Machine learning algorithm for the structural design of MEMS resonators

MEMS resonators have become core devices in many fields, their geometric designs can profoundly affect performance. However, the theoretical modeling of MEMS resonators with complex structures is becoming more and more difficult, and the time consumption of using numerical simulation methods to solv...

Full description

Saved in:
Bibliographic Details
Published inMicroelectronic engineering Vol. 271-272; p. 111950
Main Authors Gu, Liutao, Zhang, Weiping, Lu, Haolin, Wu, Yuting, Fan, Chongyang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2023
Subjects
Online AccessGet full text
ISSN0167-9317
1873-5568
DOI10.1016/j.mee.2023.111950

Cover

Abstract MEMS resonators have become core devices in many fields, their geometric designs can profoundly affect performance. However, the theoretical modeling of MEMS resonators with complex structures is becoming more and more difficult, and the time consumption of using numerical simulation methods to solve the accurate analytical solution of performance is also increasing. In this paper, we report a working mode identification and a machine learning algorithm, which dramatically shorten the MEMS design cycle by constructing datasets and predicting physical properties with high speed and high accuracy. As an example, we apply the algorithms to the performance prediction of flower-like disk resonator. The typical structural parameters of MEMS resonators are used as the input layer of the neural network, and performance generated by finite element analysis methods are used as the output layer. For 50,000 modal shapes with 5000 different structural parameters, the accuracy of the working mode identification algorithm proposed in this paper to identify elliptical modes is 100%. After sufficient training, the obtained neural network calculators can predict the resonant frequency, thermoelastic quality factor, mechanical sensitivity and mechanical thermal noise of the MEMS resonator. Compared with traditional numerical simulation methods, the identification of resonant frequency and thermoelastic quality factor is 11,341 times faster, the identification of mechanical sensitivity and mechanical thermal noise is 1813 times faster, and the prediction regression accuracy is all greater than 96%. This high-speed and high-accuracy performance prediction method can effectively improve the design efficiency of MEMS resonators with complex structures, providing a promising tool for enhancing MEMS resonator performance. [Display omitted] •HU moment invariants can be used to identify the working mode of MEMS resonators.•ML calculator can quickly predict the performance of MEMS resonator.•ML technology can improve the design efficiency of MEMS devices.
AbstractList MEMS resonators have become core devices in many fields, their geometric designs can profoundly affect performance. However, the theoretical modeling of MEMS resonators with complex structures is becoming more and more difficult, and the time consumption of using numerical simulation methods to solve the accurate analytical solution of performance is also increasing. In this paper, we report a working mode identification and a machine learning algorithm, which dramatically shorten the MEMS design cycle by constructing datasets and predicting physical properties with high speed and high accuracy. As an example, we apply the algorithms to the performance prediction of flower-like disk resonator. The typical structural parameters of MEMS resonators are used as the input layer of the neural network, and performance generated by finite element analysis methods are used as the output layer. For 50,000 modal shapes with 5000 different structural parameters, the accuracy of the working mode identification algorithm proposed in this paper to identify elliptical modes is 100%. After sufficient training, the obtained neural network calculators can predict the resonant frequency, thermoelastic quality factor, mechanical sensitivity and mechanical thermal noise of the MEMS resonator. Compared with traditional numerical simulation methods, the identification of resonant frequency and thermoelastic quality factor is 11,341 times faster, the identification of mechanical sensitivity and mechanical thermal noise is 1813 times faster, and the prediction regression accuracy is all greater than 96%. This high-speed and high-accuracy performance prediction method can effectively improve the design efficiency of MEMS resonators with complex structures, providing a promising tool for enhancing MEMS resonator performance. [Display omitted] •HU moment invariants can be used to identify the working mode of MEMS resonators.•ML calculator can quickly predict the performance of MEMS resonator.•ML technology can improve the design efficiency of MEMS devices.
