Artificial intelligence based data processing algorithm for video surveillance to empower industry 3.5

•AI based algorithm for data processing for camera surveillance is proposed.•The developed solution can reduce data transmission significantly.•The solution can empower smart manufacturing via camera surveillance.•Simulation results have validated practical viability of this approach. Nowadays, the...

Full description

Saved in:
Bibliographic Details
Published inComputers & industrial engineering Vol. 148; p. 106671
Main Authors Nguyen, Minh T., Truong, Linh H., Tran, Trang T., Chien, Chen-Fu
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2020
Subjects
Online AccessGet full text
ISSN0360-8352
1879-0550
DOI10.1016/j.cie.2020.106671

Cover

Abstract •AI based algorithm for data processing for camera surveillance is proposed.•The developed solution can reduce data transmission significantly.•The solution can empower smart manufacturing via camera surveillance.•Simulation results have validated practical viability of this approach. Nowadays, the demand of camera surveillance systems (CSS) has been increasingly adopted in various industries for smart manufacturing. However, the increase of utilizing CSS will pose many drawbacks in capacity storage and overload the transmission bandwidth. Focusing on the needs in real settings, this study aims to develop a novel algorithm based on artificial intelligence (AI) for data processing. Artificial intelligence (AI) is very helpful to process a large number of videos recorded by the CSS, while computer vision algorithms can also be employed to detect abnormal behaviors or noticeable objects, thus reducing the manpower. Since applications of AI for handling the above problems consume a lot of computational resources. This paper proposes a method to solve the above CSS issues. The idea is that focus on processing the valid background and moving object in the scene. After that, it will be transmitted to the server sides for further purposes. Indeed, the proposed method significantly reduces data transmission and storage and also improves the performance. The experimental results show that suggested method reduces storage capacity up to 80% and shows promising performance in which the number of calculations is reduced several times at the sever side compared to existing methods. Towards this end, the study proposes a method to solve the above drawbacks. It would be considered to apply for Industry 3.5 which is a mixture strategy in between the best practices of Industry 3.0 and to-be Industry 4.0.
AbstractList •AI based algorithm for data processing for camera surveillance is proposed.•The developed solution can reduce data transmission significantly.•The solution can empower smart manufacturing via camera surveillance.•Simulation results have validated practical viability of this approach. Nowadays, the demand of camera surveillance systems (CSS) has been increasingly adopted in various industries for smart manufacturing. However, the increase of utilizing CSS will pose many drawbacks in capacity storage and overload the transmission bandwidth. Focusing on the needs in real settings, this study aims to develop a novel algorithm based on artificial intelligence (AI) for data processing. Artificial intelligence (AI) is very helpful to process a large number of videos recorded by the CSS, while computer vision algorithms can also be employed to detect abnormal behaviors or noticeable objects, thus reducing the manpower. Since applications of AI for handling the above problems consume a lot of computational resources. This paper proposes a method to solve the above CSS issues. The idea is that focus on processing the valid background and moving object in the scene. After that, it will be transmitted to the server sides for further purposes. Indeed, the proposed method significantly reduces data transmission and storage and also improves the performance. The experimental results show that suggested method reduces storage capacity up to 80% and shows promising performance in which the number of calculations is reduced several times at the sever side compared to existing methods. Towards this end, the study proposes a method to solve the above drawbacks. It would be considered to apply for Industry 3.5 which is a mixture strategy in between the best practices of Industry 3.0 and to-be Industry 4.0.
ArticleNumber 106671
Author Tran, Trang T.
Truong, Linh H.
Chien, Chen-Fu
Nguyen, Minh T.
