Ultra-broadband transmissive gradient metasurface based on the topologically coding optimization method

Metasurfaces have provided a novel way on modulating the wavefront of electromagnetic (EM) waves, where phase modulating is an important method to control EM waves. Normally, phase can be continuously modulated by changing the size of a meta-atom. For a broadband device, it is essential that phase c...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 29; no. 14; p. 22136
Main Authors Cui, Xingshuo, Wang, Guangming, Wang, Dengpan, Li, Xiaofeng, Cai, Tong, Liu, Kaiyue
Format Journal Article
LanguageEnglish
Published 05.07.2021
Online AccessGet full text
ISSN1094-4087
1094-4087
DOI10.1364/OE.426187

Cover

Abstract Metasurfaces have provided a novel way on modulating the wavefront of electromagnetic (EM) waves, where phase modulating is an important method to control EM waves. Normally, phase can be continuously modulated by changing the size of a meta-atom. For a broadband device, it is essential that phase changes linearly varying against frequency within a wide frequency interval, which is quite difficult to design, especially for the transmissive scheme. In this paper, we propose a 0-1 coding method by using genetic algorithm (GA) to realize broadband linear transmission phase and high transmission amplitude against frequency. To verify the method, a beam bending metasurface is designed based on array of six meta-atoms with step gap of 60°. Simulation and experimental results show that the metasurface deflector achieves perfect beam refraction from 8 to 12 GHz, which is consistent with theoretical calculations. Moreover, the working efficiency is kept at about 75%, with the variation of the frequency, which demonstrates the good stability of the metasurface. This method offers a new insight into the designing of broadband devices.
AbstractList Metasurfaces have provided a novel way on modulating the wavefront of electromagnetic (EM) waves, where phase modulating is an important method to control EM waves. Normally, phase can be continuously modulated by changing the size of a meta-atom. For a broadband device, it is essential that phase changes linearly varying against frequency within a wide frequency interval, which is quite difficult to design, especially for the transmissive scheme. In this paper, we propose a 0-1 coding method by using genetic algorithm (GA) to realize broadband linear transmission phase and high transmission amplitude against frequency. To verify the method, a beam bending metasurface is designed based on array of six meta-atoms with step gap of 60°. Simulation and experimental results show that the metasurface deflector achieves perfect beam refraction from 8 to 12 GHz, which is consistent with theoretical calculations. Moreover, the working efficiency is kept at about 75%, with the variation of the frequency, which demonstrates the good stability of the metasurface. This method offers a new insight into the designing of broadband devices.
Metasurfaces have provided a novel way on modulating the wavefront of electromagnetic (EM) waves, where phase modulating is an important method to control EM waves. Normally, phase can be continuously modulated by changing the size of a meta-atom. For a broadband device, it is essential that phase changes linearly varying against frequency within a wide frequency interval, which is quite difficult to design, especially for the transmissive scheme. In this paper, we propose a 0-1 coding method by using genetic algorithm (GA) to realize broadband linear transmission phase and high transmission amplitude against frequency. To verify the method, a beam bending metasurface is designed based on array of six meta-atoms with step gap of 60°. Simulation and experimental results show that the metasurface deflector achieves perfect beam refraction from 8 to 12 GHz, which is consistent with theoretical calculations. Moreover, the working efficiency is kept at about 75%, with the variation of the frequency, which demonstrates the good stability of the metasurface. This method offers a new insight into the designing of broadband devices.Metasurfaces have provided a novel way on modulating the wavefront of electromagnetic (EM) waves, where phase modulating is an important method to control EM waves. Normally, phase can be continuously modulated by changing the size of a meta-atom. For a broadband device, it is essential that phase changes linearly varying against frequency within a wide frequency interval, which is quite difficult to design, especially for the transmissive scheme. In this paper, we propose a 0-1 coding method by using genetic algorithm (GA) to realize broadband linear transmission phase and high transmission amplitude against frequency. To verify the method, a beam bending metasurface is designed based on array of six meta-atoms with step gap of 60°. Simulation and experimental results show that the metasurface deflector achieves perfect beam refraction from 8 to 12 GHz, which is consistent with theoretical calculations. Moreover, the working efficiency is kept at about 75%, with the variation of the frequency, which demonstrates the good stability of the metasurface. This method offers a new insight into the designing of broadband devices.
