q and 1-cm Precision Shell Integrating (PSI) Gyroscope – volume: 26 start-page: 519 year: 2017 ident: 10.1016/j.mee.2023.111950_bb0060 article-title: Influences of the structure parameters on sensitivity and Brownian noise of the disk resonator gyroscope publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2017.2679726 – year: 2019 ident: 10.1016/j.mee.2023.111950_bb0095 article-title: Designing disease prediction model using machine learning approach – volume: 25 start-page: 606 year: 2016 ident: 10.1016/j.mee.2023.111950_bb0150 article-title: Design of a disk resonator gyroscope with high mechanical sensitivity by optimizing the ring thickness distribution publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2016.2558197 – volume: 263 year: 2022 ident: 10.1016/j.mee.2023.111950_bb0180 article-title: Study of nonlinear vibration of resonant gyroscope based on uncertainty analysis method publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2022.111845 – volume: 37 start-page: 362 year: 2020 ident: 10.1016/j.mee.2023.111950_bb0085 article-title: A survey of deep learning techniques for autonomous driving publication-title: J. Field Robot. doi: 10.1002/rob.21918 – volume: 93 year: 2022 ident: 10.1016/j.mee.2023.111950_bb0145 article-title: Flower-like disk resonator for gyroscopic application publication-title: Rev. Sci. Instrum. doi: 10.1063/5.0100376 – volume: 26 start-page: 758 year: 2017 ident: 10.1016/j.mee.2023.111950_bb0155 article-title: Thermoelastic dissipation in micromachined birdbath Shell resonators publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2017.2715319 – volume: 260 year: 2022 ident: 10.1016/j.mee.2023.111950_bb0020 article-title: Design, fabrication and test of a bulk SiC MEMS accelerometer publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2022.111793 – volume: 30 start-page: 513 year: 2021 ident: 10.1016/j.mee.2023.111950_bb0010 article-title: 1.3 mm2 Nav-grade NEMS-based gyroscope publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2021.3088940 – year: 2017 ident: 10.1016/j.mee.2023.111950_bb0050 article-title: Topology optimization for reduction of thermo-elastic dissipation in MEMS resonators – year: 2021 ident: 10.1016/j.mee.2023.111950_bb0075 article-title: Genetic algorithm for the design of freeform geometries in a large-range rotary microgripper – volume: 27 start-page: 2715 year: 2020 ident: 10.1016/j.mee.2023.111950_bb0015 article-title: Design of a novel gear-like disk resonator gyroscope with high mechanical sensitivity publication-title: Microsyst. Technol. doi: 10.1007/s00542-020-05047-6 – volume: 6 start-page: 104 year: 2020 ident: 10.1016/j.mee.2023.111950_bb0070 article-title: Design of freeform geometries in a MEMS accelerometer with a mechanical motion preamplifier based on a genetic algorithm publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-020-00214-1 – volume: 13 start-page: 2352 year: 2022 ident: 10.1016/j.mee.2023.111950_bb0035 article-title: Nonlinearity-mediated digitization and amplification in electromechanical phonon-cavity systems publication-title: Nat. Commun. doi: 10.1038/s41467-022-29995-x – start-page: 1130 year: 2017 ident: 10.1016/j.mee.2023.111950_bb0055 article-title: Manipulation of heat flux paths in thermo-elastically damped resonators for Q optimization – year: 2021 ident: 10.1016/j.mee.2023.111950_bb0025 article-title: Development of a navigation-grade MEMS IMU – volume: 27 start-page: 414 year: 2018 ident: 10.1016/j.mee.2023.111950_bb0065 article-title: Quality factor improvement in the disk resonator gyroscope by optimizing the spoke length distribution publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2018.2820101 – volume: 34 year: 2022 ident: 10.1016/j.mee.2023.111950_bb0135 article-title: Spiderweb nanomechanical resonators via Bayesian optimization: inspired by nature and guided by machine learning publication-title: Adv. Mater. – volume: 8 start-page: 179 year: 1962 ident: 10.1016/j.mee.2023.111950_bb0165 article-title: Visual pattern recognition by moment invariants publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1962.1057692 – volume: 7 start-page: 160 year: 2016 ident: 10.1016/j.mee.2023.111950_bb0030 article-title: Micromachined resonators: a review publication-title: Micromachines (Basel) doi: 10.3390/mi7090160 – volume: 41 year: 2020 ident: 10.1016/j.mee.2023.111950_bb0130 article-title: Machine learning-based design and optimization of curved beams for multistable structures and metamaterials publication-title: Extreme Mech. Lett. doi: 10.1016/j.eml.2020.101002 – volume: 12 start-page: 163 year: 2020 ident: 10.1016/j.mee.2023.111950_bb0105 article-title: Machine-learning-assisted De Novo design of organic molecules and polymers: opportunities and challenges publication-title: Polymers (Basel) doi: 10.3390/polym12010163 – volume: 22 start-page: 1901266 year: 2020 ident: 10.1016/j.mee.2023.111950_bb0115 article-title: Accelerating Auxetic metamaterial design with deep learning publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201901266 – volume: 10 start-page: 169 year: 2001 ident: 10.1016/j.mee.2023.111950_bb0160 article-title: A HARPSS polysilicon vibrating ring gyroscope publication-title: J. Microelectromech. Syst. doi: 10.1109/84.925732 – year: 2021 ident: 10.1016/j.mee.2023.111950_bb0120 article-title: Accelerating mems design process through machine learning from pixelated binary images – volume: 12 year: 2021 ident: 10.1016/j.mee.2023.111950_bb0125 article-title: A novel high-speed and high-accuracy mathematical modeling method of complex MEMS resonator structures based on the multilayer perceptron neural network publication-title: Micromachines (Basel) – volume: 62 start-page: 31 year: 2014 ident: 10.1016/j.mee.2023.111950_bb0175 article-title: Thermoelastic damping of micro resonators operating in the longitudinal vibration mode: in comparison with the case of flexural vibration publication-title: Mech. Res. Commun. doi: 10.1016/j.mechrescom.2014.08.006 – volume: 89 year: 2021 ident: 10.1016/j.mee.2023.111950_bb0110 article-title: Harnessing artificial intelligence to holistic design and identification for solid electrolytes publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106337 – volume: 2016 start-page: 1 year: 2016 ident: 10.1016/j.mee.2023.111950_bb0040 article-title: Modeling and finite element analysis simulation of MEMS based acetone vapor sensor for noninvasive screening of diabetes publication-title: J. Sens. doi: 10.1155/2016/9563938 – volume: 19 start-page: 281 year: 2019 ident: 10.1016/j.mee.2023.111950_bb0100 article-title: Comparing different supervised machine learning algorithms for disease prediction publication-title: BMC Med. Inform Decis. Mak. doi: 10.1186/s12911-019-1004-8 – volume: 8 start-page: 91 year: 2022 ident: 10.1016/j.mee.2023.111950_bb0140 article-title: Deep learning for non-parameterized MEMS structural design publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-022-00432-9 |
| SSID | ssj0016408 |
| Score | 2.4220173 |
| Snippet | MEMS resonators have become core devices in many fields, their geometric designs can profoundly affect performance. However, the theoretical modeling of MEMS... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 111950 |
| SubjectTerms | Finite element analysis method Flower-like disk resonator Machine learning MEMS resonator Working mode identification algorithm |
| Title | Machine learning algorithm for the structural design of MEMS resonators |
| URI | https://dx.doi.org/10.1016/j.mee.2023.111950 |
| Volume | 271-272 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-5568 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016408 issn: 0167-9317 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Journals customDbUrl: eissn: 1873-5568 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016408 issn: 0167-9317 databaseCode: AIKHN dateStart: 19950401 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-5568 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016408 issn: 0167-9317 databaseCode: ACRLP dateStart: 19950401 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-5568 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016408 issn: 0167-9317 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-5568 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016408 issn: 0167-9317 databaseCode: AKRWK dateStart: 19830901 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEJ0QvOjB-Bnxg-zBk0ml7S5d9kgIiBq4IAm3Zml3EQOUKGd_uzPblmCiHjy22Uma2ebNm_btG4DbVuAbK8m5NdLSE1pyT2Np8HTCpU8FlBun8h1G_bF4mjQnFeiUZ2FIVllgf47pDq2LO40im431fN4YkYBeYflDEk2V351gF5KmGNx_bmUe2A24qXTO35tWl382ncZracgpM-QEHIqO3v9Um3bqTe8IDguiyNr5sxxDxaxO4GDHPvAUHgZOCWlYMfphxvRilmG3_7pkyEUZcjuW-8OStwZLnViDZZYNuoMRwz6bvpxn7x9nMO51Xzp9rxiM4CWhkhtEMMOR5yM-GIvVJUp80xQymfIQE2yVVTpFjEPukoogSH2btGSoZVMbHXGempSfQ3WVrcwFMGVD3_IIiVdohQp4y-rIF1rZKTUWJqqBX6YkTgrXcBpesYhLedhbjFmMKYtxnsUa3G1D1rllxl-LRZnn-Nu-xwjpv4dd_i_sCvbpKteQXUMVt8DcIKnYTOvuranDXvvxuT_8AvSfyE8 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEN0QPagH42fEzz14MqmU7rbLHg0BUSkXIOG2WdpdxAAlytnf7sy2JZioB6_tTtLMNm_etG_fEHLbqPvGCnRujbTwuBbM01AaPJ0w4WMBZcapfHtRZ8ifR-GoQprlWRiUVRbYn2O6Q-viSq3IZm05ndb6KKCXUP6ARGPlhxZom4eBwA7s_nOt84B2wI2lcwbfuLz8telEXnODVpkBQ-SQePb-p-K0UXDaB2S_YIr0IX-YQ1IxiyOyt-EfeEweYyeFNLSY_TChejbJoN1_nVMgoxTIHc0NYtFcg6ZOrUEzS-NW3KfQaOOn8-z944QM261Bs-MVkxG8JJBiBRBmGBB9AAhjobxEiW9CLpIxCyDDVlqpUwA5IC8pr9dT3yYNEWgRaqMjxlKTslOytcgW5oxQaQPfsgiYV2C5rLOG1ZHPtbRj7CxMVCV-mRKVFLbhOL1ipkp92JuCLCrMosqzWCV365Bl7pnx12Je5ll923gFmP572Pn_wm7ITmcQd1X3qfdyQXbxTi4ouyRbsB3mChjGanzt3qAv0RLJ5A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+algorithm+for+the+structural+design+of+MEMS+resonators&rft.jtitle=Microelectronic+engineering&rft.au=Gu%2C+Liutao&rft.au=Zhang%2C+Weiping&rft.au=Lu%2C+Haolin&rft.au=Wu%2C+Yuting&rft.date=2023-03-01&rft.issn=0167-9317&rft.volume=271-272&rft.spage=111950&rft_id=info:doi/10.1016%2Fj.mee.2023.111950&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mee_2023_111950 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9317&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9317&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9317&client=summon |