Author_xml – sequence: 1
  givenname: Minh T.
  surname: Nguyen
  fullname: Nguyen, Minh T.
  email: nguyentuanminh1@duytan.edu.vn, tuanminh.nguyen@okstate.edu, nguyentuanminh@tnut.edu.vn
  organization: Institue of Research and Development, Duy Tan University, Danang 550000, Viet Nam
– sequence: 2
  givenname: Linh H.
  surname: Truong
  fullname: Truong, Linh H.
  organization: Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Hsinchu 30013, Taiwan
– sequence: 3
  givenname: Trang T.
  surname: Tran
  fullname: Tran, Trang T.
  organization: Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Hsinchu 30013, Taiwan
– sequence: 4
  givenname: Chen-Fu
  orcidid: 0000-0003-3328-4946
  surname: Chien
  fullname: Chien, Chen-Fu
  organization: Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Hsinchu 30013, Taiwan
BookMark eNp9kMtqwzAQRUVJoUnaD-hOP2BXkm3JpqsQ-oJAN-1ayPI4naBYQVJS8ve1SVdddDPDwD0X5izIbPADEHLPWc4Zlw-73CLkgonpllLxKzLntWoyVlVsRuaskCyri0rckEWMO8ZYWTV8TvpVSNijReMoDgmcwy0MFmhrInS0M8nQQ_AWYsRhS43b-oDpa097H-gJO_A0HsMJ0DkzYclT2B_8N4SxrjvGFM60yKtbct0bF-Hudy_J5_PTx_o127y_vK1Xm8yKRqVM9aWRpipaYdQ4uYRWlk0LjeybpobW1NKCqKXgpQXJJLeqVVK0oq06q4q-WBJ-6bXBxxig14eAexPOmjM9idI7PYrSkyh9ETUy6g9jMZmEfkjBoPuXfLyQML50Qgg6jpFRQ4cBbNKdx3_oH0nOhn8
CitedBy_id crossref_primary_10_1016_j_resconrec_2022_106282
crossref_primary_10_1016_j_cag_2021_04_014
crossref_primary_10_32957_hacettepehdf_1295271
crossref_primary_10_1016_j_egyr_2021_11_256
crossref_primary_10_1108_ICS_11_2023_0210
crossref_primary_10_1108_IJLM_01_2021_0002
crossref_primary_10_3390_telecom4010001
crossref_primary_10_1016_j_mex_2021_101472
crossref_primary_10_3390_electronics10212603
crossref_primary_10_3390_electronics12173567
crossref_primary_10_1007_s12652_023_04521_z
crossref_primary_10_1016_j_cie_2025_110955
crossref_primary_10_1155_2021_8615367
crossref_primary_10_1016_j_eswa_2024_123148
crossref_primary_10_1007_s10586_021_03391_4
crossref_primary_10_1007_s13369_021_05902_2
crossref_primary_10_1155_2023_8676366
crossref_primary_10_1016_j_eswa_2022_118791
crossref_primary_10_3390_en18071579
crossref_primary_10_1007_s11432_023_4099_x
crossref_primary_10_1155_2021_5051328
crossref_primary_10_3390_s22249864
crossref_primary_10_1016_j_cie_2020_106931
crossref_primary_10_1016_j_resconrec_2020_105247
crossref_primary_10_2478_mape_2021_0010
crossref_primary_10_1108_GS_04_2021_0049
Cites_doi 10.1109/ICPR.2004.1333992
10.1080/02533839.2017.1372220
10.1186/s40537-018-0131-x
10.1109/6046.944476
10.1007/978-3-319-23222-5
10.1109/TIE.2010.2055771
10.1109/TPAMI.2008.260
10.1186/1687-5281-2013-12
10.1109/34.868683
10.1109/CVPR.1999.784637
10.1117/12.735998
10.1109/TIP.2002.806251
10.1111/j.1468-0394.2007.00438.x
10.1109/34.868684
10.1109/TCE.2010.5439134
10.1016/j.patrec.2018.08.002
10.1016/j.cie.2020.106375
10.4114/intartif.vol20iss59pp53-69
10.1109/ICDSC.2009.5289348
10.1109/TASE.2016.2583659
10.4108/eai.13-6-2019.159120
10.1016/j.cie.2020.106358
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cie.2020.106671
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-0550
ExternalDocumentID 10_1016_j_cie_2020_106671
S0360835220304058
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFWJ
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADRHT
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LX9
LY1
LY7
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-7f4a6a53b2a753b16eb649be96f998eba86ce286214ce6061c7b762b2b5dc73f3
IEDL.DBID .~1
ISSN 0360-8352
IngestDate Thu Oct 09 00:17:33 EDT 2025
Thu Apr 24 23:02:29 EDT 2025
Fri Feb 23 02:47:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Region of interest (ROI)
Convolution neural networks (CNN)
Artificial intelligence
Video surveillance (VS)
Industry 3.5
Background modeling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-7f4a6a53b2a753b16eb649be96f998eba86ce286214ce6061c7b762b2b5dc73f3
ORCID 0000-0003-3328-4946
ParticipantIDs crossref_primary_10_1016_j_cie_2020_106671
crossref_citationtrail_10_1016_j_cie_2020_106671
elsevier_sciencedirect_doi_10_1016_j_cie_2020_106671
PublicationCentury 2000
PublicationDate October 2020
2020-10-00
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationTitle Computers & industrial engineering
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hsiao, Leou (b0070) 2013; 2013
Junior, Musse, Jung (b0085) 2010; 27
Castillo, Fernandez-Caballero, Lopez (b0025) 2017; 20
Nguyen (b0110) 2019; 6
Nie, Ma (b0115) 2002; 11
Sun, Velastin (b0165) 2003; 20
Oliver, Rosario, Pentland (b0125) 2000; 22
Jamrus, Wang, Chien (b0080) 2020; 142
Bai, Shen, Li (b0015) 2010; 56
Collins, Lipton, Kanade, Fujiyoshi, Duggins, Tsin (b0050) 2000
Zivkovic, Z. (2004). Improved adaptive Gaussian mixture model for background sub- traction. In Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004 (Vol. 2, pp. 28–31). IEEE.
Reddy, V., Sanderson, C., Lovell, B. C., & Bigdeli, A. (2009). An efficient background estimation algorithm for embedded smart cameras. In 2009 Third ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC) (pp. 1–7). IEEE.
Atzori, De Natale, Perra (b0010) 2001; 3
Nilsson, F. (2019). Image analysis for smart manufacturing.
Chen, Wu, Huang, Fan (b0030) 2010; 58
Porikli, Ivanov, Haga (b0130) 2008; 2008
Ang Lim, L., & Yalim Keles, H. (2018). Foreground Segmentation Using a Triplet Convolutional Neural Network for Multiscale Feature Encoding. arXiv preprint arXiv:1801.02225.
Kuo, Chien (b0095) 2018
Stauffer, C., & Grimson, W. E. L. (1999). Adaptive background mixture models for real- time tracking. In Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149) (Vol. 2, pp. 246–252). IEEE.
Chien, Lin, Lin (b0045) 2020
Kim (b0090) 2018; 5
Braham, Van Droogenbroeck (b0020) 2016
Haritaoglu, Harwood, Davis (b0065) 2000; 22
Hsu, Chen, Chien (b0075) 2020; 142
Chien, Hong, Guo (b0040) 2017; 40
Enzweiler, Gavrila (b0060) 2008; 31
Redmon, Divvala, Girshick, Farhadi (b0140) 2016
Thaipanich, Wu, Kuo (b0170) 2007; Vol. 6696
Singh, Vishnu, Mohan (b0155) 2016
Cucchiara, Prati, Vezzani (b0055) 2007; 24
Chien, Chou, Yu (b0035) 2016; 13
Murino, V., Puppo, E., Sona, D., Cristani, M., & Sansone, C. (2015). New Trends in Image Analysis and Processing–ICIAP 2015 Workshops: ICIAP 2015 International Workshops, BioFor, CTMR, RHEUMA, ISCA, MADiMa, SBMI, and QoEM, Genoa, Italy, September 7–8, 2015, Proceedings (Vol. 9281). Springer.
