Ultra-broadband transmissive gradient metasurface based on the topologically coding optimization method
Metasurfaces have provided a novel way on modulating the wavefront of electromagnetic (EM) waves, where phase modulating is an important method to control EM waves. Normally, phase can be continuously modulated by changing the size of a meta-atom. For a broadband device, it is essential that phase c...
        Saved in:
      
    
          | Published in | Optics express Vol. 29; no. 14; p. 22136 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
          
        05.07.2021
     | 
| Online Access | Get full text | 
| ISSN | 1094-4087 1094-4087  | 
| DOI | 10.1364/OE.426187 | 
Cover
| Abstract | Metasurfaces have provided a novel way on modulating the wavefront of electromagnetic (EM) waves, where phase modulating is an important method to control EM waves. Normally, phase can be continuously modulated by changing the size of a meta-atom. For a broadband device, it is essential that phase changes linearly varying against frequency within a wide frequency interval, which is quite difficult to design, especially for the transmissive scheme. In this paper, we propose a 0-1 coding method by using genetic algorithm (GA) to realize broadband linear transmission phase and high transmission amplitude against frequency. To verify the method, a beam bending metasurface is designed based on array of six meta-atoms with step gap of 60°. Simulation and experimental results show that the metasurface deflector achieves perfect beam refraction from 8 to 12 GHz, which is consistent with theoretical calculations. Moreover, the working efficiency is kept at about 75%, with the variation of the frequency, which demonstrates the good stability of the metasurface. This method offers a new insight into the designing of broadband devices. | 
    
|---|---|
| AbstractList | Metasurfaces have provided a novel way on modulating the wavefront of electromagnetic (EM) waves, where phase modulating is an important method to control EM waves. Normally, phase can be continuously modulated by changing the size of a meta-atom. For a broadband device, it is essential that phase changes linearly varying against frequency within a wide frequency interval, which is quite difficult to design, especially for the transmissive scheme. In this paper, we propose a 0-1 coding method by using genetic algorithm (GA) to realize broadband linear transmission phase and high transmission amplitude against frequency. To verify the method, a beam bending metasurface is designed based on array of six meta-atoms with step gap of 60°. Simulation and experimental results show that the metasurface deflector achieves perfect beam refraction from 8 to 12 GHz, which is consistent with theoretical calculations. Moreover, the working efficiency is kept at about 75%, with the variation of the frequency, which demonstrates the good stability of the metasurface. This method offers a new insight into the designing of broadband devices. Metasurfaces have provided a novel way on modulating the wavefront of electromagnetic (EM) waves, where phase modulating is an important method to control EM waves. Normally, phase can be continuously modulated by changing the size of a meta-atom. For a broadband device, it is essential that phase changes linearly varying against frequency within a wide frequency interval, which is quite difficult to design, especially for the transmissive scheme. In this paper, we propose a 0-1 coding method by using genetic algorithm (GA) to realize broadband linear transmission phase and high transmission amplitude against frequency. To verify the method, a beam bending metasurface is designed based on array of six meta-atoms with step gap of 60°. Simulation and experimental results show that the metasurface deflector achieves perfect beam refraction from 8 to 12 GHz, which is consistent with theoretical calculations. Moreover, the working efficiency is kept at about 75%, with the variation of the frequency, which demonstrates the good stability of the metasurface. This method offers a new insight into the designing of broadband devices.Metasurfaces have provided a novel way on modulating the wavefront of electromagnetic (EM) waves, where phase modulating is an important method to control EM waves. Normally, phase can be continuously modulated by changing the size of a meta-atom. For a broadband device, it is essential that phase changes linearly varying against frequency within a wide frequency interval, which is quite difficult to design, especially for the transmissive scheme. In this paper, we propose a 0-1 coding method by using genetic algorithm (GA) to realize broadband linear transmission phase and high transmission amplitude against frequency. To verify the method, a beam bending metasurface is designed based on array of six meta-atoms with step gap of 60°. Simulation and experimental results show that the metasurface deflector achieves perfect beam refraction from 8 to 12 GHz, which is consistent with theoretical calculations. Moreover, the working efficiency is kept at about 75%, with the variation of the frequency, which demonstrates the good stability of the metasurface. This method offers a new insight into the designing of broadband devices.  | 
    
| Author | Wang, Guangming Liu, Kaiyue Cai, Tong Wang, Dengpan Cui, Xingshuo Li, Xiaofeng  | 
    
| Author_xml | – sequence: 1 givenname: Xingshuo orcidid: 0000-0001-8851-0774 surname: Cui fullname: Cui, Xingshuo – sequence: 2 givenname: Guangming surname: Wang fullname: Wang, Guangming – sequence: 3 givenname: Dengpan surname: Wang fullname: Wang, Dengpan – sequence: 4 givenname: Xiaofeng surname: Li fullname: Li, Xiaofeng – sequence: 5 givenname: Tong orcidid: 0000-0002-8562-3295 surname: Cai fullname: Cai, Tong – sequence: 6 givenname: Kaiyue surname: Liu fullname: Liu, Kaiyue  | 
    
| BookMark | eNpdkF9LwzAUxYNMcJs--A3yqEK3pEvb5FHG_AODvbjnkqa3W6RLapIp89MbrTjZ070XfvdwzhmhgbEGELqmZEJnOZuuFhOW5pQXZ2hIiWAJI7wY_Nsv0Mj7V0IoK0QxRJt1G5xMKmdlXUlT43gZv9Pe63fAGydrDSbgHQTp966RCnAlPdTYGhy2gIPtbGs3Wsm2PWBla2022HZB7_SnDDpS8XVr60t03sjWw9XvHKP1w-Jl_pQsV4_P8_tlolJRhKQgnHMl8pSStBAkz6EReRVPmTGSNwoIZ4zVtYBU0JRnTYxa8YwUmSACCJ2N0V2vuzedPHxEV2Xn9E66Q0lJ-V1RaaHsK4rwTQ93zr7twYcyBlfQttKA3fsyzbLoSuSER3Tao8pZ7x00pdLhJ2AsTLd_4qvFUfz25OPUyJH9AjBLhtI | 
    
| CitedBy_id | crossref_primary_10_1364_OE_540285 crossref_primary_10_1002_adma_202201093 crossref_primary_10_1364_OE_489259 crossref_primary_10_1515_nanoph_2022_0578 crossref_primary_10_1364_OPTCON_527751 crossref_primary_10_1088_1402_4896_ad6b59 crossref_primary_10_1364_OME_454456 crossref_primary_10_1364_OE_478084 crossref_primary_10_1002_admt_202301254 crossref_primary_10_1088_1361_6463_ac598d  | 
    
| Cites_doi | 10.1038/s41578-020-0203-3 10.1364/OE.27.002844 10.1002/adma.201802721 10.1063/1.5116149 10.1109/TAP.2017.2705228 10.1038/lsa.2017.27 10.1103/PhysRevApplied.8.034033 10.1002/adom.201801429 10.1103/PhysRevApplied.7.044033 10.1103/PhysRevApplied.13.024078 10.1063/1.3457448 10.2528/PIER19080803 10.1038/s41377-019-0159-5 10.1021/acsphotonics.8b00183 10.2528/PIER20050801 10.1103/PhysRevB.84.205110 10.1364/OE.21.020230 10.1364/OE.28.004444 10.1109/TAP.2017.2655018 10.1103/PhysRevB.77.094201 10.1103/PhysRevLett.99.063908 10.1109/TAP.2015.2402285 10.2528/PIER20122201 10.1109/LAWP.2018.2794605 10.1103/PhysRevApplied.9.064009 10.1038/nmat3278 10.1364/OE.21.024912 10.1109/TMAG.2015.2434104 10.1103/PhysRevB.75.205102 10.1016/j.cma.2018.08.034 10.1364/OE.25.023597 10.1002/lpor.201900445 10.1126/science.1210713 10.1117/1.AP.3.1.016001 10.1109/TAP.2018.2874680 10.1109/TAP.2018.2866636 10.1364/OE.393388 10.1038/s41467-019-09103-2 10.2528/PIER20070401 10.1109/LAWP.2017.2651027 10.1126/science.1096796 10.1002/adom.201600506  | 
    
| ContentType | Journal Article | 
    
| DBID | AAYXX CITATION 7X8 ADTOC UNPAY  | 
    
| DOI | 10.1364/OE.426187 | 
    
| DatabaseName | CrossRef MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE - Academic  | 
    
| DatabaseTitleList | CrossRef MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Physics | 
    
| EISSN | 1094-4087 | 
    
| ExternalDocumentID | 10.1364/oe.426187 10_1364_OE_426187  | 
    
| GroupedDBID | --- 123 29N 2WC 8SL AAFWJ AAWJZ AAYXX ACGFO ADBBV AEDJG AENEX AFPKN AKGWG ALMA_UNASSIGNED_HOLDINGS ATHME AYPRP AZSQR AZYMN BAWUL BCNDV CITATION CS3 DIK DSZJF DU5 E3Z EBS F5P GROUPED_DOAJ GX1 KQ8 M~E OFLFD OK1 OPJBK OPLUZ OVT P2P RNS ROL ROS TR2 TR6 XSB 7X8 ADTOC C1A EJD UNPAY  | 
    
| ID | FETCH-LOGICAL-c297t-70888c96210279066ef96b621a5406fce08444dd9e291285f618b85075909e013 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1094-4087 | 
    
| IngestDate | Tue Aug 19 16:41:05 EDT 2025 Thu Oct 02 10:57:22 EDT 2025 Tue Jul 01 01:41:24 EDT 2025 Thu Apr 24 23:01:42 EDT 2025  | 
    
| IsDoiOpenAccess | false | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 14 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c297t-70888c96210279066ef96b621a5406fce08444dd9e291285f618b85075909e013 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0002-8562-3295 0000-0001-8851-0774  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1364/oe.426187 | 
    
| PQID | 2552979608 | 
    
| PQPubID | 23479 | 
    
| ParticipantIDs | unpaywall_primary_10_1364_oe_426187 proquest_miscellaneous_2552979608 crossref_citationtrail_10_1364_OE_426187 crossref_primary_10_1364_OE_426187  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-07-05 20210705  | 
    
| PublicationDateYYYYMMDD | 2021-07-05 | 
    
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-05 day: 05  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Optics express | 
    
| PublicationYear | 2021 | 
    
| References | Luo (oe-29-14-22136-R26) 2017; 7 Chen (oe-29-14-22136-R31) 2020; 5 Cai (oe-29-14-22136-R11) 2017; 8 Christiansen (oe-29-14-22136-R33) 2019; 343 Meyrath (oe-29-14-22136-R35) 2007; 75 Naseri (oe-29-14-22136-R19) 2018; 66 Hao (oe-29-14-22136-R36) 2008; 77 Ding (oe-29-14-22136-R40) 2015; 51 Hao (oe-29-14-22136-R21) 2007; 99 Yan (oe-29-14-22136-R14) 2018; 30 Elsawy (oe-29-14-22136-R29) 2020; 14 Nematollahi (oe-29-14-22136-R39) 2015; 63 Ako (oe-29-14-22136-R16) 2019; 4 Kazemi (oe-29-14-22136-R38) 2020; 13 Sun (oe-29-14-22136-R8) 2019; 165 Phan (oe-29-14-22136-R32) 2019; 8 Tian (oe-29-14-22136-R37) 2017; 16 Liu (oe-29-14-22136-R18) 2020; 28 Li (oe-29-14-22136-R24) 2019; 10 Duan (oe-29-14-22136-R9) 2021; 170 Cai (oe-29-14-22136-R10) 2017; 5 Gao (oe-29-14-22136-R15) 2018; 66 Jiang (oe-29-14-22136-R27) 2018; 9 Cai (oe-29-14-22136-R13) 2021; 3 Christiansen (oe-29-14-22136-R30) 2020; 28 He (oe-29-14-22136-R25) 2013; 21 Chen (oe-29-14-22136-R7) 2011; 84 Jouanlanne (oe-29-14-22136-R41) 2017; 65 Yu (oe-29-14-22136-R1) 2011; 334 Maguid (oe-29-14-22136-R2) 2017; 6 Luo (oe-29-14-22136-R42) 2018; 17 Wang (oe-29-14-22136-R5) 2020; 168 Sell (oe-29-14-22136-R12) 2018; 5 Cai (oe-29-14-22136-R23) 2017; 65 Li (oe-29-14-22136-R17) 2017; 25 Smith (oe-29-14-22136-R3) 2004; 305 Wu (oe-29-14-22136-R34) 2019; 7 Xu (oe-29-14-22136-R20) 2013; 21 Larouche (oe-29-14-22136-R6) 2012; 11 Nikkhah (oe-29-14-22136-R22) 2020; 169 Li (oe-29-14-22136-R4) 2010; 97 Ji (oe-29-14-22136-R28) 2019; 27  | 
    
| References_xml | – volume: 5 start-page: 604 year: 2020 ident: oe-29-14-22136-R31 publication-title: Nat Rev Mater doi: 10.1038/s41578-020-0203-3 – volume: 27 start-page: 2844 year: 2019 ident: oe-29-14-22136-R28 publication-title: Opt. Express doi: 10.1364/OE.27.002844 – volume: 30 start-page: 1802721.1 year: 2018 ident: oe-29-14-22136-R14 publication-title: Adv. Mater. doi: 10.1002/adma.201802721 – volume: 4 start-page: 096104 year: 2019 ident: oe-29-14-22136-R16 publication-title: APL Photonics doi: 10.1063/1.5116149 – volume: 65 start-page: 3598 year: 2017 ident: oe-29-14-22136-R23 publication-title: IEEE Trans. Antennas Propagat. doi: 10.1109/TAP.2017.2705228 – volume: 6 start-page: e17027 year: 2017 ident: oe-29-14-22136-R2 publication-title: Light Sci Appl doi: 10.1038/lsa.2017.27 – volume: 8 start-page: 034033 year: 2017 ident: oe-29-14-22136-R11 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.8.034033 – volume: 7 start-page: 1801429.1 year: 2019 ident: oe-29-14-22136-R34 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201801429 – volume: 7 start-page: 044033 year: 2017 ident: oe-29-14-22136-R26 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.7.044033 – volume: 13 start-page: 024078 year: 2020 ident: oe-29-14-22136-R38 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.13.024078 – volume: 97 start-page: 08190 year: 2010 ident: oe-29-14-22136-R4 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3457448 – volume: 165 start-page: 107 year: 2019 ident: oe-29-14-22136-R8 publication-title: PIER doi: 10.2528/PIER19080803 – volume: 8 start-page: 48 year: 2019 ident: oe-29-14-22136-R32 publication-title: Light Sci Appl doi: 10.1038/s41377-019-0159-5 – volume: 5 start-page: 2402 year: 2018 ident: oe-29-14-22136-R12 publication-title: ACS Photonics doi: 10.1021/acsphotonics.8b00183 – volume: 169 start-page: 45 year: 2020 ident: oe-29-14-22136-R22 publication-title: Prog. Electromagn. Res. doi: 10.2528/PIER20050801 – volume: 84 start-page: 205110 year: 2011 ident: oe-29-14-22136-R7 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.205110 – volume: 21 start-page: 20230 year: 2013 ident: oe-29-14-22136-R25 publication-title: Opt. Express doi: 10.1364/OE.21.020230 – volume: 28 start-page: 4444 year: 2020 ident: oe-29-14-22136-R30 publication-title: Opt. Express doi: 10.1364/OE.28.004444 – volume: 65 start-page: 1440 year: 2017 ident: oe-29-14-22136-R41 publication-title: IEEE Trans. Antennas Propagat. doi: 10.1109/TAP.2017.2655018 – volume: 77 start-page: 094201 year: 2008 ident: oe-29-14-22136-R36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.094201 – volume: 99 start-page: 063908 year: 2007 ident: oe-29-14-22136-R21 publication-title: Phys. Rev. Lett doi: 10.1103/PhysRevLett.99.063908 – volume: 63 start-page: 1473 year: 2015 ident: oe-29-14-22136-R39 publication-title: IEEE Trans. Antennas Propagat. doi: 10.1109/TAP.2015.2402285 – volume: 170 start-page: 63 year: 2021 ident: oe-29-14-22136-R9 publication-title: PIER doi: 10.2528/PIER20122201 – volume: 17 start-page: 450 year: 2018 ident: oe-29-14-22136-R42 publication-title: Antennas Wirel. Propag. Lett. doi: 10.1109/LAWP.2018.2794605 – volume: 9 start-page: 064009 year: 2018 ident: oe-29-14-22136-R27 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.9.064009 – volume: 11 start-page: 450 year: 2012 ident: oe-29-14-22136-R6 publication-title: Nature Mater doi: 10.1038/nmat3278 – volume: 21 start-page: 24912 year: 2013 ident: oe-29-14-22136-R20 publication-title: Opt. Express doi: 10.1364/OE.21.024912 – volume: 51 start-page: 1 year: 2015 ident: oe-29-14-22136-R40 publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2015.2434104 – volume: 75 start-page: 205102 year: 2007 ident: oe-29-14-22136-R35 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.205102 – volume: 343 start-page: 23 year: 2019 ident: oe-29-14-22136-R33 publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2018.08.034 – volume: 25 start-page: 23597 year: 2017 ident: oe-29-14-22136-R17 publication-title: Opt. Express doi: 10.1364/OE.25.023597 – volume: 14 start-page: 1900445 year: 2020 ident: oe-29-14-22136-R29 publication-title: Laser & Photonics Reviews doi: 10.1002/lpor.201900445 – volume: 334 start-page: 333 year: 2011 ident: oe-29-14-22136-R1 publication-title: Science doi: 10.1126/science.1210713 – volume: 3 start-page: 016001 year: 2021 ident: oe-29-14-22136-R13 publication-title: Adv. Photon. doi: 10.1117/1.AP.3.1.016001 – volume: 66 start-page: 7128 year: 2018 ident: oe-29-14-22136-R19 publication-title: IEEE Trans. Antennas Propagat. doi: 10.1109/TAP.2018.2874680 – volume: 66 start-page: 6086 year: 2018 ident: oe-29-14-22136-R15 publication-title: IEEE Trans. Antennas Propagat. doi: 10.1109/TAP.2018.2866636 – volume: 28 start-page: 14995 year: 2020 ident: oe-29-14-22136-R18 publication-title: Opt. Express doi: 10.1364/OE.393388 – volume: 10 start-page: 1082 year: 2019 ident: oe-29-14-22136-R24 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09103-2 – volume: 168 start-page: 15 year: 2020 ident: oe-29-14-22136-R5 publication-title: PIER doi: 10.2528/PIER20070401 – volume: 16 start-page: 1561 year: 2017 ident: oe-29-14-22136-R37 publication-title: Antennas Wirel. Propag. Lett doi: 10.1109/LAWP.2017.2651027 – volume: 305 start-page: 788 year: 2004 ident: oe-29-14-22136-R3 publication-title: Science doi: 10.1126/science.1096796 – volume: 5 start-page: 1600506 year: 2017 ident: oe-29-14-22136-R10 publication-title: Advanced Optical Materials doi: 10.1002/adom.201600506  | 
    
| SSID | ssj0014797 | 
    
| Score | 2.430131 | 
    
| Snippet | Metasurfaces have provided a novel way on modulating the wavefront of electromagnetic (EM) waves, where phase modulating is an important method to control EM... | 
    
| SourceID | unpaywall proquest crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 22136 | 
    
| Title | Ultra-broadband transmissive gradient metasurface based on the topologically coding optimization method | 
    
| URI | https://www.proquest.com/docview/2552979608 https://doi.org/10.1364/oe.426187  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 29 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1094-4087 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014797 issn: 1094-4087 databaseCode: KQ8 dateStart: 19970101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1094-4087 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014797 issn: 1094-4087 databaseCode: DOA dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1094-4087 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014797 issn: 1094-4087 databaseCode: DIK dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1094-4087 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014797 issn: 1094-4087 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1094-4087 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014797 issn: 1094-4087 databaseCode: M~E dateStart: 19970101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gxHjybcQoWdSDlyLCtts9EgMhJqAHSfDU7KscLC2BJQYP_nZn2yKgxnhp0mSy6c632fmm80LoOgxZU99R7QjaEA7hnDm-UMRxFRFEuaSp05T_Xt_rDsjD0B0WUHVZC7Mev2965DbRNUvyfbqFSp4LdLuISoP-U-sljWIyAv6PT_OOQRvym3ZmRR535vGEL954FK3Zkc7eqhonSx95rc2NqMn3b80Z__zEfbSbs0jcymA_QAUdH6LtNJtTzo7QaBCZKXfENOFK8FhhYy0SIGpz1fFomqZ5GTzWxv4gDLnU2FozhZMYAyHEJpucYPGLFlgm1r7hBC6XcV61ibPB08do0Gk_33edfKKCIxuMGofCneJL5lk_jzJgGzpknoBXDsTNC6Wu-4QQpZhuMDBcbgjbEj5QRpfVmQa2eIKKcRLrU4RD4jJfukwC2KTJgXhS8NwUlaG0PQK9MrpZ6j-QebtxO_UiCtIYmkeCx3aQ6a2MLr9EJ1mPjd-EqksQA9CXDWvwWCfzWQBOEWwOjoZfRldf6P5YKdH5Smf_kjpHRTOd6wugHEZUUlcdnr2PdiU_gJ8WUNf3 | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qi3jyLVZUturBS2ptN9nssUhLEaweLNRT2Fd6ME1KukXqr3c2SV8q4jEwLLvzLTvfZF4I3YQha-l7qh1Bm8IhnDPHF4o4riKCKJe0dJby_9T3egPyOHSHJVRb1MKsx-9bHrlLdN2SfJ9uoYrnAt0uo8qg_9J-y6KYjID_49OiY9CG_KadWZHHnVk84fMPHkVrdqS7t6rGydNH3uszI-ry81tzxj-3uI92CxaJ2znsB6ik40O0nWVzyukRGg0ik3JHpAlXgscKG2uRAFGbq45HaZbmZfBYG_uDMORSY2vNFE5iDIQQm3xygsUvmmOZWPuGE3hcxkXVJs4HTx-jQbfz-tBziokKjmwyahwKb4ovmWf9PMqAbeiQeQI-ORA3L5S64RNClGK6ycBwuSEcS_hAGV3WYBrY4gkqx0msTxEOict86TIJYJMWB-JJwXNTVIbS9gj0quh2of9AFu3G7dSLKMhiaB4JnjtBrrcqulqKTvIeG78J1RYgBqAvG9bgsU5m0wCcIjgcXA2_iq6X6P5YKdHFSmf_kjpHZZPO9AVQDiMui0v3BQft1dE | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-broadband+transmissive+gradient+metasurface+based+on+the+topologically+coding+optimization+method&rft.jtitle=Optics+express&rft.au=Cui%2C+Xingshuo&rft.au=Wang%2C+Guangming&rft.au=Wang%2C+Dengpan&rft.au=Li%2C+Xiaofeng&rft.date=2021-07-05&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=29&rft.issue=14&rft.spage=22136&rft_id=info:doi/10.1364%2FOE.426187&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon |