Fringe removal algorithms for atomic absorption images: A survey

The fringe noises disrupt the precise measurement of the atom distribution in the process of the absorption images. The fringe removal algorithms have been proposed to reconstruct the ideal reference images of the absorption images to remove the fringe noises. However, the focus of these fringe remo...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 31; no. 5; pp. 50313 - 31
Main Authors Lei, Gaoyi, Tang, Chencheng, Zhai, Yueyang
Format Journal Article
LanguageEnglish
Published Chinese Physical Society and IOP Publishing Ltd 01.05.2022
School of Instrumentation and Optoelectronic Engineering,Beihang University,Beijing 100191,China%Quantum Sensing Center,Zhejiang Laboratory,Hangzhou 310000,China%Research Institute of Frontier Science,Beihang University,Beijing 100191,China
Subjects
Online AccessGet full text
ISSN1674-1056
DOI10.1088/1674-1056/ac3758

Cover

Abstract The fringe noises disrupt the precise measurement of the atom distribution in the process of the absorption images. The fringe removal algorithms have been proposed to reconstruct the ideal reference images of the absorption images to remove the fringe noises. However, the focus of these fringe removal algorithms is the association of the fringe removal performance with the physical systems, leaving the gap to analyze the workflows of different fringe removal algorithms. This survey reviews the fringe removal algorithms and classifies them into two categories: the image-decomposition based methods and the deep-learning based methods. Then this survey draws the workflow details of two classical fringe removal algorithms, and conducts experiments on the absDL ultracold image dataset. Experiments show that the singular value decomposition (SVD) method achieves outstanding performance, and the U-net method succeeds in implying the image inpainting idea. The main contribution of this survey is the interpretation of the fringe removal algorithms, which may help readers have a better understanding of the research status. Codes in this survey are available at https://github.com/leigaoyi/Atomic_Fringe_Denoise .
AbstractList The fringe noises disrupt the precise measurement of the atom distribution in the process of the absorption im-ages.The fringe removal algorithms have been proposed to reconstruct the ideal reference images of the absorption images to remove the fringe noises.However,the focus of these fringe removal algorithms is the association of the fringe removal performance with the physical systems,leaving the gap to analyze the workflows of different fringe re-moval algorithms.This survey reviews the fringe removal algorithms and classifies them into two categories:the image-decomposition based methods and the deep-learning based methods.Then this survey draws the workflow details of two classical fringe removal algorithms,and conducts experiments on the absDL ultracold image dataset.Experiments show that the singular value decomposition(SVD)method achieves outstanding performance,and the U-net method succeeds in implying the image inpainting idea.The main contribution of this survey is the interpretation of the fringe removal algorithms,which may help readers have a better understanding of the research status.Codes in this survey are available at https://github.com/leigaoyi/Atomic-Fringe-Denoise.
The fringe noises disrupt the precise measurement of the atom distribution in the process of the absorption images. The fringe removal algorithms have been proposed to reconstruct the ideal reference images of the absorption images to remove the fringe noises. However, the focus of these fringe removal algorithms is the association of the fringe removal performance with the physical systems, leaving the gap to analyze the workflows of different fringe removal algorithms. This survey reviews the fringe removal algorithms and classifies them into two categories: the image-decomposition based methods and the deep-learning based methods. Then this survey draws the workflow details of two classical fringe removal algorithms, and conducts experiments on the absDL ultracold image dataset. Experiments show that the singular value decomposition (SVD) method achieves outstanding performance, and the U-net method succeeds in implying the image inpainting idea. The main contribution of this survey is the interpretation of the fringe removal algorithms, which may help readers have a better understanding of the research status. Codes in this survey are available at https://github.com/leigaoyi/Atomic_Fringe_Denoise .
Author Zhai, Yueyang
Tang, Chencheng
Lei, Gaoyi
AuthorAffiliation School of Instrumentation and Optoelectronic Engineering,Beihang University,Beijing 100191,China%Quantum Sensing Center,Zhejiang Laboratory,Hangzhou 310000,China%Research Institute of Frontier Science,Beihang University,Beijing 100191,China
AuthorAffiliation_xml – name: School of Instrumentation and Optoelectronic Engineering,Beihang University,Beijing 100191,China%Quantum Sensing Center,Zhejiang Laboratory,Hangzhou 310000,China%Research Institute of Frontier Science,Beihang University,Beijing 100191,China
Author_xml – sequence: 1
  givenname: Gaoyi
  surname: Lei
  fullname: Lei, Gaoyi
  organization: School of Instrumentation and Optoelectronic Engineering, Beihang University , China
– sequence: 2
  givenname: Chencheng
  surname: Tang
  fullname: Tang, Chencheng
  organization: Quantum Sensing Center, Zhejiang Laboratory , China
– sequence: 3
  givenname: Yueyang
  surname: Zhai
  fullname: Zhai, Yueyang
  organization: Research Institute of Frontier Science, Beihang University , China
BookMark eNp1kLFOwzAQQD0UibawM3pjIfRsx4nLRFVRQKrEArPlOHZIldiRnbYqX0-qIrrAdNLp6d3pTdDIeWcQuiFwT0CIGcnyNCHAs5nSLOdihMa_q0s0iXEDkBGgbIweV6F2lcHBtH6nGqyayoe6_2wjtj5g1fu21lgV0Yeur73DdasqEx_wAsdt2JnDFbqwqonm-mdO0cfq6X35kqzfnl-Xi3Wi6Tzvk1ylpihTI5gwTGWaMJ4RwXRJQFPI5pYQLqjilDOiWJnnWmhDrS7LeSFsIdgU3Z68e-WscpXc-G1ww0X5Ve0baShQChwgHUg4kTr4GIOxsgvD1-EgCchjH3mMIY8x5KnPWV777izWXSEZkVwOXkaY7Eo7kHd_kP-KvwExkHbP
Cites_doi 10.1103/PhysRevLett.111.143001
10.1364/JOSAB.391297
10.1103/PhysRevLett.114.230401
10.5555/3327144.3327174
10.1103/PhysRevA.87.053614
10.1063/1.4793522
10.5555/3026877.3026899
10.1103/PhysRevApplied.14.034006
10.1103/PhysRevApplied.14.014011
10.1007/978-3-319-24574-4_28
10.1364/OE.27.012710
10.1088/1674-1056/abf3b8
10.1103/PhysRevA.82.061606
10.1088/1674-1056/abf10c
10.1088/1674-1056/28/3/038701
10.1103/RevModPhys.80.885
10.1063/1.4927720
10.1364/OE.19.023901
10.1063/1.5040669
10.1126/science.aaa7432
10.5555/3305381.3305404
10.1007/s00340-016-6336-9
10.1103/PhysRevA.93.063628
10.1038/nature04851
10.1088/1674-1056/24/7/075205
10.1109/TNN.2010.2091281
10.1103/PhysRevLett.117.138501
ContentType Journal Article
Copyright 2022 Chinese Physical Society and IOP Publishing Ltd
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2022 Chinese Physical Society and IOP Publishing Ltd
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1088/1674-1056/ac3758
DatabaseName CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EndPage 31
ExternalDocumentID zgwl_e202205004
10_1088_1674_1056_ac3758
cpb_31_5_050313
GroupedDBID -SA
-S~
1JI
29B
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
AAXDM
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CAJEA
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
FA0
HAK
IJHAN
IOP
IZVLO
KOT
M45
N5L
PJBAE
Q--
RIN
RNS
ROL
RPA
SY9
TCJ
TGP
U1G
U5K
UCJ
W28
AAYXX
ADEQX
AEINN
CITATION
02O
1WK
2B.
4A8
92I
93N
AALHV
ACARI
AERVB
AFUIB
AGQPQ
AHSEE
ARNYC
BBWZM
EJD
FEDTE
HVGLF
JCGBZ
NT-
NT.
PSX
Q02
ID FETCH-LOGICAL-c297t-7a4ebd4e838e3a6c1356183cd10c2069f11582a52531a3d77c8ce2fcdd9b8fb83
IEDL.DBID IOP
ISSN 1674-1056
IngestDate Thu May 29 04:07:17 EDT 2025
Wed Oct 01 03:35:29 EDT 2025
Wed Aug 21 03:35:03 EDT 2024
Wed Jun 07 11:19:01 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords deep learning
atomic absorption image
fringe removal
principal component analysis
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-7a4ebd4e838e3a6c1356183cd10c2069f11582a52531a3d77c8ce2fcdd9b8fb83
PageCount 7
ParticipantIDs crossref_primary_10_1088_1674_1056_ac3758
wanfang_journals_zgwl_e202205004
iop_journals_10_1088_1674_1056_ac3758
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Chinese physics B
PublicationTitleAlternate Chin. Phys. B
PublicationTitle_FL Chinese Physics B
PublicationYear 2022
Publisher Chinese Physical Society and IOP Publishing Ltd
School of Instrumentation and Optoelectronic Engineering,Beihang University,Beijing 100191,China%Quantum Sensing Center,Zhejiang Laboratory,Hangzhou 310000,China%Research Institute of Frontier Science,Beihang University,Beijing 100191,China
Publisher_xml – name: Chinese Physical Society and IOP Publishing Ltd
– name: School of Instrumentation and Optoelectronic Engineering,Beihang University,Beijing 100191,China%Quantum Sensing Center,Zhejiang Laboratory,Hangzhou 310000,China%Research Institute of Frontier Science,Beihang University,Beijing 100191,China
References Yeh (cpb_31_5_050313bib30) 2017
Hara (cpb_31_5_050313bib26) 2015
Bloch (cpb_31_5_050313bib4) 2008; 80
Tang (cpb_31_5_050313bib24) 2019; 28
Hardman (cpb_31_5_050313bib2) 2016; 117
Santurkar (cpb_31_5_050313bib25) 2018
Yuan (cpb_31_5_050313bib31) 2019; 7
Liu (cpb_31_5_050313bib32) 2017; 43
Cao (cpb_31_5_050313bib17) 2019; 27
Yue (cpb_31_5_050313bib7) 2021; 30
Yu (cpb_31_5_050313bib28) 2018
Song (cpb_31_5_050313bib21) 2020; 14
Lu (cpb_31_5_050313bib11) 2015; 86
Li (cpb_31_5_050313bib20) 2007; 5
Ronneberger (cpb_31_5_050313bib23) 2015
Sun (cpb_31_5_050313bib13) 2021; 30
Pan (cpb_31_5_050313bib35) 2010; 22
Ockloen (cpb_31_5_050313bib10) 2013; 111
Salim (cpb_31_5_050313bib6) 2013; 102
Abadi (cpb_31_5_050313bib27) 2016
Pan (cpb_31_5_050313bib34) 2011; 24
Schreiber (cpb_31_5_050313bib5) 2015; 349
Ries (cpb_31_5_050313bib14) 2015; 114
Arjovsky (cpb_31_5_050313bib33) 2017
Boundaoud (cpb_31_5_050313bib9) 2015; 24
Hadzibabic (cpb_31_5_050313bib15) 2006; 441
Ockeloen (cpb_31_5_050313bib19) 2010; 82
Sun (cpb_31_5_050313bib8) 2011; 24
Lu (cpb_31_5_050313bib3) 2016; 122
Niu (cpb_31_5_050313bib18) 2019; 113
Ness (cpb_31_5_050313bib22) 2020; 14
Feng (cpb_31_5_050313bib16) 2020; 37
Armanious (cpb_31_5_050313bib29) 2019
D’Amico (cpb_31_5_050313bib1) 2016; 93
Egorov (cpb_31_5_050313bib12) 2013; 87
References_xml – volume: 111
  year: 2013
  ident: cpb_31_5_050313bib10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.143001
– volume: 43
  start-page: 1
  year: 2017
  ident: cpb_31_5_050313bib32
  publication-title: Acta Automatica Sinica
– volume: 37
  start-page: 2041
  year: 2020
  ident: cpb_31_5_050313bib16
  publication-title: JOSA B
  doi: 10.1364/JOSAB.391297
– volume: 24
  year: 2011
  ident: cpb_31_5_050313bib34
  publication-title: Opt. express
– volume: 114
  year: 2015
  ident: cpb_31_5_050313bib14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.230401
– volume: 7
  year: 2019
  ident: cpb_31_5_050313bib31
  publication-title: IEEE Access
– start-page: 2488
  year: 2018
  ident: cpb_31_5_050313bib25
  doi: 10.5555/3327144.3327174
– volume: 87
  year: 2013
  ident: cpb_31_5_050313bib12
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.87.053614
– volume: 102
  year: 2013
  ident: cpb_31_5_050313bib6
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4793522
– start-page: 265
  year: 2016
  ident: cpb_31_5_050313bib27
  doi: 10.5555/3026877.3026899
– volume: 14
  year: 2020
  ident: cpb_31_5_050313bib21
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.14.034006
– volume: 14
  year: 2020
  ident: cpb_31_5_050313bib22
  publication-title: Phys. Rev. Applied
  doi: 10.1103/PhysRevApplied.14.014011
– start-page: 234
  year: 2015
  ident: cpb_31_5_050313bib23
  doi: 10.1007/978-3-319-24574-4_28
– volume: 27
  year: 2019
  ident: cpb_31_5_050313bib17
  publication-title: Opt. Soc. America
  doi: 10.1364/OE.27.012710
– volume: 30
  year: 2021
  ident: cpb_31_5_050313bib13
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/abf3b8
– volume: 82
  year: 2010
  ident: cpb_31_5_050313bib19
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.82.061606
– volume: 30
  year: 2021
  ident: cpb_31_5_050313bib7
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/abf10c
– start-page: 3267
  year: 2019
  ident: cpb_31_5_050313bib29
– volume: 28
  year: 2019
  ident: cpb_31_5_050313bib24
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/28/3/038701
– volume: 80
  start-page: 885
  year: 2008
  ident: cpb_31_5_050313bib4
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.80.885
– volume: 86
  year: 2015
  ident: cpb_31_5_050313bib11
  publication-title: Rev. Scient. Instr.
  doi: 10.1063/1.4927720
– start-page: 5485
  year: 2017
  ident: cpb_31_5_050313bib30
– volume: 24
  year: 2011
  ident: cpb_31_5_050313bib8
  publication-title: Opt. Express
  doi: 10.1364/OE.19.023901
– start-page: 5505
  year: 2018
  ident: cpb_31_5_050313bib28
– volume: 113
  year: 2019
  ident: cpb_31_5_050313bib18
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5040669
– volume: 349
  start-page: 842
  year: 2015
  ident: cpb_31_5_050313bib5
  publication-title: Science
  doi: 10.1126/science.aaa7432
– start-page: 214
  year: 2017
  ident: cpb_31_5_050313bib33
  doi: 10.5555/3305381.3305404
– volume: 122
  start-page: 59
  year: 2016
  ident: cpb_31_5_050313bib3
  publication-title: Appl. Phys. B
  doi: 10.1007/s00340-016-6336-9
– volume: 93
  year: 2016
  ident: cpb_31_5_050313bib1
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.93.063628
– volume: 441
  start-page: 1118
  year: 2006
  ident: cpb_31_5_050313bib15
  publication-title: Nature
  doi: 10.1038/nature04851
– start-page: 1
  year: 2015
  ident: cpb_31_5_050313bib26
– volume: 24
  year: 2015
  ident: cpb_31_5_050313bib9
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/24/7/075205
– volume: 22
  start-page: 199
  year: 2010
  ident: cpb_31_5_050313bib35
  publication-title: IEEE Transact. Neural Networks
  doi: 10.1109/TNN.2010.2091281
– volume: 117
  year: 2016
  ident: cpb_31_5_050313bib2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.138501
– volume: 5
  start-page: 128
  year: 2007
  ident: cpb_31_5_050313bib20
  publication-title: Chin. Opt. Soc.
SSID ssj0061023
Score 2.2640274
Snippet The fringe noises disrupt the precise measurement of the atom distribution in the process of the absorption images. The fringe removal algorithms have been...
The fringe noises disrupt the precise measurement of the atom distribution in the process of the absorption im-ages.The fringe removal algorithms have been...
SourceID wanfang
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 50313
SubjectTerms atomic absorption image
deep learning
fringe removal
principal component analysis
Title Fringe removal algorithms for atomic absorption images: A survey
URI https://iopscience.iop.org/article/10.1088/1674-1056/ac3758
https://d.wanfangdata.com.cn/periodical/zgwl-e202205004
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  issn: 1674-1056
  databaseCode: IOP
  dateStart: 20080101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://iopscience.iop.org/
  omitProxy: false
  ssIdentifier: ssj0061023
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKERILb0R5yQMMDGkbOw8HFipEhZB4DCAxIFm245SKNqmSFER_PeckBYoQQmwZLnZ8sc_f-e4-I3TgEuma6JClHF9YTgg-K3NMsbuUobaJDCQxBc5X197FvXP54D7U0MlHLUwyqkx_Ex5LouBShVVCHGuZvHnLXBjfEooC3J1D85QBMDbVeze3UzPsGU4C421NpasY5U8tzOxJc9BvUcETRyLufdlsusvocfqZZY7Jc3Ocy6aafGNw_Oc4VtBSBUJxpxRdRTUdr6GFIhlUZevotFsc9uFUDxOYiFgMeknaz5-GGQaIi8FNH_YVFjJL0sLg4P4QrFJ2jDs4G6cv-m0D3XfP784urOqmBUuRwM8tXzhaho5mlGkqPGVTgFWMqtBuK9L2gghwIyPCJbBiBQ19XzGlSaTCMJAskoxuonqcxHoLYUdK4QoAMkxDox4MlGnDamc7Ooh87TXQ0VTXfFQSavAiEM4YNxrhRiO81EgDHYLyeLWqsl_k8IycGklObe5yQ3ZjUz4KIxCp_uin2KT3OuCaFLXGYCu2_9jbDlo075RZj7uonqdjvQfIJJf7xQx8B30u2JY
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT8QgFCYu0XhxN-5y0IOHzljoQj1p1Im7HjTxhkDpONFpJ21Ho7_eB-3EJcaYeOvhAeUrPD7Kex8IbfpE-uZ0yFFeKBwvhj0r80yyu5SxdomMJDEJzheXwfGtd3rn39X3nNpcmKxXu_4GPFZCwRWEdUAca5q4ecdcGN8UigLdbfbiZBiNWp0Sk8F3dT1wxYHRJTA7rkGJ-pzyp1q-rEvD0LbN4kkTkbY_LTitKXQ_eNUqzuSx0S9lQ719U3H8R1-m0WRNRvF-ZT6DhnQ6i8ZsUKgq5tBey_70w7nuZjAgsXhqZ3mnfOgWGKguhu16t6OwkEWWW8eDO13wTsUu3sdFP3_Wr_PotnV0c3Ds1DcuOIpEYemEwtMy9jSjTFMRKJcCvWJUxe6OIjtBlAB_ZET4BGauoHEYKqY0SVQcR5IlktEFNJJmqV5E2JNS-AIIDdNQaQCdZdqo27mejpJQB0toe4A371XCGtweiDPGDSrcoMIrVJbQFgDI69lV_GKHv9ipnuTU5T43ojcu5QAumNRf9cPsrf3yxDWxOcfgM5b_2NoGGr8-bPHzk8uzFTRhileBkKtopMz7eg3ISinX7YB8B_WQ3fc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fringe+removal+algorithms+for+atomic+absorption+images%3A+A+survey&rft.jtitle=Chinese+physics+B&rft.au=Lei%2C+Gaoyi&rft.au=Tang%2C+Chencheng&rft.au=Zhai%2C+Yueyang&rft.date=2022-05-01&rft.pub=Chinese+Physical+Society+and+IOP+Publishing+Ltd&rft.issn=1674-1056&rft.volume=31&rft.issue=5&rft_id=info:doi/10.1088%2F1674-1056%2Fac3758&rft.externalDocID=cpb_31_5_050313
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwl-e%2Fzgwl-e.jpg