Ronneberger, Fischer, Brox (b0145) 2015
Shimada, Arita, Taniguchi (b0150) 2006
Chien (10.1016/j.cie.2020.106671_b0040) 2017; 40
Cucchiara (10.1016/j.cie.2020.106671_b0055) 2007; 24
Sun (10.1016/j.cie.2020.106671_b0165) 2003; 20
10.1016/j.cie.2020.106671_b0120
Jamrus (10.1016/j.cie.2020.106671_b0080) 2020; 142
Chien (10.1016/j.cie.2020.106671_b0045) 2020
10.1016/j.cie.2020.106671_b0160
Hsiao (10.1016/j.cie.2020.106671_b0070) 2013; 2013
Shimada (10.1016/j.cie.2020.106671_b0150) 2006
Oliver (10.1016/j.cie.2020.106671_b0125) 2000; 22
Nie (10.1016/j.cie.2020.106671_b0115) 2002; 11
10.1016/j.cie.2020.106671_b0135
Porikli (10.1016/j.cie.2020.106671_b0130) 2008; 2008
Ronneberger (10.1016/j.cie.2020.106671_b0145) 2015
Junior (10.1016/j.cie.2020.106671_b0085) 2010; 27
Castillo (10.1016/j.cie.2020.106671_b0025) 2017; 20
Kuo (10.1016/j.cie.2020.106671_b0095) 2018
Atzori (10.1016/j.cie.2020.106671_b0010) 2001; 3
Chen (10.1016/j.cie.2020.106671_b0030) 2010; 58
Kim (10.1016/j.cie.2020.106671_b0090) 2018; 5
Collins (10.1016/j.cie.2020.106671_b0050) 2000
Bai (10.1016/j.cie.2020.106671_b0015) 2010; 56
Thaipanich (10.1016/j.cie.2020.106671_b0170) 2007; Vol. 6696
10.1016/j.cie.2020.106671_b0175
Haritaoglu (10.1016/j.cie.2020.106671_b0065) 2000; 22
10.1016/j.cie.2020.106671_b0005
Braham (10.1016/j.cie.2020.106671_b0020) 2016
Singh (10.1016/j.cie.2020.106671_b0155) 2016
Enzweiler (10.1016/j.cie.2020.106671_b0060) 2008; 31
10.1016/j.cie.2020.106671_b0100
Chien (10.1016/j.cie.2020.106671_b0035) 2016; 13
Hsu (10.1016/j.cie.2020.106671_b0075) 2020; 142
Nguyen (10.1016/j.cie.2020.106671_b0110) 2019; 6
Redmon (10.1016/j.cie.2020.106671_b0140) 2016
References_xml – volume: 31
  start-page: 2179
  year: 2008
  end-page: 2195
  ident: b0060
  article-title: Monocular pedestrian detection: Survey and experiments
  publication-title: IEEE transactions on pattern analysis and machine intelligence
– volume: 142
  year: 2020
  ident: b0080
  article-title: Dynamic coordinated scheduling for supply chain under uncertain production time to empower smart production for Industry 3.5
  publication-title: Computers & Industrial Engineering
– volume: 22
  start-page: 831
  year: 2000
  end-page: 843
  ident: b0125
  article-title: A bayesian computer vision system for modeling human interactions
  publication-title: IEEE transactions on pattern analysis and machine intelligence
– volume: 3
  start-page: 326
  year: 2001
  end-page: 338
  ident: b0010
  article-title: A spatio-temporal concealment technique using boundary matching algorithm and mesh-based warping (bma-mbw)
  publication-title: IEEE Transactions on Multimedia
– start-page: 1
  year: 2000
  end-page: 68
  ident: b0050
  article-title: A system for video surveillance and monitoring
  publication-title: VSAM final report
– volume: 22
  start-page: 809
  year: 2000
  end-page: 830
  ident: b0065
  article-title: W/sup 4: Real-time surveillance of people and their activities
  publication-title: IEEE Transactions on pattern analysis and machine intelligence
– volume: 6
  year: 2019
  ident: b0110
  article-title: An energy-efficient framework for multimedia data routing in internet of things (iots)
  publication-title: EAI Endorsed Transactions on Industrial Networks and Intelligent Systems
– reference: Reddy, V., Sanderson, C., Lovell, B. C., & Bigdeli, A. (2009). An efficient background estimation algorithm for embedded smart cameras. In 2009 Third ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC) (pp. 1–7). IEEE.
– volume: 20
  start-page: 393
  year: 2003
  end-page: 407
  ident: b0165
  article-title: Fusing visual and audio information in a distributed intelligent surveillance system for public transport systems
  publication-title: Acta Mathematica Sinica
– reference: Murino, V., Puppo, E., Sona, D., Cristani, M., & Sansone, C. (2015). New Trends in Image Analysis and Processing–ICIAP 2015 Workshops: ICIAP 2015 International Workshops, BioFor, CTMR, RHEUMA, ISCA, MADiMa, SBMI, and QoEM, Genoa, Italy, September 7–8, 2015, Proceedings (Vol. 9281). Springer.
– volume: 20
  start-page: 53
  year: 2017
  end-page: 69
  ident: b0025
  article-title: A review on intelligent monitoring and activity interpretation.
  publication-title: Inteligencia Artificial
– volume: 40
  start-page: 552
  year: 2017
  end-page: 561
  ident: b0040
  article-title: An empirical study for smart production for tft-lcd to empower industry 3.5
  publication-title: Journal of the Chinese Institute of Engineers
– year: 2006
  ident: b0150
  article-title: Dynamic control of adaptive mixture- of-Gaussians background model
  publication-title: 2006 IEEE International Conference on Video and Signal Based Surveillance
– volume: 56
  start-page: 119
  year: 2010
  end-page: 124
  ident: b0015
  article-title: Design and implementation of an embedded home surveillance system by use of multiple ultrasonic sensors
  publication-title: IEEE Transactions on Consumer Electronics
– reference: Ang Lim, L., & Yalim Keles, H. (2018). Foreground Segmentation Using a Triplet Convolutional Neural Network for Multiscale Feature Encoding. arXiv preprint arXiv:1801.02225.
– reference: Zivkovic, Z. (2004). Improved adaptive Gaussian mixture model for background sub- traction. In Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004 (Vol. 2, pp. 28–31). IEEE.
– volume: 2008
  start-page: 30
  year: 2008
  ident: b0130
  article-title: Robust abandoned object detection using dual foregrounds
  publication-title: EURASIP Journal on Advances in Signal Processing
– start-page: 1
  year: 2020
  end-page: 21
  ident: b0045
  article-title: Deep reinforcement learning for selecting demand forecast models to empower industry 3.5 and an empirical study for a semi- conductor component distributor
  publication-title: International Journal of Production Research
– start-page: 234
  year: 2015
  end-page: 241
  ident: b0145
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 886
  year: 2016
  end-page: 891
  ident: b0155
  article-title: Visual big data analytics for traffic monitoring in smart city
  publication-title: 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)
– volume: 58
  start-page: 2030
  year: 2010
  end-page: 2044
  ident: b0030
  article-title: A real-time vision system for nighttime vehicle detection and traffic surveillance
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 24
  start-page: 334
  year: 2007
  end-page: 345
  ident: b0055
  article-title: A multi-camera vision system for fall detection and alarm generation
  publication-title: Expert Systems
– reference: Stauffer, C., & Grimson, W. E. L. (1999). Adaptive background mixture models for real- time tracking. In Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149) (Vol. 2, pp. 246–252). IEEE.
– volume: 142
  year: 2020
  ident: b0075
  article-title: Similarity matching of wafer bin maps for manufacturing intelligence to empower Industry 3.5 for semiconductor manufacturing
  publication-title: Computers & Industrial Engineering
– volume: 5
  start-page: 22
  year: 2018
  ident: b0090
  article-title: A hybrid framework combining background subtraction and deep neural networks for rapid person detection
  publication-title: Journal of Big Data
– start-page: 1
  year: 2016
  end-page: 4
  ident: b0020
  article-title: Deep background subtraction with scene-specific convolutional neural networks
  publication-title: 2016 International Conference on Sys- Tems, Signals and Image Processing (IWSSIP)
– volume: 27
  start-page: 66
  year: 2010
  end-page: 77
  ident: b0085
  article-title: Crowd analysis using computer vision techniques
  publication-title: IEEE Signal Processing Magazine
– reference: Nilsson, F. (2019). Image analysis for smart manufacturing.
