Machine learning in solid heterogeneous catalysis: Recent developments, challenges and perspectives

Recently, the availability of extensive catalysis-related data generated by experimental data and theoretical calculations has promoted the development of machine learning (ML) techniques for novel heterogeneous catalyst development. ML is an effective tool in automating the generation, processing,...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering science Vol. 248; p. 117224
Main Authors Guan, Yani, Chaffart, Donovan, Liu, Guihua, Tan, Zhaoyang, Zhang, Dongsheng, Wang, Yanji, Li, Jingde, Ricardez-Sandoval, Luis
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 02.02.2022
Subjects
Online AccessGet full text
ISSN0009-2509
1873-4405
DOI10.1016/j.ces.2021.117224

Cover

Abstract Recently, the availability of extensive catalysis-related data generated by experimental data and theoretical calculations has promoted the development of machine learning (ML) techniques for novel heterogeneous catalyst development. ML is an effective tool in automating the generation, processing, and interpretation of large catalyst datasets with superior properties than the conventional statistical approaches. Also, ML have enabled the identification of accurate data-driven models that have been used to establish key relationships between the features of materials and targeted catalytic performance, such as activity, selectivity, and stability. These advances have resulted in the development of efficient design or screening guidelines for solid-state catalysts with targeted properties. However, extending the existing ML approaches to obtain accurate predictions of catalyst performance or design strategies for high-performance catalysts still poses several challenges. In this review, we discuss the recent milestones on the application of ML for solid heterogeneous catalysis and present the limitations and challenges of ML in this field. We also discuss potential future directions for the effective use of ML in solid heterogeneous catalyst design.
AbstractList Recently, the availability of extensive catalysis-related data generated by experimental data and theoretical calculations has promoted the development of machine learning (ML) techniques for novel heterogeneous catalyst development. ML is an effective tool in automating the generation, processing, and interpretation of large catalyst datasets with superior properties than the conventional statistical approaches. Also, ML have enabled the identification of accurate data-driven models that have been used to establish key relationships between the features of materials and targeted catalytic performance, such as activity, selectivity, and stability. These advances have resulted in the development of efficient design or screening guidelines for solid-state catalysts with targeted properties. However, extending the existing ML approaches to obtain accurate predictions of catalyst performance or design strategies for high-performance catalysts still poses several challenges. In this review, we discuss the recent milestones on the application of ML for solid heterogeneous catalysis and present the limitations and challenges of ML in this field. We also discuss potential future directions for the effective use of ML in solid heterogeneous catalyst design.
ArticleNumber 117224
Author Wang, Yanji
Guan, Yani
Chaffart, Donovan
Liu, Guihua
Li, Jingde
Zhang, Dongsheng
Ricardez-Sandoval, Luis
Tan, Zhaoyang
Author_xml – sequence: 1
  givenname: Yani
  surname: Guan
  fullname: Guan, Yani
  organization: Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
– sequence: 2
  givenname: Donovan
  orcidid: 0000-0002-2360-7804
  surname: Chaffart
  fullname: Chaffart, Donovan
  organization: Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
– sequence: 3
  givenname: Guihua
  surname: Liu
  fullname: Liu, Guihua
  email: guihualiu@hebut.edu.cn
  organization: Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
– sequence: 4
  givenname: Zhaoyang
  surname: Tan
  fullname: Tan, Zhaoyang
  organization: Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
– sequence: 5
  givenname: Dongsheng
  surname: Zhang
  fullname: Zhang, Dongsheng
  organization: Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
– sequence: 6
  givenname: Yanji
  surname: Wang
  fullname: Wang, Yanji
  organization: Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
– sequence: 7
  givenname: Jingde
  surname: Li
  fullname: Li, Jingde
  email: jingdeli@hebut.edu.cn
  organization: Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
– sequence: 8
  givenname: Luis
  surname: Ricardez-Sandoval
  fullname: Ricardez-Sandoval, Luis
  email: laricard@uwaterloo.ca
  organization: Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
BookMark eNp9kMtOwzAQRS0EEm3hA9j5A0jwOA8nsEIVL6kICcHaciaT1lXqVLap1L8nVVmx6OrOXZyR7pmyczc4YuwGRAoCyrt1ihRSKSSkAErK_IxNoFJZkueiOGcTIUSdyELUl2wawnqsSoGYMHw3uLKOeE_GO-uW3Doeht62fEWR_LAkR8NP4Gii6ffBhnv-SUgu8pZ21A_bzXiHW44r0_fklhS4cS3fkg9bwmh3FK7YRWf6QNd_OWPfz09f89dk8fHyNn9cJChrFZOqqKEpJGADZVbkUBkiaSArc-zQVAohyxsCyFWm6gZFl5VVo5SpDArZlWU2Y3D8i34IwVOnt95ujN9rEPpgSa_1aEkfLOmjpZFR_xi00UQ7uOiN7U-SD0eSxkk7S14HtOSQWuvH4bod7An6F1F-hTo
CitedBy_id crossref_primary_10_1016_j_chemosphere_2024_142477
crossref_primary_10_1021_acs_iecr_2c01036
crossref_primary_10_1002_itl2_439
crossref_primary_10_3390_ma16216978
crossref_primary_10_1021_acscatal_2c02291
crossref_primary_10_3390_catal15030282
crossref_primary_10_1016_j_biteb_2022_100976
crossref_primary_10_3390_surfaces5010002
crossref_primary_10_1016_j_ijhydene_2024_12_430
crossref_primary_10_3390_nano13132013
crossref_primary_10_1002_chem_202401148
crossref_primary_10_1007_s10661_024_12443_2
crossref_primary_10_1021_acs_jpclett_4c01492
crossref_primary_10_1002_cjce_24506
crossref_primary_10_1016_j_cherd_2024_11_033
crossref_primary_10_1088_2515_7655_aca122
crossref_primary_10_1007_s40820_023_01192_5
crossref_primary_10_1039_D2CY00275B
crossref_primary_10_1039_D4RA00406J
crossref_primary_10_1039_D4CY01525H
crossref_primary_10_1016_j_dche_2022_100023
crossref_primary_10_1002_aic_18793
crossref_primary_10_1016_j_chemphys_2024_112197
crossref_primary_10_1016_j_ijhydene_2025_02_077
crossref_primary_10_3390_ma16020575
crossref_primary_10_1021_acs_jpclett_2c00918
crossref_primary_10_1039_D2TA02039D
crossref_primary_10_1016_j_ces_2024_119875
crossref_primary_10_1021_acs_jpcc_3c05753
crossref_primary_10_1002_cite_202200071
crossref_primary_10_1093_ce_zkad061
crossref_primary_10_1016_j_dche_2023_100111
crossref_primary_10_1016_j_mcat_2023_113366
crossref_primary_10_1002_adma_202305758
crossref_primary_10_1016_j_mcat_2022_112430
crossref_primary_10_1016_j_jpsychores_2024_112030
crossref_primary_10_1016_j_jechem_2023_02_018
crossref_primary_10_1080_10406638_2022_2094422
crossref_primary_10_1021_acs_iecr_3c02717
crossref_primary_10_1016_j_isci_2023_107029
crossref_primary_10_1002_pls2_10082
crossref_primary_10_1016_j_checat_2024_100987
crossref_primary_10_1002_smll_202308084
crossref_primary_10_1016_j_biortech_2022_128504
crossref_primary_10_1021_acs_jpcc_4c00461
crossref_primary_10_1021_acscatal_3c06293
crossref_primary_10_1016_j_seppur_2023_123270
crossref_primary_10_1039_D4RE00118D
crossref_primary_10_1002_advs_202306604
crossref_primary_10_1016_j_jmrt_2022_02_033
crossref_primary_10_1016_j_egyai_2024_100361
crossref_primary_10_1021_acs_jpcc_3c07168
crossref_primary_10_1039_D2CS01068B
crossref_primary_10_1039_D3EY00126A
crossref_primary_10_1016_j_fuel_2025_134652
crossref_primary_10_1080_01614940_2022_2103980
crossref_primary_10_1016_j_jece_2025_115359
crossref_primary_10_1021_acs_jpcc_3c02539
crossref_primary_10_1515_tsd_2024_2580
crossref_primary_10_1016_j_joei_2025_101973
crossref_primary_10_1016_j_totert_2022_100001
crossref_primary_10_1016_j_cej_2023_144503
crossref_primary_10_1021_acs_jcim_3c01633
crossref_primary_10_1016_j_jmgm_2023_108554
crossref_primary_10_1016_j_mtcata_2024_100061
crossref_primary_10_1007_s40843_024_3204_5
crossref_primary_10_1016_j_cherd_2022_05_030
crossref_primary_10_1016_j_resconrec_2024_108090
crossref_primary_10_1021_acs_jctc_3c00160
crossref_primary_10_3390_molecules29061194
crossref_primary_10_1007_s11814_024_00181_7
crossref_primary_10_1016_j_jiec_2024_09_035
crossref_primary_10_1021_prechem_4c00051
crossref_primary_10_1016_j_cep_2022_109148
crossref_primary_10_1039_D4CP04887C
Cites_doi 10.1021/acscatal.7b01648
10.1016/j.trechm.2019.02.007
10.1021/acscatal.0c04525
10.1021/ci980411n
10.1063/1.4989540
10.1016/j.apcatb.2019.118257
10.1038/s41598-019-47148-x
10.1016/j.compchemeng.2019.106649
10.1016/B978-0-444-63965-3.50312-3
10.1021/acscatal.9b03323
10.1016/j.jcat.2018.08.020
10.1021/ie900720w
10.1016/j.cherd.2020.06.017
10.1021/ja027366r
10.1016/j.cherd.2021.08.013
10.1063/1.4812323
10.1002/aic.16198
10.1016/j.solener.2019.11.067
10.1103/PhysRevLett.99.016105
10.1016/j.chemosphere.2019.125232
10.1021/acs.jpcc.0c00406
10.1002/qua.24917
10.1038/s41597-019-0080-z
10.1021/acsaem.0c01466
10.1103/PhysRevLett.108.058301
10.1016/j.cattod.2013.07.006
10.1039/C7RA06622H
10.1021/acs.jcim.0c00801
10.1021/ed200818t
10.1002/aic.16092
10.1103/PhysRevLett.120.145301
10.1002/qua.25115
10.1371/journal.pone.0229862
10.1039/b803956a
10.1038/sdata.2014.22
10.1016/B978-0-44-456349-1.00016-7
10.1007/s11244-020-01283-2
10.1016/j.foodchem.2020.127232
10.1021/acsomega.9b03673
10.1016/j.compchemeng.2018.08.029
10.1007/s10853-015-9627-3
10.1021/jacs.9b04956
10.1021/acs.chemmater.7b03500
10.1039/C9TA12608B
10.1039/C7SC04934J
10.1016/j.joule.2018.12.015
10.1002/aic.16045
10.1002/qsar.200420051
10.1021/nl5005674
10.1021/acs.jpclett.6b01254
10.1016/j.jcat.2014.12.033
10.1002/cctc.201900595
10.1016/j.jcat.2005.03.019
10.1016/0926-860X(95)00171-9
10.1021/jacs.8b00947
10.1021/acscatal.9b02416
10.1021/acscatal.6b02447
10.1038/ncomms14621
10.1021/acs.jpclett.9b03392
10.1039/C6RA04345C
10.1021/acs.jpclett.7b02364
10.1002/aic.15702
10.1186/s13321-020-00473-0
10.1021/acs.jctc.9b00986
10.1021/acs.chemmater.9b03686
10.1002/qua.24890
10.1039/C7TA01812F
10.1039/C4RA07176J
10.1016/j.energy.2019.116076
10.1007/s10822-016-9938-8
10.1016/j.fuel.2020.117885
10.1073/pnas.1006652108
10.1016/j.ijhydene.2014.01.160
10.1088/1361-648X/aa680e
10.1063/1.4960708
10.1038/s41467-020-20342-6
10.1016/S0360-0564(08)60029-2
10.1021/acs.jpcc.0c05250
10.1039/C7SC03422A
10.1016/j.fuel.2020.118548
10.1103/PhysRevLett.114.105503
10.1039/C8CS00398J
10.1016/j.cplett.2015.09.030
10.1039/C7CY00962C
10.1126/science.aat2663
10.1016/0039-6028(96)80007-0
10.1016/j.commatsci.2020.109948
10.1038/s41578-018-0005-z
10.1021/acscatal.9b02531
10.1021/acs.jpclett.9b03875
10.1103/PhysRevB.100.125155
10.1021/acs.jpclett.9b03678
10.1038/npjcompumats.2015.10
10.1016/j.foodchem.2020.126864
10.1016/j.compchemeng.2009.12.008
10.1039/C1CP22271F
10.1103/PhysRevB.89.205118
10.1063/1.4986787
10.1021/acscatal.0c02089
10.1021/acs.jpcc.0c04432
10.1039/C7RE00210F
10.1021/acs.jpclett.7b02010
10.1186/1752-0509-4-S2-S6
10.1016/j.cpc.2016.05.010
10.1038/s41524-018-0096-5
10.1016/j.compchemeng.2020.106886
10.1016/j.cattod.2016.04.013
10.1103/PhysRevLett.118.036101
10.1016/j.apsusc.2019.02.202
10.1021/acs.accounts.1c00153
10.1016/j.neunet.2014.09.003
10.1016/j.jcat.2016.03.015
10.1103/PhysRevB.89.094104
10.1021/acs.jpca.9b08723
10.1038/376238a0
10.1002/jcc.25567
10.1021/ef020241n
10.1021/acscentsci.7b00492
10.1021/ie010316v
10.1016/j.susc.2019.121513
10.1063/1.5126597
10.1039/C7SC02664A
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ces.2021.117224
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4405
ExternalDocumentID 10_1016_j_ces_2021_117224
S0009250921007892
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCE
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSZ
T5K
XPP
ZMT
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AI.