ArticleNumber 111950
Author Wu, Yuting
Fan, Chongyang
Gu, Liutao
Zhang, Weiping
Lu, Haolin
Author_xml – sequence: 1
  givenname: Liutao
  surname: Gu
  fullname: Gu, Liutao
  organization: National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
– sequence: 2
  givenname: Weiping
  surname: Zhang
  fullname: Zhang, Weiping
  email: zhangwp@sjtu.edu.cn
  organization: National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
– sequence: 3
  givenname: Haolin
  surname: Lu
  fullname: Lu, Haolin
  organization: National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
– sequence: 4
  givenname: Yuting
  surname: Wu
  fullname: Wu, Yuting
  organization: National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
– sequence: 5
  givenname: Chongyang
  surname: Fan
  fullname: Fan, Chongyang
  organization: National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
BookMark eNp9kM1KAzEUhYNUsFYfwF1eYMb8zEwyuJJSq9DiQl2HmNy0KdNEklTw7Z1SVy66Olw434XzXaNJiAEQuqOkpoR297t6D1AzwnhNKe1bcoGmVApetW0nJ2g6dkTVcyqu0HXOOzLeDZFTtFxrs_UB8AA6BR82WA-bmHzZ7rGLCZct4FzSwZRD0gO2kP0m4OjwerF-wwlyDLrElG_QpdNDhtu_nKGPp8X7_LlavS5f5o-ryrBelEoK4KKVckwnG9EZAm0jzCdnXBDXu15b0bGOMttQaokzUjAtWg2649yC5TNET39NijkncOor-b1OP4oSdTShdmo0oY4m1MnEyIh_jPFFFx9DSdoPZ8mHEwnjpG8PSWXjIRiwPoEpykZ_hv4FOPR6MQ
CitedBy_id crossref_primary_10_1109_JSEN_2024_3471618
crossref_primary_10_1038_s41378_024_00792_4
crossref_primary_10_3390_mi15111368
Cites_doi 10.1109/TITS.2021.3054625
10.1103/PhysRev.53.90
10.1016/j.ijmecsci.2016.08.020
10.1109/JMEMS.2017.2679726
10.1109/JMEMS.2016.2558197
10.1016/j.mee.2022.111845
10.1002/rob.21918
10.1063/5.0100376
10.1109/JMEMS.2017.2715319
10.1016/j.mee.2022.111793
10.1109/JMEMS.2021.3088940
10.1007/s00542-020-05047-6
10.1038/s41378-020-00214-1
10.1038/s41467-022-29995-x
10.1109/JMEMS.2018.2820101
10.1109/TIT.1962.1057692
10.3390/mi7090160
10.1016/j.eml.2020.101002
10.3390/polym12010163
10.1002/adem.201901266
10.1109/84.925732
10.1016/j.mechrescom.2014.08.006
10.1016/j.nanoen.2021.106337
10.1155/2016/9563938
10.1186/s12911-019-1004-8
10.1038/s41378-022-00432-9
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.mee.2023.111950
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-5568
ExternalDocumentID 10_1016_j_mee_2023_111950
S0167931723000151
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M24
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSM
SSQ
SST
SSV
SSZ
T5K
ZMT
~G-
29M
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
EJD
F0J
FEDTE
FGOYB
G-2
HLZ
HMV
HVGLF
HX~
HZ~
NDZJH
R2-
SBC
SET
SMS
SPG
UHS
WUQ
~HD
ID FETCH-LOGICAL-c297t-87e3758887ef8476c0e547cb32370f9f9ad762612d411d0fc872a75aea633ded3
IEDL.DBID .~1
ISSN 0167-9317
IngestDate Thu Apr 24 23:11:16 EDT 2025
Thu Oct 02 04:24:30 EDT 2025
Fri Feb 23 02:38:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords MEMS resonator
Working mode identification algorithm
Flower-like disk resonator
Finite element analysis method
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-87e3758887ef8476c0e547cb32370f9f9ad762612d411d0fc872a75aea633ded3
ParticipantIDs crossref_primary_10_1016_j_mee_2023_111950
crossref_citationtrail_10_1016_j_mee_2023_111950
elsevier_sciencedirect_doi_10_1016_j_mee_2023_111950
PublicationCentury 2000
PublicationDate 2023-03-01
2023-03-00
