Numeric Algorithms for Corank Two Edge-bipartite Graphs and their Mesh Geometries of Roots
Following a Coxeter spectral analysis problems for positive edge-bipartite graphs (signed multigraphs with a separation property) introduced in [SIAM J. Discr. Math. 27(2013), 827-854] and [Fund. Inform. 123(2013), 447-490], we study analogous problems for loop-free corank two edge-bipartite graphs...
Saved in:
| Published in | Fundamenta informaticae Vol. 152; no. 2; pp. 185 - 222 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
London, England
SAGE Publications
01.01.2017
Sage Publications Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0169-2968 1875-8681 |
| DOI | 10.3233/FI-2017-1518 |
Cover
| Abstract | Following a Coxeter spectral analysis problems for positive edge-bipartite graphs (signed multigraphs with a separation property) introduced in [SIAM J. Discr. Math. 27(2013), 827-854] and [Fund. Inform. 123(2013), 447-490], we study analogous problems for loop-free corank two edge-bipartite graphs Δ = (Δ0,Δ1). i.e. for edge-bipartite graphs Δ, with at least n = 3 vertices such that their rational symmetric Gram matrix GΔ ∈
n
(ℚ) is positive semi-definite of rank n – 2. We study such connected edge-bipartite graphs by means of the non-symmetric Gram matrix ĞΔ ∈
n
(ℤ), the Coxeter matrix CoxΔ := –ĞΔ · ĞΔ–tr, its complex spectrum speccΔ ⊆ ℂ, and an associated simply laced Dynkin diagram DynΔ, with n – 2 vertices. Here ℤ means the ring of integers. It is well-known that if Δ ≈ℤ Δ′ (i.e., there exists B ∈
n
(ℤ) such that det B = ±1 and ĞΔ′ = Btr · ĞΔ · B) then speccΔ = speccΔ′ and DynΔ = DynΔ′.
A complete classification of connected non-negative loop-free edge-bipartite graphs Δ with at most six vertices of corank two, up to the ℤ-congruence Δ ≈ℤ Δ′, is also given. A complete list of representatives of the ℤ-congruence classes of all connected non-negative edge-bipartite graphs of corank two with with at most 6 vertices is constructed; it consists of 1, 2, 2 and 8 edge-bipartite graphs of corank two with 3, 4, 5 and 6 vertices, respectively. |
|---|---|
| AbstractList | Following a Coxeter spectral analysis problems for positive edge-bipartite graphs (signed multigraphs with a separation property) introduced in [SIAM J. Discr. Math. 27(2013), 827-854] and [Fund. Inform. 123(2013), 447-490], we study analogous problems for loop-free corank two edge-bipartite graphs Δ = (Δ0,Δ1). i.e. for edge-bipartite graphs Δ, with at least n = 3 vertices such that their rational symmetric Gram matrix GΔ ∈ Mn(ℚ) is positive semi-definite of rank n – 2. We study such connected edge-bipartite graphs by means of the non-symmetric Gram matrix ĞΔ ∈ Mn(ℤ), the Coxeter matrix CoxΔ := –ĞΔ · ĞΔ–tr, its complex spectrum speccΔ ⊆ ℂ, and an associated simply laced Dynkin diagram DynΔ, with n – 2 vertices. Here ℤ means the ring of integers. It is well-known that if Δ ≈ℤ Δ′ (i.e., there exists B ∈ Mn(ℤ) such that det B = ±1 and ĞΔ′ = Btr · ĞΔ · B) then speccΔ = speccΔ′ and DynΔ = DynΔ′. A complete classification of connected non-negative loop-free edge-bipartite graphs Δ with at most six vertices of corank two, up to the ℤ-congruence Δ ≈ℤ Δ′, is also given. A complete list of representatives of the ℤ-congruence classes of all connected non-negative edge-bipartite graphs of corank two with with at most 6 vertices is constructed; it consists of 1, 2, 2 and 8 edge-bipartite graphs of corank two with 3, 4, 5 and 6 vertices, respectively. Following a Coxeter spectral analysis problems for positive edge-bipartite graphs (signed multigraphs with a separation property) introduced in [SIAM J. Discr. Math. 27(2013), 827-854] and [Fund. Inform. 