AIDUJ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
EJD
FEDTE
FGOYB
HVGLF
HZ~
NDZJH
R2-
SC5
SEW
T9H
VH1
WUQ
Y6R
ZY4
~HD
ID FETCH-LOGICAL-c297t-8591b521cb1635418aee2a1364cfca87c134be1147379bc0f368b77a8ac02f663
IEDL.DBID AIKHN
ISSN 0009-2509
IngestDate Thu Sep 18 00:13:19 EDT 2025
Thu Apr 24 23:05:44 EDT 2025
Fri Feb 23 02:41:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Heterogeneous catalysis
Catalyst database
Catalysis descriptors
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-8591b521cb1635418aee2a1364cfca87c134be1147379bc0f368b77a8ac02f663
ORCID 0000-0002-2360-7804
ParticipantIDs crossref_primary_10_1016_j_ces_2021_117224
crossref_citationtrail_10_1016_j_ces_2021_117224
elsevier_sciencedirect_doi_10_1016_j_ces_2021_117224
PublicationCentury 2000
PublicationDate 2022-02-02
PublicationDateYYYYMMDD 2022-02-02
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-02
  day: 02
PublicationDecade 2020
PublicationTitle Chemical engineering science
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Boes, Groenenboom, Keith, Kitchin (b0055) 2016; 116
Roch, Häse, Kreisbeck, Tamayo-Mendoza, Yunker, Hein, Aspuru-Guzik, Hu (b0435) 2020; 15
Kwon, Lele, Zhu, McEnally, Pfefferle, Xuan, van Duin (b0285) 2020; 279
Chowdhury, A.J., Yang, W., Abdelfatah, K.E., Zare, M., Heyden, A., Terejanu, G., 2019. A Multiple Filter Based Neural Network Approach to the Extrapolation of Adsorption Energies on Metal Surfaces for Catalysis Applications. 16, 1105-1114. DOI: 10.1021/acs.jctc.9b00986
Jinnouchi, Asahi (b0220) 2017; 8
Wen, Qiao, Han, Niu, Huo, Bai (b0560) 2016; 51
Elnabawy, Schumann, Bothra, Cao, Nørskov (b0115) 2020; 63
Batchelor, Pedersen, Winther, Castelli, Jacobsen, Rossmeisl (b0035) 2019; 3
Yao, Herr, Toth, Mckintyre, Parkhill (b0595) 2018; 9
Li, Wang, Li, Huang, Gu, Wang, Yang, Li (b0305) 2020; 330
Ramakrishnan, Dral, Rupp, Von Lilienfeld (b0425) 2014; 1
Zhu, Yan, Gu, Liu, Dai, Gu, Li (b0630) 2019; 10
Zhou, Li, Zare (b0625) 2017; 3
Eschmann, Sabitova, Temirov, Tautz, Krüger, Rohlfing (b0125) 2019; 100
Rupp, Tkatchenko, Müller, Von Lilienfeld (b0440) 2012; 108
Kimaev, Ricardez‐Sandoval (b0260) 2018; 64
Takahashi, Miyazato (b0510) 2018; 39
Liu, Marcella, Timoshenko, Halder, Yang, Kolipaka, Pellin, Seifert, Vajda, Liu, Frenkel (b0325) 2019; 151
Tang, Zhou, Zheng, Zhang (b0520) 2020; 195
Cao, Niu, Wen, Feng, Huo, Bai (b0070) 2016; 339
Mamun, Winther, Boes, Bligaard (b0340) 2019; 6
Artrith, Kolpak (b0015) 2014; 14
Hjorth Larsen, Jørgen Mortensen, Blomqvist, Castelli, Christensen, Dułak, Friis, Groves, Hammer, Hargus, Hermes, Jennings, Bjerre Jensen, Kermode, Kitchin, Leonhard Kolsbjerg, Kubal, Kaasbjerg, Lysgaard, Bergmann Maronsson, Maxson, Olsen, Pastewka, Peterson, Rostgaard, Schiøtz, Schütt, Strange, Thygesen, Vegge, Vilhelmsen, Walter, Zeng, Jacobsen (b0200) 2017; 29
Grajciar, Heard, Bondarenko, Polynski, Meeprasert, Pidko, Nachtigall (b0165) 2018; 47
Kimaev, Ricardez-Sandoval (b0265) 2017; 63
Li, Croiset, Ricardez-Sandoval (b0295) 2015; 639
Hansen, Rossmeisl, Nørskov (b0185) 2008; 10
Ma, Xin (b0335) 2017; 118
arXiv
Xin, Liu, Liu, Huo, Li, Wang, Cheng (b0585) 2020; 275
Rafiei-Shishavan, Ricardez-Sandoval (b0420) 2017; 40
Shin, Badgwell, Liu, Lee (b0490) 2019; 26
Xia, Wu, Zhou, Wong (b0575) 2010; 4
Hammer, Nørskov (b0180) 1995; 343
Kimaev, Ricardez-Sandoval (b0250) 2020; 161
Serra, Corma, Valero, Argente, Botti (b0485) 2007; 26
Nørskov, Abild-Pedersen, Studt, Bligaard (b0390) 2011; 108
Sasaki, Hamada, Kintaichi, Ito (b0460) 1995; 132
Wu, Ramsundar, Feinberg, Gomes, Geniesse, Pappu, Leswing, Pande (b0570) 2018; 9
Timoshenko, Lu, Lin, Frenkel (b0530) 2017; 8
Fung, Hu, Ganesh, Sumpter (b0140) 2021; 12
Ge, Yuan, Min, Li, Chen, Xu, Goddard (b0150) 2020; 11
Nian, Liu, Huang (b0375) 2020; 139
Petsagkourakis, P., Sandoval, I.O., Bradford, E., Zhang, D., del Rio-Chanona, E.A., 2020. Reinforcement learning for batch bioprocess optimization. Comput. Chem. 133, 106649. Eng. DOI: 10.1016/j.compchemeng.2019.106649
Noh, Kim, Back, Jung (b0385) 2017; 9
Sabbe, Canduela-Rodriguez, Joly, Reyniers, Marin (b0445) 2017; 7
Zhou, Kearnes, Li, Zare, Riley (b0620) 2019; 9
Andersen, Reuter (b0010) 2021; 54
Skúlason, Bligaard, Gudmundsdóttir, Studt, Rossmeisl, Abild-Pedersen, Vegge, Jónsson, Nørskov (b0495) 2012; 14
Zafari, Kumar, Umer, Kim (b0605) 2020; 8
Häse, Roch, Aspuru-Guzik (b0190) 2019; 1
Jäger, Morooka, Federici Canova, Himanen, Foster (b0210) 2018; 4. 4
Noh, Back, Kim, Jung (b0380) 2018; 9
Cundari, Deng, Zhao (b0110) 2001; 40
Sanchez-Lengeling, Aspuru-Guzik (b0455) 2018; 361
Che (b0085) 2013; 218–219
Kimaev, Ricardez-Sandoval (b0255) 2020; 124
Chen, Huang, Cheng, Goddard (b0090) 2019; 141
Elshenawy, Yin, Naik, Ding (b0120) 2010; 49
Chanussot, L., Das, A., Goyal, S., Lavril, T., Shuaibi, M., Riviere, M., Tran, K., Heras-Domingo, J., Ho, C., Hu, W., Palizhati, A., Sriram, A., Wood, B., Yoon, J., Parikh, D., Zitnick, C.L., Ulissi, Z., 2020. The Open Catalyst 2020 (OC20) Dataset and Community Challenges 2020.
Ghiringhelli, Vybiral, Levchenko, Draxl, Scheffler (b0155) 2015; 114
Takigawa, Shimizu, Tsuda, Takakusagi (b0515) 2016; 6
Bregante, Flaherty (b0065) 2019; 9
Corma, Serra, Serna, Moliner (b0105) 2005; 232
Meredig, Agrawal, Kirklin, Saal, Doak, Thompson, Zhang, Choudhary, Wolverton (b0355) 2014; 89
Kearnes, McCloskey, Berndl, Pande, Riley (b0230) 2016; 30
Hammer, Norskov (b0175) 1995; 376
He, Kong, Liu (b0195) 2020; 184
Umegaki, Watanabe, Nukui, Omata, Yamada (b0550) 2003; 17
Wang, Chaffart, Ricardez-Sandoval (b0555) 2019; 188
Liu, Shi, Feng, Niu, Liu, Bai (b0320) 2014; 4
Kirklin, Saal, Meredig, Thompson, Doak, Aykol, Rühl, Wolverton (b0270) 2015; 1
Zhang, Shang, Liu (b0615) 2017; 147
Chaffart, Ricardez-Sandoval (b0075) 2018; 119
Abild-Pedersen, Greeley, Studt, Rossmeisl, Munter, Moses, Skúlason, Bligaard, Nørskov (b0005) 2007; 99
Fung, Hu, Wu, Jiang (b0145) 2020; 124
Masood, Toe, Teoh, Sethu, Amal (b0345) 2019; 9
Luco (b0330) 1999; 39
Li, Wang, Chin, Achenie, Xin (b0315) 2017; 5
Michaelides, Liu, Zhang, Alavi, King, Hu (b0360) 2003; 125
Xie, Grossman (b0580) 2018; 120
Li, Liu, Fu, Jiang, Luo, Hassan, Zhang, Deng, Xu, Ricardez-Sandoval, Chen (b0300) 2018; 367
Peters, B., 2017. Reaction Rate Theory and Rare Events, Reaction Rate Theory and Rare Events. Elsevier
Jain, Ong, Hautier, Chen, Richards, Dacek, Cholia, Gunter, Skinner, Ceder, Persson (b0215) 2013; 1
Odabaşı, Günay, Yıldırım (b0395) 2014; 39
Ouyang, R., Curtarolo, S., Ahmetcik, E., Scheffler, M., Ghiringhelli, L.M., 2018. low-dimensional descriptor in an immensity of offered candidates 1–12.
Hutchinson, M.L., Antono, E., Gibbons, B.M., Paradiso, S., Ling, J., Meredig, B., 2017. Overcoming data scarcity with transfer learning.
Yu, Zhang, Sun, Zhang (b0600) 2020; 691
Yang, W., Fidelis, T.T., Sun, W.H., 2020. Machine Learning in Catalysis, from Proposal to Practicing. ACS Omega 5, 83–88. 5, 83–88. DOI: 10.1021/acsomega.9b03673
Senftle, van Duin, Janik (b0480) 2017; 7
Wexler, Martirez, Rappe (b0565) 2018; 140
Ulissi, Medford, Bligaard, Nørskov (b0535) 2017; 8
Koistinen, Dagbjartsdóttir, Ásgeirsson, Vehtari, Jónsson (b0275) 2017; 147
Zhang, Hu, Wang (b0610) 2020; 124
Kim, Yeo, Park, Lee, Han, Kim (b0245) 2020; 32
Miyazato, Nishimura, Takahashi, Ohyama, Takahashi (b0365) 2020; 11
Fernandez, Barron, Barnard (b0135) 2017; 7
Tian, Min, Wang (b0525) 2019; 480
Balandin (b0030) 1969; 19
Tabor, Roch, Saikin, Kreisbeck, Sheberla, Montoya, Dwaraknath, Aykol, Ortiz, Tribukait, Amador-Bedolla, Brabec, Maruyama, Persson, Aspuru-Guzik (b0505) 2018; 3
Karim, Ferrandon, Medina, Sture, Kariuki, Myers, Holby, Zelenay, Ahmed (b0225) 2020; 3
Monroy, Benitez, Escudero, Graells (b0370) 2010; 34
Khorshidi, Peterson (b0235) 2016; 207
Koller, Ricardez‐Sandoval, Biegler (b0280) 2018; 64
Smith, Keane, Dumesic, Huber, Zavala (b0500) 2020; 263
Behler (b0040) 2015; 115
Schlexer Lamoureux, Winther, Garrido Torres, Streibel, Zhao, Bajdich, Abild‐Pedersen, Bligaard (b0465) 2019; 11
Goldsmith, Esterhuizen, Liu, Bartel, Sutton (b0160) 2018; 64
Medford, Vojvodic, Hummelshøj, Voss, Abild-Pedersen, Studt, Bligaard, Nilsson, Nørskov (b0350) 2015; 328
Bjerrum, E.J., 2017. Smiles enumeration as data augmentation for neural network modeling of molecules. arXiv: 1703.07076
Ulissi, Tang, Xiao, Liu, Torelli, Karamad, Cummins, Hahn, Lewis, Jaramillo, Chan, Nørskov (b0545) 2017; 7
Li, Ma, Xin (b0310) 2017; 280
Peterson (b0410) 2016; 145
Ulissi, Singh, Tsai, Nørskov (b0540) 2016; 7
Sahoo, Roy, Wang, Mi, Yu, Balasubramani, Khan, Stoddart (b0450) 2020; 60
Artrith, Lin, Chen (b0020) 2020; 10
Kim, Huang, Saunders, McCallum, Ceder, Olivetti (b0240) 2017; 29
Gu, Plechac, Vlachos (b0170) 2018; 3
Bouysset, Belloir, Antonczak, Briand, Fiorucci (b0060) 2020; 324
Rangel-Martinez, Nigam, Ricardez-Sandoval (b0430) 2021; 174
Schmidhuber (b0470) 2015; 61
Zuo, Chen, Li, Deng, Chen, Behler, Csányi, Shapeev, Thompson, Wood, Ong (b0635) 2020; 124
Blaschke, Engkvist, Bajorath, Chen (b0050) 2020; 12
Faber, Lindmaa, von Lilienfeld, Armiento (b0130) 2015; 115
Laursen, Varela, Dionigi, Fanchiu, Miller, Trinhammer, Rossmeisl, Dahl (b0290) 2012; 89
Chen, Teng, Liao, Li, Lin (b0095) 2020; 242
Back, Tran, Ulissi (b0025) 2019; 9
Schütt, Glawe, Brockherde, Sanna, Müller, Gross (b0475) 2014; 89
Balandin (10.1016/j.ces.2021.117224_b0030) 1969; 19
Kimaev (10.1016/j.ces.2021.117224_b0255) 2020; 124
Wexler (10.1016/j.ces.2021.117224_b0565) 2018; 140
Zhu (10.1016/j.ces.2021.117224_b0630) 2019; 10
Bouysset (10.1016/j.ces.2021.117224_b0060) 2020; 324
Artrith (10.1016/j.ces.2021.117224_b0020) 2020; 10
Boes (10.1016/j.ces.2021.117224_b0055) 2016; 116
Schlexer Lamoureux (10.1016/j.ces.2021.117224_b0465) 2019; 11
Mamun (10.1016/j.ces.2021.117224_b0340) 2019; 6
Umegaki (10.1016/j.ces.2021.117224_b0550) 2003; 17
Wen (10.1016/j.ces.2021.117224_b0560) 2016; 51
Luco (10.1016/j.ces.2021.117224_b0330) 1999; 39
Kimaev (10.1016/j.ces.2021.117224_b0265) 2017; 63
Koller (10.1016/j.ces.2021.117224_b0280) 2018; 64
Kim (10.1016/j.ces.2021.117224_b0240) 2017; 29
Liu (10.1016/j.ces.2021.117224_b0320) 2014; 4
Corma (10.1016/j.ces.2021.117224_b0105) 2005; 232
10.1016/j.ces.2021.117224_b0415
Grajciar (10.1016/j.ces.2021.117224_b0165) 2018; 47
Zhang (10.1016/j.ces.2021.117224_b0610) 2020; 124
Kwon (10.1016/j.ces.2021.117224_b0285) 2020; 279
Andersen (10.1016/j.ces.2021.117224_b0010) 2021; 54
Behler (10.1016/j.ces.2021.117224_b0040) 2015; 115
Rupp (10.1016/j.ces.2021.117224_b0440) 2012; 108
Chen (10.1016/j.ces.2021.117224_b0095) 2020; 242
Roch (10.1016/j.ces.2021.117224_b0435) 2020; 15
Schmidhuber (10.1016/j.ces.2021.117224_b0470) 2015; 61
Goldsmith (10.1016/j.ces.2021.117224_b0160) 2018; 64
Kimaev (10.1016/j.ces.2021.117224_b0250) 2020; 161
Che (10.1016/j.ces.2021.117224_b0085) 2013; 218–219
Cao (10.1016/j.ces.2021.117224_b0070) 2016; 339
Khorshidi (10.1016/j.ces.2021.117224_b0235) 2016; 207
Sanchez-Lengeling (10.1016/j.ces.2021.117224_b0455) 2018; 361
Wang (10.1016/j.ces.2021.117224_b0555) 2019; 188
Kirklin (10.1016/j.ces.2021.117224_b0270) 2015; 1
Hjorth Larsen (10.1016/j.ces.2021.117224_b0200) 2017; 29
Ulissi (10.1016/j.ces.2021.117224_b0545) 2017; 7
Eschmann (10.1016/j.ces.2021.117224_b0125) 2019; 100
Ramakrishnan (10.1016/j.ces.2021.117224_b0425) 2014; 1
Ulissi (10.1016/j.ces.2021.117224_b0540) 2016; 7
Li (10.1016/j.ces.2021.117224_b0315) 2017; 5
Takigawa (10.1016/j.ces.2021.117224_b0515) 2016; 6
Hammer (10.1016/j.ces.2021.117224_b0175) 1995; 376
Yu (10.1016/j.ces.2021.117224_b0600) 2020; 691
Noh (10.1016/j.ces.2021.117224_b0385) 2017; 9
Zhou (10.1016/j.ces.2021.117224_b0625) 2017; 3
Takahashi (10.1016/j.ces.2021.117224_b0510) 2018; 39
Tian (10.1016/j.ces.2021.117224_b0525) 2019; 480
Meredig (10.1016/j.ces.2021.117224_b0355) 2014; 89
Peterson (10.1016/j.ces.2021.117224_b0410) 2016; 145
Chen (10.1016/j.ces.2021.117224_b0090) 2019; 141
Tabor (10.1016/j.ces.2021.117224_b0505) 2018; 3
Kimaev (10.1016/j.ces.2021.117224_b0260) 2018; 64
Michaelides (10.1016/j.ces.2021.117224_b0360) 2003; 125
Zuo (10.1016/j.ces.2021.117224_b0635) 2020; 124
Abild-Pedersen (10.1016/j.ces.2021.117224_b0005) 2007; 99
Cundari (10.1016/j.ces.2021.117224_b0110) 2001; 40
Odabaşı (10.1016/j.ces.2021.117224_b0395) 2014; 39
10.1016/j.ces.2021.117224_b0045
Serra (10.1016/j.ces.2021.117224_b0485) 2007; 26
Fernandez (10.1016/j.ces.2021.117224_b0135) 2017; 7
Schütt (10.1016/j.ces.2021.117224_b0475) 2014; 89
Blaschke (10.1016/j.ces.2021.117224_b0050) 2020; 12
Li (10.1016/j.ces.2021.117224_b0305) 2020; 330
Zafari (10.1016/j.ces.2021.117224_b0605) 2020; 8
10.1016/j.ces.2021.117224_b0205
Jinnouchi (10.1016/j.ces.2021.117224_b0220) 2017; 8
Xie (10.1016/j.ces.2021.117224_b0580) 2018; 120
Bregante (10.1016/j.ces.2021.117224_b0065) 2019; 9
Artrith (10.1016/j.ces.2021.117224_b0015) 2014; 14
Li (10.1016/j.ces.2021.117224_b0295) 2015; 639
Noh (10.1016/j.ces.2021.117224_b0380) 2018; 9
Gu (10.1016/j.ces.2021.117224_b0170) 2018; 3
Fung (10.1016/j.ces.2021.117224_b0145) 2020; 124
Shin (10.1016/j.ces.2021.117224_b0490) 2019; 26
Wu (10.1016/j.ces.2021.117224_b0570) 2018; 9
Fung (10.1016/j.ces.2021.117224_b0140) 2021; 12
Sasaki (10.1016/j.ces.2021.117224_b0460) 1995; 132
Hammer (10.1016/j.ces.2021.117224_b0180) 1995; 343
Miyazato (10.1016/j.ces.2021.117224_b0365) 2020; 11
Sahoo (10.1016/j.ces.2021.117224_b0450) 2020; 60
Nørskov (10.1016/j.ces.2021.117224_b0390) 2011; 108
Elshenawy (10.1016/j.ces.2021.117224_b0120) 2010; 49
Timoshenko (10.1016/j.ces.2021.117224_b0530) 2017; 8
Tang (10.1016/j.ces.2021.117224_b0520) 2020; 195
Elnabawy (10.1016/j.ces.2021.117224_b0115) 2020; 63
Faber (10.1016/j.ces.2021.117224_b0130) 2015; 115
Ge (10.1016/j.ces.2021.117224_b0150) 2020; 11
10.1016/j.ces.2021.117224_b0100
Jain (10.1016/j.ces.2021.117224_b0215) 2013; 1
Liu (10.1016/j.ces.2021.117224_b0325) 2019; 151
Medford (10.1016/j.ces.2021.117224_b0350) 2015; 328
Ghiringhelli (10.1016/j.ces.2021.117224_b0155) 2015; 114
Li (10.1016/j.ces.2021.117224_b0300) 2018; 367
Monroy (10.1016/j.ces.2021.117224_b0370) 2010; 34
Chaffart (10.1016/j.ces.2021.117224_b0075) 2018; 119
Ma (10.1016/j.ces.2021.117224_b0335) 2017; 118
Kearnes (10.1016/j.ces.2021.117224_b0230) 2016; 30
Back (10.1016/j.ces.2021.117224_b0025) 2019; 9
Smith (10.1016/j.ces.2021.117224_b0500) 2020; 263
Xia (10.1016/j.ces.2021.117224_b0575) 2010; 4
10.1016/j.ces.2021.117224_b0590
Laursen (10.1016/j.ces.2021.117224_b0290) 2012; 89
Li (10.1016/j.ces.2021.117224_b0310) 2017; 280
Jäger (10.1016/j.ces.2021.117224_b0210) 2018; 4. 4
Hansen (10.1016/j.ces.2021.117224_b0185) 2008; 10
Yao (10.1016/j.ces.2021.117224_b0595) 2018; 9
Masood (10.1016/j.ces.2021.117224_b0345) 2019; 9
He (10.1016/j.ces.2021.117224_b0195) 2020; 184
Xin (10.1016/j.ces.2021.117224_b0585) 2020; 275
Zhou (10.1016/j.ces.2021.117224_b0620) 2019; 9
Skúlason (10.1016/j.ces.2021.117224_b0495) 2012; 14
Batchelor (10.1016/j.ces.2021.117224_b0035) 2019; 3
Karim (10.1016/j.ces.2021.117224_b0225) 2020; 3
Kim (10.1016/j.ces.2021.117224_b0245) 2020; 32
Ulissi (10.1016/j.ces.2021.117224_b0535) 2017; 8
10.1016/j.ces.2021.117224_b0080
Häse (10.1016/j.ces.2021.117224_b0190) 2019; 1
Nian (10.1016/j.ces.2021.117224_b0375) 2020; 139
Sabbe (10.1016/j.ces.2021.117224_b0445) 2017; 7
Zhang (10.1016/j.ces.2021.117224_b0615) 2017; 147
Rafiei-Shishavan (10.1016/j.ces.2021.117224_b0420) 2017; 40
Senftle (10.1016/j.ces.2021.117224_b0480) 2017; 7
10.1016/j.ces.2021.117224_b0405
Koistinen (10.1016/j.ces.2021.117224_b0275) 2017; 147
10.1016/j.ces.2021.117224_b0400
Rangel-Martinez (10.1016/j.ces.2021.117224_b0430) 2021; 174
References_xml – volume: 8
  start-page: 5209
  year: 2020
  end-page: 5216
  ident: b0605
  article-title: Machine learning-based high throughput screening for nitrogen fixation on boron-doped single atom catalysts
  publication-title: J. Mater. Chem. A.
– volume: 3
  start-page: 5
  year: 2018
  end-page: 20
  ident: b0505
  article-title: Accelerating the discovery of materials for clean energy in the era of smart automation
  publication-title: Nat. Rev. Mater.
– volume: 361
  start-page: 360
  year: 2018
  end-page: 365
  ident: b0455
  article-title: Inverse molecular design using machine learning: Generative models for matter engineering
  publication-title: Science
– reference: Peters, B., 2017. Reaction Rate Theory and Rare Events, Reaction Rate Theory and Rare Events. Elsevier
– reference: Ouyang, R., Curtarolo, S., Ahmetcik, E., Scheffler, M., Ghiringhelli, L.M., 2018. low-dimensional descriptor in an immensity of offered candidates 1–12.
– volume: 343
  start-page: 211
  year: 1995
  end-page: 220
  ident: b0180
  article-title: Electronic factors determining the reactivity of metal surfaces
  publication-title: Surf. Sci.
– volume: 132
  start-page: 261
  year: 1995
  end-page: 270
  ident: b0460
  article-title: Application of a neural network to the analysis of catalytic reactions Analysis of NO decomposition over Cu/ZSM-5 zeolite. Appl
  publication-title: Catal. A, Gen.
– volume: 8
  start-page: 5091
  year: 2017
  end-page: 5098
  ident: b0530
  article-title: Supervised machine-learning-based determination of three-dimensional structure of metallic nanoparticles
  publication-title: J. Phys. Chem. Lett.
– volume: 147
  start-page: 152720
  year: 2017
  ident: b0275
  article-title: Nudged elastic band calculations accelerated with Gaussian process regression
  publication-title: J. Chem. Phys.
– volume: 40
  start-page: 1861
  year: 2017
  end-page: 1866
  ident: b0420
  article-title: A stochastic approach for integration of design and control under uncertainty: a back-off approach using power series expansions
  publication-title: Comput. Aided Chem. Eng.
– volume: 60
  start-page: 5995
  year: 2020
  end-page: 6006
  ident: b0450
  article-title: MultiCon: A semi-supervised approach for predicting drug function from chemical structure analysis
  publication-title: J. Chem. Inf. Model.
– reference: Petsagkourakis, P., Sandoval, I.O., Bradford, E., Zhang, D., del Rio-Chanona, E.A., 2020. Reinforcement learning for batch bioprocess optimization. Comput. Chem. 133, 106649. Eng. DOI: 10.1016/j.compchemeng.2019.106649
– reference: Yang, W., Fidelis, T.T., Sun, W.H., 2020. Machine Learning in Catalysis, from Proposal to Practicing. ACS Omega 5, 83–88. 5, 83–88. DOI: 10.1021/acsomega.9b03673
– volume: 145
  start-page: 074106
  year: 2016
  ident: b0410
  article-title: Acceleration of saddle-point searches with machine learning
  publication-title: J. Chem. Phys.
– volume: 184
  start-page: 109948
  year: 2020
  ident: b0195
  article-title: Robust activation energy predictions of solute diffusion from machine learning method
  publication-title: Comput. Mater. Sci.
– volume: 174
  start-page: 414
  year: 2021
  end-page: 441
  ident: b0430
  article-title: Machine Learning on sustainable energy: A review and outlook on renewable energy systems, catalysis, smart grid and energy storage
  publication-title: Chem. Eng. Res. Des.
– volume: 691
  start-page: 121513
  year: 2020
  ident: b0600
  article-title: Carbon chain growth mechanism of higher alcohols synthesis from syngas on CoCu(100): A combined DFT and kMC study
  publication-title: Surf. Sci.
– volume: 10
  start-page: 7760
  year: 2019
  end-page: 7766
  ident: b0630
  article-title: Activity origin and design principles for oxygen reduction on dual-metal-site catalysts: a combined density functional theory and machine learning study
  publication-title: J. Phys. Chem. Lett.
– volume: 11
  start-page: 3581
  year: 2019
  end-page: 3601
  ident: b0465
  article-title: Machine learning for computational heterogeneous catalysis
  publication-title: ChemCatChem
– volume: 480
  start-page: 171
  year: 2019
  end-page: 176
  ident: b0525
  article-title: Coverage dependent CO adsorption manners on seven MoP surfaces with DFT based thermodynamics method
  publication-title: Appl. Surf. Sci.
– volume: 9
  start-page: 10752
  year: 2019
  ident: b0620
  article-title: Optimization of molecules via deep reinforcement learning
  publication-title: Sci. Rep.
– volume: 3
  start-page: 454
  year: 2018
  end-page: 466
  ident: b0170
  article-title: Thermochemistry of gas-phase and surface species via LASSO-assisted subgraph selection
  publication-title: React. Chem. Eng.
– volume: 39
  start-page: 5733
  year: 2014
  end-page: 5746
  ident: b0395
  article-title: Knowledge extraction for water gas shift reaction over noble metal catalysts from publications in the literature between 2002 and 2012
  publication-title: Int. J. Hydrogen Energy
– volume: 218–219
  start-page: 162
  year: 2013
  end-page: 171
  ident: b0085
  article-title: Nobel Prize in chemistry 1912 to Sabatier: Organic chemistry or catalysis?
  publication-title: Catal. Today.
– volume: 125
  start-page: 3704
  year: 2003
  end-page: 3705
  ident: b0360
  article-title: Identification of general linear relationships between activation energies and enthalpy changes for dissociation reactions at surfaces
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 011002
  year: 2013
  ident: b0215
  article-title: Commentary: The materials project: A materials genome approach to accelerating materials innovation
  publication-title: APL Mater.
– volume: 8
  start-page: 14621
  year: 2017
  ident: b0535
  article-title: To address surface reaction network complexity using scaling relations machine learning and DFT calculations
  publication-title: Nat. Commun.
– volume: 89
  year: 2014
  ident: b0355
  article-title: Combinatorial screening for new materials in unconstrained composition space with machine learning
  publication-title: Phys. Rev. B - Condens. Matter Mater. Phys.
– volume: 330
  start-page: 127232
  year: 2020
  ident: b0305
  article-title: Exploration of chemical markers using a metabolomics strategy and machine learning to study the different origins of Ixeris denticulata (Houtt.) Stebb
  publication-title: Food Chem.
– volume: 6
  start-page: 76
  year: 2019
  ident: b0340
  article-title: High-throughput calculations of catalytic properties of bimetallic alloy surfaces
  publication-title: Sci. data
– volume: 39
  start-page: 396
  year: 1999
  end-page: 404
  ident: b0330
  article-title: Prediction of the brain-blood distribution of a large set of drugs from structurally derived descriptors using partial least-squares (PLS) modeling
  publication-title: J. Chem. Inf. Comput. Sci.
– volume: 120
  year: 2018
  ident: b0580
  article-title: Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties
  publication-title: Phys. Rev. Lett.
– volume: 10
  start-page: 9438
  year: 2020
  end-page: 9444
  ident: b0020
  article-title: Predicting the activity and selectivity of bimetallic metal catalysts for ethanol reforming using machine learning
  publication-title: ACS Catal.
– volume: 9
  start-page: 11774
  year: 2019
  end-page: 11787
  ident: b0345
  article-title: Machine learning for accelerated discovery of solar photocatalysts
  publication-title: ACS Catal.
– volume: 15
  start-page: e0229862
  year: 2020
  ident: b0435
  article-title: ChemOS: An orchestration software to democratize autonomous discovery
  publication-title: PLoS ONE
– volume: 4
  start-page: 44302
  year: 2014
  end-page: 44306
  ident: b0320
  article-title: Preparation of magnetic mesoporous core-shell nanocomposites for cinnamic acid hydrogenation
  publication-title: RSC Adv.
– reference: Chanussot, L., Das, A., Goyal, S., Lavril, T., Shuaibi, M., Riviere, M., Tran, K., Heras-Domingo, J., Ho, C., Hu, W., Palizhati, A., Sriram, A., Wood, B., Yoon, J., Parikh, D., Zitnick, C.L., Ulissi, Z., 2020. The Open Catalyst 2020 (OC20) Dataset and Community Challenges 2020.
– reference: Chowdhury, A.J., Yang, W., Abdelfatah, K.E., Zare, M., Heyden, A., Terejanu, G., 2019. A Multiple Filter Based Neural Network Approach to the Extrapolation of Adsorption Energies on Metal Surfaces for Catalysis Applications. 16, 1105-1114. DOI: 10.1021/acs.jctc.9b00986
– volume: 232
  start-page: 335
  year: 2005
  end-page: 341
  ident: b0105
  article-title: Integrating high-throughput characterization into combinatorial heterogeneous catalysis: Unsupervised construction of quantitative structure/property relationship models
  publication-title: J. Catal.
– volume: 118
  year: 2017
  ident: b0335
  article-title: Orbitalwise coordination number for predicting adsorption properties of metal nanocatalysts
  publication-title: Phys. Rev. Lett.
– volume: 124
  start-page: 18615
  year: 2020
  end-page: 18627
  ident: b0255
  article-title: Artificial neural network discrimination for parameter estimation and optimal product design of thin films manufactured by chemical vapor deposition
  publication-title: J. Phys. Chem. C.
– volume: 242
  start-page: 125232
  year: 2020
  ident: b0095
  article-title: Molecular insights into the impacts of iron(III) ions on membrane fouling by alginate
  publication-title: Chemosphere
– volume: 7
  start-page: 48962
  year: 2017
  end-page: 48971
  ident: b0135
  article-title: Artificial neural network analysis of the catalytic efficiency of platinum nanoparticles
  publication-title: RSC Adv.
– volume: 9
  start-page: 2261
  year: 2018
  end-page: 2269
  ident: b0595
  article-title: The TensorMol-0.1 model chemistry: A neural network augmented with long-range physics
  publication-title: Chem. Sci.
– volume: 639
  start-page: 205
  year: 2015
  end-page: 210
  ident: b0295
  article-title: Theoretical investigation of the methane cracking reaction pathways on Ni (1 1 1) surface
  publication-title: Chem. Phys. Lett.
– volume: 147
  start-page: 152706
  year: 2017
  ident: b0615
  article-title: Stochastic surface walking reaction sampling for resolving heterogeneous catalytic reaction network: A revisit to the mechanism of water-gas shift reaction on Cu
  publication-title: J. Chem. Phys. DOI
– volume: 7
  start-page: 6600
  year: 2017
  end-page: 6608
  ident: b0545
  article-title: Machine-learning methods enable exhaustive searches for active Bimetallic facets and reveal active site motifs for CO2 reduction
  publication-title: ACS Catal.
– volume: 49
  start-page: 252
  year: 2010
  end-page: 259
  ident: b0120
  article-title: Efficient recursive principal component analysis algorithms for process monitoring
  publication-title: Ind. Eng. Chem. Res.
– volume: 263
  start-page: 118257
  year: 2020
  ident: b0500
  article-title: A machine learning framework for the analysis and prediction of catalytic activity from experimental data
  publication-title: Appl. Catal. B Environ.
– volume: 3
  start-page: 834
  year: 2019
  end-page: 845
  ident: b0035
  article-title: High-entropy alloys as a discovery platform for electrocatalysis
  publication-title: Joule.
– volume: 9
  start-page: 5152
  year: 2018
  end-page: 5159
  ident: b0380
  article-title: Active learning with non-: Ab initio input features toward efficient CO2 reduction catalysts
  publication-title: Chem. Sci.
– volume: 1
  year: 2014
  ident: b0425
  article-title: Quantum chemistry structures and properties of 134 kilo molecules
  publication-title: Sci. Data.
– volume: 4
  start-page: S6
  year: 2010
  ident: b0575
  article-title: Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces
  publication-title: BMC Syst. Biol.
– volume: 47
  start-page: 8307
  year: 2018
  end-page: 8348
  ident: b0165
  article-title: Towards operando computational modeling in heterogeneous catalysis
  publication-title: Chem. Soc. Rev.
– volume: 29
  start-page: 273002
  year: 2017
  ident: b0200
  article-title: The atomic simulation environment - A Python library for working with atoms
  publication-title: J. Phys. Condens. Matter.
– volume: 1
  start-page: 15010
  year: 2015
  ident: b0270
  article-title: The open quantum materials database (OQMD): Assessing the accuracy of DFT formation energies
  publication-title: npj Comput. Mater.
– volume: 151
  start-page: 164201
  year: 2019
  ident: b0325
  article-title: Mapping XANES spectra on structural descriptors of copper oxide clusters using supervised machine learning
  publication-title: J. Chem. Phys.
– volume: 54
  start-page: 2741
  year: 2021
  end-page: 2749
  ident: b0010
  article-title: Adsorption enthalpies for catalysis modeling through machine-learned descriptors
  publication-title: Acc. Chem. Res.
– volume: 7
  start-page: 5267
  year: 2017
  end-page: 5283
  ident: b0445
  article-title: Ab initio coverage-dependent microkinetic modeling of benzene hydrogenation on Pd(111)
  publication-title: Catal. Sci. Technol.
– volume: 51
  start-page: 3170
  year: 2016
  end-page: 3181
  ident: b0560
  article-title: Multifunctional magnetic branched polyethylenimine nanogels with in-situ generated Fe3O4 and their applications as dye adsorbent and catalyst support
  publication-title: J. Mater. Sci.
– volume: 116
  start-page: 979
  year: 2016
  end-page: 987
  ident: b0055
  article-title: Neural network and ReaxFF comparison for Au properties
  publication-title: Int. J. Quantum Chem.
– volume: 9
  start-page: 5152
  year: 2017
  end-page: 5159
  ident: b0385
  article-title: Catalyst design using actively learned machine with non-ab initio input features towards CO2 reduction reactions
  publication-title: ArXiv e-prints.
– volume: 9
  start-page: 7651
  year: 2019
  end-page: 7659
  ident: b0025
  article-title: Toward a design of active oxygen evolution catalysts: insights from automated density functional theory calculations and machine learning
  publication-title: ACS Catal.
– volume: 12
  start-page: 68
  year: 2020
  ident: b0050
  article-title: Memory-assisted reinforcement learning for diverse molecular de novo design
  publication-title: J. Cheminform.
– volume: 141
  start-page: 11651
  year: 2019
  end-page: 11657
  ident: b0090
  article-title: Identifying active sites for CO2 reduction on dealloyed gold surfaces by combining machine learning with multiscale simulations
  publication-title: J. Am. Chem. Soc.
– volume: 188
  start-page: 116076
  year: 2019
  ident: b0555
  article-title: Modelling and optimization of a pilot-scale entrained-flow gasifier using artificial neural networks
  publication-title: Energy.
– volume: 89
  year: 2014
  ident: b0475
  article-title: How to represent crystal structures for machine learning: Towards fast prediction of electronic properties
  publication-title: Phys. Rev. B - Condens. Matter Mater. Phys.
– volume: 17
  start-page: 850
  year: 2003
  end-page: 856
  ident: b0550
  article-title: Optimization of catalyst for methanol synthesis by a combinatorial approach using a parallel activity test and genetic algorithm assisted by a neural network
  publication-title: Energy Fuels
– volume: 115
  start-page: 1032
  year: 2015
  end-page: 1050
  ident: b0040
  article-title: Constructing high-dimensional neural network potentials: A tutorial review
  publication-title: Int. J. Quantum Chem.
– volume: 89
  start-page: 1595
  year: 2012
  end-page: 1599
  ident: b0290
  article-title: Electrochemical hydrogen evolution: Sabatiers principle and the volcano plot
  publication-title: J. Chem. Educ.
– volume: 11
  start-page: 869
  year: 2020
  end-page: 876
  ident: b0150
  article-title: Predicted optimal bifunctional electrocatalysts for both HER and OER using chalcogenide heterostructures based on machine learning analysis of in silico quantum mechanics based high throughput screening
  publication-title: J. Phys. Chem. Lett.
– volume: 8
  start-page: 4279
  year: 2017
  end-page: 4283
  ident: b0220
  article-title: Predicting catalytic activity of nanoparticles by a DFT-aided machine-learning algorithm
  publication-title: J. Phys. Chem. Lett.
– volume: 64
  start-page: 1651
  year: 2018
  end-page: 1661
  ident: b0260
  article-title: Multilevel Monte Carlo applied to chemical engineering systems subject to uncertainty
  publication-title: AIChE J.
– volume: 14
  start-page: 2670
  year: 2014
  end-page: 2676
  ident: b0015
  article-title: Understanding the composition and activity of electrocatalytic nanoalloys in aqueous solvents: A combination of DFT and accurate neural network potentials
  publication-title: Nano Lett.
– volume: 30
  start-page: 595
  year: 2016
  end-page: 608
  ident: b0230
  article-title: Molecular graph convolutions: moving beyond fingerprints
  publication-title: J. Comput. Aided. Mol. Des.
– volume: 140
  start-page: 4678
  year: 2018
  end-page: 4683
  ident: b0565
  article-title: Chemical pressure-driven enhancement of the hydrogen evolving activity of Ni2P from nonmetal surface doping interpreted via machine learning
  publication-title: J. Am. Chem. Soc.
– volume: 339
  start-page: 9
  year: 2016
  end-page: 13
  ident: b0070
  article-title: Novel layered double hydroxide/oxide-coated nickel-based core-shell nanocomposites for benzonitrile selective hydrogenation: An interesting water switch
  publication-title: J. Catal.
– volume: 99
  year: 2007
  ident: b0005
  article-title: Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces
  publication-title: Phys. Rev. Lett.
– reference: . arXiv
– volume: 280
  start-page: 232
  year: 2017
  end-page: 238
  ident: b0310
  article-title: Feature engineering of machine-learning chemisorption models for catalyst design
  publication-title: Catal. Today.
– reference: Hutchinson, M.L., Antono, E., Gibbons, B.M., Paradiso, S., Ling, J., Meredig, B., 2017. Overcoming data scarcity with transfer learning.
– volume: 108
  start-page: 937
  year: 2011
  end-page: 943
  ident: b0390
  article-title: Density functional theory in surface chemistry and catalysis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: b0470
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Networks
– volume: 9
  start-page: 513
  year: 2018
  end-page: 530
  ident: b0570
  article-title: MoleculeNet: A benchmark for molecular machine learning
  publication-title: Chem. Sci.
– volume: 207
  start-page: 310
  year: 2016
  end-page: 324
  ident: b0235
  article-title: Amp: A modular approach to machine learning in atomistic simulations
  publication-title: Comput. Phys. Commun.
– volume: 367
  start-page: 43
  year: 2018
  end-page: 52
  ident: b0300
  article-title: Surface decorated cobalt sulfide as efficient catalyst for oxygen evolution reaction and its intrinsic activity
  publication-title: J. Catal.
– volume: 3
  start-page: 1337
  year: 2017
  end-page: 1344
  ident: b0625
  article-title: Optimizing chemical reactions with deep reinforcement learning
  publication-title: ACS Cent. Sci.
– volume: 100
  year: 2019
  ident: b0125
  article-title: Coverage-dependent anisotropy of the NTCDA/Ag(111) interface state dispersion
  publication-title: Phys. Rev. B.
– volume: 7
  start-page: 327
  year: 2017
  end-page: 332
  ident: b0480
  article-title: Methane activation at the Pd/CeO2 interface
  publication-title: ACS Catal.
– volume: 7
  start-page: 3931
  year: 2016
  end-page: 3935
  ident: b0540
  article-title: Automated discovery and construction of surface phase diagrams using machine learning
  publication-title: J. Phys. Chem. Lett.
– volume: 64
  start-page: 2311
  year: 2018
  end-page: 2323
  ident: b0160
  article-title: Machine learning for heterogeneous catalyst design and discovery
  publication-title: AIChE J.
– volume: 328
  start-page: 36
  year: 2015
  end-page: 42
  ident: b0350
  article-title: From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis
  publication-title: J. Catal.
– volume: 119
  start-page: 465
  year: 2018
  end-page: 479
  ident: b0075
  article-title: Optimization and control of a thin film growth process: A hybrid first principles/artificial neural network based multiscale modelling approach
  publication-title: Comput. Chem. Eng.
– volume: 376
  start-page: 238
  year: 1995
  end-page: 240
  ident: b0175
  article-title: Why gold is the noblest of all the metals
  publication-title: Nature
– volume: 63
  start-page: 3361
  year: 2017
  end-page: 3373
  ident: b0265
  article-title: A comparison of efficient uncertainty quantification techniques for stochastic multiscale systems
  publication-title: AIChE J.
– volume: 124
  start-page: 10483
  year: 2020
  end-page: 10494
  ident: b0610
  article-title: Amorphous catalysis: machine learning driven high-throughput screening of superior active site for hydrogen evolution reaction
  publication-title: J. Phys. Chem. C.
– volume: 4. 4
  start-page: 37
  year: 2018
  ident: b0210
  article-title: Machine learning hydrogen adsorption on nanoclusters through structural descriptors
  publication-title: npj Comput. Mater.
– reference: Bjerrum, E.J., 2017. Smiles enumeration as data augmentation for neural network modeling of molecules. arXiv: 1703.07076
– volume: 14
  start-page: 1235
  year: 2012
  end-page: 1245
  ident: b0495
  article-title: A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction
  publication-title: Phys. Chem. Chem. Phys.
– volume: 12
  start-page: 88
  year: 2021
  ident: b0140
  article-title: Machine learned features from density of states for accurate adsorption energy prediction
  publication-title: Nat. Commun.
– volume: 10
  start-page: 3722
  year: 2008
  end-page: 3730
  ident: b0185
  article-title: Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT
  publication-title: Phys. Chem. Chem. Phys.
– volume: 195
  start-page: 514
  year: 2020
  end-page: 526
  ident: b0520
  article-title: Exergy-based optimisation of a phase change materials integrated hybrid renewable system for active cooling applications using supervised machine learning method
  publication-title: Sol. Energy.
– volume: 161
  start-page: 11
  year: 2020
  end-page: 25
  ident: b0250
  article-title: Artificial Neural Networks for dynamic optimization of stochastic multiscale systems subject to uncertainty
  publication-title: Chem. Eng. Res. Des.
– volume: 19
  start-page: 1
  year: 1969
  end-page: 210
  ident: b0030
  article-title: Modern state of the multiplet theor of heterogeneous catalysis
  publication-title: Adv. Catal.
– volume: 139
  start-page: 106886
  year: 2020
  ident: b0375
  article-title: A review On reinforcement learning: Introduction and applications in industrial process control
  publication-title: Comput. Chem. Eng.
– volume: 6
  start-page: 52587
  year: 2016
  end-page: 52595
  ident: b0515
  article-title: Machine-learning prediction of the d-band center for metals and bimetals
  publication-title: RSC Adv.
– volume: 9
  start-page: 10951
  year: 2019
  end-page: 10962
  ident: b0065
  article-title: Impact of specific interactions among reactive surface intermediates and confined water on epoxidation catalysis and adsorption in lewis acid zeolites
  publication-title: ACS Catal.
– volume: 26
  start-page: 11
  year: 2019
  end-page: 26
  ident: b0490
  article-title: Reinforcement Learning – Overview of recent progress and implications for process control
  publication-title: Comput. Chem. Eng.
– volume: 64
  start-page: 2379
  year: 2018
  end-page: 2389
  ident: b0280
  article-title: Stochastic back-off algorithm for simultaneous design, control, and scheduling of multiproduct systems under uncertainty
  publication-title: AIChE J.
– volume: 124
  start-page: 19571
  year: 2020
  end-page: 19578
  ident: b0145
  article-title: Descriptors for hydrogen evolution on single atom catalysts in nitrogen-doped graphene
  publication-title: J. Phys. Chem. C.
– volume: 108
  year: 2012
  ident: b0440
  article-title: Fast and accurate modeling of molecular atomization energies with machine learning
  publication-title: Phys. Rev. Lett.
– volume: 324
  start-page: 126864
  year: 2020
  ident: b0060
  article-title: Novel scaffold of natural compound eliciting sweet taste revealed by machine learning
  publication-title: Food Chem.
– volume: 26
  start-page: 11
  year: 2007
  end-page: 26
  ident: b0485
  article-title: Soft computing techniques applied to combinatorial catalysis: A new approach for the discovery and optimization of catalytic materials
  publication-title: QSAR Comb. Sci.
– volume: 5
  start-page: 24131
  year: 2017
  end-page: 24138
  ident: b0315
  article-title: High-throughput screening of bimetallic catalysts enabled by machine learning
  publication-title: J. Mater. Chem. A
– volume: 40
  start-page: 5475
  year: 2001
  end-page: 5480
  ident: b0110
  article-title: Design of a propane ammoxidation catalyst using artificial neural networks and genetic algorithms
  publication-title: Ind. Eng. Chem. Res.
– volume: 63
  start-page: 635
  year: 2020
  end-page: 648
  ident: b0115
  article-title: The challenge of CO hydrogenation to methanol: fundamental limitations imposed by linear scaling relations
  publication-title: Top. Catal.
– volume: 114
  year: 2015
  ident: b0155
  article-title: Big data of materials science: Critical role of the descriptor
  publication-title: Phys. Rev. Lett.
– volume: 3
  start-page: 9083
  year: 2020
  end-page: 9088
  ident: b0225
  article-title: Coupling high-throughput experiments and regression algorithms to optimize PGM-free ORR electrocatalyst synthesis
  publication-title: ACS Appl. Energy Mater.
– volume: 275
  start-page: 117885
  year: 2020
  ident: b0585
  article-title: Thermal decomposition mechanism of some hydrocarbons by ReaxFF-based molecular dynamics and density functional theory study
  publication-title: Fuel
– volume: 115
  start-page: 1094
  year: 2015
  end-page: 1101
  ident: b0130
  article-title: Crystal structure representations for machine learning models of formation energies
  publication-title: Int. J. Quantum Chem.
– volume: 1
  start-page: 282
  year: 2019
  end-page: 291
  ident: b0190
  article-title: Next-generation experimentation with self-driving laboratories
  publication-title: Trends Chem.
– volume: 29
  start-page: 9436
  year: 2017
  end-page: 9444
  ident: b0240
  article-title: Materials Synthesis Insights from Scientific Literature via Text Extraction and Machine Learning
  publication-title: Chem. Mater.
– volume: 34
  start-page: 631
  year: 2010
  end-page: 642
  ident: b0370
  article-title: A semi-supervised approach to fault diagnosis for chemical processes
  publication-title: Comput. Chem. Eng.
– volume: 39
  start-page: 2405
  year: 2018
  end-page: 2408
  ident: b0510
  article-title: Rapid estimation of activation energy in heterogeneous catalytic reactions via machine learning
  publication-title: J. Comput. Chem.
– volume: 32
  start-page: 709
  year: 2020
  end-page: 720
  ident: b0245
  article-title: Artificial intelligence to accelerate the discovery of N2 electroreduction catalysts
  publication-title: Chem. Mater.
– volume: 124
  start-page: 731
  year: 2020
  end-page: 745
  ident: b0635
  article-title: Performance and cost assessment of machine learning interatomic potentials
  publication-title: J. Phys. Chem. A.
– volume: 11
  start-page: 787
  year: 2020
  end-page: 795
  ident: b0365
  article-title: Data-driven identification of the reaction network in oxidative coupling of the methane reaction via experimental data
  publication-title: J. Phys. Chem. Lett.
– volume: 279
  start-page: 118548
  year: 2020
  ident: b0285
  article-title: ReaxFF-based molecular dynamics study of bio-derived polycyclic alkanes as potential alternative jet fuels
  publication-title: Fuel
– volume: 7
  start-page: 6600
  issue: 10
  year: 2017
  ident: 10.1016/j.ces.2021.117224_b0545
  article-title: Machine-learning methods enable exhaustive searches for active Bimetallic facets and reveal active site motifs for CO2 reduction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b01648
– volume: 1
  start-page: 282
  issue: 3
  year: 2019
  ident: 10.1016/j.ces.2021.117224_b0190
  article-title: Next-generation experimentation with self-driving laboratories
  publication-title: Trends Chem.
  doi: 10.1016/j.trechm.2019.02.007
– ident: 10.1016/j.ces.2021.117224_b0080
  doi: 10.1021/acscatal.0c04525
– volume: 39
  start-page: 396
  issue: 2
  year: 1999
  ident: 10.1016/j.ces.2021.117224_b0330
  article-title: Prediction of the brain-blood distribution of a large set of drugs from structurally derived descriptors using partial least-squares (PLS) modeling
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci980411n
– volume: 147
  start-page: 152706
  issue: 15
  year: 2017
  ident: 10.1016/j.ces.2021.117224_b0615
  article-title: Stochastic surface walking reaction sampling for resolving heterogeneous catalytic reaction network: A revisit to the mechanism of water-gas shift reaction on Cu
  publication-title: J. Chem. Phys. DOI
  doi: 10.1063/1.4989540
– volume: 263
  start-page: 118257
  year: 2020
  ident: 10.1016/j.ces.2021.117224_b0500
  article-title: A machine learning framework for the analysis and prediction of catalytic activity from experimental data
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.118257
– volume: 9
  start-page: 10752
  year: 2019
  ident: 10.1016/j.ces.2021.117224_b0620
  article-title: Optimization of molecules via deep reinforcement learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-47148-x
– ident: 10.1016/j.ces.2021.117224_b0415
  doi: 10.1016/j.compchemeng.2019.106649
– volume: 40
  start-page: 1861
  year: 2017
  ident: 10.1016/j.ces.2021.117224_b0420
  article-title: A stochastic approach for integration of design and control under uncertainty: a back-off approach using power series expansions
  publication-title: Comput. Aided Chem. Eng.
  doi: 10.1016/B978-0-444-63965-3.50312-3
– volume: 9
  start-page: 10951
  issue: 12
  year: 2019
  ident: 10.1016/j.ces.2021.117224_b0065
  article-title: Impact of specific interactions among reactive surface intermediates and confined water on epoxidation catalysis and adsorption in lewis acid zeolites
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b03323
– volume: 367
  start-page: 43
  year: 2018
  ident: 10.1016/j.ces.2021.117224_b0300
  article-title: Surface decorated cobalt sulfide as efficient catalyst for oxygen evolution reaction and its intrinsic activity
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2018.08.020
– volume: 49
  start-page: 252
  issue: 1
  year: 2010
  ident: 10.1016/j.ces.2021.117224_b0120
  article-title: Efficient recursive principal component analysis algorithms for process monitoring
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie900720w
– volume: 161
  start-page: 11
  year: 2020
  ident: 10.1016/j.ces.2021.117224_b0250
  article-title: Artificial Neural Networks for dynamic optimization of stochastic multiscale systems subject to uncertainty
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2020.06.017
– volume: 125
  start-page: 3704
  issue: 13
  year: 2003
  ident: 10.1016/j.ces.2021.117224_b0360
  article-title: Identification of general linear relationships between activation energies and enthalpy changes for dissociation reactions at surfaces
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja027366r
– volume: 174
  start-page: 414
  year: 2021
  ident: 10.1016/j.ces.2021.117224_b0430
  article-title: Machine Learning on sustainable energy: A review and outlook on renewable energy systems, catalysis, smart grid and energy storage
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2021.08.013
– volume: 1
  start-page: 011002
  issue: 1
  year: 2013
  ident: 10.1016/j.ces.2021.117224_b0215
  article-title: Commentary: The materials project: A materials genome approach to accelerating materials innovation
  publication-title: APL Mater.
  doi: 10.1063/1.4812323
– volume: 64
  start-page: 2311
  issue: 7
  year: 2018
  ident: 10.1016/j.ces.2021.117224_b0160
  article-title: Machine learning for heterogeneous catalyst design and discovery
  publication-title: AIChE J.
  doi: 10.1002/aic.16198
– volume: 195
  start-page: 514
  year: 2020
  ident: 10.1016/j.ces.2021.117224_b0520
  article-title: Exergy-based optimisation of a phase change materials integrated hybrid renewable system for active cooling applications using supervised machine learning method
  publication-title: Sol. Energy.
  doi: 10.1016/j.solener.2019.11.067
– volume: 99
  year: 2007
  ident: 10.1016/j.ces.2021.117224_b0005
  article-title: Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.016105
– volume: 242
  start-page: 125232
  year: 2020
  ident: 10.1016/j.ces.2021.117224_b0095
  article-title: Molecular insights into the impacts of iron(III) ions on membrane fouling by alginate
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.125232
– volume: 124
  start-page: 10483
  issue: 19
  year: 2020
  ident: 10.1016/j.ces.2021.117224_b0610
  article-title: Amorphous catalysis: machine learning driven high-throughput screening of superior active site for hydrogen evolution reaction
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.0c00406
– volume: 115
  start-page: 1094
  issue: 16
  year: 2015
  ident: 10.1016/j.ces.2021.117224_b0130
  article-title: Crystal structure representations for machine learning models of formation energies
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.24917
– volume: 6
  start-page: 76
  year: 2019
  ident: 10.1016/j.ces.2021.117224_b0340
  article-title: High-throughput calculations of catalytic properties of bimetallic alloy surfaces
  publication-title: Sci. data
  doi: 10.1038/s41597-019-0080-z
– volume: 3
  start-page: 9083
  issue: 9
  year: 2020
  ident: 10.1016/j.ces.2021.117224_b0225
  article-title: Coupling high-throughput experiments and regression algorithms to optimize PGM-free ORR electrocatalyst synthesis
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c01466
– volume: 108
  year: 2012
  ident: 10.1016/j.ces.2021.117224_b0440
  article-title: Fast and accurate modeling of molecular atomization energies with machine learning
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.058301
– volume: 218–219
  start-page: 162
  year: 2013
  ident: 10.1016/j.ces.2021.117224_b0085
  article-title: Nobel Prize in chemistry 1912 to Sabatier: Organic chemistry or catalysis?
  publication-title: Catal. Today.
  doi: 10.1016/j.cattod.2013.07.006
– volume: 7
  start-page: 48962
  issue: 77
  year: 2017
  ident: 10.1016/j.ces.2021.117224_b0135
  article-title: Artificial neural network analysis of the catalytic efficiency of platinum nanoparticles
  publication-title: RSC Adv.
  doi: 10.1039/C7RA06622H
– ident: 10.1016/j.ces.2021.117224_b0400
– volume: 60
  start-page: 5995
  issue: 12
  year: 2020
  ident: 10.1016/j.ces.2021.117224_b0450
  article-title: MultiCon: A semi-supervised approach for predicting drug function from chemical structure analysis
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.0c00801
– volume: 89
  start-page: 1595
  issue: 12
  year: 2012
  ident: 10.1016/j.ces.2021.117224_b0290
  article-title: Electrochemical hydrogen evolution: Sabatiers principle and the volcano plot
  publication-title: J. Chem. Educ.
  doi: 10.1021/ed200818t
– volume: 64
  start-page: 2379
  issue: 7
  year: 2018
  ident: 10.1016/j.ces.2021.117224_b0280
  article-title: Stochastic back-off algorithm for simultaneous design, control, and scheduling of multiproduct systems under uncertainty
  publication-title: AIChE J.
  doi: 10.1002/aic.16092
– volume: 120
  year: 2018
  ident: 10.1016/j.ces.2021.117224_b0580
  article-title: Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.145301
– volume: 116
  start-page: 979
  issue: 13
  year: 2016
  ident: 10.1016/j.ces.2021.117224_b0055
  article-title: Neural network and ReaxFF comparison for Au properties
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.25115
– volume: 15
  start-page: e0229862
  issue: 4
  year: 2020
  ident: 10.1016/j.ces.2021.117224_b0435
  article-title: ChemOS: An orchestration software to democratize autonomous discovery
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0229862
– volume: 10
  start-page: 3722
  year: 2008
  ident: 10.1016/j.ces.2021.117224_b0185
  article-title: Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b803956a
– volume: 1
  year: 2014
  ident: 10.1016/j.ces.2021.117224_b0425
  article-title: Quantum chemistry structures and properties of 134 kilo molecules
  publication-title: Sci. Data.
  doi: 10.1038/sdata.2014.22
– ident: 10.1016/j.ces.2021.117224_b0405
  doi: 10.1016/B978-0-44-456349-1.00016-7
– volume: 63
  start-page: 635
  issue: 7-8
  year: 2020
  ident: 10.1016/j.ces.2021.117224_b0115
  article-title: The challenge of CO hydrogenation to methanol: fundamental limitations imposed by linear scaling relations
  publication-title: Top. Catal.
  doi: 10.1007/s11244-020-01283-2
– volume: 330
  start-page: 127232
  year: 2020
  ident: 10.1016/j.ces.2021.117224_b0305
  article-title: Exploration of chemical markers using a metabolomics strategy and machine learning to study the different origins of Ixeris denticulata (Houtt.) Stebb
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2020.127232
– volume: 26
  start-page: 11
  year: 2019
  ident: 10.1016/j.ces.2021.117224_b0490
  article-title: Reinforcement Learning – Overview of recent progress and implications for process control
  publication-title: Comput. Chem. Eng.
– ident: 10.1016/j.ces.2021.117224_b0590
  doi: 10.1021/acsomega.9b03673
– volume: 119
  start-page: 465
  year: 2018
  ident: 10.1016/j.ces.2021.117224_b0075
  article-title: Optimization and control of a thin film growth process: A hybrid first principles/artificial neural network based multiscale modelling approach
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2018.08.029
– volume: 51
  start-page: 3170
  issue: 6
  year: 2016
  ident: 10.1016/j.ces.2021.117224_b0560
  article-title: Multifunctional magnetic branched polyethylenimine nanogels with in-situ generated Fe3O4 and their applications as dye adsorbent and catalyst support
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-015-9627-3
– ident: 10.1016/j.ces.2021.117224_b0045
– volume: 141
  start-page: 11651
  issue: 29
  year: 2019
  ident: 10.1016/j.ces.2021.117224_b0090
  article-title: Identifying active sites for CO2 reduction on dealloyed gold surfaces by combining machine learning with multiscale simulations
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b04956
– volume: 29
  start-page: 9436
  issue: 21
  year: 2017
  ident: 10.1016/j.ces.2021.117224_b0240
  article-title: Materials Synthesis Insights from Scientific Literature via Text Extraction and Machine Learning
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b03500
– volume: 8
  start-page: 5209
  issue: 10
  year: 2020
  ident: 10.1016/j.ces.2021.117224_b0605
  article-title: Machine learning-based high throughput screening for nitrogen fixation on boron-doped single atom catalysts
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C9TA12608B
– volume: 9
  start-page: 2261
  issue: 8
  year: 2018
  ident: 10.1016/j.ces.2021.117224_b0595
  article-title: The TensorMol-0.1 model chemistry: A neural network augmented with long-range physics
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC04934J
– volume: 3
  start-page: 834
  issue: 3
  year: 2019
  ident: 10.1016/j.ces.2021.117224_b0035
  article-title: High-entropy alloys as a discovery platform for electrocatalysis
  publication-title: Joule.
  doi: 10.1016/j.joule.2018.12.015
– volume: 64
  start-page: 1651
  issue: 5
  year: 2018
  ident: 10.1016/j.ces.2021.117224_b0260
  article-title: Multilevel Monte Carlo applied to chemical engineering systems subject to uncertainty
  publication-title: AIChE J.
  doi: 10.1002/aic.16045
– volume: 26
  start-page: 11
  issue: 1
  year: 2007
  ident: 10.1016/j.ces.2021.117224_b0485
  article-title: Soft computing techniques applied to combinatorial catalysis: A new approach for the discovery and optimization of catalytic materials
  publication-title: QSAR Comb. Sci.
  doi: 10.1002/qsar.200420051
– volume: 14
  start-page: 2670
  issue: 5
  year: 2014
  ident: 10.1016/j.ces.2021.117224_b0015
  article-title: Understanding the composition and activity of electrocatalytic nanoalloys in aqueous solvents: A combination of DFT and accurate neural network potentials
  publication-title: Nano Lett.
  doi: 10.1021/nl5005674
– volume: 7
  start-page: 3931
  issue: 19
  year: 2016
  ident: 10.1016/j.ces.2021.117224_b0540
  article-title: Automated discovery and construction of surface phase diagrams using machine learning
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b01254
– volume: 328
  start-page: 36
  year: 2015
  ident: 10.1016/j.ces.2021.117224_b0350
  article-title: From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2014.12.033
– volume: 11
  start-page: 3581
  issue: 16
  year: 2019
  ident: 10.1016/j.ces.2021.117224_b0465
  article-title: Machine learning for computational heterogeneous catalysis
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201900595
– volume: 232
  start-page: 335
  issue: 2
  year: 2005
  ident: 10.1016/j.ces.2021.117224_b0105
  article-title: Integrating high-throughput characterization into combinatorial heterogeneous catalysis: Unsupervised construction of quantitative structure/property relationship models
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2005.03.019
– volume: 132
  start-page: 261
  issue: 2
  year: 1995
  ident: 10.1016/j.ces.2021.117224_b0460
  article-title: Application of a neural network to the analysis of catalytic reactions Analysis of NO decomposition over Cu/ZSM-5 zeolite. Appl
  publication-title: Catal. A, Gen.
  doi: 10.1016/0926-860X(95)00171-9
– volume: 140
  start-page: 4678
  issue: 13
  year: 2018
  ident: 10.1016/j.ces.2021.117224_b0565
  article-title: Chemical pressure-driven enhancement of the hydrogen evolving activity of Ni2P from nonmetal surface doping interpreted via machine learning
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b00947
– volume: 9
  start-page: 7651
  issue: 9
  year: 2019
  ident: 10.1016/j.ces.2021.117224_b0025
  article-title: Toward a design of active oxygen evolution catalysts: insights from automated density functional theory calculations and machine learning
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b02416
– volume: 7
  start-page: 327
  issue: 1
  year: 2017
  ident: 10.1016/j.ces.2021.117224_b0480
  article-title: Methane activation at the Pd/CeO2 interface
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02447
– volume: 8
  start-page: 14621
  year: 2017
  ident: 10.1016/j.ces.2021.117224_b0535
  article-title: To address surface reaction network complexity using scaling relations machine learning and DFT calculations
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14621
– volume: 10
  start-page: 7760
  issue: 24
  year: 2019
  ident: 10.1016/j.ces.2021.117224_b0630
  article-title: Activity origin and design principles for oxygen reduction on dual-metal-site catalysts: a combined density functional theory and machine learning study
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b03392
– volume: 6
  start-page: 52587
  issue: 58
  year: 2016
  ident: 10.1016/j.ces.2021.117224_b0515
  article-title: Machine-learning prediction of the d-band center for metals and bimetals
  publication-title: RSC Adv.
  doi: 10.1039/C6RA04345C
– volume: 8
  start-page: 5091
  issue: 20
  year: 2017
  ident: 10.1016/j.ces.2021.117224_b0530
  article-title: Supervised machine-learning-based determination of three-dimensional structure of metallic nanoparticles
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b02364
– volume: 63
  start-page: 3361
  issue: 8
  year: 2017
  ident: 10.1016/j.ces.2021.117224_b0265
  article-title: A comparison of efficient uncertainty quantification techniques for stochastic multiscale systems
  publication-title: AIChE J.
  doi: 10.1002/aic.15702
– volume: 12
  start-page: 68
  year: 2020
  ident: 10.1016/j.ces.2021.117224_b0050
  article-title: Memory-assisted reinforcement learning for diverse molecular de novo design
  publication-title: J. Cheminform.
  doi: 10.1186/s13321-020-00473-0
– ident: 10.1016/j.ces.2021.117224_b0100
  doi: 10.1021/acs.jctc.9b00986
– volume: 32
  start-page: 709
  issue: 2
  year: 2020
  ident: 10.1016/j.ces.2021.117224_b0245
  article-title: Artificial intelligence to accelerate the discovery of N2 electroreduction catalysts
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b03686
– volume: 115
  start-page: 1032
  year: 2015
  ident: 10.1016/j.ces.2021.117224_b0040
  article-title: Constructing high-dimensional neural network potentials: A tutorial review
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.24890
– volume: 5
  start-page: 24131
  issue: 46
  year: 2017
  ident: 10.1016/j.ces.2021.117224_b0315
  article-title: High-throughput screening of bimetallic catalysts enabled by machine learning
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01812F
– volume: 4
  start-page: 44302
  issue: 83
  year: 2014
  ident: 10.1016/j.ces.2021.117224_b0320
  article-title: Preparation of magnetic mesoporous core-shell nanocomposites for cinnamic acid hydrogenation
  publication-title: RSC Adv.
  doi: 10.1039/C4RA07176J
– volume: 188
  start-page: 116076
  year: 2019
  ident: 10.1016/j.ces.2021.117224_b0555
  article-title: Modelling and optimization of a pilot-scale entrained-flow gasifier using artificial neural networks
  publication-title: Energy.
  doi: 10.1016/j.energy.2019.116076
– volume: 30
  start-page: 595
  issue: 8
  year: 2016
  ident: 10.1016/j.ces.2021.117224_b0230
  article-title: Molecular graph convolutions: moving beyond fingerprints
  publication-title: J. Comput. Aided. Mol. Des.
  doi: 10.1007/s10822-016-9938-8
– volume: 275
  start-page: 117885
  year: 2020
  ident: 10.1016/j.ces.2021.117224_b0585
  article-title: Thermal decomposition mechanism of some hydrocarbons by ReaxFF-based molecular dynamics and density functional theory study
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.117885
– volume: 108
  start-page: 937
  issue: 3
  year: 2011
  ident: 10.1016/j.ces.2021.117224_b0390
  article-title: Density functional theory in surface chemistry and catalysis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1006652108
– volume: 39
  start-page: 5733
  issue: 11
  year: 2014
  ident: 10.1016/j.ces.2021.117224_b0395
  article-title: Knowledge extraction for water gas shift reaction over noble metal catalysts from publications in the literature between 2002 and 2012
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.01.160
– volume: 29
  start-page: 273002
  issue: 27
  year: 2017
  ident: 10.1016/j.ces.2021.117224_b0200
  article-title: The atomic simulation environment - A Python library for working with atoms
  publication-title: J. Phys. Condens. Matter.
  doi: 10.1088/1361-648X/aa680e
– volume: 145
  start-page: 074106
  issue: 7
  year: 2016
  ident: 10.1016/j.ces.2021.117224_b0410
  article-title: Acceleration of saddle-point searches with machine learning
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4960708
– volume: 12
  start-page: 88
  year: 2021
  ident: 10.1016/j.ces.2021.117224_b0140
  article-title: Machine learned features from density of states for accurate adsorption energy prediction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20342-6
– volume: 19
  start-page: 1
  year: 1969
  ident: 10.1016/j.ces.2021.117224_b0030
  article-title: Modern state of the multiplet theor of heterogeneous catalysis
  publication-title: Adv. Catal.
  doi: 10.1016/S0360-0564(08)60029-2
– volume: 124
  start-page: 18615
  issue: 34
  year: 2020
  ident: 10.1016/j.ces.2021.117224_b0255
  article-title: Artificial neural network discrimination for parameter estimation and optimal product design of thin films manufactured by chemical vapor deposition
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.0c05250
– volume: 9
  start-page: 5152
  issue: 23
  year: 2018
  ident: 10.1016/j.ces.2021.117224_b0380
  article-title: Active learning with non-: Ab initio input features toward efficient CO2 reduction catalysts
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC03422A
– volume: 279
  start-page: 118548
  year: 2020
  ident: 10.1016/j.ces.2021.117224_b0285
  article-title: ReaxFF-based molecular dynamics study of bio-derived polycyclic alkanes as potential alternative jet fuels
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.118548
– volume: 114
  year: 2015
  ident: 10.1016/j.ces.2021.117224_b0155
  article-title: Big data of materials science: Critical role of the descriptor
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.105503
– volume: 47
  start-page: 8307
  issue: 22
  year: 2018
  ident: 10.1016/j.ces.2021.117224_b0165
  article-title: Towards operando computational modeling in heterogeneous catalysis
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00398J
– volume: 639
  start-page: 205
  year: 2015
  ident: 10.1016/j.ces.2021.117224_b0295
  article-title: Theoretical investigation of the methane cracking reaction pathways on Ni (1 1 1) surface
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2015.09.030
– volume: 7
  start-page: 5267
  issue: 22
  year: 2017
  ident: 10.1016/j.ces.2021.117224_b0445
  article-title: Ab initio coverage-dependent microkinetic modeling of benzene hydrogenation on Pd(111)
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C7CY00962C
– volume: 361
  start-page: 360
  issue: 6400
  year: 2018
  ident: 10.1016/j.ces.2021.117224_b0455
  article-title: Inverse molecular design using machine learning: Generative models for matter engineering
  publication-title: Science
  doi: 10.1126/science.aat2663
– volume: 343
  start-page: 211
  issue: 3
  year: 1995
  ident: 10.1016/j.ces.2021.117224_b0180
  article-title: Electronic factors determining the reactivity of metal surfaces
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(96)80007-0
– volume: 184
  start-page: 109948
  year: 2020
  ident: 10.1016/j.ces.2021.117224_b0195
  article-title: Robust activation energy predictions of solute diffusion from machine learning method
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2020.109948
– volume: 3
  start-page: 5
  issue: 5
  year: 2018
  ident: 10.1016/j.ces.2021.117224_b0505
  article-title: Accelerating the discovery of materials for clean energy in the era of smart automation
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-018-0005-z
– volume: 9
  start-page: 11774
  issue: 12
  year: 2019
  ident: 10.1016/j.ces.2021.117224_b0345
  article-title: Machine learning for accelerated discovery of solar photocatalysts
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b02531
– volume: 11
  start-page: 869
  year: 2020
  ident: 10.1016/j.ces.2021.117224_b0150
  article-title: Predicted optimal bifunctional electrocatalysts for both HER and OER using chalcogenide heterostructures based on machine learning analysis of in silico quantum mechanics based high throughput screening
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b03875
– volume: 100
  year: 2019
  ident: 10.1016/j.ces.2021.117224_b0125
  article-title: Coverage-dependent anisotropy of the NTCDA/Ag(111) interface state dispersion
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.100.125155
– volume: 9
  start-page: 5152
  year: 2017
  ident: 10.1016/j.ces.2021.117224_b0385
  article-title: Catalyst design using actively learned machine with non-ab initio input features towards CO2 reduction reactions
  publication-title: ArXiv e-prints.
– volume: 11
  start-page: 787
  issue: 3
  year: 2020
  ident: 10.1016/j.ces.2021.117224_b0365
  article-title: Data-driven identification of the reaction network in oxidative coupling of the methane reaction via experimental data
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b03678
– volume: 1
  start-page: 15010
  year: 2015
  ident: 10.1016/j.ces.2021.117224_b0270
  article-title: The open quantum materials database (OQMD): Assessing the accuracy of DFT formation energies
  publication-title: npj Comput. Mater.
  doi: 10.1038/npjcompumats.2015.10
– volume: 324
  start-page: 126864
  year: 2020
  ident: 10.1016/j.ces.2021.117224_b0060
  article-title: Novel scaffold of natural compound eliciting sweet taste revealed by machine learning
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2020.126864
– volume: 34
  start-page: 631
  issue: 5
  year: 2010
  ident: 10.1016/j.ces.2021.117224_b0370
  article-title: A semi-supervised approach to fault diagnosis for chemical processes
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2009.12.008
– volume: 14
  start-page: 1235
  issue: 3
  year: 2012
  ident: 10.1016/j.ces.2021.117224_b0495
  article-title: A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C1CP22271F
– volume: 89
  year: 2014
  ident: 10.1016/j.ces.2021.117224_b0475
  article-title: How to represent crystal structures for machine learning: Towards fast prediction of electronic properties
  publication-title: Phys. Rev. B - Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.89.205118
– volume: 147
  start-page: 152720
  issue: 15
  year: 2017
  ident: 10.1016/j.ces.2021.117224_b0275
  article-title: Nudged elastic band calculations accelerated with Gaussian process regression
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4986787
– volume: 10
  start-page: 9438
  issue: 16
  year: 2020
  ident: 10.1016/j.ces.2021.117224_b0020
  article-title: Predicting the activity and selectivity of bimetallic metal catalysts for ethanol reforming using machine learning
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c02089
– volume: 124
  start-page: 19571
  issue: 36
  year: 2020
  ident: 10.1016/j.ces.2021.117224_b0145
  article-title: Descriptors for hydrogen evolution on single atom catalysts in nitrogen-doped graphene
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.0c04432
– volume: 3
  start-page: 454
  issue: 4
  year: 2018
  ident: 10.1016/j.ces.2021.117224_b0170
  article-title: Thermochemistry of gas-phase and surface species via LASSO-assisted subgraph selection
  publication-title: React. Chem. Eng.
  doi: 10.1039/C7RE00210F
– volume: 8
  start-page: 4279
  issue: 17
  year: 2017
  ident: 10.1016/j.ces.2021.117224_b0220
  article-title: Predicting catalytic activity of nanoparticles by a DFT-aided machine-learning algorithm
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b02010
– volume: 4
  start-page: S6
  year: 2010
  ident: 10.1016/j.ces.2021.117224_b0575
  article-title: Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces
  publication-title: BMC Syst. Biol.
  doi: 10.1186/1752-0509-4-S2-S6
– volume: 207
  start-page: 310
  year: 2016
  ident: 10.1016/j.ces.2021.117224_b0235
  article-title: Amp: A modular approach to machine learning in atomistic simulations
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2016.05.010
– volume: 4. 4
  start-page: 37
  year: 2018
  ident: 10.1016/j.ces.2021.117224_b0210
  article-title: Machine learning hydrogen adsorption on nanoclusters through structural descriptors
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-018-0096-5
– volume: 139
  start-page: 106886
  year: 2020
  ident: 10.1016/j.ces.2021.117224_b0375
  article-title: A review On reinforcement learning: Introduction and applications in industrial process control
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2020.106886
– volume: 280
  start-page: 232
  year: 2017
  ident: 10.1016/j.ces.2021.117224_b0310
  article-title: Feature engineering of machine-learning chemisorption models for catalyst design
  publication-title: Catal. Today.
  doi: 10.1016/j.cattod.2016.04.013
– volume: 118
  year: 2017
  ident: 10.1016/j.ces.2021.117224_b0335
  article-title: Orbitalwise coordination number for predicting adsorption properties of metal nanocatalysts
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.036101
– volume: 480
  start-page: 171
  year: 2019
  ident: 10.1016/j.ces.2021.117224_b0525
  article-title: Coverage dependent CO adsorption manners on seven MoP surfaces with DFT based thermodynamics method
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.02.202
– volume: 54
  start-page: 2741
  issue: 12
  year: 2021
  ident: 10.1016/j.ces.2021.117224_b0010
  article-title: Adsorption enthalpies for catalysis modeling through machine-learned descriptors
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.1c00153
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.1016/j.ces.2021.117224_b0470
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2014.09.003
– volume: 339
  start-page: 9
  year: 2016
  ident: 10.1016/j.ces.2021.117224_b0070
  article-title: Novel layered double hydroxide/oxide-coated nickel-based core-shell nanocomposites for benzonitrile selective hydrogenation: An interesting water switch
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2016.03.015
– volume: 89
  year: 2014
  ident: 10.1016/j.ces.2021.117224_b0355
  article-title: Combinatorial screening for new materials in unconstrained composition space with machine learning
  publication-title: Phys. Rev. B - Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.89.094104
– volume: 124
  start-page: 731
  issue: 4
  year: 2020
  ident: 10.1016/j.ces.2021.117224_b0635
  article-title: Performance and cost assessment of machine learning interatomic potentials
  publication-title: J. Phys. Chem. A.
  doi: 10.1021/acs.jpca.9b08723
– volume: 376
  start-page: 238
  issue: 6537
  year: 1995
  ident: 10.1016/j.ces.2021.117224_b0175
  article-title: Why gold is the noblest of all the metals
  publication-title: Nature
  doi: 10.1038/376238a0
– volume: 39
  start-page: 2405
  issue: 28
  year: 2018
  ident: 10.1016/j.ces.2021.117224_b0510
  article-title: Rapid estimation of activation energy in heterogeneous catalytic reactions via machine learning
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.25567
– ident: 10.1016/j.ces.2021.117224_b0205
– volume: 17
  start-page: 850
  issue: 4
  year: 2003
  ident: 10.1016/j.ces.2021.117224_b0550
  article-title: Optimization of catalyst for methanol synthesis by a combinatorial approach using a parallel activity test and genetic algorithm assisted by a neural network
  publication-title: Energy Fuels
  doi: 10.1021/ef020241n
– volume: 3
  start-page: 1337
  issue: 12
  year: 2017
  ident: 10.1016/j.ces.2021.117224_b0625
  article-title: Optimizing chemical reactions with deep reinforcement learning
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.7b00492
– volume: 40
  start-page: 5475
  issue: 23
  year: 2001
  ident: 10.1016/j.ces.2021.117224_b0110
  article-title: Design of a propane ammoxidation catalyst using artificial neural networks and genetic algorithms
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie010316v
– volume: 691
  start-page: 121513
  year: 2020
  ident: 10.1016/j.ces.2021.117224_b0600
  article-title: Carbon chain growth mechanism of higher alcohols synthesis from syngas on CoCu(100): A combined DFT and kMC study
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2019.121513
– volume: 151
  start-page: 164201
  issue: 16
  year: 2019
  ident: 10.1016/j.ces.2021.117224_b0325
  article-title: Mapping XANES spectra on structural descriptors of copper oxide clusters using supervised machine learning
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5126597
– volume: 9
  start-page: 513
  issue: 2
  year: 2018
  ident: 10.1016/j.ces.2021.117224_b0570
  article-title: MoleculeNet: A benchmark for molecular machine learning
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC02664A
SSID ssj0007710
Score 2.6143048
SecondaryResourceType review_article
Snippet Recently, the availability of extensive catalysis-related data generated by experimental data and theoretical calculations has promoted the development of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 117224
SubjectTerms Catalysis descriptors
Catalyst database
Heterogeneous catalysis
Machine learning
Title Machine learning in solid heterogeneous catalysis: Recent developments, challenges and perspectives
URI https://dx.doi.org/10.1016/j.ces.2021.117224
Volume 248
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKu8CAeIryqDwwIUIdO4kdtqqiKqB2olK3yHZsCEJpRcvKb-ecR1skYGCNfFJ0vtwj9913CF0KalnIeegRFVsvUER40oGpuE0jaYg2vGDbH42j4SR4mIbTBurXszAOVln5_tKnF966etKttNmdZ5mb8SUxBPCYuka_iMEPtyiLo7CJWr37x-F45ZA590m9UM0J1M3NAuYFXyNUidR33UtKg5_D00bIGeyh3SpXxL3ydfZRw-QHaGeDQfAQ6VEBhjS42v7wjLMcgzllKX5xQJcZ2IeB4h4Xv2kc-8gthkwRIg1O13ChxTXW9VKVBZZ5iufrGczFEZoM7p76Q6_am-BpGvOl5yjpFIRlrSDZCgNfSGOo9FkUaKul4NpngTJQCHHGY6WJZZFQnEshNaEWUpBj1MxnuTlBmBBLZQoXFok0iA0XlsEppog1TKdatxGp1ZXoilTc7bZ4S2r02GsCGk6chpNSw210tRKZl4wafx0O6jtIvplFAh7_d7HT_4mdoW3qphscKJueo-by_cNcQM6xVB20dfPpdyrL-gKH-9Ys
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMgAD4inK0wMTItSxndhhQxVVgbZTK3WLbMeGIpRWtKz8ds5pQosEDKzRnRSdL_eIv_sOoQtJHYuEiAKiExdwTWSgPJhKuCxWlhgrCrb9Xj_uDPnDKBrVUKuahfGwyjL2L2J6Ea3LJ83Sms3peOxnfEkCCTyh_qJfJhCH13jEhCfQv_5Y4jyECEm1Ts2LV1ebBcgLvkXoEWno7y4p5T8np5WE095GW2WliG8XL7ODajbfRZsr_IF7yPQKKKTF5e6HJzzOMTjTOMPPHuYyAe-w0Nrj4ieN5x65wVAnQp7B2RIsNLvCplqpMsMqz_B0OYE520fD9t2g1QnKrQmBoYmYB56QTkNSNhpKrYiHUllLVchibpxRUpiQcW2hDRJMJNoQx2KphVBSGUIdFCAHqJ5PcnuIMCGOqgyOK5YZT6yQjoEU08RZZjJjGohU5kpNSSnuN1u8phV27CUFC6fewunCwg10-aUyXfBp_CXMqzNIvzlFCvH-d7Wj_6mdo_XOoNdNu_f9x2O0Qf2cg4dn0xNUn7-921OoPub6rPCuT1Ih1vY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+in+solid+heterogeneous+catalysis%3A+Recent+developments%2C+challenges+and+perspectives&rft.jtitle=Chemical+engineering+science&rft.au=Guan%2C+Yani&rft.au=Chaffart%2C+Donovan&rft.au=Liu%2C+Guihua&rft.au=Tan%2C+Zhaoyang&rft.date=2022-02-02&rft.pub=Elsevier+Ltd&rft.issn=0009-2509&rft.eissn=1873-4405&rft.volume=248&rft_id=info:doi/10.1016%2Fj.ces.2021.117224&rft.externalDocID=S0009250921007892
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2509&client=summon