Numeric Algorithms for Corank Two Edge-bipartite Graphs and their Mesh Geometries of Roots

Following a Coxeter spectral analysis problems for positive edge-bipartite graphs (signed multigraphs with a separation property) introduced in [SIAM J. Discr. Math. 27(2013), 827-854] and [Fund. Inform. 123(2013), 447-490], we study analogous problems for loop-free corank two edge-bipartite graphs...

Full description

Saved in:
Bibliographic Details
Published inFundamenta informaticae Vol. 152; no. 2; pp. 185 - 222
Main Author Zając, Katarzyna
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.01.2017
Sage Publications Ltd
Subjects
Online AccessGet full text
ISSN0169-2968
1875-8681
DOI10.3233/FI-2017-1518

Cover

Abstract Following a Coxeter spectral analysis problems for positive edge-bipartite graphs (signed multigraphs with a separation property) introduced in [SIAM J. Discr. Math. 27(2013), 827-854] and [Fund. Inform. 123(2013), 447-490], we study analogous problems for loop-free corank two edge-bipartite graphs Δ = (Δ0,Δ1). i.e. for edge-bipartite graphs Δ, with at least n = 3 vertices such that their rational symmetric Gram matrix GΔ ∈ n (ℚ) is positive semi-definite of rank n – 2. We study such connected edge-bipartite graphs by means of the non-symmetric Gram matrix ĞΔ ∈ n (ℤ), the Coxeter matrix CoxΔ := –ĞΔ · ĞΔ–tr, its complex spectrum speccΔ ⊆ ℂ, and an associated simply laced Dynkin diagram DynΔ, with n – 2 vertices. Here ℤ means the ring of integers. It is well-known that if Δ ≈ℤ Δ′ (i.e., there exists B ∈ n (ℤ) such that det B = ±1 and ĞΔ′ = Btr · ĞΔ · B) then speccΔ = speccΔ′ and DynΔ = DynΔ′. A complete classification of connected non-negative loop-free edge-bipartite graphs Δ with at most six vertices of corank two, up to the ℤ-congruence Δ ≈ℤ Δ′, is also given. A complete list of representatives of the ℤ-congruence classes of all connected non-negative edge-bipartite graphs of corank two with with at most 6 vertices is constructed; it consists of 1, 2, 2 and 8 edge-bipartite graphs of corank two with 3, 4, 5 and 6 vertices, respectively.
AbstractList Following a Coxeter spectral analysis problems for positive edge-bipartite graphs (signed multigraphs with a separation property) introduced in [SIAM J. Discr. Math. 27(2013), 827-854] and [Fund. Inform. 123(2013), 447-490], we study analogous problems for loop-free corank two edge-bipartite graphs Δ = (Δ0,Δ1). i.e. for edge-bipartite graphs Δ, with at least n = 3 vertices such that their rational symmetric Gram matrix GΔ ∈ Mn(ℚ) is positive semi-definite of rank n – 2. We study such connected edge-bipartite graphs by means of the non-symmetric Gram matrix ĞΔ ∈ Mn(ℤ), the Coxeter matrix CoxΔ := –ĞΔ · ĞΔ–tr, its complex spectrum speccΔ ⊆ ℂ, and an associated simply laced Dynkin diagram DynΔ, with n – 2 vertices. Here ℤ means the ring of integers. It is well-known that if Δ ≈ℤ Δ′ (i.e., there exists B ∈ Mn(ℤ) such that det B = ±1 and ĞΔ′ = Btr · ĞΔ · B) then speccΔ = speccΔ′ and DynΔ = DynΔ′. A complete classification of connected non-negative loop-free edge-bipartite graphs Δ with at most six vertices of corank two, up to the ℤ-congruence Δ ≈ℤ Δ′, is also given. A complete list of representatives of the ℤ-congruence classes of all connected non-negative edge-bipartite graphs of corank two with with at most 6 vertices is constructed; it consists of 1, 2, 2 and 8 edge-bipartite graphs of corank two with 3, 4, 5 and 6 vertices, respectively.
Following a Coxeter spectral analysis problems for positive edge-bipartite graphs (signed multigraphs with a separation property) introduced in [SIAM J. Discr. Math. 27(2013), 827-854] and [Fund. Inform. 123(2013), 447-490], we study analogous problems for loop-free corank two edge-bipartite graphs Δ = (Δ 0 ,Δ 1 ). i.e. for edge-bipartite graphs Δ, with at least n = 3 vertices such that their rational symmetric Gram matrix G Δ ∈ n (ℚ) is positive semi-definite of rank n – 2. We study such connected edge-bipartite graphs by means of the non-symmetric Gram matrix Ğ Δ ∈ n (ℤ), the Coxeter matrix Cox Δ := – Ğ Δ · Ğ Δ – tr , its complex spectrum specc Δ ⊆ ℂ, and an associated simply laced Dynkin diagram Dyn Δ , with n – 2 vertices. Here ℤ means the ring of integers. It is well-known that if Δ ≈ ℤ Δ′ (i.e., there exists B ∈ n (ℤ) such that det B = ±1 and Ğ Δ ′ = B tr · Ğ Δ · B) then specc Δ = specc Δ ′ and Dyn Δ = Dyn Δ ′. A complete classification of connected non-negative loop-free edge-bipartite graphs Δ with at most six vertices of corank two, up to the ℤ-congruence Δ ≈ ℤ Δ′, is also given. A complete list of representatives of the ℤ-congruence classes of all connected non-negative edge-bipartite graphs of corank two with with at most 6 vertices is constructed; it consists of 1, 2, 2 and 8 edge-bipartite graphs of corank two with 3, 4, 5 and 6 vertices, respectively.
Following a Coxeter spectral analysis problems for positive edge-bipartite graphs (signed multigraphs with a separation property) introduced in [SIAM J. Discr. Math. 27(2013), 827-854] and [Fund. Inform. 123(2013), 447-490], we study analogous problems for loop-free corank two edge-bipartite graphs Δ = (Δ0,Δ1). i.e. for edge-bipartite graphs Δ, with at least n = 3 vertices such that their rational symmetric Gram matrix GΔ ∈ n (ℚ) is positive semi-definite of rank n – 2. We study such connected edge-bipartite graphs by means of the non-symmetric Gram matrix ĞΔ ∈ n (ℤ), the Coxeter matrix CoxΔ := –ĞΔ · ĞΔ–tr, its complex spectrum speccΔ ⊆ ℂ, and an associated simply laced Dynkin diagram DynΔ, with n – 2 vertices. Here ℤ means the ring of integers. It is well-known that if Δ ≈ℤ Δ′ (i.e., there exists B ∈ n (ℤ) such that det B = ±1 and ĞΔ′ = Btr · ĞΔ · B) then speccΔ = speccΔ′ and DynΔ = DynΔ′. A complete classification of connected non-negative loop-free edge-bipartite graphs Δ with at most six vertices of corank two, up to the ℤ-congruence Δ ≈ℤ Δ′, is also given. A complete list of representatives of the ℤ-congruence classes of all connected non-negative edge-bipartite graphs of corank two with with at most 6 vertices is constructed; it consists of 1, 2, 2 and 8 edge-bipartite graphs of corank two with 3, 4, 5 and 6 vertices, respectively.
Author Zając, Katarzyna
Author_xml – sequence: 1
  givenname: Katarzyna
  surname: Zając
  fullname: Zając, Katarzyna
  organization: Faculty of Mathematics and Computer Science
BookMark eNp1kE1LAzEQhoNUsK3e_AEBT4Kr-djNbo6ltLVQFaRevCzZ7KSb2t3UJEX897bUg4heZi7P-87wDFCvcx0gdEnJLWec303nCSM0T2hGixPUp0WeJYUoaA_1CRUyYVIUZ2gQwpoQQiWXffT6uGvBW41Hm5XzNjZtwMZ5PHZedW94-eHwpF5BUtmt8tFGwDOvtk3AqqtxbMB6_AChwTNwLURvIWBn8LNzMZyjU6M2AS6-9xC9TCfL8X2yeJrNx6NFopnMY5IbLbhIM81YRWUlMw5pVSjCjVZgiAQmBE2prCtWF1XGi1pDagTLRCa1qYEP0dWxd-vd-w5CLNdu57v9yZJKmaY85_sxRDdHSnsXggdTbr1tlf8sKSkP9srpvDzYKw_29jj7hWsbVbSui17ZzX-h62MoqBX8-OIv9gvK_YCm
CitedBy_id crossref_primary_10_1016_j_laa_2020_10_016
crossref_primary_10_1016_j_laa_2020_11_001
crossref_primary_10_1016_j_laa_2021_09_005
crossref_primary_10_1016_j_amc_2020_125507
ContentType Journal Article
Copyright IOS Press and the authors. All rights reserved
Copyright IOS Press BV 2017
Copyright_xml – notice: IOS Press and the authors. All rights reserved
– notice: Copyright IOS Press BV 2017
DBID AAYXX
CITATION
7SC
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
JQ2
KR7
L7M
L~C
L~D
DOI 10.3233/FI-2017-1518
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
METADEX
Computer and Information Systems Abstracts Professional
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1875-8681
EndPage 222
ExternalDocumentID 10_3233_FI_2017_1518
10.3233_FI-2017-1518
GroupedDBID --Z
.4S
.DC
0R~
4.4
5GY
AAGLT
AAQXI
ABDBF
ABJNI
ABUJY
ACGFS
ACIWK
ACPQW
ACUHS
ADMLS
ADZMO
AEJQA
AENEX
AFRHK
AFYTF
AHDMH
AJNRN
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
ARTOV
ASPBG
AVWKF
DU5
EAD
EAP
EBO
EBS
EDO
EJD
EMK
EPL
ESX
HZ~
I-F
IOS
J8X
MET
MIO
MK~
MV1
NGNOM
O9-
P2P
PQQKQ
SAUOL
SCNPE
SFC
TH9
TUS
Y2W
AAPII
AAYXX
AJGYC
CITATION
H13
7SC
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c297t-7fc63645c22b19b953e4b8a03fcaef09e2661419db2d8b538dce4f625659cfde3
ISSN 0169-2968
IngestDate Wed Aug 13 10:40:25 EDT 2025
Wed Oct 01 06:06:08 EDT 2025
Thu Apr 24 23:01:33 EDT 2025
Tue Jun 17 22:27:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Dynkin diagram
Coxeter-Dynkin type
edge-bipartite graph
mesh geometry of roots
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-7fc63645c22b19b953e4b8a03fcaef09e2661419db2d8b538dce4f625659cfde3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1994437344
PQPubID 2046402
PageCount 38
ParticipantIDs proquest_journals_1994437344
crossref_primary_10_3233_FI_2017_1518
crossref_citationtrail_10_3233_FI_2017_1518
sage_journals_10_3233_FI_2017_1518
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: London
PublicationTitle Fundamenta informaticae
PublicationYear 2017
Publisher SAGE Publications
Sage Publications Ltd
Publisher_xml – name: SAGE Publications
– name: Sage Publications Ltd
SSID ssj0001939
Score 2.1995258
Snippet Following a Coxeter spectral analysis problems for positive edge-bipartite graphs (signed multigraphs with a separation property) introduced in [SIAM J. Discr....
SourceID proquest
crossref
sage
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 185
SubjectTerms Binary system
Codes
Graph theory
Graphs
Integers
Mathematical analysis
Matrix methods
Title Numeric Algorithms for Corank Two Edge-bipartite Graphs and their Mesh Geometries of Roots
URI https://journals.sagepub.com/doi/full/10.3233/FI-2017-1518
https://www.proquest.com/docview/1994437344
Volume 152
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1875-8681
  dateEnd: 20250205
  omitProxy: true
  ssIdentifier: ssj0001939
  issn: 0169-2968
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 1875-8681
  dateEnd: 20250205
  omitProxy: false
  ssIdentifier: ssj0001939
  issn: 0169-2968
  databaseCode: AMVHM
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1875-8681
  dateEnd: 20250205
  omitProxy: false
  ssIdentifier: ssj0001939
  issn: 0169-2968
  databaseCode: ADMLS
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF614dIeUOlDDdBqVbWnyNTe9WuPUUsEVcOlQUJcrH0ZWkGMiFFVfn1nvOsHKEi0FytxvHaS7_PuzHjmG0I-CqtNElpMksLQjYp4kNscvBSrOU-N5GWjWzA_Sg-O428nyUnb4t5Xl9RqT9-urSv5H1RhH-CKVbL_gGx3UtgBrwFf2ALCsH0Uxkc3LhN-enFWgZN_7sQV4B7HTuyTxe9qsm_OLDi_Vzi4BkKgPPWqzZr8iRI-q3OMi182jbWcNElVOXWnrnsnFos0OeYTL7OK8e-OEKfyV2ORJtpnZ8jr2z-uJ3cbToiyQTjBRxhTETDhet3sWTcrglMT5KnrrdJNmwkb8IMNJsHINeHx6ylzdcf3p2rOMJQ8mx0GzbcAwyPvl6T2Mfy9larLHwTPBccXs8MCRxc4-inZYDCzhyOyMf06__6jW4_BRBVO4d39MFf-gOM_D69-1zDpvY1Bgl9jcyxekE3vLNCpQ36LPLHLl-T5QEIS3s073d3VK3LqGUF7RlBAjDpGUGAEvcsI6hhBgRG0YQRFRtCeEbQqacOI1-R4tr_4chD47hmBZiKrg6zUKT5j1oypSCiRcBurXIa8BIqUobCNaRYJo5jJFax7Rtu4BHc4TYQujeVvyGhZLe1bQpkMYy4jq7iI4iyTuQlFHJdSaZOK3MgxmbR_XaG9tDx2OLko1gE1Jp-6o6-cpMoDx-22KBT-plsVKGWNalxxPCYfEJnBR2vOsf3Ia-2QZ_3NsEtG9fWNfQfWZq3eezr9BaPjeu8
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numeric+Algorithms+for+Corank+Two+Edge-bipartite+Graphs+and+their+Mesh+Geometries+of+Roots&rft.jtitle=Fundamenta+informaticae&rft.au=Zaj%C4%85c%2C+Katarzyna&rft.date=2017-01-01&rft.issn=0169-2968&rft.eissn=1875-8681&rft.volume=152&rft.issue=2&rft.spage=185&rft.epage=222&rft_id=info:doi/10.3233%2FFI-2017-1518&rft.externalDBID=n%2Fa&rft.externalDocID=10_3233_FI_2017_1518
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2968&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2968&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2968&client=summon