123(2013), 447-490], we study analogous problems for loop-free corank two edge-bipartite graphs Δ = (Δ 0 ,Δ 1 ). i.e. for edge-bipartite graphs Δ, with at least n = 3 vertices such that their rational symmetric Gram matrix G Δ ∈ n (ℚ) is positive semi-definite of rank n – 2. We study such connected edge-bipartite graphs by means of the non-symmetric Gram matrix Ğ Δ ∈ n (ℤ), the Coxeter matrix Cox Δ := – Ğ Δ · Ğ Δ – tr , its complex spectrum specc Δ ⊆ ℂ, and an associated simply laced Dynkin diagram Dyn Δ , with n – 2 vertices. Here ℤ means the ring of integers. It is well-known that if Δ ≈ ℤ Δ′ (i.e., there exists B ∈ n (ℤ) such that det B = ±1 and Ğ Δ ′ = B tr · Ğ Δ · B) then specc Δ = specc Δ ′ and Dyn Δ = Dyn Δ ′. A complete classification of connected non-negative loop-free edge-bipartite graphs Δ with at most six vertices of corank two, up to the ℤ-congruence Δ ≈ ℤ Δ′, is also given. A complete list of representatives of the ℤ-congruence classes of all connected non-negative edge-bipartite graphs of corank two with with at most 6 vertices is constructed; it consists of 1, 2, 2 and 8 edge-bipartite graphs of corank two with 3, 4, 5 and 6 vertices, respectively. Following a Coxeter spectral analysis problems for positive edge-bipartite graphs (signed multigraphs with a separation property) introduced in [SIAM J. Discr. Math. 27(2013), 827-854] and [Fund. Inform. 123(2013), 447-490], we study analogous problems for loop-free corank two edge-bipartite graphs Δ = (Δ0,Δ1). i.e. for edge-bipartite graphs Δ, with at least n = 3 vertices such that their rational symmetric Gram matrix GΔ ∈ n (ℚ) is positive semi-definite of rank n – 2. We study such connected edge-bipartite graphs by means of the non-symmetric Gram matrix ĞΔ ∈ n (ℤ), the Coxeter matrix CoxΔ := –ĞΔ · ĞΔ–tr, its complex spectrum speccΔ ⊆ ℂ, and an associated simply laced Dynkin diagram DynΔ, with n – 2 vertices. Here ℤ means the ring of integers. It is well-known that if Δ ≈ℤ Δ′ (i.e., there exists B ∈ n (ℤ) such that det B = ±1 and ĞΔ′ = Btr · ĞΔ · B) then speccΔ = speccΔ′ and DynΔ = DynΔ′. A complete classification of connected non-negative loop-free edge-bipartite graphs Δ with at most six vertices of corank two, up to the ℤ-congruence Δ ≈ℤ Δ′, is also given. A complete list of representatives of the ℤ-congruence classes of all connected non-negative edge-bipartite graphs of corank two with with at most 6 vertices is constructed; it consists of 1, 2, 2 and 8 edge-bipartite graphs of corank two with 3, 4, 5 and 6 vertices, respectively. |
| Author | Zając, Katarzyna |
| Author_xml | – sequence: 1 givenname: Katarzyna surname: Zając fullname: Zając, Katarzyna organization: Faculty of Mathematics and Computer Science |
| BookMark | eNp1kE1LAzEQhoNUsK3e_AEBT4Kr-djNbo6ltLVQFaRevCzZ7KSb2t3UJEX897bUg4heZi7P-87wDFCvcx0gdEnJLWec303nCSM0T2hGixPUp0WeJYUoaA_1CRUyYVIUZ2gQwpoQQiWXffT6uGvBW41Hm5XzNjZtwMZ5PHZedW94-eHwpF5BUtmt8tFGwDOvtk3AqqtxbMB6_AChwTNwLURvIWBn8LNzMZyjU6M2AS6-9xC9TCfL8X2yeJrNx6NFopnMY5IbLbhIM81YRWUlMw5pVSjCjVZgiAQmBE2prCtWF1XGi1pDagTLRCa1qYEP0dWxd-vd-w5CLNdu57v9yZJKmaY85_sxRDdHSnsXggdTbr1tlf8sKSkP9srpvDzYKw_29jj7hWsbVbSui17ZzX-h62MoqBX8-OIv9gvK_YCm |
| CitedBy_id | crossref_primary_10_1016_j_laa_2020_10_016 crossref_primary_10_1016_j_laa_2020_11_001 crossref_primary_10_1016_j_laa_2021_09_005 crossref_primary_10_1016_j_amc_2020_125507 |
| ContentType | Journal Article |
| Copyright | IOS Press and the authors. All rights reserved Copyright IOS Press BV 2017 |
| Copyright_xml | – notice: IOS Press and the authors. All rights reserved – notice: Copyright IOS Press BV 2017 |
| DBID | AAYXX CITATION 7SC 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 JQ2 KR7 L7M L~C L~D |
| DOI | 10.3233/FI-2017-1518 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts METADEX Computer and Information Systems Abstracts Professional Engineered Materials Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Materials Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1875-8681 |
| EndPage | 222 |
| ExternalDocumentID | 10_3233_FI_2017_1518 10.3233_FI-2017-1518 |
| GroupedDBID | --Z .4S .DC 0R~ 4.4 5GY AAGLT AAQXI ABDBF ABJNI ABUJY ACGFS ACIWK ACPQW ACUHS ADMLS ADZMO AEJQA AENEX AFRHK AFYTF AHDMH AJNRN ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS ARTOV ASPBG AVWKF DU5 EAD EAP EBO EBS EDO EJD EMK EPL ESX HZ~ I-F IOS J8X MET MIO MK~ MV1 NGNOM O9- P2P PQQKQ SAUOL SCNPE SFC TH9 TUS Y2W AAPII AAYXX AJGYC CITATION H13 7SC 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c297t-7fc63645c22b19b953e4b8a03fcaef09e2661419db2d8b538dce4f625659cfde3 |
| ISSN | 0169-2968 |
| IngestDate | Wed Aug 13 10:40:25 EDT 2025 Wed Oct 01 06:06:08 EDT 2025 Thu Apr 24 23:01:33 EDT 2025 Tue Jun 17 22:27:41 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Dynkin diagram Coxeter-Dynkin type edge-bipartite graph mesh geometry of roots |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-7fc63645c22b19b953e4b8a03fcaef09e2661419db2d8b538dce4f625659cfde3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1994437344 |
| PQPubID | 2046402 |
| PageCount | 38 |
| ParticipantIDs | proquest_journals_1994437344 crossref_primary_10_3233_FI_2017_1518 crossref_citationtrail_10_3233_FI_2017_1518 sage_journals_10_3233_FI_2017_1518 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-01-01 |
| PublicationDateYYYYMMDD | 2017-01-01 |
| PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | London, England |
| PublicationPlace_xml | – name: London, England – name: London |
| PublicationTitle | Fundamenta informaticae |
| PublicationYear | 2017 |
| Publisher | SAGE Publications Sage Publications Ltd |
| Publisher_xml | – name: SAGE Publications – name: Sage Publications Ltd |
| SSID | ssj0001939 |
| Score | 2.1995258 |
| Snippet | Following a Coxeter spectral analysis problems for positive edge-bipartite graphs (signed multigraphs with a separation property) introduced in [SIAM J. Discr.... |
| SourceID | proquest crossref sage |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 185 |
| SubjectTerms | Binary system Codes Graph theory Graphs Integers Mathematical analysis Matrix methods |
| Title | Numeric Algorithms for Corank Two Edge-bipartite Graphs and their Mesh Geometries of Roots |
| URI | https://journals.sagepub.com/doi/full/10.3233/FI-2017-1518 https://www.proquest.com/docview/1994437344 |
| Volume | 152 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1875-8681 dateEnd: 20250205 omitProxy: true ssIdentifier: ssj0001939 issn: 0169-2968 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025 customDbUrl: eissn: 1875-8681 dateEnd: 20250205 omitProxy: false ssIdentifier: ssj0001939 issn: 0169-2968 databaseCode: AMVHM dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1875-8681 dateEnd: 20250205 omitProxy: false ssIdentifier: ssj0001939 issn: 0169-2968 databaseCode: ADMLS dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF614dIeUOlDDdBqVbWnyNTe9WuPUUsEVcOlQUJcrH0ZWkGMiFFVfn1nvOsHKEi0FytxvHaS7_PuzHjmG0I-CqtNElpMksLQjYp4kNscvBSrOU-N5GWjWzA_Sg-O428nyUnb4t5Xl9RqT9-urSv5H1RhH-CKVbL_gGx3UtgBrwFf2ALCsH0Uxkc3LhN-enFWgZN_7sQV4B7HTuyTxe9qsm_OLDi_Vzi4BkKgPPWqzZr8iRI-q3OMi182jbWcNElVOXWnrnsnFos0OeYTL7OK8e-OEKfyV2ORJtpnZ8jr2z-uJ3cbToiyQTjBRxhTETDhet3sWTcrglMT5KnrrdJNmwkb8IMNJsHINeHx6ylzdcf3p2rOMJQ8mx0GzbcAwyPvl6T2Mfy9larLHwTPBccXs8MCRxc4-inZYDCzhyOyMf06__6jW4_BRBVO4d39MFf-gOM_D69-1zDpvY1Bgl9jcyxekE3vLNCpQ36LPLHLl-T5QEIS3s073d3VK3LqGUF7RlBAjDpGUGAEvcsI6hhBgRG0YQRFRtCeEbQqacOI1-R4tr_4chD47hmBZiKrg6zUKT5j1oypSCiRcBurXIa8BIqUobCNaRYJo5jJFax7Rtu4BHc4TYQujeVvyGhZLe1bQpkMYy4jq7iI4iyTuQlFHJdSaZOK3MgxmbR_XaG9tDx2OLko1gE1Jp-6o6-cpMoDx-22KBT-plsVKGWNalxxPCYfEJnBR2vOsf3Ia-2QZ_3NsEtG9fWNfQfWZq3eezr9BaPjeu8 |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numeric+Algorithms+for+Corank+Two+Edge-bipartite+Graphs+and+their+Mesh+Geometries+of+Roots&rft.jtitle=Fundamenta+informaticae&rft.au=Zaj%C4%85c%2C+Katarzyna&rft.date=2017-01-01&rft.issn=0169-2968&rft.eissn=1875-8681&rft.volume=152&rft.issue=2&rft.spage=185&rft.epage=222&rft_id=info:doi/10.3233%2FFI-2017-1518&rft.externalDBID=n%2Fa&rft.externalDocID=10_3233_FI_2017_1518 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2968&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2968&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2968&client=summon |