Machine learning in solid heterogeneous catalysis: Recent developments, challenges and perspectives
Recently, the availability of extensive catalysis-related data generated by experimental data and theoretical calculations has promoted the development of machine learning (ML) techniques for novel heterogeneous catalyst development. ML is an effective tool in automating the generation, processing,...
Saved in:
Published in | Chemical engineering science Vol. 248; p. 117224 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
02.02.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0009-2509 1873-4405 |
DOI | 10.1016/j.ces.2021.117224 |
Cover
Abstract | Recently, the availability of extensive catalysis-related data generated by experimental data and theoretical calculations has promoted the development of machine learning (ML) techniques for novel heterogeneous catalyst development. ML is an effective tool in automating the generation, processing, and interpretation of large catalyst datasets with superior properties than the conventional statistical approaches. Also, ML have enabled the identification of accurate data-driven models that have been used to establish key relationships between the features of materials and targeted catalytic performance, such as activity, selectivity, and stability. These advances have resulted in the development of efficient design or screening guidelines for solid-state catalysts with targeted properties. However, extending the existing ML approaches to obtain accurate predictions of catalyst performance or design strategies for high-performance catalysts still poses several challenges. In this review, we discuss the recent milestones on the application of ML for solid heterogeneous catalysis and present the limitations and challenges of ML in this field. We also discuss potential future directions for the effective use of ML in solid heterogeneous catalyst design. |
---|---|
AbstractList | Recently, the availability of extensive catalysis-related data generated by experimental data and theoretical calculations has promoted the development of machine learning (ML) techniques for novel heterogeneous catalyst development. ML is an effective tool in automating the generation, processing, and interpretation of large catalyst datasets with superior properties than the conventional statistical approaches. Also, ML have enabled the identification of accurate data-driven models that have been used to establish key relationships between the features of materials and targeted catalytic performance, such as activity, selectivity, and stability. These advances have resulted in the development of efficient design or screening guidelines for solid-state catalysts with targeted properties. However, extending the existing ML approaches to obtain accurate predictions of catalyst performance or design strategies for high-performance catalysts still poses several challenges. In this review, we discuss the recent milestones on the application of ML for solid heterogeneous catalysis and present the limitations and challenges of ML in this field. We also discuss potential future directions for the effective use of ML in solid heterogeneous catalyst design. |
ArticleNumber | 117224 |
Author | Wang, Yanji Guan, Yani Chaffart, Donovan Liu, Guihua Li, Jingde Zhang, Dongsheng Ricardez-Sandoval, Luis Tan, Zhaoyang |
Author_xml | – sequence: 1 givenname: Yani surname: Guan fullname: Guan, Yani organization: Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China – sequence: 2 givenname: Donovan orcidid: 0000-0002-2360-7804 surname: Chaffart fullname: Chaffart, Donovan organization: Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada – sequence: 3 givenname: Guihua surname: Liu fullname: Liu, Guihua email: guihualiu@hebut.edu.cn organization: Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China – sequence: 4 givenname: Zhaoyang surname: Tan fullname: Tan, Zhaoyang organization: Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China – sequence: 5 givenname: Dongsheng surname: Zhang fullname: Zhang, Dongsheng organization: Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China – sequence: 6 givenname: Yanji surname: Wang fullname: Wang, Yanji organization: Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China – sequence: 7 givenname: Jingde surname: Li fullname: Li, Jingde email: jingdeli@hebut.edu.cn organization: Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China – sequence: 8 givenname: Luis surname: Ricardez-Sandoval fullname: Ricardez-Sandoval, Luis email: laricard@uwaterloo.ca organization: Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada |
BookMark | eNp9kMtOwzAQRS0EEm3hA9j5A0jwOA8nsEIVL6kICcHaciaT1lXqVLap1L8nVVmx6OrOXZyR7pmyczc4YuwGRAoCyrt1ihRSKSSkAErK_IxNoFJZkueiOGcTIUSdyELUl2wawnqsSoGYMHw3uLKOeE_GO-uW3Doeht62fEWR_LAkR8NP4Gii6ffBhnv-SUgu8pZ21A_bzXiHW44r0_fklhS4cS3fkg9bwmh3FK7YRWf6QNd_OWPfz09f89dk8fHyNn9cJChrFZOqqKEpJGADZVbkUBkiaSArc-zQVAohyxsCyFWm6gZFl5VVo5SpDArZlWU2Y3D8i34IwVOnt95ujN9rEPpgSa_1aEkfLOmjpZFR_xi00UQ7uOiN7U-SD0eSxkk7S14HtOSQWuvH4bod7An6F1F-hTo |
CitedBy_id | crossref_primary_10_1016_j_chemosphere_2024_142477 crossref_primary_10_1021_acs_iecr_2c01036 crossref_primary_10_1002_itl2_439 crossref_primary_10_3390_ma16216978 crossref_primary_10_1021_acscatal_2c02291 crossref_primary_10_3390_catal15030282 crossref_primary_10_1016_j_biteb_2022_100976 crossref_primary_10_3390_surfaces5010002 crossref_primary_10_1016_j_ijhydene_2024_12_430 crossref_primary_10_3390_nano13132013 crossref_primary_10_1002_chem_202401148 crossref_primary_10_1007_s10661_024_12443_2 crossref_primary_10_1021_acs_jpclett_4c01492 crossref_primary_10_1002_cjce_24506 crossref_primary_10_1016_j_cherd_2024_11_033 crossref_primary_10_1088_2515_7655_aca122 crossref_primary_10_1007_s40820_023_01192_5 crossref_primary_10_1039_D2CY00275B crossref_primary_10_1039_D4RA00406J crossref_primary_10_1039_D4CY01525H crossref_primary_10_1016_j_dche_2022_100023 crossref_primary_10_1002_aic_18793 crossref_primary_10_1016_j_chemphys_2024_112197 crossref_primary_10_1016_j_ijhydene_2025_02_077 crossref_primary_10_3390_ma16020575 crossref_primary_10_1021_acs_jpclett_2c00918 crossref_primary_10_1039_D2TA02039D crossref_primary_10_1016_j_ces_2024_119875 crossref_primary_10_1021_acs_jpcc_3c05753 crossref_primary_10_1002_cite_202200071 crossref_primary_10_1093_ce_zkad061 crossref_primary_10_1016_j_dche_2023_100111 crossref_primary_10_1016_j_mcat_2023_113366 crossref_primary_10_1002_adma_202305758 crossref_primary_10_1016_j_mcat_2022_112430 crossref_primary_10_1016_j_jpsychores_2024_112030 crossref_primary_10_1016_j_jechem_2023_02_018 crossref_primary_10_1080_10406638_2022_2094422 crossref_primary_10_1021_acs_iecr_3c02717 crossref_primary_10_1016_j_isci_2023_107029 crossref_primary_10_1002_pls2_10082 crossref_primary_10_1016_j_checat_2024_100987 crossref_primary_10_1002_smll_202308084 crossref_primary_10_1016_j_biortech_2022_128504 crossref_primary_10_1021_acs_jpcc_4c00461 crossref_primary_10_1021_acscatal_3c06293 crossref_primary_10_1016_j_seppur_2023_123270 crossref_primary_10_1039_D4RE00118D crossref_primary_10_1002_advs_202306604 crossref_primary_10_1016_j_jmrt_2022_02_033 crossref_primary_10_1016_j_egyai_2024_100361 crossref_primary_10_1021_acs_jpcc_3c07168 crossref_primary_10_1039_D2CS01068B crossref_primary_10_1039_D3EY00126A crossref_primary_10_1016_j_fuel_2025_134652 crossref_primary_10_1080_01614940_2022_2103980 crossref_primary_10_1016_j_jece_2025_115359 crossref_primary_10_1021_acs_jpcc_3c02539 crossref_primary_10_1515_tsd_2024_2580 crossref_primary_10_1016_j_joei_2025_101973 crossref_primary_10_1016_j_totert_2022_100001 crossref_primary_10_1016_j_cej_2023_144503 crossref_primary_10_1021_acs_jcim_3c01633 crossref_primary_10_1016_j_jmgm_2023_108554 crossref_primary_10_1016_j_mtcata_2024_100061 crossref_primary_10_1007_s40843_024_3204_5 crossref_primary_10_1016_j_cherd_2022_05_030 crossref_primary_10_1016_j_resconrec_2024_108090 crossref_primary_10_1021_acs_jctc_3c00160 crossref_primary_10_3390_molecules29061194 crossref_primary_10_1007_s11814_024_00181_7 crossref_primary_10_1016_j_jiec_2024_09_035 crossref_primary_10_1021_prechem_4c00051 crossref_primary_10_1016_j_cep_2022_109148 crossref_primary_10_1039_D4CP04887C |
Cites_doi | 10.1021/acscatal.7b01648 10.1016/j.trechm.2019.02.007 10.1021/acscatal.0c04525 10.1021/ci980411n 10.1063/1.4989540 10.1016/j.apcatb.2019.118257 10.1038/s41598-019-47148-x 10.1016/j.compchemeng.2019.106649 10.1016/B978-0-444-63965-3.50312-3 10.1021/acscatal.9b03323 10.1016/j.jcat.2018.08.020 10.1021/ie900720w 10.1016/j.cherd.2020.06.017 10.1021/ja027366r 10.1016/j.cherd.2021.08.013 10.1063/1.4812323 10.1002/aic.16198 10.1016/j.solener.2019.11.067 10.1103/PhysRevLett.99.016105 10.1016/j.chemosphere.2019.125232 10.1021/acs.jpcc.0c00406 10.1002/qua.24917 10.1038/s41597-019-0080-z 10.1021/acsaem.0c01466 10.1103/PhysRevLett.108.058301 10.1016/j.cattod.2013.07.006 10.1039/C7RA06622H 10.1021/acs.jcim.0c00801 10.1021/ed200818t 10.1002/aic.16092 10.1103/PhysRevLett.120.145301 10.1002/qua.25115 10.1371/journal.pone.0229862 10.1039/b803956a 10.1038/sdata.2014.22 10.1016/B978-0-44-456349-1.00016-7 10.1007/s11244-020-01283-2 10.1016/j.foodchem.2020.127232 10.1021/acsomega.9b03673 10.1016/j.compchemeng.2018.08.029 10.1007/s10853-015-9627-3 10.1021/jacs.9b04956 10.1021/acs.chemmater.7b03500 10.1039/C9TA12608B 10.1039/C7SC04934J 10.1016/j.joule.2018.12.015 10.1002/aic.16045 10.1002/qsar.200420051 10.1021/nl5005674 10.1021/acs.jpclett.6b01254 10.1016/j.jcat.2014.12.033 10.1002/cctc.201900595 10.1016/j.jcat.2005.03.019 10.1016/0926-860X(95)00171-9 10.1021/jacs.8b00947 10.1021/acscatal.9b02416 10.1021/acscatal.6b02447 10.1038/ncomms14621 10.1021/acs.jpclett.9b03392 10.1039/C6RA04345C 10.1021/acs.jpclett.7b02364 10.1002/aic.15702 10.1186/s13321-020-00473-0 10.1021/acs.jctc.9b00986 10.1021/acs.chemmater.9b03686 10.1002/qua.24890 10.1039/C7TA01812F 10.1039/C4RA07176J 10.1016/j.energy.2019.116076 10.1007/s10822-016-9938-8 10.1016/j.fuel.2020.117885 10.1073/pnas.1006652108 10.1016/j.ijhydene.2014.01.160 10.1088/1361-648X/aa680e 10.1063/1.4960708 10.1038/s41467-020-20342-6 10.1016/S0360-0564(08)60029-2 10.1021/acs.jpcc.0c05250 10.1039/C7SC03422A 10.1016/j.fuel.2020.118548 10.1103/PhysRevLett.114.105503 10.1039/C8CS00398J 10.1016/j.cplett.2015.09.030 10.1039/C7CY00962C 10.1126/science.aat2663 10.1016/0039-6028(96)80007-0 10.1016/j.commatsci.2020.109948 10.1038/s41578-018-0005-z 10.1021/acscatal.9b02531 10.1021/acs.jpclett.9b03875 10.1103/PhysRevB.100.125155 10.1021/acs.jpclett.9b03678 10.1038/npjcompumats.2015.10 10.1016/j.foodchem.2020.126864 10.1016/j.compchemeng.2009.12.008 10.1039/C1CP22271F 10.1103/PhysRevB.89.205118 10.1063/1.4986787 10.1021/acscatal.0c02089 10.1021/acs.jpcc.0c04432 10.1039/C7RE00210F 10.1021/acs.jpclett.7b02010 10.1186/1752-0509-4-S2-S6 10.1016/j.cpc.2016.05.010 10.1038/s41524-018-0096-5 10.1016/j.compchemeng.2020.106886 10.1016/j.cattod.2016.04.013 10.1103/PhysRevLett.118.036101 10.1016/j.apsusc.2019.02.202 10.1021/acs.accounts.1c00153 10.1016/j.neunet.2014.09.003 10.1016/j.jcat.2016.03.015 10.1103/PhysRevB.89.094104 10.1021/acs.jpca.9b08723 10.1038/376238a0 10.1002/jcc.25567 10.1021/ef020241n 10.1021/acscentsci.7b00492 10.1021/ie010316v 10.1016/j.susc.2019.121513 10.1063/1.5126597 10.1039/C7SC02664A |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ces.2021.117224 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4405 |
ExternalDocumentID | 10_1016_j_ces_2021_117224 S0009250921007892 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HLY IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCE SDF SDG SDP SES SPC SPCBC SSG SSZ T5K XPP ZMT ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AI. AIDUJ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION EFKBS EJD FEDTE FGOYB HVGLF HZ~ NDZJH R2- SC5 SEW T9H VH1 WUQ Y6R ZY4 ~HD |
ID | FETCH-LOGICAL-c297t-8591b521cb1635418aee2a1364cfca87c134be1147379bc0f368b77a8ac02f663 |
IEDL.DBID | AIKHN |
ISSN | 0009-2509 |
IngestDate | Thu Sep 18 00:13:19 EDT 2025 Thu Apr 24 23:05:44 EDT 2025 Fri Feb 23 02:41:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Heterogeneous catalysis Catalyst database Catalysis descriptors Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-8591b521cb1635418aee2a1364cfca87c134be1147379bc0f368b77a8ac02f663 |
ORCID | 0000-0002-2360-7804 |
ParticipantIDs | crossref_primary_10_1016_j_ces_2021_117224 crossref_citationtrail_10_1016_j_ces_2021_117224 elsevier_sciencedirect_doi_10_1016_j_ces_2021_117224 |
PublicationCentury | 2000 |
PublicationDate | 2022-02-02 |
PublicationDateYYYYMMDD | 2022-02-02 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-02 day: 02 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering science |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Boes, Groenenboom, Keith, Kitchin (b0055) 2016; 116 Roch, Häse, Kreisbeck, Tamayo-Mendoza, Yunker, Hein, Aspuru-Guzik, Hu (b0435) 2020; 15 Kwon, Lele, Zhu, McEnally, Pfefferle, Xuan, van Duin (b0285) 2020; 279 Chowdhury, A.J., Yang, W., Abdelfatah, K.E., Zare, M., Heyden, A., Terejanu, G., 2019. A Multiple Filter Based Neural Network Approach to the Extrapolation of Adsorption Energies on Metal Surfaces for Catalysis Applications. 16, 1105-1114. DOI: 10.1021/acs.jctc.9b00986 Jinnouchi, Asahi (b0220) 2017; 8 Wen, Qiao, Han, Niu, Huo, Bai (b0560) 2016; 51 Elnabawy, Schumann, Bothra, Cao, Nørskov (b0115) 2020; 63 Batchelor, Pedersen, Winther, Castelli, Jacobsen, Rossmeisl (b0035) 2019; 3 Yao, Herr, Toth, Mckintyre, Parkhill (b0595) 2018; 9 Li, Wang, Li, Huang, Gu, Wang, Yang, Li (b0305) 2020; 330 Ramakrishnan, Dral, Rupp, Von Lilienfeld (b0425) 2014; 1 Zhu, Yan, Gu, Liu, Dai, Gu, Li (b0630) 2019; 10 Zhou, Li, Zare (b0625) 2017; 3 Eschmann, Sabitova, Temirov, Tautz, Krüger, Rohlfing (b0125) 2019; 100 Rupp, Tkatchenko, Müller, Von Lilienfeld (b0440) 2012; 108 Kimaev, Ricardez‐Sandoval (b0260) 2018; 64 Takahashi, Miyazato (b0510) 2018; 39 Liu, Marcella, Timoshenko, Halder, Yang, Kolipaka, Pellin, Seifert, Vajda, Liu, Frenkel (b0325) 2019; 151 Tang, Zhou, Zheng, Zhang (b0520) 2020; 195 Cao, Niu, Wen, Feng, Huo, Bai (b0070) 2016; 339 Mamun, Winther, Boes, Bligaard (b0340) 2019; 6 Artrith, Kolpak (b0015) 2014; 14 Hjorth Larsen, Jørgen Mortensen, Blomqvist, Castelli, Christensen, Dułak, Friis, Groves, Hammer, Hargus, Hermes, Jennings, Bjerre Jensen, Kermode, Kitchin, Leonhard Kolsbjerg, Kubal, Kaasbjerg, Lysgaard, Bergmann Maronsson, Maxson, Olsen, Pastewka, Peterson, Rostgaard, Schiøtz, Schütt, Strange, Thygesen, Vegge, Vilhelmsen, Walter, Zeng, Jacobsen (b0200) 2017; 29 Grajciar, Heard, Bondarenko, Polynski, Meeprasert, Pidko, Nachtigall (b0165) 2018; 47 Kimaev, Ricardez-Sandoval (b0265) 2017; 63 Li, Croiset, Ricardez-Sandoval (b0295) 2015; 639 Hansen, Rossmeisl, Nørskov (b0185) 2008; 10 Ma, Xin (b0335) 2017; 118 arXiv Xin, Liu, Liu, Huo, Li, Wang, Cheng (b0585) 2020; 275 Rafiei-Shishavan, Ricardez-Sandoval (b0420) 2017; 40 Shin, Badgwell, Liu, Lee (b0490) 2019; 26 Xia, Wu, Zhou, Wong (b0575) 2010; 4 Hammer, Nørskov (b0180) 1995; 343 Kimaev, Ricardez-Sandoval (b0250) 2020; 161 Serra, Corma, Valero, Argente, Botti (b0485) 2007; 26 Nørskov, Abild-Pedersen, Studt, Bligaard (b0390) 2011; 108 Sasaki, Hamada, Kintaichi, Ito (b0460) 1995; 132 Wu, Ramsundar, Feinberg, Gomes, Geniesse, Pappu, Leswing, Pande (b0570) 2018; 9 Timoshenko, Lu, Lin, Frenkel (b0530) 2017; 8 Fung, Hu, Ganesh, Sumpter (b0140) 2021; 12 Ge, Yuan, Min, Li, Chen, Xu, Goddard (b0150) 2020; 11 Nian, Liu, Huang (b0375) 2020; 139 Petsagkourakis, P., Sandoval, I.O., Bradford, E., Zhang, D., del Rio-Chanona, E.A., 2020. Reinforcement learning for batch bioprocess optimization. Comput. Chem. 133, 106649. Eng. DOI: 10.1016/j.compchemeng.2019.106649 Noh, Kim, Back, Jung (b0385) 2017; 9 Sabbe, Canduela-Rodriguez, Joly, Reyniers, Marin (b0445) 2017; 7 Zhou, Kearnes, Li, Zare, Riley (b0620) 2019; 9 Andersen, Reuter (b0010) 2021; 54 Skúlason, Bligaard, Gudmundsdóttir, Studt, Rossmeisl, Abild-Pedersen, Vegge, Jónsson, Nørskov (b0495) 2012; 14 Zafari, Kumar, Umer, Kim (b0605) 2020; 8 Häse, Roch, Aspuru-Guzik (b0190) 2019; 1 Jäger, Morooka, Federici Canova, Himanen, Foster (b0210) 2018; 4. 4 Noh, Back, Kim, Jung (b0380) 2018; 9 Cundari, Deng, Zhao (b0110) 2001; 40 Sanchez-Lengeling, Aspuru-Guzik (b0455) 2018; 361 Che (b0085) 2013; 218–219 Kimaev, Ricardez-Sandoval (b0255) 2020; 124 Chen, Huang, Cheng, Goddard (b0090) 2019; 141 Elshenawy, Yin, Naik, Ding (b0120) 2010; 49 Chanussot, L., Das, A., Goyal, S., Lavril, T., Shuaibi, M., Riviere, M., Tran, K., Heras-Domingo, J., Ho, C., Hu, W., Palizhati, A., Sriram, A., Wood, B., Yoon, J., Parikh, D., Zitnick, C.L., Ulissi, Z., 2020. The Open Catalyst 2020 (OC20) Dataset and Community Challenges 2020. Ghiringhelli, Vybiral, Levchenko, Draxl, Scheffler (b0155) 2015; 114 Takigawa, Shimizu, Tsuda, Takakusagi (b0515) 2016; 6 Bregante, Flaherty (b0065) 2019; 9 Corma, Serra, Serna, Moliner (b0105) 2005; 232 Meredig, Agrawal, Kirklin, Saal, Doak, Thompson, Zhang, Choudhary, Wolverton (b0355) 2014; 89 Kearnes, McCloskey, Berndl, Pande, Riley (b0230) 2016; 30 Hammer, Norskov (b0175) 1995; 376 He, Kong, Liu (b0195) 2020; 184 Umegaki, Watanabe, Nukui, Omata, Yamada (b0550) 2003; 17 Wang, Chaffart, Ricardez-Sandoval (b0555) 2019; 188 Liu, Shi, Feng, Niu, Liu, Bai (b0320) 2014; 4 Kirklin, Saal, Meredig, Thompson, Doak, Aykol, Rühl, Wolverton (b0270) 2015; 1 Zhang, Shang, Liu (b0615) 2017; 147 Chaffart, Ricardez-Sandoval (b0075) 2018; 119 Abild-Pedersen, Greeley, Studt, Rossmeisl, Munter, Moses, Skúlason, Bligaard, Nørskov (b0005) 2007; 99 Fung, Hu, Wu, Jiang (b0145) 2020; 124 Masood, Toe, Teoh, Sethu, Amal (b0345) 2019; 9 Luco (b0330) 1999; 39 Li, Wang, Chin, Achenie, Xin (b0315) 2017; 5 Michaelides, Liu, Zhang, Alavi, King, Hu (b0360) 2003; 125 Xie, Grossman (b0580) 2018; 120 Li, Liu, Fu, Jiang, Luo, Hassan, Zhang, Deng, Xu, Ricardez-Sandoval, Chen (b0300) 2018; 367 Peters, B., 2017. Reaction Rate Theory and Rare Events, Reaction Rate Theory and Rare Events. Elsevier Jain, Ong, Hautier, Chen, Richards, Dacek, Cholia, Gunter, Skinner, Ceder, Persson (b0215) 2013; 1 Odabaşı, Günay, Yıldırım (b0395) 2014; 39 Ouyang, R., Curtarolo, S., Ahmetcik, E., Scheffler, M., Ghiringhelli, L.M., 2018. low-dimensional descriptor in an immensity of offered candidates 1–12. Hutchinson, M.L., Antono, E., Gibbons, B.M., Paradiso, S., Ling, J., Meredig, B., 2017. Overcoming data scarcity with transfer learning. Yu, Zhang, Sun, Zhang (b0600) 2020; 691 Yang, W., Fidelis, T.T., Sun, W.H., 2020. Machine Learning in Catalysis, from Proposal to Practicing. ACS Omega 5, 83–88. 5, 83–88. DOI: 10.1021/acsomega.9b03673 Senftle, van Duin, Janik (b0480) 2017; 7 Wexler, Martirez, Rappe (b0565) 2018; 140 Ulissi, Medford, Bligaard, Nørskov (b0535) 2017; 8 Koistinen, Dagbjartsdóttir, Ásgeirsson, Vehtari, Jónsson (b0275) 2017; 147 Zhang, Hu, Wang (b0610) 2020; 124 Kim, Yeo, Park, Lee, Han, Kim (b0245) 2020; 32 Miyazato, Nishimura, Takahashi, Ohyama, Takahashi (b0365) 2020; 11 Fernandez, Barron, Barnard (b0135) 2017; 7 Tian, Min, Wang (b0525) 2019; 480 Balandin (b0030) 1969; 19 Tabor, Roch, Saikin, Kreisbeck, Sheberla, Montoya, Dwaraknath, Aykol, Ortiz, Tribukait, Amador-Bedolla, Brabec, Maruyama, Persson, Aspuru-Guzik (b0505) 2018; 3 Karim, Ferrandon, Medina, Sture, Kariuki, Myers, Holby, Zelenay, Ahmed (b0225) 2020; 3 Monroy, Benitez, Escudero, Graells (b0370) 2010; 34 Khorshidi, Peterson (b0235) 2016; 207 Koller, Ricardez‐Sandoval, Biegler (b0280) 2018; 64 Smith, Keane, Dumesic, Huber, Zavala (b0500) 2020; 263 Behler (b0040) 2015; 115 Schlexer Lamoureux, Winther, Garrido Torres, Streibel, Zhao, Bajdich, Abild‐Pedersen, Bligaard (b0465) 2019; 11 Goldsmith, Esterhuizen, Liu, Bartel, Sutton (b0160) 2018; 64 Medford, Vojvodic, Hummelshøj, Voss, Abild-Pedersen, Studt, Bligaard, Nilsson, Nørskov (b0350) 2015; 328 Bjerrum, E.J., 2017. Smiles enumeration as data augmentation for neural network modeling of molecules. arXiv: 1703.07076 Ulissi, Tang, Xiao, Liu, Torelli, Karamad, Cummins, Hahn, Lewis, Jaramillo, Chan, Nørskov (b0545) 2017; 7 Li, Ma, Xin (b0310) 2017; 280 Peterson (b0410) 2016; 145 Ulissi, Singh, Tsai, Nørskov (b0540) 2016; 7 Sahoo, Roy, Wang, Mi, Yu, Balasubramani, Khan, Stoddart (b0450) 2020; 60 Artrith, Lin, Chen (b0020) 2020; 10 Kim, Huang, Saunders, McCallum, Ceder, Olivetti (b0240) 2017; 29 Gu, Plechac, Vlachos (b0170) 2018; 3 Bouysset, Belloir, Antonczak, Briand, Fiorucci (b0060) 2020; 324 Rangel-Martinez, Nigam, Ricardez-Sandoval (b0430) 2021; 174 Schmidhuber (b0470) 2015; 61 Zuo, Chen, Li, Deng, Chen, Behler, Csányi, Shapeev, Thompson, Wood, Ong (b0635) 2020; 124 Blaschke, Engkvist, Bajorath, Chen (b0050) 2020; 12 Faber, Lindmaa, von Lilienfeld, Armiento (b0130) 2015; 115 Laursen, Varela, Dionigi, Fanchiu, Miller, Trinhammer, Rossmeisl, Dahl (b0290) 2012; 89 Chen, Teng, Liao, Li, Lin (b0095) 2020; 242 Back, Tran, Ulissi (b0025) 2019; 9 Schütt, Glawe, Brockherde, Sanna, Müller, Gross (b0475) 2014; 89 Balandin (10.1016/j.ces.2021.117224_b0030) 1969; 19 Kimaev (10.1016/j.ces.2021.117224_b0255) 2020; 124 Wexler (10.1016/j.ces.2021.117224_b0565) 2018; 140 Zhu (10.1016/j.ces.2021.117224_b0630) 2019; 10 Bouysset (10.1016/j.ces.2021.117224_b0060) 2020; 324 Artrith (10.1016/j.ces.2021.117224_b0020) 2020; 10 Boes (10.1016/j.ces.2021.117224_b0055) 2016; 116 Schlexer Lamoureux (10.1016/j.ces.2021.117224_b0465) 2019; 11 Mamun (10.1016/j.ces.2021.117224_b0340) 2019; 6 Umegaki (10.1016/j.ces.2021.117224_b0550) 2003; 17 Wen (10.1016/j.ces.2021.117224_b0560) 2016; 51 Luco (10.1016/j.ces.2021.117224_b0330) 1999; 39 Kimaev (10.1016/j.ces.2021.117224_b0265) 2017; 63 Koller (10.1016/j.ces.2021.117224_b0280) 2018; 64 Kim (10.1016/j.ces.2021.117224_b0240) 2017; 29 Liu (10.1016/j.ces.2021.117224_b0320) 2014; 4 Corma (10.1016/j.ces.2021.117224_b0105) 2005; 232 10.1016/j.ces.2021.117224_b0415 Grajciar (10.1016/j.ces.2021.117224_b0165) 2018; 47 Zhang (10.1016/j.ces.2021.117224_b0610) 2020; 124 Kwon (10.1016/j.ces.2021.117224_b0285) 2020; 279 Andersen (10.1016/j.ces.2021.117224_b0010) 2021; 54 Behler (10.1016/j.ces.2021.117224_b0040) 2015; 115 Rupp (10.1016/j.ces.2021.117224_b0440) 2012; 108 Chen (10.1016/j.ces.2021.117224_b0095) 2020; 242 Roch (10.1016/j.ces.2021.117224_b0435) 2020; 15 Schmidhuber (10.1016/j.ces.2021.117224_b0470) 2015; 61 Goldsmith (10.1016/j.ces.2021.117224_b0160) 2018; 64 Kimaev (10.1016/j.ces.2021.117224_b0250) 2020; 161 Che (10.1016/j.ces.2021.117224_b0085) 2013; 218–219 Cao (10.1016/j.ces.2021.117224_b0070) 2016; 339 Khorshidi (10.1016/j.ces.2021.117224_b0235) 2016; 207 Sanchez-Lengeling (10.1016/j.ces.2021.117224_b0455) 2018; 361 Wang (10.1016/j.ces.2021.117224_b0555) 2019; 188 Kirklin (10.1016/j.ces.2021.117224_b0270) 2015; 1 Hjorth Larsen (10.1016/j.ces.2021.117224_b0200) 2017; 29 Ulissi (10.1016/j.ces.2021.117224_b0545) 2017; 7 Eschmann (10.1016/j.ces.2021.117224_b0125) 2019; 100 Ramakrishnan (10.1016/j.ces.2021.117224_b0425) 2014; 1 Ulissi (10.1016/j.ces.2021.117224_b0540) 2016; 7 Li (10.1016/j.ces.2021.117224_b0315) 2017; 5 Takigawa (10.1016/j.ces.2021.117224_b0515) 2016; 6 Hammer (10.1016/j.ces.2021.117224_b0175) 1995; 376 Yu (10.1016/j.ces.2021.117224_b0600) 2020; 691 Noh (10.1016/j.ces.2021.117224_b0385) 2017; 9 Zhou (10.1016/j.ces.2021.117224_b0625) 2017; 3 Takahashi (10.1016/j.ces.2021.117224_b0510) 2018; 39 Tian (10.1016/j.ces.2021.117224_b0525) 2019; 480 Meredig (10.1016/j.ces.2021.117224_b0355) 2014; 89 Peterson (10.1016/j.ces.2021.117224_b0410) 2016; 145 Chen (10.1016/j.ces.2021.117224_b0090) 2019; 141 Tabor (10.1016/j.ces.2021.117224_b0505) 2018; 3 Kimaev (10.1016/j.ces.2021.117224_b0260) 2018; 64 Michaelides (10.1016/j.ces.2021.117224_b0360) 2003; 125 Zuo (10.1016/j.ces.2021.117224_b0635) 2020; 124 Abild-Pedersen (10.1016/j.ces.2021.117224_b0005) 2007; 99 Cundari (10.1016/j.ces.2021.117224_b0110) 2001; 40 Odabaşı (10.1016/j.ces.2021.117224_b0395) 2014; 39 10.1016/j.ces.2021.117224_b0045 Serra (10.1016/j.ces.2021.117224_b0485) 2007; 26 Fernandez (10.1016/j.ces.2021.117224_b0135) 2017; 7 Schütt (10.1016/j.ces.2021.117224_b0475) 2014; 89 Blaschke (10.1016/j.ces.2021.117224_b0050) 2020; 12 Li (10.1016/j.ces.2021.117224_b0305) 2020; 330 Zafari (10.1016/j.ces.2021.117224_b0605) 2020; 8 10.1016/j.ces.2021.117224_b0205 Jinnouchi (10.1016/j.ces.2021.117224_b0220) 2017; 8 Xie (10.1016/j.ces.2021.117224_b0580) 2018; 120 Bregante (10.1016/j.ces.2021.117224_b0065) 2019; 9 Artrith (10.1016/j.ces.2021.117224_b0015) 2014; 14 Li (10.1016/j.ces.2021.117224_b0295) 2015; 639 Noh (10.1016/j.ces.2021.117224_b0380) 2018; 9 Gu (10.1016/j.ces.2021.117224_b0170) 2018; 3 Fung (10.1016/j.ces.2021.117224_b0145) 2020; 124 Shin (10.1016/j.ces.2021.117224_b0490) 2019; 26 Wu (10.1016/j.ces.2021.117224_b0570) 2018; 9 Fung (10.1016/j.ces.2021.117224_b0140) 2021; 12 Sasaki (10.1016/j.ces.2021.117224_b0460) 1995; 132 Hammer (10.1016/j.ces.2021.117224_b0180) 1995; 343 Miyazato (10.1016/j.ces.2021.117224_b0365) 2020; 11 Sahoo (10.1016/j.ces.2021.117224_b0450) 2020; 60 Nørskov (10.1016/j.ces.2021.117224_b0390) 2011; 108 Elshenawy (10.1016/j.ces.2021.117224_b0120) 2010; 49 Timoshenko (10.1016/j.ces.2021.117224_b0530) 2017; 8 Tang (10.1016/j.ces.2021.117224_b0520) 2020; 195 Elnabawy (10.1016/j.ces.2021.117224_b0115) 2020; 63 Faber (10.1016/j.ces.2021.117224_b0130) 2015; 115 Ge (10.1016/j.ces.2021.117224_b0150) 2020; 11 10.1016/j.ces.2021.117224_b0100 Jain (10.1016/j.ces.2021.117224_b0215) 2013; 1 Liu (10.1016/j.ces.2021.117224_b0325) 2019; 151 Medford (10.1016/j.ces.2021.117224_b0350) 2015; 328 Ghiringhelli (10.1016/j.ces.2021.117224_b0155) 2015; 114 Li (10.1016/j.ces.2021.117224_b0300) 2018; 367 Monroy (10.1016/j.ces.2021.117224_b0370) 2010; 34 Chaffart (10.1016/j.ces.2021.117224_b0075) 2018; 119 Ma (10.1016/j.ces.2021.117224_b0335) 2017; 118 Kearnes (10.1016/j.ces.2021.117224_b0230) 2016; 30 Back (10.1016/j.ces.2021.117224_b0025) 2019; 9 Smith (10.1016/j.ces.2021.117224_b0500) 2020; 263 Xia (10.1016/j.ces.2021.117224_b0575) 2010; 4 10.1016/j.ces.2021.117224_b0590 Laursen (10.1016/j.ces.2021.117224_b0290) 2012; 89 Li (10.1016/j.ces.2021.117224_b0310) 2017; 280 Jäger (10.1016/j.ces.2021.117224_b0210) 2018; 4. 4 Hansen (10.1016/j.ces.2021.117224_b0185) 2008; 10 Yao (10.1016/j.ces.2021.117224_b0595) 2018; 9 Masood (10.1016/j.ces.2021.117224_b0345) 2019; 9 He (10.1016/j.ces.2021.117224_b0195) 2020; 184 Xin (10.1016/j.ces.2021.117224_b0585) 2020; 275 Zhou (10.1016/j.ces.2021.117224_b0620) 2019; 9 Skúlason (10.1016/j.ces.2021.117224_b0495) 2012; 14 Batchelor (10.1016/j.ces.2021.117224_b0035) 2019; 3 Karim (10.1016/j.ces.2021.117224_b0225) 2020; 3 Kim (10.1016/j.ces.2021.117224_b0245) 2020; 32 Ulissi (10.1016/j.ces.2021.117224_b0535) 2017; 8 10.1016/j.ces.2021.117224_b0080 Häse (10.1016/j.ces.2021.117224_b0190) 2019; 1 Nian (10.1016/j.ces.2021.117224_b0375) 2020; 139 Sabbe (10.1016/j.ces.2021.117224_b0445) 2017; 7 Zhang (10.1016/j.ces.2021.117224_b0615) 2017; 147 Rafiei-Shishavan (10.1016/j.ces.2021.117224_b0420) 2017; 40 Senftle (10.1016/j.ces.2021.117224_b0480) 2017; 7 10.1016/j.ces.2021.117224_b0405 Koistinen (10.1016/j.ces.2021.117224_b0275) 2017; 147 10.1016/j.ces.2021.117224_b0400 Rangel-Martinez (10.1016/j.ces.2021.117224_b0430) 2021; 174 |
References_xml | – volume: 8 start-page: 5209 year: 2020 end-page: 5216 ident: b0605 article-title: Machine learning-based high throughput screening for nitrogen fixation on boron-doped single atom catalysts publication-title: J. Mater. Chem. A. – volume: 3 start-page: 5 year: 2018 end-page: 20 ident: b0505 article-title: Accelerating the discovery of materials for clean energy in the era of smart automation publication-title: Nat. Rev. Mater. – volume: 361 start-page: 360 year: 2018 end-page: 365 ident: b0455 article-title: Inverse molecular design using machine learning: Generative models for matter engineering publication-title: Science – reference: Peters, B., 2017. Reaction Rate Theory and Rare Events, Reaction Rate Theory and Rare Events. Elsevier – reference: Ouyang, R., Curtarolo, S., Ahmetcik, E., Scheffler, M., Ghiringhelli, L.M., 2018. low-dimensional descriptor in an immensity of offered candidates 1–12. – volume: 343 start-page: 211 year: 1995 end-page: 220 ident: b0180 article-title: Electronic factors determining the reactivity of metal surfaces publication-title: Surf. Sci. – volume: 132 start-page: 261 year: 1995 end-page: 270 ident: b0460 article-title: Application of a neural network to the analysis of catalytic reactions Analysis of NO decomposition over Cu/ZSM-5 zeolite. Appl publication-title: Catal. A, Gen. – volume: 8 start-page: 5091 year: 2017 end-page: 5098 ident: b0530 article-title: Supervised machine-learning-based determination of three-dimensional structure of metallic nanoparticles publication-title: J. Phys. Chem. Lett. – volume: 147 start-page: 152720 year: 2017 ident: b0275 article-title: Nudged elastic band calculations accelerated with Gaussian process regression publication-title: J. Chem. Phys. – volume: 40 start-page: 1861 year: 2017 end-page: 1866 ident: b0420 article-title: A stochastic approach for integration of design and control under uncertainty: a back-off approach using power series expansions publication-title: Comput. Aided Chem. Eng. – volume: 60 start-page: 5995 year: 2020 end-page: 6006 ident: b0450 article-title: MultiCon: A semi-supervised approach for predicting drug function from chemical structure analysis publication-title: J. Chem. Inf. Model. – reference: Petsagkourakis, P., Sandoval, I.O., Bradford, E., Zhang, D., del Rio-Chanona, E.A., 2020. Reinforcement learning for batch bioprocess optimization. Comput. Chem. 133, 106649. Eng. DOI: 10.1016/j.compchemeng.2019.106649 – reference: Yang, W., Fidelis, T.T., Sun, W.H., 2020. Machine Learning in Catalysis, from Proposal to Practicing. ACS Omega 5, 83–88. 5, 83–88. DOI: 10.1021/acsomega.9b03673 – volume: 145 start-page: 074106 year: 2016 ident: b0410 article-title: Acceleration of saddle-point searches with machine learning publication-title: J. Chem. Phys. – volume: 184 start-page: 109948 year: 2020 ident: b0195 article-title: Robust activation energy predictions of solute diffusion from machine learning method publication-title: Comput. Mater. Sci. – volume: 174 start-page: 414 year: 2021 end-page: 441 ident: b0430 article-title: Machine Learning on sustainable energy: A review and outlook on renewable energy systems, catalysis, smart grid and energy storage publication-title: Chem. Eng. Res. Des. – volume: 691 start-page: 121513 year: 2020 ident: b0600 article-title: Carbon chain growth mechanism of higher alcohols synthesis from syngas on CoCu(100): A combined DFT and kMC study publication-title: Surf. Sci. – volume: 10 start-page: 7760 year: 2019 end-page: 7766 ident: b0630 article-title: Activity origin and design principles for oxygen reduction on dual-metal-site catalysts: a combined density functional theory and machine learning study publication-title: J. Phys. Chem. Lett. – volume: 11 start-page: 3581 year: 2019 end-page: 3601 ident: b0465 article-title: Machine learning for computational heterogeneous catalysis publication-title: ChemCatChem – volume: 480 start-page: 171 year: 2019 end-page: 176 ident: b0525 article-title: Coverage dependent CO adsorption manners on seven MoP surfaces with DFT based thermodynamics method publication-title: Appl. Surf. Sci. – volume: 9 start-page: 10752 year: 2019 ident: b0620 article-title: Optimization of molecules via deep reinforcement learning publication-title: Sci. Rep. – volume: 3 start-page: 454 year: 2018 end-page: 466 ident: b0170 article-title: Thermochemistry of gas-phase and surface species via LASSO-assisted subgraph selection publication-title: React. Chem. Eng. – volume: 39 start-page: 5733 year: 2014 end-page: 5746 ident: b0395 article-title: Knowledge extraction for water gas shift reaction over noble metal catalysts from publications in the literature between 2002 and 2012 publication-title: Int. J. Hydrogen Energy – volume: 218–219 start-page: 162 year: 2013 end-page: 171 ident: b0085 article-title: Nobel Prize in chemistry 1912 to Sabatier: Organic chemistry or catalysis? publication-title: Catal. Today. – volume: 125 start-page: 3704 year: 2003 end-page: 3705 ident: b0360 article-title: Identification of general linear relationships between activation energies and enthalpy changes for dissociation reactions at surfaces publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 011002 year: 2013 ident: b0215 article-title: Commentary: The materials project: A materials genome approach to accelerating materials innovation publication-title: APL Mater. – volume: 8 start-page: 14621 year: 2017 ident: b0535 article-title: To address surface reaction network complexity using scaling relations machine learning and DFT calculations publication-title: Nat. Commun. – volume: 89 year: 2014 ident: b0355 article-title: Combinatorial screening for new materials in unconstrained composition space with machine learning publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. – volume: 330 start-page: 127232 year: 2020 ident: b0305 article-title: Exploration of chemical markers using a metabolomics strategy and machine learning to study the different origins of Ixeris denticulata (Houtt.) Stebb publication-title: Food Chem. – volume: 6 start-page: 76 year: 2019 ident: b0340 article-title: High-throughput calculations of catalytic properties of bimetallic alloy surfaces publication-title: Sci. data – volume: 39 start-page: 396 year: 1999 end-page: 404 ident: b0330 article-title: Prediction of the brain-blood distribution of a large set of drugs from structurally derived descriptors using partial least-squares (PLS) modeling publication-title: J. Chem. Inf. Comput. Sci. – volume: 120 year: 2018 ident: b0580 article-title: Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties publication-title: Phys. Rev. Lett. – volume: 10 start-page: 9438 year: 2020 end-page: 9444 ident: b0020 article-title: Predicting the activity and selectivity of bimetallic metal catalysts for ethanol reforming using machine learning publication-title: ACS Catal. – volume: 9 start-page: 11774 year: 2019 end-page: 11787 ident: b0345 article-title: Machine learning for accelerated discovery of solar photocatalysts publication-title: ACS Catal. – volume: 15 start-page: e0229862 year: 2020 ident: b0435 article-title: ChemOS: An orchestration software to democratize autonomous discovery publication-title: PLoS ONE – volume: 4 start-page: 44302 year: 2014 end-page: 44306 ident: b0320 article-title: Preparation of magnetic mesoporous core-shell nanocomposites for cinnamic acid hydrogenation publication-title: RSC Adv. – reference: Chanussot, L., Das, A., Goyal, S., Lavril, T., Shuaibi, M., Riviere, M., Tran, K., Heras-Domingo, J., Ho, C., Hu, W., Palizhati, A., Sriram, A., Wood, B., Yoon, J., Parikh, D., Zitnick, C.L., Ulissi, Z., 2020. The Open Catalyst 2020 (OC20) Dataset and Community Challenges 2020. – reference: Chowdhury, A.J., Yang, W., Abdelfatah, K.E., Zare, M., Heyden, A., Terejanu, G., 2019. A Multiple Filter Based Neural Network Approach to the Extrapolation of Adsorption Energies on Metal Surfaces for Catalysis Applications. 16, 1105-1114. DOI: 10.1021/acs.jctc.9b00986 – volume: 232 start-page: 335 year: 2005 end-page: 341 ident: b0105 article-title: Integrating high-throughput characterization into combinatorial heterogeneous catalysis: Unsupervised construction of quantitative structure/property relationship models publication-title: J. Catal. – volume: 118 year: 2017 ident: b0335 article-title: Orbitalwise coordination number for predicting adsorption properties of metal nanocatalysts publication-title: Phys. Rev. Lett. – volume: 124 start-page: 18615 year: 2020 end-page: 18627 ident: b0255 article-title: Artificial neural network discrimination for parameter estimation and optimal product design of thin films manufactured by chemical vapor deposition publication-title: J. Phys. Chem. C. – volume: 242 start-page: 125232 year: 2020 ident: b0095 article-title: Molecular insights into the impacts of iron(III) ions on membrane fouling by alginate publication-title: Chemosphere – volume: 7 start-page: 48962 year: 2017 end-page: 48971 ident: b0135 article-title: Artificial neural network analysis of the catalytic efficiency of platinum nanoparticles publication-title: RSC Adv. – volume: 9 start-page: 2261 year: 2018 end-page: 2269 ident: b0595 article-title: The TensorMol-0.1 model chemistry: A neural network augmented with long-range physics publication-title: Chem. Sci. – volume: 639 start-page: 205 year: 2015 end-page: 210 ident: b0295 article-title: Theoretical investigation of the methane cracking reaction pathways on Ni (1 1 1) surface publication-title: Chem. Phys. Lett. – volume: 147 start-page: 152706 year: 2017 ident: b0615 article-title: Stochastic surface walking reaction sampling for resolving heterogeneous catalytic reaction network: A revisit to the mechanism of water-gas shift reaction on Cu publication-title: J. Chem. Phys. DOI – volume: 7 start-page: 6600 year: 2017 end-page: 6608 ident: b0545 article-title: Machine-learning methods enable exhaustive searches for active Bimetallic facets and reveal active site motifs for CO2 reduction publication-title: ACS Catal. – volume: 49 start-page: 252 year: 2010 end-page: 259 ident: b0120 article-title: Efficient recursive principal component analysis algorithms for process monitoring publication-title: Ind. Eng. Chem. Res. – volume: 263 start-page: 118257 year: 2020 ident: b0500 article-title: A machine learning framework for the analysis and prediction of catalytic activity from experimental data publication-title: Appl. Catal. B Environ. – volume: 3 start-page: 834 year: 2019 end-page: 845 ident: b0035 article-title: High-entropy alloys as a discovery platform for electrocatalysis publication-title: Joule. – volume: 9 start-page: 5152 year: 2018 end-page: 5159 ident: b0380 article-title: Active learning with non-: Ab initio input features toward efficient CO2 reduction catalysts publication-title: Chem. Sci. – volume: 1 year: 2014 ident: b0425 article-title: Quantum chemistry structures and properties of 134 kilo molecules publication-title: Sci. Data. – volume: 4 start-page: S6 year: 2010 ident: b0575 article-title: Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces publication-title: BMC Syst. Biol. – volume: 47 start-page: 8307 year: 2018 end-page: 8348 ident: b0165 article-title: Towards operando computational modeling in heterogeneous catalysis publication-title: Chem. Soc. Rev. – volume: 29 start-page: 273002 year: 2017 ident: b0200 article-title: The atomic simulation environment - A Python library for working with atoms publication-title: J. Phys. Condens. Matter. – volume: 1 start-page: 15010 year: 2015 ident: b0270 article-title: The open quantum materials database (OQMD): Assessing the accuracy of DFT formation energies publication-title: npj Comput. Mater. – volume: 151 start-page: 164201 year: 2019 ident: b0325 article-title: Mapping XANES spectra on structural descriptors of copper oxide clusters using supervised machine learning publication-title: J. Chem. Phys. – volume: 54 start-page: 2741 year: 2021 end-page: 2749 ident: b0010 article-title: Adsorption enthalpies for catalysis modeling through machine-learned descriptors publication-title: Acc. Chem. Res. – volume: 7 start-page: 5267 year: 2017 end-page: 5283 ident: b0445 article-title: Ab initio coverage-dependent microkinetic modeling of benzene hydrogenation on Pd(111) publication-title: Catal. Sci. Technol. – volume: 51 start-page: 3170 year: 2016 end-page: 3181 ident: b0560 article-title: Multifunctional magnetic branched polyethylenimine nanogels with in-situ generated Fe3O4 and their applications as dye adsorbent and catalyst support publication-title: J. Mater. Sci. – volume: 116 start-page: 979 year: 2016 end-page: 987 ident: b0055 article-title: Neural network and ReaxFF comparison for Au properties publication-title: Int. J. Quantum Chem. – volume: 9 start-page: 5152 year: 2017 end-page: 5159 ident: b0385 article-title: Catalyst design using actively learned machine with non-ab initio input features towards CO2 reduction reactions publication-title: ArXiv e-prints. – volume: 9 start-page: 7651 year: 2019 end-page: 7659 ident: b0025 article-title: Toward a design of active oxygen evolution catalysts: insights from automated density functional theory calculations and machine learning publication-title: ACS Catal. – volume: 12 start-page: 68 year: 2020 ident: b0050 article-title: Memory-assisted reinforcement learning for diverse molecular de novo design publication-title: J. Cheminform. – volume: 141 start-page: 11651 year: 2019 end-page: 11657 ident: b0090 article-title: Identifying active sites for CO2 reduction on dealloyed gold surfaces by combining machine learning with multiscale simulations publication-title: J. Am. Chem. Soc. – volume: 188 start-page: 116076 year: 2019 ident: b0555 article-title: Modelling and optimization of a pilot-scale entrained-flow gasifier using artificial neural networks publication-title: Energy. – volume: 89 year: 2014 ident: b0475 article-title: How to represent crystal structures for machine learning: Towards fast prediction of electronic properties publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. – volume: 17 start-page: 850 year: 2003 end-page: 856 ident: b0550 article-title: Optimization of catalyst for methanol synthesis by a combinatorial approach using a parallel activity test and genetic algorithm assisted by a neural network publication-title: Energy Fuels – volume: 115 start-page: 1032 year: 2015 end-page: 1050 ident: b0040 article-title: Constructing high-dimensional neural network potentials: A tutorial review publication-title: Int. J. Quantum Chem. – volume: 89 start-page: 1595 year: 2012 end-page: 1599 ident: b0290 article-title: Electrochemical hydrogen evolution: Sabatiers principle and the volcano plot publication-title: J. Chem. Educ. – volume: 11 start-page: 869 year: 2020 end-page: 876 ident: b0150 article-title: Predicted optimal bifunctional electrocatalysts for both HER and OER using chalcogenide heterostructures based on machine learning analysis of in silico quantum mechanics based high throughput screening publication-title: J. Phys. Chem. Lett. – volume: 8 start-page: 4279 year: 2017 end-page: 4283 ident: b0220 article-title: Predicting catalytic activity of nanoparticles by a DFT-aided machine-learning algorithm publication-title: J. Phys. Chem. Lett. – volume: 64 start-page: 1651 year: 2018 end-page: 1661 ident: b0260 article-title: Multilevel Monte Carlo applied to chemical engineering systems subject to uncertainty publication-title: AIChE J. – volume: 14 start-page: 2670 year: 2014 end-page: 2676 ident: b0015 article-title: Understanding the composition and activity of electrocatalytic nanoalloys in aqueous solvents: A combination of DFT and accurate neural network potentials publication-title: Nano Lett. – volume: 30 start-page: 595 year: 2016 end-page: 608 ident: b0230 article-title: Molecular graph convolutions: moving beyond fingerprints publication-title: J. Comput. Aided. Mol. Des. – volume: 140 start-page: 4678 year: 2018 end-page: 4683 ident: b0565 article-title: Chemical pressure-driven enhancement of the hydrogen evolving activity of Ni2P from nonmetal surface doping interpreted via machine learning publication-title: J. Am. Chem. Soc. – volume: 339 start-page: 9 year: 2016 end-page: 13 ident: b0070 article-title: Novel layered double hydroxide/oxide-coated nickel-based core-shell nanocomposites for benzonitrile selective hydrogenation: An interesting water switch publication-title: J. Catal. – volume: 99 year: 2007 ident: b0005 article-title: Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces publication-title: Phys. Rev. Lett. – reference: . arXiv – volume: 280 start-page: 232 year: 2017 end-page: 238 ident: b0310 article-title: Feature engineering of machine-learning chemisorption models for catalyst design publication-title: Catal. Today. – reference: Hutchinson, M.L., Antono, E., Gibbons, B.M., Paradiso, S., Ling, J., Meredig, B., 2017. Overcoming data scarcity with transfer learning. – volume: 108 start-page: 937 year: 2011 end-page: 943 ident: b0390 article-title: Density functional theory in surface chemistry and catalysis publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 61 start-page: 85 year: 2015 end-page: 117 ident: b0470 article-title: Deep learning in neural networks: an overview publication-title: Neural Networks – volume: 9 start-page: 513 year: 2018 end-page: 530 ident: b0570 article-title: MoleculeNet: A benchmark for molecular machine learning publication-title: Chem. Sci. – volume: 207 start-page: 310 year: 2016 end-page: 324 ident: b0235 article-title: Amp: A modular approach to machine learning in atomistic simulations publication-title: Comput. Phys. Commun. – volume: 367 start-page: 43 year: 2018 end-page: 52 ident: b0300 article-title: Surface decorated cobalt sulfide as efficient catalyst for oxygen evolution reaction and its intrinsic activity publication-title: J. Catal. – volume: 3 start-page: 1337 year: 2017 end-page: 1344 ident: b0625 article-title: Optimizing chemical reactions with deep reinforcement learning publication-title: ACS Cent. Sci. – volume: 100 year: 2019 ident: b0125 article-title: Coverage-dependent anisotropy of the NTCDA/Ag(111) interface state dispersion publication-title: Phys. Rev. B. – volume: 7 start-page: 327 year: 2017 end-page: 332 ident: b0480 article-title: Methane activation at the Pd/CeO2 interface publication-title: ACS Catal. – volume: 7 start-page: 3931 year: 2016 end-page: 3935 ident: b0540 article-title: Automated discovery and construction of surface phase diagrams using machine learning publication-title: J. Phys. Chem. Lett. – volume: 64 start-page: 2311 year: 2018 end-page: 2323 ident: b0160 article-title: Machine learning for heterogeneous catalyst design and discovery publication-title: AIChE J. – volume: 328 start-page: 36 year: 2015 end-page: 42 ident: b0350 article-title: From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis publication-title: J. Catal. – volume: 119 start-page: 465 year: 2018 end-page: 479 ident: b0075 article-title: Optimization and control of a thin film growth process: A hybrid first principles/artificial neural network based multiscale modelling approach publication-title: Comput. Chem. Eng. – volume: 376 start-page: 238 year: 1995 end-page: 240 ident: b0175 article-title: Why gold is the noblest of all the metals publication-title: Nature – volume: 63 start-page: 3361 year: 2017 end-page: 3373 ident: b0265 article-title: A comparison of efficient uncertainty quantification techniques for stochastic multiscale systems publication-title: AIChE J. – volume: 124 start-page: 10483 year: 2020 end-page: 10494 ident: b0610 article-title: Amorphous catalysis: machine learning driven high-throughput screening of superior active site for hydrogen evolution reaction publication-title: J. Phys. Chem. C. – volume: 4. 4 start-page: 37 year: 2018 ident: b0210 article-title: Machine learning hydrogen adsorption on nanoclusters through structural descriptors publication-title: npj Comput. Mater. – reference: Bjerrum, E.J., 2017. Smiles enumeration as data augmentation for neural network modeling of molecules. arXiv: 1703.07076 – volume: 14 start-page: 1235 year: 2012 end-page: 1245 ident: b0495 article-title: A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction publication-title: Phys. Chem. Chem. Phys. – volume: 12 start-page: 88 year: 2021 ident: b0140 article-title: Machine learned features from density of states for accurate adsorption energy prediction publication-title: Nat. Commun. – volume: 10 start-page: 3722 year: 2008 end-page: 3730 ident: b0185 article-title: Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT publication-title: Phys. Chem. Chem. Phys. – volume: 195 start-page: 514 year: 2020 end-page: 526 ident: b0520 article-title: Exergy-based optimisation of a phase change materials integrated hybrid renewable system for active cooling applications using supervised machine learning method publication-title: Sol. Energy. – volume: 161 start-page: 11 year: 2020 end-page: 25 ident: b0250 article-title: Artificial Neural Networks for dynamic optimization of stochastic multiscale systems subject to uncertainty publication-title: Chem. Eng. Res. Des. – volume: 19 start-page: 1 year: 1969 end-page: 210 ident: b0030 article-title: Modern state of the multiplet theor of heterogeneous catalysis publication-title: Adv. Catal. – volume: 139 start-page: 106886 year: 2020 ident: b0375 article-title: A review On reinforcement learning: Introduction and applications in industrial process control publication-title: Comput. Chem. Eng. – volume: 6 start-page: 52587 year: 2016 end-page: 52595 ident: b0515 article-title: Machine-learning prediction of the d-band center for metals and bimetals publication-title: RSC Adv. – volume: 9 start-page: 10951 year: 2019 end-page: 10962 ident: b0065 article-title: Impact of specific interactions among reactive surface intermediates and confined water on epoxidation catalysis and adsorption in lewis acid zeolites publication-title: ACS Catal. – volume: 26 start-page: 11 year: 2019 end-page: 26 ident: b0490 article-title: Reinforcement Learning – Overview of recent progress and implications for process control publication-title: Comput. Chem. Eng. – volume: 64 start-page: 2379 year: 2018 end-page: 2389 ident: b0280 article-title: Stochastic back-off algorithm for simultaneous design, control, and scheduling of multiproduct systems under uncertainty publication-title: AIChE J. – volume: 124 start-page: 19571 year: 2020 end-page: 19578 ident: b0145 article-title: Descriptors for hydrogen evolution on single atom catalysts in nitrogen-doped graphene publication-title: J. Phys. Chem. C. – volume: 108 year: 2012 ident: b0440 article-title: Fast and accurate modeling of molecular atomization energies with machine learning publication-title: Phys. Rev. Lett. – volume: 324 start-page: 126864 year: 2020 ident: b0060 article-title: Novel scaffold of natural compound eliciting sweet taste revealed by machine learning publication-title: Food Chem. – volume: 26 start-page: 11 year: 2007 end-page: 26 ident: b0485 article-title: Soft computing techniques applied to combinatorial catalysis: A new approach for the discovery and optimization of catalytic materials publication-title: QSAR Comb. Sci. – volume: 5 start-page: 24131 year: 2017 end-page: 24138 ident: b0315 article-title: High-throughput screening of bimetallic catalysts enabled by machine learning publication-title: J. Mater. Chem. A – volume: 40 start-page: 5475 year: 2001 end-page: 5480 ident: b0110 article-title: Design of a propane ammoxidation catalyst using artificial neural networks and genetic algorithms publication-title: Ind. Eng. Chem. Res. – volume: 63 start-page: 635 year: 2020 end-page: 648 ident: b0115 article-title: The challenge of CO hydrogenation to methanol: fundamental limitations imposed by linear scaling relations publication-title: Top. Catal. – volume: 114 year: 2015 ident: b0155 article-title: Big data of materials science: Critical role of the descriptor publication-title: Phys. Rev. Lett. – volume: 3 start-page: 9083 year: 2020 end-page: 9088 ident: b0225 article-title: Coupling high-throughput experiments and regression algorithms to optimize PGM-free ORR electrocatalyst synthesis publication-title: ACS Appl. Energy Mater. – volume: 275 start-page: 117885 year: 2020 ident: b0585 article-title: Thermal decomposition mechanism of some hydrocarbons by ReaxFF-based molecular dynamics and density functional theory study publication-title: Fuel – volume: 115 start-page: 1094 year: 2015 end-page: 1101 ident: b0130 article-title: Crystal structure representations for machine learning models of formation energies publication-title: Int. J. Quantum Chem. – volume: 1 start-page: 282 year: 2019 end-page: 291 ident: b0190 article-title: Next-generation experimentation with self-driving laboratories publication-title: Trends Chem. – volume: 29 start-page: 9436 year: 2017 end-page: 9444 ident: b0240 article-title: Materials Synthesis Insights from Scientific Literature via Text Extraction and Machine Learning publication-title: Chem. Mater. – volume: 34 start-page: 631 year: 2010 end-page: 642 ident: b0370 article-title: A semi-supervised approach to fault diagnosis for chemical processes publication-title: Comput. Chem. Eng. – volume: 39 start-page: 2405 year: 2018 end-page: 2408 ident: b0510 article-title: Rapid estimation of activation energy in heterogeneous catalytic reactions via machine learning publication-title: J. Comput. Chem. – volume: 32 start-page: 709 year: 2020 end-page: 720 ident: b0245 article-title: Artificial intelligence to accelerate the discovery of N2 electroreduction catalysts publication-title: Chem. Mater. – volume: 124 start-page: 731 year: 2020 end-page: 745 ident: b0635 article-title: Performance and cost assessment of machine learning interatomic potentials publication-title: J. Phys. Chem. A. – volume: 11 start-page: 787 year: 2020 end-page: 795 ident: b0365 article-title: Data-driven identification of the reaction network in oxidative coupling of the methane reaction via experimental data publication-title: J. Phys. Chem. Lett. – volume: 279 start-page: 118548 year: 2020 ident: b0285 article-title: ReaxFF-based molecular dynamics study of bio-derived polycyclic alkanes as potential alternative jet fuels publication-title: Fuel – volume: 7 start-page: 6600 issue: 10 year: 2017 ident: 10.1016/j.ces.2021.117224_b0545 article-title: Machine-learning methods enable exhaustive searches for active Bimetallic facets and reveal active site motifs for CO2 reduction publication-title: ACS Catal. doi: 10.1021/acscatal.7b01648 – volume: 1 start-page: 282 issue: 3 year: 2019 ident: 10.1016/j.ces.2021.117224_b0190 article-title: Next-generation experimentation with self-driving laboratories publication-title: Trends Chem. doi: 10.1016/j.trechm.2019.02.007 – ident: 10.1016/j.ces.2021.117224_b0080 doi: 10.1021/acscatal.0c04525 – volume: 39 start-page: 396 issue: 2 year: 1999 ident: 10.1016/j.ces.2021.117224_b0330 article-title: Prediction of the brain-blood distribution of a large set of drugs from structurally derived descriptors using partial least-squares (PLS) modeling publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci980411n – volume: 147 start-page: 152706 issue: 15 year: 2017 ident: 10.1016/j.ces.2021.117224_b0615 article-title: Stochastic surface walking reaction sampling for resolving heterogeneous catalytic reaction network: A revisit to the mechanism of water-gas shift reaction on Cu publication-title: J. Chem. Phys. DOI doi: 10.1063/1.4989540 – volume: 263 start-page: 118257 year: 2020 ident: 10.1016/j.ces.2021.117224_b0500 article-title: A machine learning framework for the analysis and prediction of catalytic activity from experimental data publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.118257 – volume: 9 start-page: 10752 year: 2019 ident: 10.1016/j.ces.2021.117224_b0620 article-title: Optimization of molecules via deep reinforcement learning publication-title: Sci. Rep. doi: 10.1038/s41598-019-47148-x – ident: 10.1016/j.ces.2021.117224_b0415 doi: 10.1016/j.compchemeng.2019.106649 – volume: 40 start-page: 1861 year: 2017 ident: 10.1016/j.ces.2021.117224_b0420 article-title: A stochastic approach for integration of design and control under uncertainty: a back-off approach using power series expansions publication-title: Comput. Aided Chem. Eng. doi: 10.1016/B978-0-444-63965-3.50312-3 – volume: 9 start-page: 10951 issue: 12 year: 2019 ident: 10.1016/j.ces.2021.117224_b0065 article-title: Impact of specific interactions among reactive surface intermediates and confined water on epoxidation catalysis and adsorption in lewis acid zeolites publication-title: ACS Catal. doi: 10.1021/acscatal.9b03323 – volume: 367 start-page: 43 year: 2018 ident: 10.1016/j.ces.2021.117224_b0300 article-title: Surface decorated cobalt sulfide as efficient catalyst for oxygen evolution reaction and its intrinsic activity publication-title: J. Catal. doi: 10.1016/j.jcat.2018.08.020 – volume: 49 start-page: 252 issue: 1 year: 2010 ident: 10.1016/j.ces.2021.117224_b0120 article-title: Efficient recursive principal component analysis algorithms for process monitoring publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie900720w – volume: 161 start-page: 11 year: 2020 ident: 10.1016/j.ces.2021.117224_b0250 article-title: Artificial Neural Networks for dynamic optimization of stochastic multiscale systems subject to uncertainty publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2020.06.017 – volume: 125 start-page: 3704 issue: 13 year: 2003 ident: 10.1016/j.ces.2021.117224_b0360 article-title: Identification of general linear relationships between activation energies and enthalpy changes for dissociation reactions at surfaces publication-title: J. Am. Chem. Soc. doi: 10.1021/ja027366r – volume: 174 start-page: 414 year: 2021 ident: 10.1016/j.ces.2021.117224_b0430 article-title: Machine Learning on sustainable energy: A review and outlook on renewable energy systems, catalysis, smart grid and energy storage publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2021.08.013 – volume: 1 start-page: 011002 issue: 1 year: 2013 ident: 10.1016/j.ces.2021.117224_b0215 article-title: Commentary: The materials project: A materials genome approach to accelerating materials innovation publication-title: APL Mater. doi: 10.1063/1.4812323 – volume: 64 start-page: 2311 issue: 7 year: 2018 ident: 10.1016/j.ces.2021.117224_b0160 article-title: Machine learning for heterogeneous catalyst design and discovery publication-title: AIChE J. doi: 10.1002/aic.16198 – volume: 195 start-page: 514 year: 2020 ident: 10.1016/j.ces.2021.117224_b0520 article-title: Exergy-based optimisation of a phase change materials integrated hybrid renewable system for active cooling applications using supervised machine learning method publication-title: Sol. Energy. doi: 10.1016/j.solener.2019.11.067 – volume: 99 year: 2007 ident: 10.1016/j.ces.2021.117224_b0005 article-title: Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.016105 – volume: 242 start-page: 125232 year: 2020 ident: 10.1016/j.ces.2021.117224_b0095 article-title: Molecular insights into the impacts of iron(III) ions on membrane fouling by alginate publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.125232 – volume: 124 start-page: 10483 issue: 19 year: 2020 ident: 10.1016/j.ces.2021.117224_b0610 article-title: Amorphous catalysis: machine learning driven high-throughput screening of superior active site for hydrogen evolution reaction publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.0c00406 – volume: 115 start-page: 1094 issue: 16 year: 2015 ident: 10.1016/j.ces.2021.117224_b0130 article-title: Crystal structure representations for machine learning models of formation energies publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.24917 – volume: 6 start-page: 76 year: 2019 ident: 10.1016/j.ces.2021.117224_b0340 article-title: High-throughput calculations of catalytic properties of bimetallic alloy surfaces publication-title: Sci. data doi: 10.1038/s41597-019-0080-z – volume: 3 start-page: 9083 issue: 9 year: 2020 ident: 10.1016/j.ces.2021.117224_b0225 article-title: Coupling high-throughput experiments and regression algorithms to optimize PGM-free ORR electrocatalyst synthesis publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c01466 – volume: 108 year: 2012 ident: 10.1016/j.ces.2021.117224_b0440 article-title: Fast and accurate modeling of molecular atomization energies with machine learning publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.058301 – volume: 218–219 start-page: 162 year: 2013 ident: 10.1016/j.ces.2021.117224_b0085 article-title: Nobel Prize in chemistry 1912 to Sabatier: Organic chemistry or catalysis? publication-title: Catal. Today. doi: 10.1016/j.cattod.2013.07.006 – volume: 7 start-page: 48962 issue: 77 year: 2017 ident: 10.1016/j.ces.2021.117224_b0135 article-title: Artificial neural network analysis of the catalytic efficiency of platinum nanoparticles publication-title: RSC Adv. doi: 10.1039/C7RA06622H – ident: 10.1016/j.ces.2021.117224_b0400 – volume: 60 start-page: 5995 issue: 12 year: 2020 ident: 10.1016/j.ces.2021.117224_b0450 article-title: MultiCon: A semi-supervised approach for predicting drug function from chemical structure analysis publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.0c00801 – volume: 89 start-page: 1595 issue: 12 year: 2012 ident: 10.1016/j.ces.2021.117224_b0290 article-title: Electrochemical hydrogen evolution: Sabatiers principle and the volcano plot publication-title: J. Chem. Educ. doi: 10.1021/ed200818t – volume: 64 start-page: 2379 issue: 7 year: 2018 ident: 10.1016/j.ces.2021.117224_b0280 article-title: Stochastic back-off algorithm for simultaneous design, control, and scheduling of multiproduct systems under uncertainty publication-title: AIChE J. doi: 10.1002/aic.16092 – volume: 120 year: 2018 ident: 10.1016/j.ces.2021.117224_b0580 article-title: Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.145301 – volume: 116 start-page: 979 issue: 13 year: 2016 ident: 10.1016/j.ces.2021.117224_b0055 article-title: Neural network and ReaxFF comparison for Au properties publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.25115 – volume: 15 start-page: e0229862 issue: 4 year: 2020 ident: 10.1016/j.ces.2021.117224_b0435 article-title: ChemOS: An orchestration software to democratize autonomous discovery publication-title: PLoS ONE doi: 10.1371/journal.pone.0229862 – volume: 10 start-page: 3722 year: 2008 ident: 10.1016/j.ces.2021.117224_b0185 article-title: Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b803956a – volume: 1 year: 2014 ident: 10.1016/j.ces.2021.117224_b0425 article-title: Quantum chemistry structures and properties of 134 kilo molecules publication-title: Sci. Data. doi: 10.1038/sdata.2014.22 – ident: 10.1016/j.ces.2021.117224_b0405 doi: 10.1016/B978-0-44-456349-1.00016-7 – volume: 63 start-page: 635 issue: 7-8 year: 2020 ident: 10.1016/j.ces.2021.117224_b0115 article-title: The challenge of CO hydrogenation to methanol: fundamental limitations imposed by linear scaling relations publication-title: Top. Catal. doi: 10.1007/s11244-020-01283-2 – volume: 330 start-page: 127232 year: 2020 ident: 10.1016/j.ces.2021.117224_b0305 article-title: Exploration of chemical markers using a metabolomics strategy and machine learning to study the different origins of Ixeris denticulata (Houtt.) Stebb publication-title: Food Chem. doi: 10.1016/j.foodchem.2020.127232 – volume: 26 start-page: 11 year: 2019 ident: 10.1016/j.ces.2021.117224_b0490 article-title: Reinforcement Learning – Overview of recent progress and implications for process control publication-title: Comput. Chem. Eng. – ident: 10.1016/j.ces.2021.117224_b0590 doi: 10.1021/acsomega.9b03673 – volume: 119 start-page: 465 year: 2018 ident: 10.1016/j.ces.2021.117224_b0075 article-title: Optimization and control of a thin film growth process: A hybrid first principles/artificial neural network based multiscale modelling approach publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2018.08.029 – volume: 51 start-page: 3170 issue: 6 year: 2016 ident: 10.1016/j.ces.2021.117224_b0560 article-title: Multifunctional magnetic branched polyethylenimine nanogels with in-situ generated Fe3O4 and their applications as dye adsorbent and catalyst support publication-title: J. Mater. Sci. doi: 10.1007/s10853-015-9627-3 – ident: 10.1016/j.ces.2021.117224_b0045 – volume: 141 start-page: 11651 issue: 29 year: 2019 ident: 10.1016/j.ces.2021.117224_b0090 article-title: Identifying active sites for CO2 reduction on dealloyed gold surfaces by combining machine learning with multiscale simulations publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b04956 – volume: 29 start-page: 9436 issue: 21 year: 2017 ident: 10.1016/j.ces.2021.117224_b0240 article-title: Materials Synthesis Insights from Scientific Literature via Text Extraction and Machine Learning publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b03500 – volume: 8 start-page: 5209 issue: 10 year: 2020 ident: 10.1016/j.ces.2021.117224_b0605 article-title: Machine learning-based high throughput screening for nitrogen fixation on boron-doped single atom catalysts publication-title: J. Mater. Chem. A. doi: 10.1039/C9TA12608B – volume: 9 start-page: 2261 issue: 8 year: 2018 ident: 10.1016/j.ces.2021.117224_b0595 article-title: The TensorMol-0.1 model chemistry: A neural network augmented with long-range physics publication-title: Chem. Sci. doi: 10.1039/C7SC04934J – volume: 3 start-page: 834 issue: 3 year: 2019 ident: 10.1016/j.ces.2021.117224_b0035 article-title: High-entropy alloys as a discovery platform for electrocatalysis publication-title: Joule. doi: 10.1016/j.joule.2018.12.015 – volume: 64 start-page: 1651 issue: 5 year: 2018 ident: 10.1016/j.ces.2021.117224_b0260 article-title: Multilevel Monte Carlo applied to chemical engineering systems subject to uncertainty publication-title: AIChE J. doi: 10.1002/aic.16045 – volume: 26 start-page: 11 issue: 1 year: 2007 ident: 10.1016/j.ces.2021.117224_b0485 article-title: Soft computing techniques applied to combinatorial catalysis: A new approach for the discovery and optimization of catalytic materials publication-title: QSAR Comb. Sci. doi: 10.1002/qsar.200420051 – volume: 14 start-page: 2670 issue: 5 year: 2014 ident: 10.1016/j.ces.2021.117224_b0015 article-title: Understanding the composition and activity of electrocatalytic nanoalloys in aqueous solvents: A combination of DFT and accurate neural network potentials publication-title: Nano Lett. doi: 10.1021/nl5005674 – volume: 7 start-page: 3931 issue: 19 year: 2016 ident: 10.1016/j.ces.2021.117224_b0540 article-title: Automated discovery and construction of surface phase diagrams using machine learning publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b01254 – volume: 328 start-page: 36 year: 2015 ident: 10.1016/j.ces.2021.117224_b0350 article-title: From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis publication-title: J. Catal. doi: 10.1016/j.jcat.2014.12.033 – volume: 11 start-page: 3581 issue: 16 year: 2019 ident: 10.1016/j.ces.2021.117224_b0465 article-title: Machine learning for computational heterogeneous catalysis publication-title: ChemCatChem doi: 10.1002/cctc.201900595 – volume: 232 start-page: 335 issue: 2 year: 2005 ident: 10.1016/j.ces.2021.117224_b0105 article-title: Integrating high-throughput characterization into combinatorial heterogeneous catalysis: Unsupervised construction of quantitative structure/property relationship models publication-title: J. Catal. doi: 10.1016/j.jcat.2005.03.019 – volume: 132 start-page: 261 issue: 2 year: 1995 ident: 10.1016/j.ces.2021.117224_b0460 article-title: Application of a neural network to the analysis of catalytic reactions Analysis of NO decomposition over Cu/ZSM-5 zeolite. Appl publication-title: Catal. A, Gen. doi: 10.1016/0926-860X(95)00171-9 – volume: 140 start-page: 4678 issue: 13 year: 2018 ident: 10.1016/j.ces.2021.117224_b0565 article-title: Chemical pressure-driven enhancement of the hydrogen evolving activity of Ni2P from nonmetal surface doping interpreted via machine learning publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b00947 – volume: 9 start-page: 7651 issue: 9 year: 2019 ident: 10.1016/j.ces.2021.117224_b0025 article-title: Toward a design of active oxygen evolution catalysts: insights from automated density functional theory calculations and machine learning publication-title: ACS Catal. doi: 10.1021/acscatal.9b02416 – volume: 7 start-page: 327 issue: 1 year: 2017 ident: 10.1016/j.ces.2021.117224_b0480 article-title: Methane activation at the Pd/CeO2 interface publication-title: ACS Catal. doi: 10.1021/acscatal.6b02447 – volume: 8 start-page: 14621 year: 2017 ident: 10.1016/j.ces.2021.117224_b0535 article-title: To address surface reaction network complexity using scaling relations machine learning and DFT calculations publication-title: Nat. Commun. doi: 10.1038/ncomms14621 – volume: 10 start-page: 7760 issue: 24 year: 2019 ident: 10.1016/j.ces.2021.117224_b0630 article-title: Activity origin and design principles for oxygen reduction on dual-metal-site catalysts: a combined density functional theory and machine learning study publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b03392 – volume: 6 start-page: 52587 issue: 58 year: 2016 ident: 10.1016/j.ces.2021.117224_b0515 article-title: Machine-learning prediction of the d-band center for metals and bimetals publication-title: RSC Adv. doi: 10.1039/C6RA04345C – volume: 8 start-page: 5091 issue: 20 year: 2017 ident: 10.1016/j.ces.2021.117224_b0530 article-title: Supervised machine-learning-based determination of three-dimensional structure of metallic nanoparticles publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b02364 – volume: 63 start-page: 3361 issue: 8 year: 2017 ident: 10.1016/j.ces.2021.117224_b0265 article-title: A comparison of efficient uncertainty quantification techniques for stochastic multiscale systems publication-title: AIChE J. doi: 10.1002/aic.15702 – volume: 12 start-page: 68 year: 2020 ident: 10.1016/j.ces.2021.117224_b0050 article-title: Memory-assisted reinforcement learning for diverse molecular de novo design publication-title: J. Cheminform. doi: 10.1186/s13321-020-00473-0 – ident: 10.1016/j.ces.2021.117224_b0100 doi: 10.1021/acs.jctc.9b00986 – volume: 32 start-page: 709 issue: 2 year: 2020 ident: 10.1016/j.ces.2021.117224_b0245 article-title: Artificial intelligence to accelerate the discovery of N2 electroreduction catalysts publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b03686 – volume: 115 start-page: 1032 year: 2015 ident: 10.1016/j.ces.2021.117224_b0040 article-title: Constructing high-dimensional neural network potentials: A tutorial review publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.24890 – volume: 5 start-page: 24131 issue: 46 year: 2017 ident: 10.1016/j.ces.2021.117224_b0315 article-title: High-throughput screening of bimetallic catalysts enabled by machine learning publication-title: J. Mater. Chem. A doi: 10.1039/C7TA01812F – volume: 4 start-page: 44302 issue: 83 year: 2014 ident: 10.1016/j.ces.2021.117224_b0320 article-title: Preparation of magnetic mesoporous core-shell nanocomposites for cinnamic acid hydrogenation publication-title: RSC Adv. doi: 10.1039/C4RA07176J – volume: 188 start-page: 116076 year: 2019 ident: 10.1016/j.ces.2021.117224_b0555 article-title: Modelling and optimization of a pilot-scale entrained-flow gasifier using artificial neural networks publication-title: Energy. doi: 10.1016/j.energy.2019.116076 – volume: 30 start-page: 595 issue: 8 year: 2016 ident: 10.1016/j.ces.2021.117224_b0230 article-title: Molecular graph convolutions: moving beyond fingerprints publication-title: J. Comput. Aided. Mol. Des. doi: 10.1007/s10822-016-9938-8 – volume: 275 start-page: 117885 year: 2020 ident: 10.1016/j.ces.2021.117224_b0585 article-title: Thermal decomposition mechanism of some hydrocarbons by ReaxFF-based molecular dynamics and density functional theory study publication-title: Fuel doi: 10.1016/j.fuel.2020.117885 – volume: 108 start-page: 937 issue: 3 year: 2011 ident: 10.1016/j.ces.2021.117224_b0390 article-title: Density functional theory in surface chemistry and catalysis publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1006652108 – volume: 39 start-page: 5733 issue: 11 year: 2014 ident: 10.1016/j.ces.2021.117224_b0395 article-title: Knowledge extraction for water gas shift reaction over noble metal catalysts from publications in the literature between 2002 and 2012 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.01.160 – volume: 29 start-page: 273002 issue: 27 year: 2017 ident: 10.1016/j.ces.2021.117224_b0200 article-title: The atomic simulation environment - A Python library for working with atoms publication-title: J. Phys. Condens. Matter. doi: 10.1088/1361-648X/aa680e – volume: 145 start-page: 074106 issue: 7 year: 2016 ident: 10.1016/j.ces.2021.117224_b0410 article-title: Acceleration of saddle-point searches with machine learning publication-title: J. Chem. Phys. doi: 10.1063/1.4960708 – volume: 12 start-page: 88 year: 2021 ident: 10.1016/j.ces.2021.117224_b0140 article-title: Machine learned features from density of states for accurate adsorption energy prediction publication-title: Nat. Commun. doi: 10.1038/s41467-020-20342-6 – volume: 19 start-page: 1 year: 1969 ident: 10.1016/j.ces.2021.117224_b0030 article-title: Modern state of the multiplet theor of heterogeneous catalysis publication-title: Adv. Catal. doi: 10.1016/S0360-0564(08)60029-2 – volume: 124 start-page: 18615 issue: 34 year: 2020 ident: 10.1016/j.ces.2021.117224_b0255 article-title: Artificial neural network discrimination for parameter estimation and optimal product design of thin films manufactured by chemical vapor deposition publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.0c05250 – volume: 9 start-page: 5152 issue: 23 year: 2018 ident: 10.1016/j.ces.2021.117224_b0380 article-title: Active learning with non-: Ab initio input features toward efficient CO2 reduction catalysts publication-title: Chem. Sci. doi: 10.1039/C7SC03422A – volume: 279 start-page: 118548 year: 2020 ident: 10.1016/j.ces.2021.117224_b0285 article-title: ReaxFF-based molecular dynamics study of bio-derived polycyclic alkanes as potential alternative jet fuels publication-title: Fuel doi: 10.1016/j.fuel.2020.118548 – volume: 114 year: 2015 ident: 10.1016/j.ces.2021.117224_b0155 article-title: Big data of materials science: Critical role of the descriptor publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.105503 – volume: 47 start-page: 8307 issue: 22 year: 2018 ident: 10.1016/j.ces.2021.117224_b0165 article-title: Towards operando computational modeling in heterogeneous catalysis publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00398J – volume: 639 start-page: 205 year: 2015 ident: 10.1016/j.ces.2021.117224_b0295 article-title: Theoretical investigation of the methane cracking reaction pathways on Ni (1 1 1) surface publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2015.09.030 – volume: 7 start-page: 5267 issue: 22 year: 2017 ident: 10.1016/j.ces.2021.117224_b0445 article-title: Ab initio coverage-dependent microkinetic modeling of benzene hydrogenation on Pd(111) publication-title: Catal. Sci. Technol. doi: 10.1039/C7CY00962C – volume: 361 start-page: 360 issue: 6400 year: 2018 ident: 10.1016/j.ces.2021.117224_b0455 article-title: Inverse molecular design using machine learning: Generative models for matter engineering publication-title: Science doi: 10.1126/science.aat2663 – volume: 343 start-page: 211 issue: 3 year: 1995 ident: 10.1016/j.ces.2021.117224_b0180 article-title: Electronic factors determining the reactivity of metal surfaces publication-title: Surf. Sci. doi: 10.1016/0039-6028(96)80007-0 – volume: 184 start-page: 109948 year: 2020 ident: 10.1016/j.ces.2021.117224_b0195 article-title: Robust activation energy predictions of solute diffusion from machine learning method publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2020.109948 – volume: 3 start-page: 5 issue: 5 year: 2018 ident: 10.1016/j.ces.2021.117224_b0505 article-title: Accelerating the discovery of materials for clean energy in the era of smart automation publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-018-0005-z – volume: 9 start-page: 11774 issue: 12 year: 2019 ident: 10.1016/j.ces.2021.117224_b0345 article-title: Machine learning for accelerated discovery of solar photocatalysts publication-title: ACS Catal. doi: 10.1021/acscatal.9b02531 – volume: 11 start-page: 869 year: 2020 ident: 10.1016/j.ces.2021.117224_b0150 article-title: Predicted optimal bifunctional electrocatalysts for both HER and OER using chalcogenide heterostructures based on machine learning analysis of in silico quantum mechanics based high throughput screening publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b03875 – volume: 100 year: 2019 ident: 10.1016/j.ces.2021.117224_b0125 article-title: Coverage-dependent anisotropy of the NTCDA/Ag(111) interface state dispersion publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.100.125155 – volume: 9 start-page: 5152 year: 2017 ident: 10.1016/j.ces.2021.117224_b0385 article-title: Catalyst design using actively learned machine with non-ab initio input features towards CO2 reduction reactions publication-title: ArXiv e-prints. – volume: 11 start-page: 787 issue: 3 year: 2020 ident: 10.1016/j.ces.2021.117224_b0365 article-title: Data-driven identification of the reaction network in oxidative coupling of the methane reaction via experimental data publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b03678 – volume: 1 start-page: 15010 year: 2015 ident: 10.1016/j.ces.2021.117224_b0270 article-title: The open quantum materials database (OQMD): Assessing the accuracy of DFT formation energies publication-title: npj Comput. Mater. doi: 10.1038/npjcompumats.2015.10 – volume: 324 start-page: 126864 year: 2020 ident: 10.1016/j.ces.2021.117224_b0060 article-title: Novel scaffold of natural compound eliciting sweet taste revealed by machine learning publication-title: Food Chem. doi: 10.1016/j.foodchem.2020.126864 – volume: 34 start-page: 631 issue: 5 year: 2010 ident: 10.1016/j.ces.2021.117224_b0370 article-title: A semi-supervised approach to fault diagnosis for chemical processes publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2009.12.008 – volume: 14 start-page: 1235 issue: 3 year: 2012 ident: 10.1016/j.ces.2021.117224_b0495 article-title: A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C1CP22271F – volume: 89 year: 2014 ident: 10.1016/j.ces.2021.117224_b0475 article-title: How to represent crystal structures for machine learning: Towards fast prediction of electronic properties publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.89.205118 – volume: 147 start-page: 152720 issue: 15 year: 2017 ident: 10.1016/j.ces.2021.117224_b0275 article-title: Nudged elastic band calculations accelerated with Gaussian process regression publication-title: J. Chem. Phys. doi: 10.1063/1.4986787 – volume: 10 start-page: 9438 issue: 16 year: 2020 ident: 10.1016/j.ces.2021.117224_b0020 article-title: Predicting the activity and selectivity of bimetallic metal catalysts for ethanol reforming using machine learning publication-title: ACS Catal. doi: 10.1021/acscatal.0c02089 – volume: 124 start-page: 19571 issue: 36 year: 2020 ident: 10.1016/j.ces.2021.117224_b0145 article-title: Descriptors for hydrogen evolution on single atom catalysts in nitrogen-doped graphene publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.0c04432 – volume: 3 start-page: 454 issue: 4 year: 2018 ident: 10.1016/j.ces.2021.117224_b0170 article-title: Thermochemistry of gas-phase and surface species via LASSO-assisted subgraph selection publication-title: React. Chem. Eng. doi: 10.1039/C7RE00210F – volume: 8 start-page: 4279 issue: 17 year: 2017 ident: 10.1016/j.ces.2021.117224_b0220 article-title: Predicting catalytic activity of nanoparticles by a DFT-aided machine-learning algorithm publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b02010 – volume: 4 start-page: S6 year: 2010 ident: 10.1016/j.ces.2021.117224_b0575 article-title: Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces publication-title: BMC Syst. Biol. doi: 10.1186/1752-0509-4-S2-S6 – volume: 207 start-page: 310 year: 2016 ident: 10.1016/j.ces.2021.117224_b0235 article-title: Amp: A modular approach to machine learning in atomistic simulations publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2016.05.010 – volume: 4. 4 start-page: 37 year: 2018 ident: 10.1016/j.ces.2021.117224_b0210 article-title: Machine learning hydrogen adsorption on nanoclusters through structural descriptors publication-title: npj Comput. Mater. doi: 10.1038/s41524-018-0096-5 – volume: 139 start-page: 106886 year: 2020 ident: 10.1016/j.ces.2021.117224_b0375 article-title: A review On reinforcement learning: Introduction and applications in industrial process control publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2020.106886 – volume: 280 start-page: 232 year: 2017 ident: 10.1016/j.ces.2021.117224_b0310 article-title: Feature engineering of machine-learning chemisorption models for catalyst design publication-title: Catal. Today. doi: 10.1016/j.cattod.2016.04.013 – volume: 118 year: 2017 ident: 10.1016/j.ces.2021.117224_b0335 article-title: Orbitalwise coordination number for predicting adsorption properties of metal nanocatalysts publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.036101 – volume: 480 start-page: 171 year: 2019 ident: 10.1016/j.ces.2021.117224_b0525 article-title: Coverage dependent CO adsorption manners on seven MoP surfaces with DFT based thermodynamics method publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.02.202 – volume: 54 start-page: 2741 issue: 12 year: 2021 ident: 10.1016/j.ces.2021.117224_b0010 article-title: Adsorption enthalpies for catalysis modeling through machine-learned descriptors publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.1c00153 – volume: 61 start-page: 85 year: 2015 ident: 10.1016/j.ces.2021.117224_b0470 article-title: Deep learning in neural networks: an overview publication-title: Neural Networks doi: 10.1016/j.neunet.2014.09.003 – volume: 339 start-page: 9 year: 2016 ident: 10.1016/j.ces.2021.117224_b0070 article-title: Novel layered double hydroxide/oxide-coated nickel-based core-shell nanocomposites for benzonitrile selective hydrogenation: An interesting water switch publication-title: J. Catal. doi: 10.1016/j.jcat.2016.03.015 – volume: 89 year: 2014 ident: 10.1016/j.ces.2021.117224_b0355 article-title: Combinatorial screening for new materials in unconstrained composition space with machine learning publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.89.094104 – volume: 124 start-page: 731 issue: 4 year: 2020 ident: 10.1016/j.ces.2021.117224_b0635 article-title: Performance and cost assessment of machine learning interatomic potentials publication-title: J. Phys. Chem. A. doi: 10.1021/acs.jpca.9b08723 – volume: 376 start-page: 238 issue: 6537 year: 1995 ident: 10.1016/j.ces.2021.117224_b0175 article-title: Why gold is the noblest of all the metals publication-title: Nature doi: 10.1038/376238a0 – volume: 39 start-page: 2405 issue: 28 year: 2018 ident: 10.1016/j.ces.2021.117224_b0510 article-title: Rapid estimation of activation energy in heterogeneous catalytic reactions via machine learning publication-title: J. Comput. Chem. doi: 10.1002/jcc.25567 – ident: 10.1016/j.ces.2021.117224_b0205 – volume: 17 start-page: 850 issue: 4 year: 2003 ident: 10.1016/j.ces.2021.117224_b0550 article-title: Optimization of catalyst for methanol synthesis by a combinatorial approach using a parallel activity test and genetic algorithm assisted by a neural network publication-title: Energy Fuels doi: 10.1021/ef020241n – volume: 3 start-page: 1337 issue: 12 year: 2017 ident: 10.1016/j.ces.2021.117224_b0625 article-title: Optimizing chemical reactions with deep reinforcement learning publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.7b00492 – volume: 40 start-page: 5475 issue: 23 year: 2001 ident: 10.1016/j.ces.2021.117224_b0110 article-title: Design of a propane ammoxidation catalyst using artificial neural networks and genetic algorithms publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie010316v – volume: 691 start-page: 121513 year: 2020 ident: 10.1016/j.ces.2021.117224_b0600 article-title: Carbon chain growth mechanism of higher alcohols synthesis from syngas on CoCu(100): A combined DFT and kMC study publication-title: Surf. Sci. doi: 10.1016/j.susc.2019.121513 – volume: 151 start-page: 164201 issue: 16 year: 2019 ident: 10.1016/j.ces.2021.117224_b0325 article-title: Mapping XANES spectra on structural descriptors of copper oxide clusters using supervised machine learning publication-title: J. Chem. Phys. doi: 10.1063/1.5126597 – volume: 9 start-page: 513 issue: 2 year: 2018 ident: 10.1016/j.ces.2021.117224_b0570 article-title: MoleculeNet: A benchmark for molecular machine learning publication-title: Chem. Sci. doi: 10.1039/C7SC02664A |
SSID | ssj0007710 |
Score | 2.6143048 |
SecondaryResourceType | review_article |
Snippet | Recently, the availability of extensive catalysis-related data generated by experimental data and theoretical calculations has promoted the development of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 117224 |
SubjectTerms | Catalysis descriptors Catalyst database Heterogeneous catalysis Machine learning |
Title | Machine learning in solid heterogeneous catalysis: Recent developments, challenges and perspectives |
URI | https://dx.doi.org/10.1016/j.ces.2021.117224 |
Volume | 248 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKu8CAeIryqDwwIUIdO4kdtqqiKqB2olK3yHZsCEJpRcvKb-ecR1skYGCNfFJ0vtwj9913CF0KalnIeegRFVsvUER40oGpuE0jaYg2vGDbH42j4SR4mIbTBurXszAOVln5_tKnF966etKttNmdZ5mb8SUxBPCYuka_iMEPtyiLo7CJWr37x-F45ZA590m9UM0J1M3NAuYFXyNUidR33UtKg5_D00bIGeyh3SpXxL3ydfZRw-QHaGeDQfAQ6VEBhjS42v7wjLMcgzllKX5xQJcZ2IeB4h4Xv2kc-8gthkwRIg1O13ChxTXW9VKVBZZ5iufrGczFEZoM7p76Q6_am-BpGvOl5yjpFIRlrSDZCgNfSGOo9FkUaKul4NpngTJQCHHGY6WJZZFQnEshNaEWUpBj1MxnuTlBmBBLZQoXFok0iA0XlsEppog1TKdatxGp1ZXoilTc7bZ4S2r02GsCGk6chpNSw210tRKZl4wafx0O6jtIvplFAh7_d7HT_4mdoW3qphscKJueo-by_cNcQM6xVB20dfPpdyrL-gKH-9Ys |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMgAD4inK0wMTItSxndhhQxVVgbZTK3WLbMeGIpRWtKz8ds5pQosEDKzRnRSdL_eIv_sOoQtJHYuEiAKiExdwTWSgPJhKuCxWlhgrCrb9Xj_uDPnDKBrVUKuahfGwyjL2L2J6Ea3LJ83Sms3peOxnfEkCCTyh_qJfJhCH13jEhCfQv_5Y4jyECEm1Ts2LV1ebBcgLvkXoEWno7y4p5T8np5WE095GW2WliG8XL7ODajbfRZsr_IF7yPQKKKTF5e6HJzzOMTjTOMPPHuYyAe-w0Nrj4ieN5x65wVAnQp7B2RIsNLvCplqpMsMqz_B0OYE520fD9t2g1QnKrQmBoYmYB56QTkNSNhpKrYiHUllLVchibpxRUpiQcW2hDRJMJNoQx2KphVBSGUIdFCAHqJ5PcnuIMCGOqgyOK5YZT6yQjoEU08RZZjJjGohU5kpNSSnuN1u8phV27CUFC6fewunCwg10-aUyXfBp_CXMqzNIvzlFCvH-d7Wj_6mdo_XOoNdNu_f9x2O0Qf2cg4dn0xNUn7-921OoPub6rPCuT1Ih1vY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+in+solid+heterogeneous+catalysis%3A+Recent+developments%2C+challenges+and+perspectives&rft.jtitle=Chemical+engineering+science&rft.au=Guan%2C+Yani&rft.au=Chaffart%2C+Donovan&rft.au=Liu%2C+Guihua&rft.au=Tan%2C+Zhaoyang&rft.date=2022-02-02&rft.pub=Elsevier+Ltd&rft.issn=0009-2509&rft.eissn=1873-4405&rft.volume=248&rft_id=info:doi/10.1016%2Fj.ces.2021.117224&rft.externalDocID=S0009250921007892 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2509&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2509&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2509&client=summon |