– start-page: 779
  year: 2016
  end-page: 788
  ident: b0140
  article-title: You only look once: Unified, real-time object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: Vol. 6696
  year: 2007
  ident: b0170
  article-title: Video error concealment with outer and inner boundary matching algorithms
  publication-title: Applications of Digital Image Processing XXX
– start-page: 920
  year: 2018
  end-page: 925
  ident: b0095
  article-title: Using auxiliary capacity planning strategy genetic algorithm for TFT-LCD photolithography scheduling to empower industry 3.5
  publication-title: 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)
– volume: 11
  start-page: 1442
  year: 2002
  end-page: 1449
  ident: b0115
  article-title: Adaptive rood pattern search for fast block-matching motion estimation
  publication-title: IEEE Transactions on image processing
– volume: 2013
  start-page: 12
  year: 2013
  ident: b0070
  article-title: Background initialization and foreground segmentation for bootstrapping video sequences
  publication-title: EURASIP Journal on Image and Video Processing
– volume: 13
  start-page: 1567
  year: 2016
  end-page: 1580
  ident: b0035
  article-title: A novel route selection and resource allocation approach to improve the efficiency of manual material handling system in 200-mm wafer fabs for industry 3.5
  publication-title: IEEE Transactions on Automation Science and Engineering
– volume: 27
  start-page: 66
  issue: 5
  year: 2010
  ident: 10.1016/j.cie.2020.106671_b0085
  article-title: Crowd analysis using computer vision techniques
  publication-title: IEEE Signal Processing Magazine
– start-page: 1
  year: 2016
  ident: 10.1016/j.cie.2020.106671_b0020
  article-title: Deep background subtraction with scene-specific convolutional neural networks
– ident: 10.1016/j.cie.2020.106671_b0175
  doi: 10.1109/ICPR.2004.1333992
– volume: 40
  start-page: 552
  issue: 7
  year: 2017
  ident: 10.1016/j.cie.2020.106671_b0040
  article-title: An empirical study for smart production for tft-lcd to empower industry 3.5
  publication-title: Journal of the Chinese Institute of Engineers
  doi: 10.1080/02533839.2017.1372220
– volume: 5
  start-page: 22
  issue: 1
  year: 2018
  ident: 10.1016/j.cie.2020.106671_b0090
  article-title: A hybrid framework combining background subtraction and deep neural networks for rapid person detection
  publication-title: Journal of Big Data
  doi: 10.1186/s40537-018-0131-x
– volume: 3
  start-page: 326
  issue: 3
  year: 2001
  ident: 10.1016/j.cie.2020.106671_b0010
  article-title: A spatio-temporal concealment technique using boundary matching algorithm and mesh-based warping (bma-mbw)
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/6046.944476
– ident: 10.1016/j.cie.2020.106671_b0100
  doi: 10.1007/978-3-319-23222-5
– volume: 58
  start-page: 2030
  issue: 5
  year: 2010
  ident: 10.1016/j.cie.2020.106671_b0030
  article-title: A real-time vision system for nighttime vehicle detection and traffic surveillance
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2010.2055771
– start-page: 1
  year: 2020
  ident: 10.1016/j.cie.2020.106671_b0045
  article-title: Deep reinforcement learning for selecting demand forecast models to empower industry 3.5 and an empirical study for a semi- conductor component distributor
  publication-title: International Journal of Production Research
– volume: 31
  start-page: 2179
  issue: 12
  year: 2008
  ident: 10.1016/j.cie.2020.106671_b0060
  article-title: Monocular pedestrian detection: Survey and experiments
  publication-title: IEEE transactions on pattern analysis and machine intelligence
  doi: 10.1109/TPAMI.2008.260
– volume: 2013
  start-page: 12
  issue: 1
  year: 2013
  ident: 10.1016/j.cie.2020.106671_b0070
  article-title: Background initialization and foreground segmentation for bootstrapping video sequences
  publication-title: EURASIP Journal on Image and Video Processing
  doi: 10.1186/1687-5281-2013-12
– volume: 22
  start-page: 809
  issue: 8
  year: 2000
  ident: 10.1016/j.cie.2020.106671_b0065
  article-title: W/sup 4: Real-time surveillance of people and their activities
  publication-title: IEEE Transactions on pattern analysis and machine intelligence
  doi: 10.1109/34.868683
– ident: 10.1016/j.cie.2020.106671_b0160
  doi: 10.1109/CVPR.1999.784637
– volume: 20
  start-page: 393
  issue: 3
  year: 2003
  ident: 10.1016/j.cie.2020.106671_b0165
  article-title: Fusing visual and audio information in a distributed intelligent surveillance system for public transport systems
  publication-title: Acta Mathematica Sinica
– volume: Vol. 6696
  year: 2007
  ident: 10.1016/j.cie.2020.106671_b0170
  article-title: Video error concealment with outer and inner boundary matching algorithms
  publication-title: Applications of Digital Image Processing XXX
  doi: 10.1117/12.735998
– volume: 11
  start-page: 1442
  issue: 12
  year: 2002
  ident: 10.1016/j.cie.2020.106671_b0115
  article-title: Adaptive rood pattern search for fast block-matching motion estimation
  publication-title: IEEE Transactions on image processing
  doi: 10.1109/TIP.2002.806251
– volume: 24
  start-page: 334
  issue: 5
  year: 2007
  ident: 10.1016/j.cie.2020.106671_b0055
  article-title: A multi-camera vision system for fall detection and alarm generation
  publication-title: Expert Systems
  doi: 10.1111/j.1468-0394.2007.00438.x
– volume: 22
  start-page: 831
  issue: 8
  year: 2000
  ident: 10.1016/j.cie.2020.106671_b0125
  article-title: A bayesian computer vision system for modeling human interactions
  publication-title: IEEE transactions on pattern analysis and machine intelligence
  doi: 10.1109/34.868684
– start-page: 779
  year: 2016
  ident: 10.1016/j.cie.2020.106671_b0140
  article-title: You only look once: Unified, real-time object detection
– volume: 56
  start-page: 119
  issue: 1
  year: 2010
  ident: 10.1016/j.cie.2020.106671_b0015
  article-title: Design and implementation of an embedded home surveillance system by use of multiple ultrasonic sensors
  publication-title: IEEE Transactions on Consumer Electronics
  doi: 10.1109/TCE.2010.5439134
– ident: 10.1016/j.cie.2020.106671_b0005
  doi: 10.1016/j.patrec.2018.08.002
– volume: 142
  year: 2020
  ident: 10.1016/j.cie.2020.106671_b0080
  article-title: Dynamic coordinated scheduling for supply chain under uncertain production time to empower smart production for Industry 3.5
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2020.106375
– ident: 10.1016/j.cie.2020.106671_b0120
– year: 2006
  ident: 10.1016/j.cie.2020.106671_b0150
  article-title: Dynamic control of adaptive mixture- of-Gaussians background model
– start-page: 1
  year: 2000
  ident: 10.1016/j.cie.2020.106671_b0050
  article-title: A system for video surveillance and monitoring
  publication-title: VSAM final report
– volume: 20
  start-page: 53
  issue: 59
  year: 2017
  ident: 10.1016/j.cie.2020.106671_b0025
  article-title: A review on intelligent monitoring and activity interpretation. Inteligencia Artificial. Revista Iberoamericana de
  publication-title: Inteligencia Artificial
  doi: 10.4114/intartif.vol20iss59pp53-69
– ident: 10.1016/j.cie.2020.106671_b0135
  doi: 10.1109/ICDSC.2009.5289348
– volume: 13
  start-page: 1567
  issue: 4
  year: 2016
  ident: 10.1016/j.cie.2020.106671_b0035
  article-title: A novel route selection and resource allocation approach to improve the efficiency of manual material handling system in 200-mm wafer fabs for industry 3.5
  publication-title: IEEE Transactions on Automation Science and Engineering
  doi: 10.1109/TASE.2016.2583659
– start-page: 886
  year: 2016
  ident: 10.1016/j.cie.2020.106671_b0155
  article-title: Visual big data analytics for traffic monitoring in smart city
– volume: 2008
  start-page: 30
  year: 2008
  ident: 10.1016/j.cie.2020.106671_b0130
  article-title: Robust abandoned object detection using dual foregrounds
  publication-title: EURASIP Journal on Advances in Signal Processing
– start-page: 920
  year: 2018
  ident: 10.1016/j.cie.2020.106671_b0095
  article-title: Using auxiliary capacity planning strategy genetic algorithm for TFT-LCD photolithography scheduling to empower industry 3.5
– volume: 6
  issue: 19
  year: 2019
  ident: 10.1016/j.cie.2020.106671_b0110
  article-title: An energy-efficient framework for multimedia data routing in internet of things (iots)
  publication-title: EAI Endorsed Transactions on Industrial Networks and Intelligent Systems
  doi: 10.4108/eai.13-6-2019.159120
– start-page: 234
  year: 2015
  ident: 10.1016/j.cie.2020.106671_b0145
  article-title: U-net: Convolutional networks for biomedical image segmentation
– volume: 142
  year: 2020
  ident: 10.1016/j.cie.2020.106671_b0075
  article-title: Similarity matching of wafer bin maps for manufacturing intelligence to empower Industry 3.5 for semiconductor manufacturing
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2020.106358
SSID ssj0004591
Score 2.4866555
Snippet •AI based algorithm for data processing for camera surveillance is proposed.•The developed solution can reduce data transmission significantly.•The solution...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106671
SubjectTerms Artificial intelligence
Background modeling
Convolution neural networks (CNN)
Industry 3.5
Region of interest (ROI)
Video surveillance (VS)
Title Artificial intelligence based data processing algorithm for video surveillance to empower industry 3.5
URI https://dx.doi.org/10.1016/j.cie.2020.106671
Volume 148
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: AKRWK
  dateStart: 19770101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGDgUUCUR-WBCSltkzh2MlYVVQHRBSp1i-zEgaLSVGkKYuG3cxcnKEjAwGjrzops5x7y3fcRcuErziIpA8sJYkhQ4kBYqudIS_mRrXzNIWLARuG7MR9N2M3UmzbIoOqFwbLK0vYbm15Y63KmW-5mdzmbde_B9pr4AV_3eh42_DImkMWg82HXEMMNax4IWyhdvWwWNV6wLKSIDo45F_bPvqnmb4Z7ZKcMFGnffMs-aehFk-yWQSMtf8lVk2zXEAUPSILyBhSCzmpomxS9VUyxHpQuTW8AyFM5f0yzWf70QiF2pdiSl9LVOnvVyEWEanlKEbvqTWewXEHy8U7djndIJsOrh8HIKqkUrMgJRG6JhEkuPVc5EvITZXMNZxQoHfAE8i2tpI_MYJDd2CzSkNPYkVBgJpWjvDgSbuIekY1FutDHhAaurxOheeIHEEqxSCUuQtjYPpfKdbTfIr1qE8OoxBlHuot5WBWUPcO8DnHfQ7PvLXL5pbI0IBt_CbPqZMJvNyUEJ_C72sn_1E7JFo5M-d4Z2ciztT6HMCRX7eKetclm__p2NP4EBOHcEg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHtSDD9SIzz14MinQ13Z7NESCClyEhFuzW7aKQSBQNF787c6wrcFEPXjsdmbTzG5nv8nOfANwKRT3YilDywkHGKAMwsBSNUdaSsS2EpojYqBC4XaHN3veXd_vF6Ce18JQWmXm-41PX3rrbKSaWbM6HQ6rD-h7DX6g272aL9Zg3fOdgCKwyoe9Qhlu2uahtEXi-dXmMskL58UY0aFnzgP758Np5cBp7MJ2hhTZtfmYPSjocQl2MtTIsn9yXoKtFUrBfUhI3rBCsOEK3Saj42rAKCGUTU1xAMozOXqczIbp0wtD8MqoJm_C5ovZq6ZmRKSWThiRV73pGU637PLxztyKfwC9xk233rSyXgpW7IRBagWJJ7n0XeVIDFCUzTUuUqh0yBMMuLSSglqDYXhje7HGoMaOA4V-UjnKH8SBm7iHUBxPxvoIWOgKnQSaJyJELOXFKnGJw8YWXCrX0aIMtdyIUZwRjVO_i1GUZ5Q947iOyO6RsXsZrr5UpoZl4y9hL1-Z6NtWifAU-F3t-H9qF7DR7LZbUeu2c38Cm_TG5PKdQjGdLfQZYpJUnS_33Cc8v92n
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+based+data+processing+algorithm+for+video+surveillance+to+empower+industry+3.5&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Nguyen%2C+Minh+T.&rft.au=Truong%2C+Linh+H.&rft.au=Tran%2C+Trang+T.&rft.au=Chien%2C+Chen-Fu&rft.date=2020-10-01&rft.pub=Elsevier+Ltd&rft.issn=0360-8352&rft.eissn=1879-0550&rft.volume=148&rft_id=info:doi/10.1016%2Fj.cie.2020.106671&rft.externalDocID=S0360835220304058
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon