Artificial intelligence based data processing algorithm for video surveillance to empower industry 3.5
•AI based algorithm for data processing for camera surveillance is proposed.•The developed solution can reduce data transmission significantly.•The solution can empower smart manufacturing via camera surveillance.•Simulation results have validated practical viability of this approach. Nowadays, the...
Saved in:
| Published in | Computers & industrial engineering Vol. 148; p. 106671 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.10.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0360-8352 1879-0550 |
| DOI | 10.1016/j.cie.2020.106671 |
Cover
| Abstract | •AI based algorithm for data processing for camera surveillance is proposed.•The developed solution can reduce data transmission significantly.•The solution can empower smart manufacturing via camera surveillance.•Simulation results have validated practical viability of this approach.
Nowadays, the demand of camera surveillance systems (CSS) has been increasingly adopted in various industries for smart manufacturing. However, the increase of utilizing CSS will pose many drawbacks in capacity storage and overload the transmission bandwidth. Focusing on the needs in real settings, this study aims to develop a novel algorithm based on artificial intelligence (AI) for data processing. Artificial intelligence (AI) is very helpful to process a large number of videos recorded by the CSS, while computer vision algorithms can also be employed to detect abnormal behaviors or noticeable objects, thus reducing the manpower. Since applications of AI for handling the above problems consume a lot of computational resources. This paper proposes a method to solve the above CSS issues. The idea is that focus on processing the valid background and moving object in the scene. After that, it will be transmitted to the server sides for further purposes. Indeed, the proposed method significantly reduces data transmission and storage and also improves the performance. The experimental results show that suggested method reduces storage capacity up to 80% and shows promising performance in which the number of calculations is reduced several times at the sever side compared to existing methods. Towards this end, the study proposes a method to solve the above drawbacks. It would be considered to apply for Industry 3.5 which is a mixture strategy in between the best practices of Industry 3.0 and to-be Industry 4.0. |
|---|---|
| AbstractList | •AI based algorithm for data processing for camera surveillance is proposed.•The developed solution can reduce data transmission significantly.•The solution can empower smart manufacturing via camera surveillance.•Simulation results have validated practical viability of this approach.
Nowadays, the demand of camera surveillance systems (CSS) has been increasingly adopted in various industries for smart manufacturing. However, the increase of utilizing CSS will pose many drawbacks in capacity storage and overload the transmission bandwidth. Focusing on the needs in real settings, this study aims to develop a novel algorithm based on artificial intelligence (AI) for data processing. Artificial intelligence (AI) is very helpful to process a large number of videos recorded by the CSS, while computer vision algorithms can also be employed to detect abnormal behaviors or noticeable objects, thus reducing the manpower. Since applications of AI for handling the above problems consume a lot of computational resources. This paper proposes a method to solve the above CSS issues. The idea is that focus on processing the valid background and moving object in the scene. After that, it will be transmitted to the server sides for further purposes. Indeed, the proposed method significantly reduces data transmission and storage and also improves the performance. The experimental results show that suggested method reduces storage capacity up to 80% and shows promising performance in which the number of calculations is reduced several times at the sever side compared to existing methods. Towards this end, the study proposes a method to solve the above drawbacks. It would be considered to apply for Industry 3.5 which is a mixture strategy in between the best practices of Industry 3.0 and to-be Industry 4.0. |
| ArticleNumber | 106671 |
| Author | Tran, Trang T. Truong, Linh H. Chien, Chen-Fu Nguyen, Minh T. |
| Author_xml | – sequence: 1 givenname: Minh T. surname: Nguyen fullname: Nguyen, Minh T. email: nguyentuanminh1@duytan.edu.vn, tuanminh.nguyen@okstate.edu, nguyentuanminh@tnut.edu.vn organization: Institue of Research and Development, Duy Tan University, Danang 550000, Viet Nam – sequence: 2 givenname: Linh H. surname: Truong fullname: Truong, Linh H. organization: Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Hsinchu 30013, Taiwan – sequence: 3 givenname: Trang T. surname: Tran fullname: Tran, Trang T. organization: Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Hsinchu 30013, Taiwan – sequence: 4 givenname: Chen-Fu orcidid: 0000-0003-3328-4946 surname: Chien fullname: Chien, Chen-Fu organization: Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Hsinchu 30013, Taiwan |
| BookMark | eNp9kMtqwzAQRUVJoUnaD-hOP2BXkm3JpqsQ-oJAN-1ayPI4naBYQVJS8ve1SVdddDPDwD0X5izIbPADEHLPWc4Zlw-73CLkgonpllLxKzLntWoyVlVsRuaskCyri0rckEWMO8ZYWTV8TvpVSNijReMoDgmcwy0MFmhrInS0M8nQQ_AWYsRhS43b-oDpa097H-gJO_A0HsMJ0DkzYclT2B_8N4SxrjvGFM60yKtbct0bF-Hudy_J5_PTx_o127y_vK1Xm8yKRqVM9aWRpipaYdQ4uYRWlk0LjeybpobW1NKCqKXgpQXJJLeqVVK0oq06q4q-WBJ-6bXBxxig14eAexPOmjM9idI7PYrSkyh9ETUy6g9jMZmEfkjBoPuXfLyQML50Qgg6jpFRQ4cBbNKdx3_oH0nOhn8 |
| CitedBy_id | crossref_primary_10_1016_j_resconrec_2022_106282 crossref_primary_10_1016_j_cag_2021_04_014 crossref_primary_10_32957_hacettepehdf_1295271 crossref_primary_10_1016_j_egyr_2021_11_256 crossref_primary_10_1108_ICS_11_2023_0210 crossref_primary_10_1108_IJLM_01_2021_0002 crossref_primary_10_3390_telecom4010001 crossref_primary_10_1016_j_mex_2021_101472 crossref_primary_10_3390_electronics10212603 crossref_primary_10_3390_electronics12173567 crossref_primary_10_1007_s12652_023_04521_z crossref_primary_10_1016_j_cie_2025_110955 crossref_primary_10_1155_2021_8615367 crossref_primary_10_1016_j_eswa_2024_123148 crossref_primary_10_1007_s10586_021_03391_4 crossref_primary_10_1007_s13369_021_05902_2 crossref_primary_10_1155_2023_8676366 crossref_primary_10_1016_j_eswa_2022_118791 crossref_primary_10_3390_en18071579 crossref_primary_10_1007_s11432_023_4099_x crossref_primary_10_1155_2021_5051328 crossref_primary_10_3390_s22249864 crossref_primary_10_1016_j_cie_2020_106931 crossref_primary_10_1016_j_resconrec_2020_105247 crossref_primary_10_2478_mape_2021_0010 crossref_primary_10_1108_GS_04_2021_0049 |
| Cites_doi | 10.1109/ICPR.2004.1333992 10.1080/02533839.2017.1372220 10.1186/s40537-018-0131-x 10.1109/6046.944476 10.1007/978-3-319-23222-5 10.1109/TIE.2010.2055771 10.1109/TPAMI.2008.260 10.1186/1687-5281-2013-12 10.1109/34.868683 10.1109/CVPR.1999.784637 10.1117/12.735998 10.1109/TIP.2002.806251 10.1111/j.1468-0394.2007.00438.x 10.1109/34.868684 10.1109/TCE.2010.5439134 10.1016/j.patrec.2018.08.002 10.1016/j.cie.2020.106375 10.4114/intartif.vol20iss59pp53-69 10.1109/ICDSC.2009.5289348 10.1109/TASE.2016.2583659 10.4108/eai.13-6-2019.159120 10.1016/j.cie.2020.106358 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cie.2020.106671 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1879-0550 |
| ExternalDocumentID | 10_1016_j_cie_2020_106671 S0360835220304058 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKG AABNK AACTN AAEDT AAEDW AAFWJ AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARIN AAXUO ABAOU ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADRHT ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LX9 LY1 LY7 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SST SSW SSZ T5K TAE TN5 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c297t-7f4a6a53b2a753b16eb649be96f998eba86ce286214ce6061c7b762b2b5dc73f3 |
| IEDL.DBID | .~1 |
| ISSN | 0360-8352 |
| IngestDate | Thu Oct 09 00:17:33 EDT 2025 Thu Apr 24 23:02:29 EDT 2025 Fri Feb 23 02:47:21 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Region of interest (ROI) Convolution neural networks (CNN) Artificial intelligence Video surveillance (VS) Industry 3.5 Background modeling |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c297t-7f4a6a53b2a753b16eb649be96f998eba86ce286214ce6061c7b762b2b5dc73f3 |
| ORCID | 0000-0003-3328-4946 |
| ParticipantIDs | crossref_primary_10_1016_j_cie_2020_106671 crossref_citationtrail_10_1016_j_cie_2020_106671 elsevier_sciencedirect_doi_10_1016_j_cie_2020_106671 |
| PublicationCentury | 2000 |
| PublicationDate | October 2020 2020-10-00 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & industrial engineering |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Hsiao, Leou (b0070) 2013; 2013 Junior, Musse, Jung (b0085) 2010; 27 Castillo, Fernandez-Caballero, Lopez (b0025) 2017; 20 Nguyen (b0110) 2019; 6 Nie, Ma (b0115) 2002; 11 Sun, Velastin (b0165) 2003; 20 Oliver, Rosario, Pentland (b0125) 2000; 22 Jamrus, Wang, Chien (b0080) 2020; 142 Bai, Shen, Li (b0015) 2010; 56 Collins, Lipton, Kanade, Fujiyoshi, Duggins, Tsin (b0050) 2000 Zivkovic, Z. (2004). Improved adaptive Gaussian mixture model for background sub- traction. In Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004 (Vol. 2, pp. 28–31). IEEE. Reddy, V., Sanderson, C., Lovell, B. C., & Bigdeli, A. (2009). An efficient background estimation algorithm for embedded smart cameras. In 2009 Third ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC) (pp. 1–7). IEEE. Atzori, De Natale, Perra (b0010) 2001; 3 Nilsson, F. (2019). Image analysis for smart manufacturing. Chen, Wu, Huang, Fan (b0030) 2010; 58 Porikli, Ivanov, Haga (b0130) 2008; 2008 Ang Lim, L., & Yalim Keles, H. (2018). Foreground Segmentation Using a Triplet Convolutional Neural Network for Multiscale Feature Encoding. arXiv preprint arXiv:1801.02225. Kuo, Chien (b0095) 2018 Stauffer, C., & Grimson, W. E. L. (1999). Adaptive background mixture models for real- time tracking. In Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149) (Vol. 2, pp. 246–252). IEEE. Chien, Lin, Lin (b0045) 2020 Kim (b0090) 2018; 5 Braham, Van Droogenbroeck (b0020) 2016 Haritaoglu, Harwood, Davis (b0065) 2000; 22 Hsu, Chen, Chien (b0075) 2020; 142 Chien, Hong, Guo (b0040) 2017; 40 Enzweiler, Gavrila (b0060) 2008; 31 Redmon, Divvala, Girshick, Farhadi (b0140) 2016 Thaipanich, Wu, Kuo (b0170) 2007; Vol. 6696 Singh, Vishnu, Mohan (b0155) 2016 Cucchiara, Prati, Vezzani (b0055) 2007; 24 Chien, Chou, Yu (b0035) 2016; 13 Murino, V., Puppo, E., Sona, D., Cristani, M., & Sansone, C. (2015). New Trends in Image Analysis and Processing–ICIAP 2015 Workshops: ICIAP 2015 International Workshops, BioFor, CTMR, RHEUMA, ISCA, MADiMa, SBMI, and QoEM, Genoa, Italy, September 7–8, 2015, Proceedings (Vol. 9281). Springer. Ronneberger, Fischer, Brox (b0145) 2015 Shimada, Arita, Taniguchi (b0150) 2006 Chien (10.1016/j.cie.2020.106671_b0040) 2017; 40 Cucchiara (10.1016/j.cie.2020.106671_b0055) 2007; 24 Sun (10.1016/j.cie.2020.106671_b0165) 2003; 20 10.1016/j.cie.2020.106671_b0120 Jamrus (10.1016/j.cie.2020.106671_b0080) 2020; 142 Chien (10.1016/j.cie.2020.106671_b0045) 2020 10.1016/j.cie.2020.106671_b0160 Hsiao (10.1016/j.cie.2020.106671_b0070) 2013; 2013 Shimada (10.1016/j.cie.2020.106671_b0150) 2006 Oliver (10.1016/j.cie.2020.106671_b0125) 2000; 22 Nie (10.1016/j.cie.2020.106671_b0115) 2002; 11 10.1016/j.cie.2020.106671_b0135 Porikli (10.1016/j.cie.2020.106671_b0130) 2008; 2008 Ronneberger (10.1016/j.cie.2020.106671_b0145) 2015 Junior (10.1016/j.cie.2020.106671_b0085) 2010; 27 Castillo (10.1016/j.cie.2020.106671_b0025) 2017; 20 Kuo (10.1016/j.cie.2020.106671_b0095) 2018 Atzori (10.1016/j.cie.2020.106671_b0010) 2001; 3 Chen (10.1016/j.cie.2020.106671_b0030) 2010; 58 Kim (10.1016/j.cie.2020.106671_b0090) 2018; 5 Collins (10.1016/j.cie.2020.106671_b0050) 2000 Bai (10.1016/j.cie.2020.106671_b0015) 2010; 56 Thaipanich (10.1016/j.cie.2020.106671_b0170) 2007; Vol. 6696 10.1016/j.cie.2020.106671_b0175 Haritaoglu (10.1016/j.cie.2020.106671_b0065) 2000; 22 10.1016/j.cie.2020.106671_b0005 Braham (10.1016/j.cie.2020.106671_b0020) 2016 Singh (10.1016/j.cie.2020.106671_b0155) 2016 Enzweiler (10.1016/j.cie.2020.106671_b0060) 2008; 31 10.1016/j.cie.2020.106671_b0100 Chien (10.1016/j.cie.2020.106671_b0035) 2016; 13 Hsu (10.1016/j.cie.2020.106671_b0075) 2020; 142 Nguyen (10.1016/j.cie.2020.106671_b0110) 2019; 6 Redmon (10.1016/j.cie.2020.106671_b0140) 2016 |
| References_xml | – volume: 31 start-page: 2179 year: 2008 end-page: 2195 ident: b0060 article-title: Monocular pedestrian detection: Survey and experiments publication-title: IEEE transactions on pattern analysis and machine intelligence – volume: 142 year: 2020 ident: b0080 article-title: Dynamic coordinated scheduling for supply chain under uncertain production time to empower smart production for Industry 3.5 publication-title: Computers & Industrial Engineering – volume: 22 start-page: 831 year: 2000 end-page: 843 ident: b0125 article-title: A bayesian computer vision system for modeling human interactions publication-title: IEEE transactions on pattern analysis and machine intelligence – volume: 3 start-page: 326 year: 2001 end-page: 338 ident: b0010 article-title: A spatio-temporal concealment technique using boundary matching algorithm and mesh-based warping (bma-mbw) publication-title: IEEE Transactions on Multimedia – start-page: 1 year: 2000 end-page: 68 ident: b0050 article-title: A system for video surveillance and monitoring publication-title: VSAM final report – volume: 22 start-page: 809 year: 2000 end-page: 830 ident: b0065 article-title: W/sup 4: Real-time surveillance of people and their activities publication-title: IEEE Transactions on pattern analysis and machine intelligence – volume: 6 year: 2019 ident: b0110 article-title: An energy-efficient framework for multimedia data routing in internet of things (iots) publication-title: EAI Endorsed Transactions on Industrial Networks and Intelligent Systems – reference: Reddy, V., Sanderson, C., Lovell, B. C., & Bigdeli, A. (2009). An efficient background estimation algorithm for embedded smart cameras. In 2009 Third ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC) (pp. 1–7). IEEE. – volume: 20 start-page: 393 year: 2003 end-page: 407 ident: b0165 article-title: Fusing visual and audio information in a distributed intelligent surveillance system for public transport systems publication-title: Acta Mathematica Sinica – reference: Murino, V., Puppo, E., Sona, D., Cristani, M., & Sansone, C. (2015). New Trends in Image Analysis and Processing–ICIAP 2015 Workshops: ICIAP 2015 International Workshops, BioFor, CTMR, RHEUMA, ISCA, MADiMa, SBMI, and QoEM, Genoa, Italy, September 7–8, 2015, Proceedings (Vol. 9281). Springer. – volume: 20 start-page: 53 year: 2017 end-page: 69 ident: b0025 article-title: A review on intelligent monitoring and activity interpretation. publication-title: Inteligencia Artificial – volume: 40 start-page: 552 year: 2017 end-page: 561 ident: b0040 article-title: An empirical study for smart production for tft-lcd to empower industry 3.5 publication-title: Journal of the Chinese Institute of Engineers – year: 2006 ident: b0150 article-title: Dynamic control of adaptive mixture- of-Gaussians background model publication-title: 2006 IEEE International Conference on Video and Signal Based Surveillance – volume: 56 start-page: 119 year: 2010 end-page: 124 ident: b0015 article-title: Design and implementation of an embedded home surveillance system by use of multiple ultrasonic sensors publication-title: IEEE Transactions on Consumer Electronics – reference: Ang Lim, L., & Yalim Keles, H. (2018). Foreground Segmentation Using a Triplet Convolutional Neural Network for Multiscale Feature Encoding. arXiv preprint arXiv:1801.02225. – reference: Zivkovic, Z. (2004). Improved adaptive Gaussian mixture model for background sub- traction. In Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004 (Vol. 2, pp. 28–31). IEEE. – volume: 2008 start-page: 30 year: 2008 ident: b0130 article-title: Robust abandoned object detection using dual foregrounds publication-title: EURASIP Journal on Advances in Signal Processing – start-page: 1 year: 2020 end-page: 21 ident: b0045 article-title: Deep reinforcement learning for selecting demand forecast models to empower industry 3.5 and an empirical study for a semi- conductor component distributor publication-title: International Journal of Production Research – start-page: 234 year: 2015 end-page: 241 ident: b0145 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 886 year: 2016 end-page: 891 ident: b0155 article-title: Visual big data analytics for traffic monitoring in smart city publication-title: 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA) – volume: 58 start-page: 2030 year: 2010 end-page: 2044 ident: b0030 article-title: A real-time vision system for nighttime vehicle detection and traffic surveillance publication-title: IEEE Transactions on Industrial Electronics – volume: 24 start-page: 334 year: 2007 end-page: 345 ident: b0055 article-title: A multi-camera vision system for fall detection and alarm generation publication-title: Expert Systems – reference: Stauffer, C., & Grimson, W. E. L. (1999). Adaptive background mixture models for real- time tracking. In Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149) (Vol. 2, pp. 246–252). IEEE. – volume: 142 year: 2020 ident: b0075 article-title: Similarity matching of wafer bin maps for manufacturing intelligence to empower Industry 3.5 for semiconductor manufacturing publication-title: Computers & Industrial Engineering – volume: 5 start-page: 22 year: 2018 ident: b0090 article-title: A hybrid framework combining background subtraction and deep neural networks for rapid person detection publication-title: Journal of Big Data – start-page: 1 year: 2016 end-page: 4 ident: b0020 article-title: Deep background subtraction with scene-specific convolutional neural networks publication-title: 2016 International Conference on Sys- Tems, Signals and Image Processing (IWSSIP) – volume: 27 start-page: 66 year: 2010 end-page: 77 ident: b0085 article-title: Crowd analysis using computer vision techniques publication-title: IEEE Signal Processing Magazine – reference: Nilsson, F. (2019). Image analysis for smart manufacturing. – start-page: 779 year: 2016 end-page: 788 ident: b0140 article-title: You only look once: Unified, real-time object detection publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: Vol. 6696 year: 2007 ident: b0170 article-title: Video error concealment with outer and inner boundary matching algorithms publication-title: Applications of Digital Image Processing XXX – start-page: 920 year: 2018 end-page: 925 ident: b0095 article-title: Using auxiliary capacity planning strategy genetic algorithm for TFT-LCD photolithography scheduling to empower industry 3.5 publication-title: 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE) – volume: 11 start-page: 1442 year: 2002 end-page: 1449 ident: b0115 article-title: Adaptive rood pattern search for fast block-matching motion estimation publication-title: IEEE Transactions on image processing – volume: 2013 start-page: 12 year: 2013 ident: b0070 article-title: Background initialization and foreground segmentation for bootstrapping video sequences publication-title: EURASIP Journal on Image and Video Processing – volume: 13 start-page: 1567 year: 2016 end-page: 1580 ident: b0035 article-title: A novel route selection and resource allocation approach to improve the efficiency of manual material handling system in 200-mm wafer fabs for industry 3.5 publication-title: IEEE Transactions on Automation Science and Engineering – volume: 27 start-page: 66 issue: 5 year: 2010 ident: 10.1016/j.cie.2020.106671_b0085 article-title: Crowd analysis using computer vision techniques publication-title: IEEE Signal Processing Magazine – start-page: 1 year: 2016 ident: 10.1016/j.cie.2020.106671_b0020 article-title: Deep background subtraction with scene-specific convolutional neural networks – ident: 10.1016/j.cie.2020.106671_b0175 doi: 10.1109/ICPR.2004.1333992 – volume: 40 start-page: 552 issue: 7 year: 2017 ident: 10.1016/j.cie.2020.106671_b0040 article-title: An empirical study for smart production for tft-lcd to empower industry 3.5 publication-title: Journal of the Chinese Institute of Engineers doi: 10.1080/02533839.2017.1372220 – volume: 5 start-page: 22 issue: 1 year: 2018 ident: 10.1016/j.cie.2020.106671_b0090 article-title: A hybrid framework combining background subtraction and deep neural networks for rapid person detection publication-title: Journal of Big Data doi: 10.1186/s40537-018-0131-x – volume: 3 start-page: 326 issue: 3 year: 2001 ident: 10.1016/j.cie.2020.106671_b0010 article-title: A spatio-temporal concealment technique using boundary matching algorithm and mesh-based warping (bma-mbw) publication-title: IEEE Transactions on Multimedia doi: 10.1109/6046.944476 – ident: 10.1016/j.cie.2020.106671_b0100 doi: 10.1007/978-3-319-23222-5 – volume: 58 start-page: 2030 issue: 5 year: 2010 ident: 10.1016/j.cie.2020.106671_b0030 article-title: A real-time vision system for nighttime vehicle detection and traffic surveillance publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2010.2055771 – start-page: 1 year: 2020 ident: 10.1016/j.cie.2020.106671_b0045 article-title: Deep reinforcement learning for selecting demand forecast models to empower industry 3.5 and an empirical study for a semi- conductor component distributor publication-title: International Journal of Production Research – volume: 31 start-page: 2179 issue: 12 year: 2008 ident: 10.1016/j.cie.2020.106671_b0060 article-title: Monocular pedestrian detection: Survey and experiments publication-title: IEEE transactions on pattern analysis and machine intelligence doi: 10.1109/TPAMI.2008.260 – volume: 2013 start-page: 12 issue: 1 year: 2013 ident: 10.1016/j.cie.2020.106671_b0070 article-title: Background initialization and foreground segmentation for bootstrapping video sequences publication-title: EURASIP Journal on Image and Video Processing doi: 10.1186/1687-5281-2013-12 – volume: 22 start-page: 809 issue: 8 year: 2000 ident: 10.1016/j.cie.2020.106671_b0065 article-title: W/sup 4: Real-time surveillance of people and their activities publication-title: IEEE Transactions on pattern analysis and machine intelligence doi: 10.1109/34.868683 – ident: 10.1016/j.cie.2020.106671_b0160 doi: 10.1109/CVPR.1999.784637 – volume: 20 start-page: 393 issue: 3 year: 2003 ident: 10.1016/j.cie.2020.106671_b0165 article-title: Fusing visual and audio information in a distributed intelligent surveillance system for public transport systems publication-title: Acta Mathematica Sinica – volume: Vol. 6696 year: 2007 ident: 10.1016/j.cie.2020.106671_b0170 article-title: Video error concealment with outer and inner boundary matching algorithms publication-title: Applications of Digital Image Processing XXX doi: 10.1117/12.735998 – volume: 11 start-page: 1442 issue: 12 year: 2002 ident: 10.1016/j.cie.2020.106671_b0115 article-title: Adaptive rood pattern search for fast block-matching motion estimation publication-title: IEEE Transactions on image processing doi: 10.1109/TIP.2002.806251 – volume: 24 start-page: 334 issue: 5 year: 2007 ident: 10.1016/j.cie.2020.106671_b0055 article-title: A multi-camera vision system for fall detection and alarm generation publication-title: Expert Systems doi: 10.1111/j.1468-0394.2007.00438.x – volume: 22 start-page: 831 issue: 8 year: 2000 ident: 10.1016/j.cie.2020.106671_b0125 article-title: A bayesian computer vision system for modeling human interactions publication-title: IEEE transactions on pattern analysis and machine intelligence doi: 10.1109/34.868684 – start-page: 779 year: 2016 ident: 10.1016/j.cie.2020.106671_b0140 article-title: You only look once: Unified, real-time object detection – volume: 56 start-page: 119 issue: 1 year: 2010 ident: 10.1016/j.cie.2020.106671_b0015 article-title: Design and implementation of an embedded home surveillance system by use of multiple ultrasonic sensors publication-title: IEEE Transactions on Consumer Electronics doi: 10.1109/TCE.2010.5439134 – ident: 10.1016/j.cie.2020.106671_b0005 doi: 10.1016/j.patrec.2018.08.002 – volume: 142 year: 2020 ident: 10.1016/j.cie.2020.106671_b0080 article-title: Dynamic coordinated scheduling for supply chain under uncertain production time to empower smart production for Industry 3.5 publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2020.106375 – ident: 10.1016/j.cie.2020.106671_b0120 – year: 2006 ident: 10.1016/j.cie.2020.106671_b0150 article-title: Dynamic control of adaptive mixture- of-Gaussians background model – start-page: 1 year: 2000 ident: 10.1016/j.cie.2020.106671_b0050 article-title: A system for video surveillance and monitoring publication-title: VSAM final report – volume: 20 start-page: 53 issue: 59 year: 2017 ident: 10.1016/j.cie.2020.106671_b0025 article-title: A review on intelligent monitoring and activity interpretation. Inteligencia Artificial. Revista Iberoamericana de publication-title: Inteligencia Artificial doi: 10.4114/intartif.vol20iss59pp53-69 – ident: 10.1016/j.cie.2020.106671_b0135 doi: 10.1109/ICDSC.2009.5289348 – volume: 13 start-page: 1567 issue: 4 year: 2016 ident: 10.1016/j.cie.2020.106671_b0035 article-title: A novel route selection and resource allocation approach to improve the efficiency of manual material handling system in 200-mm wafer fabs for industry 3.5 publication-title: IEEE Transactions on Automation Science and Engineering doi: 10.1109/TASE.2016.2583659 – start-page: 886 year: 2016 ident: 10.1016/j.cie.2020.106671_b0155 article-title: Visual big data analytics for traffic monitoring in smart city – volume: 2008 start-page: 30 year: 2008 ident: 10.1016/j.cie.2020.106671_b0130 article-title: Robust abandoned object detection using dual foregrounds publication-title: EURASIP Journal on Advances in Signal Processing – start-page: 920 year: 2018 ident: 10.1016/j.cie.2020.106671_b0095 article-title: Using auxiliary capacity planning strategy genetic algorithm for TFT-LCD photolithography scheduling to empower industry 3.5 – volume: 6 issue: 19 year: 2019 ident: 10.1016/j.cie.2020.106671_b0110 article-title: An energy-efficient framework for multimedia data routing in internet of things (iots) publication-title: EAI Endorsed Transactions on Industrial Networks and Intelligent Systems doi: 10.4108/eai.13-6-2019.159120 – start-page: 234 year: 2015 ident: 10.1016/j.cie.2020.106671_b0145 article-title: U-net: Convolutional networks for biomedical image segmentation – volume: 142 year: 2020 ident: 10.1016/j.cie.2020.106671_b0075 article-title: Similarity matching of wafer bin maps for manufacturing intelligence to empower Industry 3.5 for semiconductor manufacturing publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2020.106358 |
| SSID | ssj0004591 |
| Score | 2.4866555 |
| Snippet | •AI based algorithm for data processing for camera surveillance is proposed.•The developed solution can reduce data transmission significantly.•The solution... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 106671 |
| SubjectTerms | Artificial intelligence Background modeling Convolution neural networks (CNN) Industry 3.5 Region of interest (ROI) Video surveillance (VS) |
| Title | Artificial intelligence based data processing algorithm for video surveillance to empower industry 3.5 |
| URI | https://dx.doi.org/10.1016/j.cie.2020.106671 |
| Volume | 148 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: AKRWK dateStart: 19770101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGDgUUCUR-WBCSltkzh2MlYVVQHRBSp1i-zEgaLSVGkKYuG3cxcnKEjAwGjrzops5x7y3fcRcuErziIpA8sJYkhQ4kBYqudIS_mRrXzNIWLARuG7MR9N2M3UmzbIoOqFwbLK0vYbm15Y63KmW-5mdzmbde_B9pr4AV_3eh42_DImkMWg82HXEMMNax4IWyhdvWwWNV6wLKSIDo45F_bPvqnmb4Z7ZKcMFGnffMs-aehFk-yWQSMtf8lVk2zXEAUPSILyBhSCzmpomxS9VUyxHpQuTW8AyFM5f0yzWf70QiF2pdiSl9LVOnvVyEWEanlKEbvqTWewXEHy8U7djndIJsOrh8HIKqkUrMgJRG6JhEkuPVc5EvITZXMNZxQoHfAE8i2tpI_MYJDd2CzSkNPYkVBgJpWjvDgSbuIekY1FutDHhAaurxOheeIHEEqxSCUuQtjYPpfKdbTfIr1qE8OoxBlHuot5WBWUPcO8DnHfQ7PvLXL5pbI0IBt_CbPqZMJvNyUEJ_C72sn_1E7JFo5M-d4Z2ciztT6HMCRX7eKetclm__p2NP4EBOHcEg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHtSDD9SIzz14MinQ13Z7NESCClyEhFuzW7aKQSBQNF787c6wrcFEPXjsdmbTzG5nv8nOfANwKRT3YilDywkHGKAMwsBSNUdaSsS2EpojYqBC4XaHN3veXd_vF6Ce18JQWmXm-41PX3rrbKSaWbM6HQ6rD-h7DX6g272aL9Zg3fOdgCKwyoe9Qhlu2uahtEXi-dXmMskL58UY0aFnzgP758Np5cBp7MJ2hhTZtfmYPSjocQl2MtTIsn9yXoKtFUrBfUhI3rBCsOEK3Saj42rAKCGUTU1xAMozOXqczIbp0wtD8MqoJm_C5ovZq6ZmRKSWThiRV73pGU637PLxztyKfwC9xk233rSyXgpW7IRBagWJJ7n0XeVIDFCUzTUuUqh0yBMMuLSSglqDYXhje7HGoMaOA4V-UjnKH8SBm7iHUBxPxvoIWOgKnQSaJyJELOXFKnGJw8YWXCrX0aIMtdyIUZwRjVO_i1GUZ5Q947iOyO6RsXsZrr5UpoZl4y9hL1-Z6NtWifAU-F3t-H9qF7DR7LZbUeu2c38Cm_TG5PKdQjGdLfQZYpJUnS_33Cc8v92n |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+based+data+processing+algorithm+for+video+surveillance+to+empower+industry+3.5&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Nguyen%2C+Minh+T.&rft.au=Truong%2C+Linh+H.&rft.au=Tran%2C+Trang+T.&rft.au=Chien%2C+Chen-Fu&rft.date=2020-10-01&rft.pub=Elsevier+Ltd&rft.issn=0360-8352&rft.eissn=1879-0550&rft.volume=148&rft_id=info:doi/10.1016%2Fj.cie.2020.106671&rft.externalDocID=S0360835220304058 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon |