Fringe removal algorithms for atomic absorption images: A survey
The fringe noises disrupt the precise measurement of the atom distribution in the process of the absorption images. The fringe removal algorithms have been proposed to reconstruct the ideal reference images of the absorption images to remove the fringe noises. However, the focus of these fringe remo...
Saved in:
| Published in | Chinese physics B Vol. 31; no. 5; pp. 50313 - 31 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Chinese Physical Society and IOP Publishing Ltd
01.05.2022
School of Instrumentation and Optoelectronic Engineering,Beihang University,Beijing 100191,China%Quantum Sensing Center,Zhejiang Laboratory,Hangzhou 310000,China%Research Institute of Frontier Science,Beihang University,Beijing 100191,China |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1674-1056 |
| DOI | 10.1088/1674-1056/ac3758 |
Cover
| Abstract | The fringe noises disrupt the precise measurement of the atom distribution in the process of the absorption images. The fringe removal algorithms have been proposed to reconstruct the ideal reference images of the absorption images to remove the fringe noises. However, the focus of these fringe removal algorithms is the association of the fringe removal performance with the physical systems, leaving the gap to analyze the workflows of different fringe removal algorithms. This survey reviews the fringe removal algorithms and classifies them into two categories: the image-decomposition based methods and the deep-learning based methods. Then this survey draws the workflow details of two classical fringe removal algorithms, and conducts experiments on the absDL ultracold image dataset. Experiments show that the singular value decomposition (SVD) method achieves outstanding performance, and the U-net method succeeds in implying the image inpainting idea. The main contribution of this survey is the interpretation of the fringe removal algorithms, which may help readers have a better understanding of the research status. Codes in this survey are available at
https://github.com/leigaoyi/Atomic_Fringe_Denoise
. |
|---|---|
| AbstractList | The fringe noises disrupt the precise measurement of the atom distribution in the process of the absorption im-ages.The fringe removal algorithms have been proposed to reconstruct the ideal reference images of the absorption images to remove the fringe noises.However,the focus of these fringe removal algorithms is the association of the fringe removal performance with the physical systems,leaving the gap to analyze the workflows of different fringe re-moval algorithms.This survey reviews the fringe removal algorithms and classifies them into two categories:the image-decomposition based methods and the deep-learning based methods.Then this survey draws the workflow details of two classical fringe removal algorithms,and conducts experiments on the absDL ultracold image dataset.Experiments show that the singular value decomposition(SVD)method achieves outstanding performance,and the U-net method succeeds in implying the image inpainting idea.The main contribution of this survey is the interpretation of the fringe removal algorithms,which may help readers have a better understanding of the research status.Codes in this survey are available at https://github.com/leigaoyi/Atomic-Fringe-Denoise. The fringe noises disrupt the precise measurement of the atom distribution in the process of the absorption images. The fringe removal algorithms have been proposed to reconstruct the ideal reference images of the absorption images to remove the fringe noises. However, the focus of these fringe removal algorithms is the association of the fringe removal performance with the physical systems, leaving the gap to analyze the workflows of different fringe removal algorithms. This survey reviews the fringe removal algorithms and classifies them into two categories: the image-decomposition based methods and the deep-learning based methods. Then this survey draws the workflow details of two classical fringe removal algorithms, and conducts experiments on the absDL ultracold image dataset. Experiments show that the singular value decomposition (SVD) method achieves outstanding performance, and the U-net method succeeds in implying the image inpainting idea. The main contribution of this survey is the interpretation of the fringe removal algorithms, which may help readers have a better understanding of the research status. Codes in this survey are available at https://github.com/leigaoyi/Atomic_Fringe_Denoise . |
| Author | Zhai, Yueyang Tang, Chencheng Lei, Gaoyi |
| AuthorAffiliation | School of Instrumentation and Optoelectronic Engineering,Beihang University,Beijing 100191,China%Quantum Sensing Center,Zhejiang Laboratory,Hangzhou 310000,China%Research Institute of Frontier Science,Beihang University,Beijing 100191,China |
| AuthorAffiliation_xml | – name: School of Instrumentation and Optoelectronic Engineering,Beihang University,Beijing 100191,China%Quantum Sensing Center,Zhejiang Laboratory,Hangzhou 310000,China%Research Institute of Frontier Science,Beihang University,Beijing 100191,China |
| Author_xml | – sequence: 1 givenname: Gaoyi surname: Lei fullname: Lei, Gaoyi organization: School of Instrumentation and Optoelectronic Engineering, Beihang University , China – sequence: 2 givenname: Chencheng surname: Tang fullname: Tang, Chencheng organization: Quantum Sensing Center, Zhejiang Laboratory , China – sequence: 3 givenname: Yueyang surname: Zhai fullname: Zhai, Yueyang organization: Research Institute of Frontier Science, Beihang University , China |
| BookMark | eNp1kLFOwzAQQD0UibawM3pjIfRsx4nLRFVRQKrEArPlOHZIldiRnbYqX0-qIrrAdNLp6d3pTdDIeWcQuiFwT0CIGcnyNCHAs5nSLOdihMa_q0s0iXEDkBGgbIweV6F2lcHBtH6nGqyayoe6_2wjtj5g1fu21lgV0Yeur73DdasqEx_wAsdt2JnDFbqwqonm-mdO0cfq6X35kqzfnl-Xi3Wi6Tzvk1ylpihTI5gwTGWaMJ4RwXRJQFPI5pYQLqjilDOiWJnnWmhDrS7LeSFsIdgU3Z68e-WscpXc-G1ww0X5Ve0baShQChwgHUg4kTr4GIOxsgvD1-EgCchjH3mMIY8x5KnPWV777izWXSEZkVwOXkaY7Eo7kHd_kP-KvwExkHbP |
| Cites_doi | 10.1103/PhysRevLett.111.143001 10.1364/JOSAB.391297 10.1103/PhysRevLett.114.230401 10.5555/3327144.3327174 10.1103/PhysRevA.87.053614 10.1063/1.4793522 10.5555/3026877.3026899 10.1103/PhysRevApplied.14.034006 10.1103/PhysRevApplied.14.014011 10.1007/978-3-319-24574-4_28 10.1364/OE.27.012710 10.1088/1674-1056/abf3b8 10.1103/PhysRevA.82.061606 10.1088/1674-1056/abf10c 10.1088/1674-1056/28/3/038701 10.1103/RevModPhys.80.885 10.1063/1.4927720 10.1364/OE.19.023901 10.1063/1.5040669 10.1126/science.aaa7432 10.5555/3305381.3305404 10.1007/s00340-016-6336-9 10.1103/PhysRevA.93.063628 10.1038/nature04851 10.1088/1674-1056/24/7/075205 10.1109/TNN.2010.2091281 10.1103/PhysRevLett.117.138501 |
| ContentType | Journal Article |
| Copyright | 2022 Chinese Physical Society and IOP Publishing Ltd Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: 2022 Chinese Physical Society and IOP Publishing Ltd – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.1088/1674-1056/ac3758 |
| DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EndPage | 31 |
| ExternalDocumentID | zgwl_e202205004 10_1088_1674_1056_ac3758 cpb_31_5_050313 |
| GroupedDBID | -SA -S~ 1JI 29B 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q AAGCD AAJIO AAJKP AATNI AAXDM ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CAJEA CCEZO CCVFK CEBXE CHBEP CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN FA0 HAK IJHAN IOP IZVLO KOT M45 N5L PJBAE Q-- RIN RNS ROL RPA SY9 TCJ TGP U1G U5K UCJ W28 AAYXX ADEQX AEINN CITATION 02O 1WK 2B. 4A8 92I 93N AALHV ACARI AERVB AFUIB AGQPQ AHSEE ARNYC BBWZM EJD FEDTE HVGLF JCGBZ NT- NT. PSX Q02 |
| ID | FETCH-LOGICAL-c297t-7a4ebd4e838e3a6c1356183cd10c2069f11582a52531a3d77c8ce2fcdd9b8fb83 |
| IEDL.DBID | IOP |
| ISSN | 1674-1056 |
| IngestDate | Thu May 29 04:07:17 EDT 2025 Wed Oct 01 03:35:29 EDT 2025 Wed Aug 21 03:35:03 EDT 2024 Wed Jun 07 11:19:01 EDT 2023 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | deep learning atomic absorption image fringe removal principal component analysis |
| Language | English |
| License | This article is available under the terms of the IOP-Standard License. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c297t-7a4ebd4e838e3a6c1356183cd10c2069f11582a52531a3d77c8ce2fcdd9b8fb83 |
| PageCount | 7 |
| ParticipantIDs | crossref_primary_10_1088_1674_1056_ac3758 wanfang_journals_zgwl_e202205004 iop_journals_10_1088_1674_1056_ac3758 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-01 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Chinese physics B |
| PublicationTitleAlternate | Chin. Phys. B |
| PublicationTitle_FL | Chinese Physics B |
| PublicationYear | 2022 |
| Publisher | Chinese Physical Society and IOP Publishing Ltd School of Instrumentation and Optoelectronic Engineering,Beihang University,Beijing 100191,China%Quantum Sensing Center,Zhejiang Laboratory,Hangzhou 310000,China%Research Institute of Frontier Science,Beihang University,Beijing 100191,China |
| Publisher_xml | – name: Chinese Physical Society and IOP Publishing Ltd – name: School of Instrumentation and Optoelectronic Engineering,Beihang University,Beijing 100191,China%Quantum Sensing Center,Zhejiang Laboratory,Hangzhou 310000,China%Research Institute of Frontier Science,Beihang University,Beijing 100191,China |
| References | Yeh (cpb_31_5_050313bib30) 2017 Hara (cpb_31_5_050313bib26) 2015 Bloch (cpb_31_5_050313bib4) 2008; 80 Tang (cpb_31_5_050313bib24) 2019; 28 Hardman (cpb_31_5_050313bib2) 2016; 117 Santurkar (cpb_31_5_050313bib25) 2018 Yuan (cpb_31_5_050313bib31) 2019; 7 Liu (cpb_31_5_050313bib32) 2017; 43 Cao (cpb_31_5_050313bib17) 2019; 27 Yue (cpb_31_5_050313bib7) 2021; 30 Yu (cpb_31_5_050313bib28) 2018 Song (cpb_31_5_050313bib21) 2020; 14 Lu (cpb_31_5_050313bib11) 2015; 86 Li (cpb_31_5_050313bib20) 2007; 5 Ronneberger (cpb_31_5_050313bib23) 2015 Sun (cpb_31_5_050313bib13) 2021; 30 Pan (cpb_31_5_050313bib35) 2010; 22 Ockloen (cpb_31_5_050313bib10) 2013; 111 Salim (cpb_31_5_050313bib6) 2013; 102 Abadi (cpb_31_5_050313bib27) 2016 Pan (cpb_31_5_050313bib34) 2011; 24 Schreiber (cpb_31_5_050313bib5) 2015; 349 Ries (cpb_31_5_050313bib14) 2015; 114 Arjovsky (cpb_31_5_050313bib33) 2017 Boundaoud (cpb_31_5_050313bib9) 2015; 24 Hadzibabic (cpb_31_5_050313bib15) 2006; 441 Ockeloen (cpb_31_5_050313bib19) 2010; 82 Sun (cpb_31_5_050313bib8) 2011; 24 Lu (cpb_31_5_050313bib3) 2016; 122 Niu (cpb_31_5_050313bib18) 2019; 113 Ness (cpb_31_5_050313bib22) 2020; 14 Feng (cpb_31_5_050313bib16) 2020; 37 Armanious (cpb_31_5_050313bib29) 2019 D’Amico (cpb_31_5_050313bib1) 2016; 93 Egorov (cpb_31_5_050313bib12) 2013; 87 |
| References_xml | – volume: 111 year: 2013 ident: cpb_31_5_050313bib10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.143001 – volume: 43 start-page: 1 year: 2017 ident: cpb_31_5_050313bib32 publication-title: Acta Automatica Sinica – volume: 37 start-page: 2041 year: 2020 ident: cpb_31_5_050313bib16 publication-title: JOSA B doi: 10.1364/JOSAB.391297 – volume: 24 year: 2011 ident: cpb_31_5_050313bib34 publication-title: Opt. express – volume: 114 year: 2015 ident: cpb_31_5_050313bib14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.230401 – volume: 7 year: 2019 ident: cpb_31_5_050313bib31 publication-title: IEEE Access – start-page: 2488 year: 2018 ident: cpb_31_5_050313bib25 doi: 10.5555/3327144.3327174 – volume: 87 year: 2013 ident: cpb_31_5_050313bib12 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.87.053614 – volume: 102 year: 2013 ident: cpb_31_5_050313bib6 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4793522 – start-page: 265 year: 2016 ident: cpb_31_5_050313bib27 doi: 10.5555/3026877.3026899 – volume: 14 year: 2020 ident: cpb_31_5_050313bib21 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.14.034006 – volume: 14 year: 2020 ident: cpb_31_5_050313bib22 publication-title: Phys. Rev. Applied doi: 10.1103/PhysRevApplied.14.014011 – start-page: 234 year: 2015 ident: cpb_31_5_050313bib23 doi: 10.1007/978-3-319-24574-4_28 – volume: 27 year: 2019 ident: cpb_31_5_050313bib17 publication-title: Opt. Soc. America doi: 10.1364/OE.27.012710 – volume: 30 year: 2021 ident: cpb_31_5_050313bib13 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/abf3b8 – volume: 82 year: 2010 ident: cpb_31_5_050313bib19 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.82.061606 – volume: 30 year: 2021 ident: cpb_31_5_050313bib7 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/abf10c – start-page: 3267 year: 2019 ident: cpb_31_5_050313bib29 – volume: 28 year: 2019 ident: cpb_31_5_050313bib24 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/28/3/038701 – volume: 80 start-page: 885 year: 2008 ident: cpb_31_5_050313bib4 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.80.885 – volume: 86 year: 2015 ident: cpb_31_5_050313bib11 publication-title: Rev. Scient. Instr. doi: 10.1063/1.4927720 – start-page: 5485 year: 2017 ident: cpb_31_5_050313bib30 – volume: 24 year: 2011 ident: cpb_31_5_050313bib8 publication-title: Opt. Express doi: 10.1364/OE.19.023901 – start-page: 5505 year: 2018 ident: cpb_31_5_050313bib28 – volume: 113 year: 2019 ident: cpb_31_5_050313bib18 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5040669 – volume: 349 start-page: 842 year: 2015 ident: cpb_31_5_050313bib5 publication-title: Science doi: 10.1126/science.aaa7432 – start-page: 214 year: 2017 ident: cpb_31_5_050313bib33 doi: 10.5555/3305381.3305404 – volume: 122 start-page: 59 year: 2016 ident: cpb_31_5_050313bib3 publication-title: Appl. Phys. B doi: 10.1007/s00340-016-6336-9 – volume: 93 year: 2016 ident: cpb_31_5_050313bib1 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.93.063628 – volume: 441 start-page: 1118 year: 2006 ident: cpb_31_5_050313bib15 publication-title: Nature doi: 10.1038/nature04851 – start-page: 1 year: 2015 ident: cpb_31_5_050313bib26 – volume: 24 year: 2015 ident: cpb_31_5_050313bib9 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/24/7/075205 – volume: 22 start-page: 199 year: 2010 ident: cpb_31_5_050313bib35 publication-title: IEEE Transact. Neural Networks doi: 10.1109/TNN.2010.2091281 – volume: 117 year: 2016 ident: cpb_31_5_050313bib2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.138501 – volume: 5 start-page: 128 year: 2007 ident: cpb_31_5_050313bib20 publication-title: Chin. Opt. Soc. |
| SSID | ssj0061023 |
| Score | 2.2640274 |
| Snippet | The fringe noises disrupt the precise measurement of the atom distribution in the process of the absorption images. The fringe removal algorithms have been... The fringe noises disrupt the precise measurement of the atom distribution in the process of the absorption im-ages.The fringe removal algorithms have been... |
| SourceID | wanfang crossref iop |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 50313 |
| SubjectTerms | atomic absorption image deep learning fringe removal principal component analysis |
| Title | Fringe removal algorithms for atomic absorption images: A survey |
| URI | https://iopscience.iop.org/article/10.1088/1674-1056/ac3758 https://d.wanfangdata.com.cn/periodical/zgwl-e202205004 |
| Volume | 31 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform issn: 1674-1056 databaseCode: IOP dateStart: 20080101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://iopscience.iop.org/ omitProxy: false ssIdentifier: ssj0061023 providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKERILb0R5yQMMDGkbOw8HFipEhZB4DCAxIFm245SKNqmSFER_PeckBYoQQmwZLnZ8sc_f-e4-I3TgEuma6JClHF9YTgg-K3NMsbuUobaJDCQxBc5X197FvXP54D7U0MlHLUwyqkx_Ex5LouBShVVCHGuZvHnLXBjfEooC3J1D85QBMDbVeze3UzPsGU4C421NpasY5U8tzOxJc9BvUcETRyLufdlsusvocfqZZY7Jc3Ocy6aafGNw_Oc4VtBSBUJxpxRdRTUdr6GFIhlUZevotFsc9uFUDxOYiFgMeknaz5-GGQaIi8FNH_YVFjJL0sLg4P4QrFJ2jDs4G6cv-m0D3XfP784urOqmBUuRwM8tXzhaho5mlGkqPGVTgFWMqtBuK9L2gghwIyPCJbBiBQ19XzGlSaTCMJAskoxuonqcxHoLYUdK4QoAMkxDox4MlGnDamc7Ooh87TXQ0VTXfFQSavAiEM4YNxrhRiO81EgDHYLyeLWqsl_k8IycGklObe5yQ3ZjUz4KIxCp_uin2KT3OuCaFLXGYCu2_9jbDlo075RZj7uonqdjvQfIJJf7xQx8B30u2JY |
| linkProvider | IOP Publishing |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT8QgFCYu0XhxN-5y0IOHzljoQj1p1Im7HjTxhkDpONFpJ21Ho7_eB-3EJcaYeOvhAeUrPD7Kex8IbfpE-uZ0yFFeKBwvhj0r80yyu5SxdomMJDEJzheXwfGtd3rn39X3nNpcmKxXu_4GPFZCwRWEdUAca5q4ecdcGN8UigLdbfbiZBiNWp0Sk8F3dT1wxYHRJTA7rkGJ-pzyp1q-rEvD0LbN4kkTkbY_LTitKXQ_eNUqzuSx0S9lQ719U3H8R1-m0WRNRvF-ZT6DhnQ6i8ZsUKgq5tBey_70w7nuZjAgsXhqZ3mnfOgWGKguhu16t6OwkEWWW8eDO13wTsUu3sdFP3_Wr_PotnV0c3Ds1DcuOIpEYemEwtMy9jSjTFMRKJcCvWJUxe6OIjtBlAB_ZET4BGauoHEYKqY0SVQcR5IlktEFNJJmqV5E2JNS-AIIDdNQaQCdZdqo27mejpJQB0toe4A371XCGtweiDPGDSrcoMIrVJbQFgDI69lV_GKHv9ipnuTU5T43ojcu5QAumNRf9cPsrf3yxDWxOcfgM5b_2NoGGr8-bPHzk8uzFTRhileBkKtopMz7eg3ISinX7YB8B_WQ3fc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fringe+removal+algorithms+for+atomic+absorption+images%3A+A+survey&rft.jtitle=Chinese+physics+B&rft.au=Lei%2C+Gaoyi&rft.au=Tang%2C+Chencheng&rft.au=Zhai%2C+Yueyang&rft.date=2022-05-01&rft.pub=Chinese+Physical+Society+and+IOP+Publishing+Ltd&rft.issn=1674-1056&rft.volume=31&rft.issue=5&rft_id=info:doi/10.1088%2F1674-1056%2Fac3758&rft.externalDocID=cpb_31_5_050313 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwl-e%2Fzgwl-e.jpg |