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Microelectronic engineering
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Guo, Xu, Wang, Sui, Lin (bb0120) 2021
Gerrard, Ahn, Flader, Chen, Ng, Yang, Kenny (bb0045) 2016
Zener (bb0170) 1938; 53
Xiao, Zhou, Li, Hou, Xi, Wu, Wu (bb0150) 2016; 25
Jiao, Song, Guo (bb0175) 2014; 62
Li, Tan, Wen, Song, Yang (bb0180) 2022; 263
Li, Lu, Wu, Zhang, Sun, Wu, Xiao (bb0125) 2021; 12
Dennis, Rabih, Md Khir, Ahmed, Ahmed (bb0040) 2016; 2016
Miao, Zhou, Wu, Li, Hou, Hu, Wang, Xiao (bb0035) 2022; 13
Dahiwade, Patle, Meshram (bb0095) 2019
Gerrard, Chen, Chandorkar, Yu, Rodriguez, Flader, Shin, Meinhart, Sigmund, Kenny (bb0050) 2017
Zhou, Xiao, Hou, Li, Wu, Wu (bb0060) 2017; 26
Chen, Shen, Iyer, Ghumman, Tang, Bi, Chen, Li (bb0105) 2020; 12
Darvishian, Nagourney, Cho, Shiari, Najafi (bb0155) 2017; 26
Gu, Zhang, Lu, Wu, Fan (bb0145) 2022; 93
Wang, Song, Fang, Chen, Zeimpekis, Wang, Quan, Bai, Liu, Schropfer, Welham, Kraft (bb0070) 2020; 6
Zhai, Li, Tao, Cao, Yang, Che, Xu (bb0020) 2022; 260
Uddin, Khan, Hossain, Moni (bb0100) 2019; 19
Wang, Lin, Han, Cai, Wu, Yu, Li (bb0110) 2021; 89
Wang, Song, Wang, Quan, Wang, Gidts, Sadeghpour, Bai, Liu, Kraft (bb0075) 2021
Guo, Sui, Yue, Wang, Pala, Li, Xu, Lin (bb0140) 2022; 8
Grigorescu, Trasnea, Cocias, Macesanu (bb0085) 2020; 37
Li, Xiao, Zhou, Hou, Xu, Wu (bb0065) 2018; 27
Gadola, Buffoli, Sansa, Berthelot, Robert, Langfelder (bb0010) 2021; 30
Wilt, Yang, Gu (bb0115) 2020; 22
Shin, Cupertino, de Jong, Steeneken, Bessa, Norte (bb0135) 2022; 34
Zhou, Wu, Xiao, Hou, Li, Yu, Wu (bb0080) 2016; 117
Cho, Singh, Woo, He, Najafi (bb0005) 2020/03
Feng, Zhang, Gu, Liu (bb0015) 2020; 27
Ayazi, Najafi (bb0160) 2001; 10
Johnson, Albrecht, Braman, Christ, Duffy, Endean, Gnerlich, Reinke (bb0025) 2021
Abdolvand, Bahreyni, Lee, Nabki (bb0030) 2016; 7
Liu, Jiang, Wang, Wang (bb0130) 2020; 41
Ming-Kuei (bb0165) 1962; 8
Gerrard, Rodriguez, Ortiz, Chandorkar, Flader, Chen, Shin, Kenny (bb0055) 2017
Kiran, Sobh, Talpaert, Mannion, Sallab, Yogamani, Perez (bb0090) 2022; 23
Chen (10.1016/j.mee.2023.111950_bb0105) 2020; 12
Liu (10.1016/j.mee.2023.111950_bb0130) 2020; 41
Jiao (10.1016/j.mee.2023.111950_bb0175) 2014; 62
Shin (10.1016/j.mee.2023.111950_bb0135) 2022; 34
Li (10.1016/j.mee.2023.111950_bb0065) 2018; 27
Dennis (10.1016/j.mee.2023.111950_bb0040) 2016; 2016
Zener (10.1016/j.mee.2023.111950_bb0170) 1938; 53
Wang (10.1016/j.mee.2023.111950_bb0110) 2021; 89
Cho (10.1016/j.mee.2023.111950_bb0005) 2020
Feng (10.1016/j.mee.2023.111950_bb0015) 2020; 27
Johnson (10.1016/j.mee.2023.111950_bb0025) 2021
Guo (10.1016/j.mee.2023.111950_bb0120) 2021
Wilt (10.1016/j.mee.2023.111950_bb0115) 2020; 22
Uddin (10.1016/j.mee.2023.111950_bb0100) 2019; 19
Zhou (10.1016/j.mee.2023.111950_bb0080) 2016; 117
Abdolvand (10.1016/j.mee.2023.111950_bb0030) 2016; 7
Kiran (10.1016/j.mee.2023.111950_bb0090) 2022; 23
Wang (10.1016/j.mee.2023.111950_bb0075) 2021
Grigorescu (10.1016/j.mee.2023.111950_bb0085) 2020; 37
Zhou (10.1016/j.mee.2023.111950_bb0060) 2017; 26
Guo (10.1016/j.mee.2023.111950_bb0140) 2022; 8
Ayazi (10.1016/j.mee.2023.111950_bb0160) 2001; 10
Wang (10.1016/j.mee.2023.111950_bb0070) 2020; 6
Ming-Kuei (10.1016/j.mee.2023.111950_bb0165) 1962; 8
Zhai (10.1016/j.mee.2023.111950_bb0020) 2022; 260
Darvishian (10.1016/j.mee.2023.111950_bb0155) 2017; 26
Gerrard (10.1016/j.mee.2023.111950_bb0045) 2016
Gu (10.1016/j.mee.2023.111950_bb0145) 2022; 93
Dahiwade (10.1016/j.mee.2023.111950_bb0095) 2019
Li (10.1016/j.mee.2023.111950_bb0180) 2022; 263
Li (10.1016/j.mee.2023.111950_bb0125) 2021; 12
Gadola (10.1016/j.mee.2023.111950_bb0010) 2021; 30
Gerrard (10.1016/j.mee.2023.111950_bb0050) 2017
Xiao (10.1016/j.mee.2023.111950_bb0150) 2016; 25
Miao (10.1016/j.mee.2023.111950_bb0035) 2022; 13
Gerrard (10.1016/j.mee.2023.111950_bb0055) 2017
References_xml – volume: 8
  start-page: 179
  year: 1962
  end-page: 187
  ident: bb0165
  article-title: Visual pattern recognition by moment invariants
  publication-title: IEEE Trans. Inf. Theory
– volume: 37
  start-page: 362
  year: 2020
  end-page: 386
  ident: bb0085
  article-title: A survey of deep learning techniques for autonomous driving
  publication-title: J. Field Robot.
– volume: 22
  start-page: 1901266
  year: 2020
  ident: bb0115
  article-title: Accelerating Auxetic metamaterial design with deep learning
  publication-title: Adv. Eng. Mater.
– volume: 93
  year: 2022
  ident: bb0145
  article-title: Flower-like disk resonator for gyroscopic application
  publication-title: Rev. Sci. Instrum.
– volume: 263
  year: 2022
  ident: bb0180
  article-title: Study of nonlinear vibration of resonant gyroscope based on uncertainty analysis method
  publication-title: Microelectron. Eng.
– volume: 12
  year: 2021
  ident: bb0125
  article-title: A novel high-speed and high-accuracy mathematical modeling method of complex MEMS resonator structures based on the multilayer perceptron neural network
  publication-title: Micromachines (Basel)
– volume: 12
  start-page: 163
  year: 2020
  ident: bb0105
  article-title: Machine-learning-assisted De Novo design of organic molecules and polymers: opportunities and challenges
  publication-title: Polymers (Basel)
– year: 2021
  ident: bb0075
  article-title: Genetic algorithm for the design of freeform geometries in a large-range rotary microgripper
  publication-title: 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS)
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 14
  ident: bb0040
  article-title: Modeling and finite element analysis simulation of MEMS based acetone vapor sensor for noninvasive screening of diabetes
  publication-title: J. Sens.
– start-page: 994
  year: 2016
  end-page: 997
  ident: bb0045
  article-title: Q-factor optimization in disk resonator gyroscopes via geometric parameterization
  publication-title: 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS)
– volume: 19
  start-page: 281
  year: 2019
  ident: bb0100
  article-title: Comparing different supervised machine learning algorithms for disease prediction
  publication-title: BMC Med. Inform Decis. Mak.
– year: 2017
  ident: bb0050
  article-title: Topology optimization for reduction of thermo-elastic dissipation in MEMS resonators
  publication-title: 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)
– volume: 27
  start-page: 414
  year: 2018
  end-page: 423
  ident: bb0065
  article-title: Quality factor improvement in the disk resonator gyroscope by optimizing the spoke length distribution
  publication-title: J. Microelectromech. Syst.
– volume: 6
  start-page: 104
  year: 2020
  ident: bb0070
  article-title: Design of freeform geometries in a MEMS accelerometer with a mechanical motion preamplifier based on a genetic algorithm
  publication-title: Microsyst. Nanoeng.
– year: 2019
  ident: bb0095
  article-title: Designing disease prediction model using machine learning approach
  publication-title: 3rd International Conference on Computing Methodologies and Communication (ICCMC)
– volume: 13
  start-page: 2352
  year: 2022
  ident: bb0035
  article-title: Nonlinearity-mediated digitization and amplification in electromechanical phonon-cavity systems
  publication-title: Nat. Commun.
– volume: 34
  year: 2022
  ident: bb0135
  article-title: Spiderweb nanomechanical resonators via Bayesian optimization: inspired by nature and guided by machine learning
  publication-title: Adv. Mater.
– year: 2021
  ident: bb0120
  article-title: Accelerating mems design process through machine learning from pixelated binary images
  publication-title: 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS)
– year: 2020/03
  ident: bb0005
  article-title: 0.00016 deg/√hr Angle Random Walk (ARW) and 0.0014 deg/hr Bias Instability (BI) from a 5.2M-Q and 1-cm Precision Shell Integrating (PSI) Gyroscope
  publication-title: 2020 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)
– volume: 7
  start-page: 160
  year: 2016
  ident: bb0030
  article-title: Micromachined resonators: a review
  publication-title: Micromachines (Basel)
– volume: 260
  year: 2022
  ident: bb0020
  article-title: Design, fabrication and test of a bulk SiC MEMS accelerometer
  publication-title: Microelectron. Eng.
– volume: 26
  start-page: 519
  year: 2017
  end-page: 527
  ident: bb0060
  article-title: Influences of the structure parameters on sensitivity and Brownian noise of the disk resonator gyroscope
  publication-title: J. Microelectromech. Syst.
– volume: 26
  start-page: 758
  year: 2017
  end-page: 772
  ident: bb0155
  article-title: Thermoelastic dissipation in micromachined birdbath Shell resonators
  publication-title: J. Microelectromech. Syst.
– year: 2021
  ident: bb0025
  article-title: Development of a navigation-grade MEMS IMU
  publication-title: IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)
– volume: 89
  year: 2021
  ident: bb0110
  article-title: Harnessing artificial intelligence to holistic design and identification for solid electrolytes
  publication-title: Nano Energy
– volume: 117
  start-page: 174
  year: 2016
  end-page: 181
  ident: bb0080
  article-title: An investigation on the ring thickness distribution of disk resonator gyroscope with high mechanical sensitivity
  publication-title: Int. J. Mech. Sci.
– volume: 62
  start-page: 31
  year: 2014
  end-page: 36
  ident: bb0175
  article-title: Thermoelastic damping of micro resonators operating in the longitudinal vibration mode: in comparison with the case of flexural vibration
  publication-title: Mech. Res. Commun.
– volume: 27
  start-page: 2715
  year: 2020
  end-page: 2722
  ident: bb0015
  article-title: Design of a novel gear-like disk resonator gyroscope with high mechanical sensitivity
  publication-title: Microsyst. Technol.
– volume: 8
  start-page: 91
  year: 2022
  ident: bb0140
  article-title: Deep learning for non-parameterized MEMS structural design
  publication-title: Microsyst. Nanoeng.
– start-page: 1130
  year: 2017
  end-page: 1133
  ident: bb0055
  article-title: Manipulation of heat flux paths in thermo-elastically damped resonators for Q optimization
  publication-title: 30th IEEE International Conference on Micro Electro Mechanical Systems (Mems 2017)
– volume: 41
  year: 2020
  ident: bb0130
  article-title: Machine learning-based design and optimization of curved beams for multistable structures and metamaterials
  publication-title: Extreme Mech. Lett.
– volume: 53
  start-page: 90
  year: 1938
  end-page: 99
  ident: bb0170
  article-title: Internal friction in solids II. General theory of thermoelastic internal friction
  publication-title: Phys. Rev.
– volume: 25
  start-page: 606
  year: 2016
  end-page: 616
  ident: bb0150
  article-title: Design of a disk resonator gyroscope with high mechanical sensitivity by optimizing the ring thickness distribution
  publication-title: J. Microelectromech. Syst.
– volume: 23
  start-page: 4909
  year: 2022
  end-page: 4926
  ident: bb0090
  article-title: Deep reinforcement learning for autonomous driving: a survey
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 10
  start-page: 169
  year: 2001
  end-page: 179
  ident: bb0160
  article-title: A HARPSS polysilicon vibrating ring gyroscope
  publication-title: J. Microelectromech. Syst.
– volume: 30
  start-page: 513
  year: 2021
  end-page: 520
  ident: bb0010
  article-title: 1.3 mm
  publication-title: J. Microelectromech. Syst.
– volume: 23
  start-page: 4909
  year: 2022
  ident: 10.1016/j.mee.2023.111950_bb0090
  article-title: Deep reinforcement learning for autonomous driving: a survey
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2021.3054625
– start-page: 994
  year: 2016
  ident: 10.1016/j.mee.2023.111950_bb0045
  article-title: Q-factor optimization in disk resonator gyroscopes via geometric parameterization
– volume: 53
  start-page: 90
  year: 1938
  ident: 10.1016/j.mee.2023.111950_bb0170
  article-title: Internal friction in solids II. General theory of thermoelastic internal friction
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.53.90
– volume: 117
  start-page: 174
  year: 2016
  ident: 10.1016/j.mee.2023.111950_bb0080
  article-title: An investigation on the ring thickness distribution of disk resonator gyroscope with high mechanical sensitivity
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2016.08.020
– year: 2020
  ident: 10.1016/j.mee.2023.111950_bb0005
  article-title: 0.00016 deg/√hr Angle Random Walk (ARW) and 0.0014 deg/hr Bias Instability (BI) from a 5.2M-Q and 1-cm Precision Shell Integrating (PSI) Gyroscope
– volume: 26
  start-page: 519
  year: 2017
  ident: 10.1016/j.mee.2023.111950_bb0060
  article-title: Influences of the structure parameters on sensitivity and Brownian noise of the disk resonator gyroscope
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2017.2679726
– year: 2019
  ident: 10.1016/j.mee.2023.111950_bb0095
  article-title: Designing disease prediction model using machine learning approach
– volume: 25
  start-page: 606
  year: 2016
  ident: 10.1016/j.mee.2023.111950_bb0150
  article-title: Design of a disk resonator gyroscope with high mechanical sensitivity by optimizing the ring thickness distribution
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2016.2558197
– volume: 263
  year: 2022
  ident: 10.1016/j.mee.2023.111950_bb0180
  article-title: Study of nonlinear vibration of resonant gyroscope based on uncertainty analysis method
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2022.111845
– volume: 37
  start-page: 362
  year: 2020
  ident: 10.1016/j.mee.2023.111950_bb0085
  article-title: A survey of deep learning techniques for autonomous driving
  publication-title: J. Field Robot.
  doi: 10.1002/rob.21918
– volume: 93
  year: 2022
  ident: 10.1016/j.mee.2023.111950_bb0145
  article-title: Flower-like disk resonator for gyroscopic application
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/5.0100376
– volume: 26
  start-page: 758
  year: 2017
  ident: 10.1016/j.mee.2023.111950_bb0155
  article-title: Thermoelastic dissipation in micromachined birdbath Shell resonators
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2017.2715319
– volume: 260
  year: 2022
  ident: 10.1016/j.mee.2023.111950_bb0020
  article-title: Design, fabrication and test of a bulk SiC MEMS accelerometer
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2022.111793
– volume: 30
  start-page: 513
  year: 2021
  ident: 10.1016/j.mee.2023.111950_bb0010
  article-title: 1.3 mm2 Nav-grade NEMS-based gyroscope
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2021.3088940
– year: 2017
  ident: 10.1016/j.mee.2023.111950_bb0050
  article-title: Topology optimization for reduction of thermo-elastic dissipation in MEMS resonators
– year: 2021
  ident: 10.1016/j.mee.2023.111950_bb0075
  article-title: Genetic algorithm for the design of freeform geometries in a large-range rotary microgripper
– volume: 27
  start-page: 2715
  year: 2020
  ident: 10.1016/j.mee.2023.111950_bb0015
  article-title: Design of a novel gear-like disk resonator gyroscope with high mechanical sensitivity
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-020-05047-6
– volume: 6
  start-page: 104
  year: 2020
  ident: 10.1016/j.mee.2023.111950_bb0070
  article-title: Design of freeform geometries in a MEMS accelerometer with a mechanical motion preamplifier based on a genetic algorithm
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-020-00214-1
– volume: 13
  start-page: 2352
  year: 2022
  ident: 10.1016/j.mee.2023.111950_bb0035
  article-title: Nonlinearity-mediated digitization and amplification in electromechanical phonon-cavity systems
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29995-x
– start-page: 1130
  year: 2017
  ident: 10.1016/j.mee.2023.111950_bb0055
  article-title: Manipulation of heat flux paths in thermo-elastically damped resonators for Q optimization
– year: 2021
  ident: 10.1016/j.mee.2023.111950_bb0025
  article-title: Development of a navigation-grade MEMS IMU
– volume: 27
  start-page: 414
  year: 2018
  ident: 10.1016/j.mee.2023.111950_bb0065
  article-title: Quality factor improvement in the disk resonator gyroscope by optimizing the spoke length distribution
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2018.2820101
– volume: 34
  year: 2022
  ident: 10.1016/j.mee.2023.111950_bb0135
  article-title: Spiderweb nanomechanical resonators via Bayesian optimization: inspired by nature and guided by machine learning
  publication-title: Adv. Mater.
– volume: 8
  start-page: 179
  year: 1962
  ident: 10.1016/j.mee.2023.111950_bb0165
  article-title: Visual pattern recognition by moment invariants
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1962.1057692
– volume: 7
  start-page: 160
  year: 2016
  ident: 10.1016/j.mee.2023.111950_bb0030
  article-title: Micromachined resonators: a review
  publication-title: Micromachines (Basel)
  doi: 10.3390/mi7090160
– volume: 41
  year: 2020
  ident: 10.1016/j.mee.2023.111950_bb0130
  article-title: Machine learning-based design and optimization of curved beams for multistable structures and metamaterials
  publication-title: Extreme Mech. Lett.
  doi: 10.1016/j.eml.2020.101002
– volume: 12
  start-page: 163
  year: 2020
  ident: 10.1016/j.mee.2023.111950_bb0105
  article-title: Machine-learning-assisted De Novo design of organic molecules and polymers: opportunities and challenges
  publication-title: Polymers (Basel)
  doi: 10.3390/polym12010163
– volume: 22
  start-page: 1901266
  year: 2020
  ident: 10.1016/j.mee.2023.111950_bb0115
  article-title: Accelerating Auxetic metamaterial design with deep learning
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201901266
– volume: 10
  start-page: 169
  year: 2001
  ident: 10.1016/j.mee.2023.111950_bb0160
  article-title: A HARPSS polysilicon vibrating ring gyroscope
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/84.925732
– year: 2021
  ident: 10.1016/j.mee.2023.111950_bb0120
  article-title: Accelerating mems design process through machine learning from pixelated binary images
– volume: 12
  year: 2021
  ident: 10.1016/j.mee.2023.111950_bb0125
  article-title: A novel high-speed and high-accuracy mathematical modeling method of complex MEMS resonator structures based on the multilayer perceptron neural network
  publication-title: Micromachines (Basel)
– volume: 62
  start-page: 31
  year: 2014
  ident: 10.1016/j.mee.2023.111950_bb0175
  article-title: Thermoelastic damping of micro resonators operating in the longitudinal vibration mode: in comparison with the case of flexural vibration
  publication-title: Mech. Res. Commun.
  doi: 10.1016/j.mechrescom.2014.08.006
– volume: 89
  year: 2021
  ident: 10.1016/j.mee.2023.111950_bb0110
  article-title: Harnessing artificial intelligence to holistic design and identification for solid electrolytes
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106337
– volume: 2016
  start-page: 1
  year: 2016
  ident: 10.1016/j.mee.2023.111950_bb0040
  article-title: Modeling and finite element analysis simulation of MEMS based acetone vapor sensor for noninvasive screening of diabetes
  publication-title: J. Sens.
  doi: 10.1155/2016/9563938
– volume: 19
  start-page: 281
  year: 2019
  ident: 10.1016/j.mee.2023.111950_bb0100
  article-title: Comparing different supervised machine learning algorithms for disease prediction
  publication-title: BMC Med. Inform Decis. Mak.
  doi: 10.1186/s12911-019-1004-8
– volume: 8
  start-page: 91
  year: 2022
  ident: 10.1016/j.mee.2023.111950_bb0140
  article-title: Deep learning for non-parameterized MEMS structural design
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-022-00432-9
SSID ssj0016408
Score 2.4220173
Snippet MEMS resonators have become core devices in many fields, their geometric designs can profoundly affect performance. However, the theoretical modeling of MEMS...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111950
SubjectTerms Finite element analysis method
Flower-like disk resonator
Machine learning
MEMS resonator
Working mode identification algorithm
Title Machine learning algorithm for the structural design of MEMS resonators
URI https://dx.doi.org/10.1016/j.mee.2023.111950
Volume 271-272
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-5568
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016408
  issn: 0167-9317
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Journals
  customDbUrl:
  eissn: 1873-5568
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016408
  issn: 0167-9317
  databaseCode: AIKHN
  dateStart: 19950401
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-5568
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016408
  issn: 0167-9317
  databaseCode: ACRLP
  dateStart: 19950401
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-5568
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016408
  issn: 0167-9317
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-5568
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016408
  issn: 0167-9317
  databaseCode: AKRWK
  dateStart: 19830901
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEJ0QvOjB-Bnxg-zBk0ml7S5d9kgIiBq4IAm3Zml3EQOUKGd_uzPblmCiHjy22Uma2ebNm_btG4DbVuAbK8m5NdLSE1pyT2Np8HTCpU8FlBun8h1G_bF4mjQnFeiUZ2FIVllgf47pDq2LO40im431fN4YkYBeYflDEk2V351gF5KmGNx_bmUe2A24qXTO35tWl382ncZracgpM-QEHIqO3v9Um3bqTe8IDguiyNr5sxxDxaxO4GDHPvAUHgZOCWlYMfphxvRilmG3_7pkyEUZcjuW-8OStwZLnViDZZYNuoMRwz6bvpxn7x9nMO51Xzp9rxiM4CWhkhtEMMOR5yM-GIvVJUp80xQymfIQE2yVVTpFjEPukoogSH2btGSoZVMbHXGempSfQ3WVrcwFMGVD3_IIiVdohQp4y-rIF1rZKTUWJqqBX6YkTgrXcBpesYhLedhbjFmMKYtxnsUa3G1D1rllxl-LRZnn-Nu-xwjpv4dd_i_sCvbpKteQXUMVt8DcIKnYTOvuranDXvvxuT_8AvSfyE8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEN0QPagH42fEzz14MqmU7rbLHg0BUSkXIOG2WdpdxAAlytnf7sy2JZioB6_tTtLMNm_etG_fEHLbqPvGCnRujbTwuBbM01AaPJ0w4WMBZcapfHtRZ8ifR-GoQprlWRiUVRbYn2O6Q-viSq3IZm05ndb6KKCXUP6ARGPlhxZom4eBwA7s_nOt84B2wI2lcwbfuLz8telEXnODVpkBQ-SQePb-p-K0UXDaB2S_YIr0IX-YQ1IxiyOyt-EfeEweYyeFNLSY_TChejbJoN1_nVMgoxTIHc0NYtFcg6ZOrUEzS-NW3KfQaOOn8-z944QM261Bs-MVkxG8JJBiBRBmGBB9AAhjobxEiW9CLpIxCyDDVlqpUwA5IC8pr9dT3yYNEWgRaqMjxlKTslOytcgW5oxQaQPfsgiYV2C5rLOG1ZHPtbRj7CxMVCV-mRKVFLbhOL1ipkp92JuCLCrMosqzWCV365Bl7pnx12Je5ll923gFmP572Pn_wm7ITmcQd1X3qfdyQXbxTi4ouyRbsB3mChjGanzt3qAv0RLJ5A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+algorithm+for+the+structural+design+of+MEMS+resonators&rft.jtitle=Microelectronic+engineering&rft.au=Gu%2C+Liutao&rft.au=Zhang%2C+Weiping&rft.au=Lu%2C+Haolin&rft.au=Wu%2C+Yuting&rft.date=2023-03-01&rft.issn=0167-9317&rft.volume=271-272&rft.spage=111950&rft_id=info:doi/10.1016%2Fj.mee.2023.111950&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mee_2023_111950
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9317&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9317&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9317&client=summon