Author Wang, Guangming
Liu, Kaiyue
Cai, Tong
Wang, Dengpan
Cui, Xingshuo
Li, Xiaofeng
Author_xml – sequence: 1
  givenname: Xingshuo
  orcidid: 0000-0001-8851-0774
  surname: Cui
  fullname: Cui, Xingshuo
– sequence: 2
  givenname: Guangming
  surname: Wang
  fullname: Wang, Guangming
– sequence: 3
  givenname: Dengpan
  surname: Wang
  fullname: Wang, Dengpan
– sequence: 4
  givenname: Xiaofeng
  surname: Li
  fullname: Li, Xiaofeng
– sequence: 5
  givenname: Tong
  orcidid: 0000-0002-8562-3295
  surname: Cai
  fullname: Cai, Tong
– sequence: 6
  givenname: Kaiyue
  surname: Liu
  fullname: Liu, Kaiyue
BookMark eNpdkF9LwzAUxYNMcJs--A3yqEK3pEvb5FHG_AODvbjnkqa3W6RLapIp89MbrTjZ070XfvdwzhmhgbEGELqmZEJnOZuuFhOW5pQXZ2hIiWAJI7wY_Nsv0Mj7V0IoK0QxRJt1G5xMKmdlXUlT43gZv9Pe63fAGydrDSbgHQTp966RCnAlPdTYGhy2gIPtbGs3Wsm2PWBla2022HZB7_SnDDpS8XVr60t03sjWw9XvHKP1w-Jl_pQsV4_P8_tlolJRhKQgnHMl8pSStBAkz6EReRVPmTGSNwoIZ4zVtYBU0JRnTYxa8YwUmSACCJ2N0V2vuzedPHxEV2Xn9E66Q0lJ-V1RaaHsK4rwTQ93zr7twYcyBlfQttKA3fsyzbLoSuSER3Tao8pZ7x00pdLhJ2AsTLd_4qvFUfz25OPUyJH9AjBLhtI
CitedBy_id crossref_primary_10_1364_OE_540285
crossref_primary_10_1002_adma_202201093
crossref_primary_10_1364_OE_489259
crossref_primary_10_1515_nanoph_2022_0578
crossref_primary_10_1364_OPTCON_527751
crossref_primary_10_1088_1402_4896_ad6b59
crossref_primary_10_1364_OME_454456
crossref_primary_10_1364_OE_478084
crossref_primary_10_1002_admt_202301254
crossref_primary_10_1088_1361_6463_ac598d
Cites_doi 10.1038/s41578-020-0203-3
10.1364/OE.27.002844
10.1002/adma.201802721
10.1063/1.5116149
10.1109/TAP.2017.2705228
10.1038/lsa.2017.27
10.1103/PhysRevApplied.8.034033
10.1002/adom.201801429
10.1103/PhysRevApplied.7.044033
10.1103/PhysRevApplied.13.024078
10.1063/1.3457448
10.2528/PIER19080803
10.1038/s41377-019-0159-5
10.1021/acsphotonics.8b00183
10.2528/PIER20050801
10.1103/PhysRevB.84.205110
10.1364/OE.21.020230
10.1364/OE.28.004444
10.1109/TAP.2017.2655018
10.1103/PhysRevB.77.094201
10.1103/PhysRevLett.99.063908
10.1109/TAP.2015.2402285
10.2528/PIER20122201
10.1109/LAWP.2018.2794605
10.1103/PhysRevApplied.9.064009
10.1038/nmat3278
10.1364/OE.21.024912
10.1109/TMAG.2015.2434104
10.1103/PhysRevB.75.205102
10.1016/j.cma.2018.08.034
10.1364/OE.25.023597
10.1002/lpor.201900445
10.1126/science.1210713
10.1117/1.AP.3.1.016001
10.1109/TAP.2018.2874680
10.1109/TAP.2018.2866636
10.1364/OE.393388
10.1038/s41467-019-09103-2
10.2528/PIER20070401
10.1109/LAWP.2017.2651027
10.1126/science.1096796
10.1002/adom.201600506
ContentType Journal Article
DBID AAYXX
CITATION
7X8
ADTOC
UNPAY
DOI 10.1364/OE.426187
DatabaseName CrossRef
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1094-4087
ExternalDocumentID 10.1364/oe.426187
10_1364_OE_426187
GroupedDBID ---
123
29N
2WC
8SL
AAFWJ
AAWJZ
AAYXX
ACGFO
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
CITATION
CS3
DIK
DSZJF
DU5
E3Z
EBS
F5P
GROUPED_DOAJ
GX1
KQ8
M~E
OFLFD
OK1
OPJBK
OPLUZ
OVT
P2P
RNS
ROL
ROS
TR2
TR6
XSB
7X8
ADTOC
C1A
EJD
UNPAY
ID FETCH-LOGICAL-c297t-70888c96210279066ef96b621a5406fce08444dd9e291285f618b85075909e013
IEDL.DBID UNPAY
ISSN 1094-4087
IngestDate Tue Aug 19 16:41:05 EDT 2025
Thu Oct 02 10:57:22 EDT 2025
Tue Jul 01 01:41:24 EDT 2025
Thu Apr 24 23:01:42 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-70888c96210279066ef96b621a5406fce08444dd9e291285f618b85075909e013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8562-3295
0000-0001-8851-0774
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1364/oe.426187
PQID 2552979608
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1364_oe_426187
proquest_miscellaneous_2552979608
crossref_citationtrail_10_1364_OE_426187
crossref_primary_10_1364_OE_426187
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-05
20210705
PublicationDateYYYYMMDD 2021-07-05
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-05
  day: 05
PublicationDecade 2020
PublicationTitle Optics express
PublicationYear 2021
References Luo (oe-29-14-22136-R26) 2017; 7
Chen (oe-29-14-22136-R31) 2020; 5
Cai (oe-29-14-22136-R11) 2017; 8
Christiansen (oe-29-14-22136-R33) 2019; 343
Meyrath (oe-29-14-22136-R35) 2007; 75
Naseri (oe-29-14-22136-R19) 2018; 66
Hao (oe-29-14-22136-R36) 2008; 77
Ding (oe-29-14-22136-R40) 2015; 51
Hao (oe-29-14-22136-R21) 2007; 99
Yan (oe-29-14-22136-R14) 2018; 30
Elsawy (oe-29-14-22136-R29) 2020; 14
Nematollahi (oe-29-14-22136-R39) 2015; 63
Ako (oe-29-14-22136-R16) 2019; 4
Kazemi (oe-29-14-22136-R38) 2020; 13
Sun (oe-29-14-22136-R8) 2019; 165
Phan (oe-29-14-22136-R32) 2019; 8
Tian (oe-29-14-22136-R37) 2017; 16
Liu (oe-29-14-22136-R18) 2020; 28
Li (oe-29-14-22136-R24) 2019; 10
Duan (oe-29-14-22136-R9) 2021; 170
Cai (oe-29-14-22136-R10) 2017; 5
Gao (oe-29-14-22136-R15) 2018; 66
Jiang (oe-29-14-22136-R27) 2018; 9
Cai (oe-29-14-22136-R13) 2021; 3
Christiansen (oe-29-14-22136-R30) 2020; 28
He (oe-29-14-22136-R25) 2013; 21
Chen (oe-29-14-22136-R7) 2011; 84
Jouanlanne (oe-29-14-22136-R41) 2017; 65
Yu (oe-29-14-22136-R1) 2011; 334
Maguid (oe-29-14-22136-R2) 2017; 6
Luo (oe-29-14-22136-R42) 2018; 17
Wang (oe-29-14-22136-R5) 2020; 168
Sell (oe-29-14-22136-R12) 2018; 5
Cai (oe-29-14-22136-R23) 2017; 65
Li (oe-29-14-22136-R17) 2017; 25
Smith (oe-29-14-22136-R3) 2004; 305
Wu (oe-29-14-22136-R34) 2019; 7
Xu (oe-29-14-22136-R20) 2013; 21
Larouche (oe-29-14-22136-R6) 2012; 11
Nikkhah (oe-29-14-22136-R22) 2020; 169
Li (oe-29-14-22136-R4) 2010; 97
Ji (oe-29-14-22136-R28) 2019; 27
References_xml – volume: 5
  start-page: 604
  year: 2020
  ident: oe-29-14-22136-R31
  publication-title: Nat Rev Mater
  doi: 10.1038/s41578-020-0203-3
– volume: 27
  start-page: 2844
  year: 2019
  ident: oe-29-14-22136-R28
  publication-title: Opt. Express
  doi: 10.1364/OE.27.002844
– volume: 30
  start-page: 1802721.1
  year: 2018
  ident: oe-29-14-22136-R14
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802721
– volume: 4
  start-page: 096104
  year: 2019
  ident: oe-29-14-22136-R16
  publication-title: APL Photonics
  doi: 10.1063/1.5116149
– volume: 65
  start-page: 3598
  year: 2017
  ident: oe-29-14-22136-R23
  publication-title: IEEE Trans. Antennas Propagat.
  doi: 10.1109/TAP.2017.2705228
– volume: 6
  start-page: e17027
  year: 2017
  ident: oe-29-14-22136-R2
  publication-title: Light Sci Appl
  doi: 10.1038/lsa.2017.27
– volume: 8
  start-page: 034033
  year: 2017
  ident: oe-29-14-22136-R11
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.8.034033
– volume: 7
  start-page: 1801429.1
  year: 2019
  ident: oe-29-14-22136-R34
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201801429
– volume: 7
  start-page: 044033
  year: 2017
  ident: oe-29-14-22136-R26
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.7.044033
– volume: 13
  start-page: 024078
  year: 2020
  ident: oe-29-14-22136-R38
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.13.024078
– volume: 97
  start-page: 08190
  year: 2010
  ident: oe-29-14-22136-R4
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3457448
– volume: 165
  start-page: 107
  year: 2019
  ident: oe-29-14-22136-R8
  publication-title: PIER
  doi: 10.2528/PIER19080803
– volume: 8
  start-page: 48
  year: 2019
  ident: oe-29-14-22136-R32
  publication-title: Light Sci Appl
  doi: 10.1038/s41377-019-0159-5
– volume: 5
  start-page: 2402
  year: 2018
  ident: oe-29-14-22136-R12
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.8b00183
– volume: 169
  start-page: 45
  year: 2020
  ident: oe-29-14-22136-R22
  publication-title: Prog. Electromagn. Res.
  doi: 10.2528/PIER20050801
– volume: 84
  start-page: 205110
  year: 2011
  ident: oe-29-14-22136-R7
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.205110
– volume: 21
  start-page: 20230
  year: 2013
  ident: oe-29-14-22136-R25
  publication-title: Opt. Express
  doi: 10.1364/OE.21.020230
– volume: 28
  start-page: 4444
  year: 2020
  ident: oe-29-14-22136-R30
  publication-title: Opt. Express
  doi: 10.1364/OE.28.004444
– volume: 65
  start-page: 1440
  year: 2017
  ident: oe-29-14-22136-R41
  publication-title: IEEE Trans. Antennas Propagat.
  doi: 10.1109/TAP.2017.2655018
– volume: 77
  start-page: 094201
  year: 2008
  ident: oe-29-14-22136-R36
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.094201
– volume: 99
  start-page: 063908
  year: 2007
  ident: oe-29-14-22136-R21
  publication-title: Phys. Rev. Lett
  doi: 10.1103/PhysRevLett.99.063908
– volume: 63
  start-page: 1473
  year: 2015
  ident: oe-29-14-22136-R39
  publication-title: IEEE Trans. Antennas Propagat.
  doi: 10.1109/TAP.2015.2402285
– volume: 170
  start-page: 63
  year: 2021
  ident: oe-29-14-22136-R9
  publication-title: PIER
  doi: 10.2528/PIER20122201
– volume: 17
  start-page: 450
  year: 2018
  ident: oe-29-14-22136-R42
  publication-title: Antennas Wirel. Propag. Lett.
  doi: 10.1109/LAWP.2018.2794605
– volume: 9
  start-page: 064009
  year: 2018
  ident: oe-29-14-22136-R27
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.9.064009
– volume: 11
  start-page: 450
  year: 2012
  ident: oe-29-14-22136-R6
  publication-title: Nature Mater
  doi: 10.1038/nmat3278
– volume: 21
  start-page: 24912
  year: 2013
  ident: oe-29-14-22136-R20
  publication-title: Opt. Express
  doi: 10.1364/OE.21.024912
– volume: 51
  start-page: 1
  year: 2015
  ident: oe-29-14-22136-R40
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2015.2434104
– volume: 75
  start-page: 205102
  year: 2007
  ident: oe-29-14-22136-R35
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.205102
– volume: 343
  start-page: 23
  year: 2019
  ident: oe-29-14-22136-R33
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2018.08.034
– volume: 25
  start-page: 23597
  year: 2017
  ident: oe-29-14-22136-R17
  publication-title: Opt. Express
  doi: 10.1364/OE.25.023597
– volume: 14
  start-page: 1900445
  year: 2020
  ident: oe-29-14-22136-R29
  publication-title: Laser & Photonics Reviews
  doi: 10.1002/lpor.201900445
– volume: 334
  start-page: 333
  year: 2011
  ident: oe-29-14-22136-R1
  publication-title: Science
  doi: 10.1126/science.1210713
– volume: 3
  start-page: 016001
  year: 2021
  ident: oe-29-14-22136-R13
  publication-title: Adv. Photon.
  doi: 10.1117/1.AP.3.1.016001
– volume: 66
  start-page: 7128
  year: 2018
  ident: oe-29-14-22136-R19
  publication-title: IEEE Trans. Antennas Propagat.
  doi: 10.1109/TAP.2018.2874680
– volume: 66
  start-page: 6086
  year: 2018
  ident: oe-29-14-22136-R15
  publication-title: IEEE Trans. Antennas Propagat.
  doi: 10.1109/TAP.2018.2866636
– volume: 28
  start-page: 14995
  year: 2020
  ident: oe-29-14-22136-R18
  publication-title: Opt. Express
  doi: 10.1364/OE.393388
– volume: 10
  start-page: 1082
  year: 2019
  ident: oe-29-14-22136-R24
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09103-2
– volume: 168
  start-page: 15
  year: 2020
  ident: oe-29-14-22136-R5
  publication-title: PIER
  doi: 10.2528/PIER20070401
– volume: 16
  start-page: 1561
  year: 2017
  ident: oe-29-14-22136-R37
  publication-title: Antennas Wirel. Propag. Lett
  doi: 10.1109/LAWP.2017.2651027
– volume: 305
  start-page: 788
  year: 2004
  ident: oe-29-14-22136-R3
  publication-title: Science
  doi: 10.1126/science.1096796
– volume: 5
  start-page: 1600506
  year: 2017
  ident: oe-29-14-22136-R10
  publication-title: Advanced Optical Materials
  doi: 10.1002/adom.201600506
SSID ssj0014797
Score 2.430131
Snippet Metasurfaces have provided a novel way on modulating the wavefront of electromagnetic (EM) waves, where phase modulating is an important method to control EM...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 22136
Title Ultra-broadband transmissive gradient metasurface based on the topologically coding optimization method
URI https://www.proquest.com/docview/2552979608
https://doi.org/10.1364/oe.426187
UnpaywallVersion publishedVersion
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: KQ8
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: DOA
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: DIK
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: M~E
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gxHjybcQoWdSDlyLCtts9EgMhJqAHSfDU7KscLC2BJQYP_nZn2yKgxnhp0mSy6c632fmm80LoOgxZU99R7QjaEA7hnDm-UMRxFRFEuaSp05T_Xt_rDsjD0B0WUHVZC7Mev2965DbRNUvyfbqFSp4LdLuISoP-U-sljWIyAv6PT_OOQRvym3ZmRR535vGEL954FK3Zkc7eqhonSx95rc2NqMn3b80Z__zEfbSbs0jcymA_QAUdH6LtNJtTzo7QaBCZKXfENOFK8FhhYy0SIGpz1fFomqZ5GTzWxv4gDLnU2FozhZMYAyHEJpucYPGLFlgm1r7hBC6XcV61ibPB08do0Gk_33edfKKCIxuMGofCneJL5lk_jzJgGzpknoBXDsTNC6Wu-4QQpZhuMDBcbgjbEj5QRpfVmQa2eIKKcRLrU4RD4jJfukwC2KTJgXhS8NwUlaG0PQK9MrpZ6j-QebtxO_UiCtIYmkeCx3aQ6a2MLr9EJ1mPjd-EqksQA9CXDWvwWCfzWQBOEWwOjoZfRldf6P5YKdH5Smf_kjpHRTOd6wugHEZUUlcdnr2PdiU_gJ8WUNf3
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qi3jyLVZUturBS2ptN9nssUhLEaweLNRT2Fd6ME1KukXqr3c2SV8q4jEwLLvzLTvfZF4I3YQha-l7qh1Bm8IhnDPHF4o4riKCKJe0dJby_9T3egPyOHSHJVRb1MKsx-9bHrlLdN2SfJ9uoYrnAt0uo8qg_9J-y6KYjID_49OiY9CG_KadWZHHnVk84fMPHkVrdqS7t6rGydNH3uszI-ry81tzxj-3uI92CxaJ2znsB6ik40O0nWVzyukRGg0ik3JHpAlXgscKG2uRAFGbq45HaZbmZfBYG_uDMORSY2vNFE5iDIQQm3xygsUvmmOZWPuGE3hcxkXVJs4HTx-jQbfz-tBziokKjmwyahwKb4ovmWf9PMqAbeiQeQI-ORA3L5S64RNClGK6ycBwuSEcS_hAGV3WYBrY4gkqx0msTxEOict86TIJYJMWB-JJwXNTVIbS9gj0quh2of9AFu3G7dSLKMhiaB4JnjtBrrcqulqKTvIeG78J1RYgBqAvG9bgsU5m0wCcIjgcXA2_iq6X6P5YKdHFSmf_kjpHZZPO9AVQDiMui0v3BQft1dE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-broadband+transmissive+gradient+metasurface+based+on+the+topologically+coding+optimization+method&rft.jtitle=Optics+express&rft.au=Cui%2C+Xingshuo&rft.au=Wang%2C+Guangming&rft.au=Wang%2C+Dengpan&rft.au=Li%2C+Xiaofeng&rft.date=2021-07-05&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=29&rft.issue=14&rft.spage=22136&rft_id=info:doi/10.1364%2FOE.426187&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon