The experimental application of popular machine learning algorithms on predictive maintenance and the design of IIoT based condition monitoring system

•Temperature, current, noise, and revolution features are increasing accuracy to %99.•Using open-source software and hardware provides flexibility and low-cost advantages.•Real-Time monitoring and e-mail/SMS notification provide ease to maintenance team.•Decision Trees algorithm gives higher accurac...

Full description

Saved in:
Bibliographic Details
Published inComputers & industrial engineering Vol. 151; p. 106948
Main Authors Cakir, Mustafa, Guvenc, Mehmet Ali, Mistikoglu, Selcuk
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2021
Subjects
Online AccessGet full text
ISSN0360-8352
1879-0550
DOI10.1016/j.cie.2020.106948

Cover

Abstract •Temperature, current, noise, and revolution features are increasing accuracy to %99.•Using open-source software and hardware provides flexibility and low-cost advantages.•Real-Time monitoring and e-mail/SMS notification provide ease to maintenance team.•Decision Trees algorithm gives higher accuracy and faster results than others.•Microcontroller-based PdM System created and notification features added successfully. With the fourth industrial revolution, which has become increasingly widespread in the manufacturing industry, traditional maintenance has been replaced by the industrial internet of things (IIoT) based on condition monitoring system (CMS). The IIoT concept provides easier and reliable maintenance. Unlike traditional maintenance, IIoT systems that perform real-time monitoring can provide great advantages to the company by notifying the related maintenance team members of the factory before a serious failure occurs. It is very important to detect faulty bearings before they reach the critical level during the rotation. In this study, an industry 4.0 compatible, IIoT based and low-cost CMS was created and it consists of three main parts. Firstly experimental setup, secondly IIoT based condition monitoring application (CMA) and finally machine learning (ML) models and their evaluation. The experimental setup contains mechanical and electronic materials. Although the most common method used in the classification of bearing damage is vibration data, it observed that characteristics such as sound level, current, rotational speed, and temperature should be included in the data set in order to increase the success of the classification. All these data were collected from the setup, which is 6203 type bearing connected to the universal motor shaft. The designed CMA provides real-time monitoring and recording of the data, which comes wirelessly from the setup, on a mobile device that has an Android operating system. The CMA can also send SMS and e-mail notifications to maintenance team supervisors over mobile devices in case critical thresholds are exceeded. Lastly, the data collected from the experimental setup was modeled for classification with popular ML algorithms such as support vector machine (SVM), linear discrimination analysis (LDA), random forest (RF), decision tree (DT), and k-nearest neighbor (kNN). The models were evaluated with accuracy, precision, TPR, TNR, FPR, FNR, F1 score and, Kappa metrics. During the evaluation of all models, it was observed that with the increase in the number of features in the data set, the accuracy, sensitivity, TPR, TNR, F1 score and Kappa metrics increased above 99% at 95% confidence interval, and FPR and FNR metrics fell below 1%. Although ML models gave successful results, LDA and DT models gave results much faster than others did. On the other hand, the classification success of the LDA model is relatively low. However, DT model is the optimum choice for CMS due to its convenience in determining threshold values, and its ability to give fast and acceptable classification rates.
AbstractList •Temperature, current, noise, and revolution features are increasing accuracy to %99.•Using open-source software and hardware provides flexibility and low-cost advantages.•Real-Time monitoring and e-mail/SMS notification provide ease to maintenance team.•Decision Trees algorithm gives higher accuracy and faster results than others.•Microcontroller-based PdM System created and notification features added successfully. With the fourth industrial revolution, which has become increasingly widespread in the manufacturing industry, traditional maintenance has been replaced by the industrial internet of things (IIoT) based on condition monitoring system (CMS). The IIoT concept provides easier and reliable maintenance. Unlike traditional maintenance, IIoT systems that perform real-time monitoring can provide great advantages to the company by notifying the related maintenance team members of the factory before a serious failure occurs. It is very important to detect faulty bearings before they reach the critical level during the rotation. In this study, an industry 4.0 compatible, IIoT based and low-cost CMS was created and it consists of three main parts. Firstly experimental setup, secondly IIoT based condition monitoring application (CMA) and finally machine learning (ML) models and their evaluation. The experimental setup contains mechanical and electronic materials. Although the most common method used in the classification of bearing damage is vibration data, it observed that characteristics such as sound level, current, rotational speed, and temperature should be included in the data set in order to increase the success of the classification. All these data were collected from the setup, which is 6203 type bearing connected to the universal motor shaft. The designed CMA provides real-time monitoring and recording of the data, which comes wirelessly from the setup, on a mobile device that has an Android operating system. The CMA can also send SMS and e-mail notifications to maintenance team supervisors over mobile devices in case critical thresholds are exceeded. Lastly, the data collected from the experimental setup was modeled for classification with popular ML algorithms such as support vector machine (SVM), linear discrimination analysis (LDA), random forest (RF), decision tree (DT), and k-nearest neighbor (kNN). The models were evaluated with accuracy, precision, TPR, TNR, FPR, FNR, F1 score and, Kappa metrics. During the evaluation of all models, it was observed that with the increase in the number of features in the data set, the accuracy, sensitivity, TPR, TNR, F1 score and Kappa metrics increased above 99% at 95% confidence interval, and FPR and FNR metrics fell below 1%. Although ML models gave successful results, LDA and DT models gave results much faster than others did. On the other hand, the classification success of the LDA model is relatively low. However, DT model is the optimum choice for CMS due to its convenience in determining threshold values, and its ability to give fast and acceptable classification rates.
ArticleNumber 106948
Author Guvenc, Mehmet Ali
Cakir, Mustafa
Mistikoglu, Selcuk
Author_xml – sequence: 1
  givenname: Mustafa
  surname: Cakir
  fullname: Cakir, Mustafa
  email: mustafa.cakir@iste.edu.tr
– sequence: 2
  givenname: Mehmet Ali
  surname: Guvenc
  fullname: Guvenc, Mehmet Ali
  email: mali.guvenc@iste.edu.tr
– sequence: 3
  givenname: Selcuk
  orcidid: 0000-0003-2985-8310
  surname: Mistikoglu
  fullname: Mistikoglu, Selcuk
  email: selcuk.mistikoglu@iste.edu.tr
BookMark eNp9kMFO4zAQhi0EEqXsA-zNL5BiJ3GciBNCLFRC4lLO0dSetFMldmR70fIiPO-67Z72wMka6__-0Xw37NJ5h4z9lGIlhWzuDitDuCpFeZybrm4v2EK2uiuEUuKSLUTViKKtVHnNbmI8CCFq1ckF-9rskeOfGQNN6BKMHOZ5JAOJvON-4LOff48Q-ARmTw75iBAcuR2HcecDpf0UeU7OAS2ZRB-Yk-QSOnAGOTjLU95gMdLu1Lde-w3fQkTLjXeWTnsm7yjltlwbP2PC6ZZdDTBG_PHvXbL3X0-bx5fi9e15_fjwWpiy06nQotSN0arUZa22oOp2q4ahNV0nDXRooaus1NaCVao2ugGwwqjBStWoodKqWjJ97jXBxxhw6A2l0-0pAI29FP1Rb3_I_9gf9fZnvZmU_5FzVgjh81vm_sxgPumDMPQxR7InSwFN6q2nb-i_FbmZEQ
CitedBy_id crossref_primary_10_1016_j_cie_2023_109006
crossref_primary_10_1016_j_cirpj_2024_02_003
crossref_primary_10_3390_cryst12040556
crossref_primary_10_1007_s42417_024_01730_4
crossref_primary_10_1016_j_cie_2023_109566
crossref_primary_10_1186_s13677_024_00649_1
crossref_primary_10_1007_s40032_025_01164_1
crossref_primary_10_3390_s21030972
crossref_primary_10_1108_JQME_12_2023_0115
crossref_primary_10_1080_02827581_2023_2168044
crossref_primary_10_1142_S0219686725500179
crossref_primary_10_3390_s25010180
crossref_primary_10_1177_1063293X241307456
crossref_primary_10_1002_nem_2263
crossref_primary_10_1007_s12008_023_01235_6
crossref_primary_10_1109_ACCESS_2025_3547863
crossref_primary_10_3390_su142114536
crossref_primary_10_1360_SSC_2022_0164
crossref_primary_10_1016_j_jksus_2023_102754
crossref_primary_10_1016_j_eswa_2024_124376
crossref_primary_10_1016_j_cie_2022_108129
crossref_primary_10_1016_j_procir_2021_11_083
crossref_primary_10_3390_en15082792
crossref_primary_10_1007_s00170_024_13351_y
crossref_primary_10_1007_s11668_023_01765_x
crossref_primary_10_1016_j_rineng_2024_102935
crossref_primary_10_1109_ACCESS_2024_3426279
crossref_primary_10_1016_j_fuel_2023_128548
crossref_primary_10_1109_ACCESS_2021_3104058
crossref_primary_10_1016_j_aei_2021_101370
crossref_primary_10_1016_j_measen_2022_100526
crossref_primary_10_3390_machines12110762
crossref_primary_10_3390_app14020898
crossref_primary_10_1109_ACCESS_2024_3514834
crossref_primary_10_1016_j_iot_2021_100441
crossref_primary_10_1080_0951192X_2021_1972469
crossref_primary_10_1080_10589759_2023_2273998
crossref_primary_10_3390_machines12070443
crossref_primary_10_3390_su151511487
crossref_primary_10_1016_j_cie_2023_109286
crossref_primary_10_1038_s41598_024_59958_9
crossref_primary_10_1145_3623378
crossref_primary_10_3390_sym14081553
crossref_primary_10_1016_j_apacoust_2021_108463
crossref_primary_10_1016_j_procs_2022_01_210
crossref_primary_10_1016_j_cie_2024_110214
crossref_primary_10_3390_app12168081
crossref_primary_10_1088_1361_6501_ac346d
crossref_primary_10_3390_app12104931
crossref_primary_10_1109_ACCESS_2023_3312724
crossref_primary_10_1002_widm_1471
crossref_primary_10_3390_math9192405
crossref_primary_10_36306_konjes_1049489
crossref_primary_10_3390_s24134237
crossref_primary_10_1080_0951192X_2024_2397817
crossref_primary_10_3390_app11178033
crossref_primary_10_3390_w13121633
crossref_primary_10_17798_bitlisfen_1466339
crossref_primary_10_3390_s23249725
crossref_primary_10_1007_s11668_024_02049_8
crossref_primary_10_1016_j_cie_2023_109032
crossref_primary_10_33262_concienciadigital_v7i3_1_3120
crossref_primary_10_1007_s43681_021_00132_6
crossref_primary_10_3390_jmmp6050108
crossref_primary_10_21923_jesd_1412260
crossref_primary_10_51551_verimlilik_988104
crossref_primary_10_1016_j_jmsy_2024_04_012
crossref_primary_10_1109_TEC_2024_3405897
crossref_primary_10_1016_j_dajour_2023_100174
crossref_primary_10_1016_j_engappai_2023_107724
crossref_primary_10_1016_j_aei_2023_101952
crossref_primary_10_4018_IJISSCM_305849
crossref_primary_10_1021_acs_est_3c08331
crossref_primary_10_1016_j_asoc_2022_109820
crossref_primary_10_1016_j_procs_2022_01_318
crossref_primary_10_3390_automation2020004
crossref_primary_10_1177_17568293221150171
Cites_doi 10.1016/j.cie.2016.10.018
10.1007/s42417-019-00119-y
10.1016/B978-075066275-8/50001-1
10.1109/IEEM.2014.7058728
10.1016/j.jbusres.2016.08.001
10.1007/978-3-030-17076-9
10.1016/j.applthermaleng.2013.07.028
10.1007/978-981-13-3450-4_56
10.1109/TSMCC.2004.843247
10.1023/A:1018054314350
10.36306/konjes.624725
10.1021/ac00025a742
10.1016/j.comnet.2015.12.016
10.1016/S0003-682X(97)00018-2
10.1080/00031305.1992.10475879
10.1023/A:1022627411411
10.1016/j.jsv.2017.11.007
10.1201/b13090
10.11591/ijece.v8i2.pp996-1009
10.1016/j.asr.2007.07.020
10.1186/s40537-015-0032-1
10.1109/TEC.2005.847955
10.1051/matecconf/201818903019
10.1016/B978-075066275-8/50006-0
10.1016/j.ymssp.2006.12.007
10.22161/ijaems.4.6.2
10.1109/TIE.2012.2219838
10.1016/j.ymssp.2018.02.016
10.1108/IJQRM-04-2019-0131
10.1155/2013/360236
10.1016/j.asoc.2011.03.014
10.1080/01621459.1984.10477109
10.1109/TIE.2004.824875
10.1109/TIE.2015.2509913
10.1016/0022-2496(87)90031-9
10.1109/08IAS.2008.26
10.1007/978-3-319-95711-1_31
10.21923/jesd.467036
10.1109/TPWRD.2002.801425
10.3390/s141120713
10.1007/978-3-031-79864-1
10.1007/s12540-020-00854-y
10.14257/ijunesst.2016.9.4.29
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cie.2020.106948
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-0550
ExternalDocumentID 10_1016_j_cie_2020_106948
S0360835220306252
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFWJ
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADRHT
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LX9
LY1
LY7
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-70276c7527245ba548b5ff8c991ca9eda93d17ddad554c76aad0c5fd1565f3753
IEDL.DBID .~1
ISSN 0360-8352
IngestDate Thu Oct 09 00:41:58 EDT 2025
Thu Apr 24 23:01:07 EDT 2025
Fri Feb 23 02:44:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Condition monitoring
Internet of things
Industry 4.0
Machine learning
Predictive maintenance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-70276c7527245ba548b5ff8c991ca9eda93d17ddad554c76aad0c5fd1565f3753
ORCID 0000-0003-2985-8310
ParticipantIDs crossref_citationtrail_10_1016_j_cie_2020_106948
crossref_primary_10_1016_j_cie_2020_106948
elsevier_sciencedirect_doi_10_1016_j_cie_2020_106948
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationTitle Computers & industrial engineering
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Cotes, Vapnik (b0100) 1995; 20
Sun, Zhang, He (b0345) 2011; 305
Melexis (b0250) 2006
Bilgic, Guvenc, Cakir, Mistikoglu (b0055) 2019; 8055
Shekhar, J., Zerihun, D., & Haile Abebe, M. (2019). Automated classroom monitoring with IoT and virtuino app. International Journal of Advanced Research in IT and Engineering, (April).
Köksal, M., & Uzun, A. (2016). Bakım Planlaması. Retrieved from Seçkin Yayıncılık website
McLachlan (b0245) 2004
Shi, Iyengar (b0325) 2020
Oral, Çakır (b0280) 2017; 177
P, K., & P, A. S. (2018). Intelligent healthcare monitoring in IoT. International Journal of Advanced Engineering, Management and Science, 4(6), 441–445. https://doi.org/10.22161/ijaems.4.6.2.
Durkovic, Vukovic, Rakovic (b0105) 2008; 3
Chu, Pham, Hsu, Tuw, Tan, Chay, Tsai (b0095) 2018; 189
Eren, B., Guvenc, M. A., & Mistikoglu, S. (2020). Artificial intelligence applications for friction stir welding: A review. Metals and Materials International, (August). https://doi.org/10.1007/s12540-020-00854-y.
PLX-DAQ | Parallax Inc. (n.d.). Retrieved July 9, 2019, from
Tian, Morillo, Azarian, Pecht (b0350) 2016; 63
Harris, T. A. (1984). Rolling bearing analysis. Second Edition. 1086.
Landset, Khoshgoftaar, Richter, Hasanin (b0220) 2015; 2
Breiman (b0060) 1996; 24
Ruiz-Gonzalez, Gomez-Gil, Gomez-Gil, Martínez-Martínez (b0310) 2014; 14
Shrouf, F., Ordieres, J., & Miragliotta, G. (2014). Smart factories in Industry 4.0: A review of the concept and of energy management approached in production based on the Internet of Things paradigm. IEEE international conference on industrial engineering and engineering management, 2015-Janua, 697–701. https://doi.org/10.1109/IEEM.2014.7058728.
Prieto, Cirrincione, Espinosa, Ortega, Henao (b0300) 2013; 60
Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (1987). Machine learning: An artificial intelligence approach (vol. 2). In Journal of Mathematical Psychology (Vol. 31). https://doi.org/10.1007/978-3-662-12405-5.
Bayraktar (b0040) 2019
Çakır, M., Güvenç, M. A., & Mıstıkoğlu, S. (2019). IoT based condition monitoring system design for investigation of non-oil ball bearing in terms of vibration, temperature, acoustic emission, current and revolution parameters. Proceedings of 10th international symposium on intelligent manufacturing and service systems, 1059–1068. SAKARYA.
Fu, K. C. (1968). Sequential methods in pattern recognition and machine learning (R. Bellman, Ed.).
O’Donnell, P. (1985). Report of large motor reliability survey of industrial and commercial installations, Part I.
Girdhar, P. (2004b). Part-6: Correcting faults that cause vibration. In Practical machinery vibration analysis and predictive maintenance (pp. 134–167).
.
Liu, Yang, Zio, Chen (b0230) 2018; 108
Mistikoglu (b0260) 2018; 12
Liling, Boqiang (b0225) 2007; 50407016
Widodo, Yang (b0360) 2007; 21
Heng, Nor (b0160) 1998; 53
Çakır, Kalpakçıoğlu, Mıstıkoğlu (b0075) 2017
Rokach, Maimon (b0305) 2005; 35
Fitch (b0120) 1992
Analog Devices. (2009). Digital Accelorometer Data Sheet (p. 40). p. 40.
Konar, Chattopadhyay (b0210) 2011; 11
Han, Song (b0150) 2003; 18
Gebraeel, Lawley, Liu, Parmeshwaran (b0130) 2004; 51
Khuntia, Rueda, van der Meijden (b0200) 2019
Jose, G., & Jose, V. (2013). Induction motor fault diagnosis methods: A comparative study. International Conference on Electrical Engineering, (July), 63–69.
Huda, Taib (b0165) 2013; 61
Bhowmick, Biswas, Biswas, Dey, Roy, Sarkar (b0050) 2019; 537
Chhikara, McKeon (b0085) 1984; 79
Chiter, Zegadi, Bekka, Felkaoui (b0090) 2018; 123
Lu, Zhou, Wang, Liu, Liu, Zhao (b0235) 2018; 414
Sivarajah, Kamal, Irani, Weerakkody (b0335) 2017
Girdhar, P., Scheffer, C., Mulrow, C. D., Williams, J. W., Gerety, M. B., Ramirez, G., … Kerber, C. (2004). Predictive maintenance techniques: Part 1 predictive maintenance basics. In Practical machinery vibration analysis and predictive maintenance (pp. 1–10). http://dx.doi.org/10.1016/B978-075066275-8/50001-1.
Aydın (b0025) 2011
Wang, Ye, Yin (b0355) 2016; 9
Çakır, Oral (b0080) 2018
Yadav, Joshi, Pahuja (b0370) 2013; 1
Altuntas, Dereli, Kusiak (b0015) 2016; 102
Fendt, Jaeger, Serrano (b0115) 2016; 2
Malla, C., & Panigrahi, I. (2019). Review of condition monitoring of rolling element bearing using vibration analysis and other techniques. Journal of Vibration Engineering & Technologies, (0123456789). https://doi.org/10.1007/s42417-019-00119-y.
Altman (b0010) 1992; 46
Stallman, R. M. (2001). Free Software: Freedom and Cooperation - GNU Project - Free Software Foundation. Retrieved March 7, 2020, from gnu.org website
Kaya, Agca, Adiguzel, Cetin (b0195) 2018
Pesaran, M. H. (2014). RSTUDIO: a platform-independent IDE for R and SWEAVE. Journal of Applied Econometrics, 21(August 2012), 1–21. https://doi.org/10.1002/jae.
Barrett, F. S. (2013). Arduino microcontroller processing for everyone! (3rd ed.). https://doi.org/10.2200/S00522ED1V01Y201307DCS043.
Banzi, Shiloh (b0030) 2014
Aksoy, Uguz, Oral (b0005) 2019; 7
Brownlee, J. (2016). Machine learning mastery with R (1st ed.). Melbourne.
Lamprou, I. (n.d.). Virtuino. Retrieved March 14, 2020, from
Zhou, H. (2012). The internet of things in the cloud: A middleware perspective. In The internet of things in the cloud: A middleware perspective. https://doi.org/10.1201/b13090.
Bellini, A., Immovilli, F., Rubini, R., & Tassoni, C. (2008). Diagnosis of bearing faults of induction machines by vibration or current signals: A critical comparison. Industry Applications Society Annual Meeting, 2008. IAS ’08. IEEE, 46(4), 1–8.
Inc Allegro MycroSystems. (n.d.). Hall effect-based linear current sensor ACS712. 1–14. Retrieved from
Jabbar, Alsibai, Amran, Mahayadin (b0175) 2018
Moosavian, Ahmadi, Tabatabaeefar, Khazaee (b0265) 2013; 20
Salin, E. D., & Winston, P. H. (1992). Machine learning and artificial intelligence an introduction. In R. Bellman (Ed.), Analytical chemistry (Vol. 64). https://doi.org/10.1021/ac00025a742.
Girdhar, P. (2004a). Part-1: Predictive maintenance basics. In Practical machinery vibration analysis and predictive maintenance (pp. 1–10). http://dx.doi.org/10.1016/B978-075066275-8/50001-1.
Zhao, Zhang (b0375) 2008; 41
Xia, Li, Zhang, De Silva (b0365) 2016; 101
Nandi, Toliyat, Li (b0270) 2005; 20
Jaber, Bicker (b0180) 2018; 8
Kaparthi, S., & Bumblauskas, D. (2020). Designing predictive maintenance systems using decision tree-based machine learning techniques. International Journal of Quality and Reliability Management, (Ml). https://doi.org/10.1108/IJQRM-04-2019-0131.
10.1016/j.cie.2020.106948_b0020
10.1016/j.cie.2020.106948_b0065
Melexis (10.1016/j.cie.2020.106948_b0250) 2006
10.1016/j.cie.2020.106948_b0340
10.1016/j.cie.2020.106948_b0185
Sun (10.1016/j.cie.2020.106948_b0345) 2011; 305
10.1016/j.cie.2020.106948_b0140
Prieto (10.1016/j.cie.2020.106948_b0300) 2013; 60
10.1016/j.cie.2020.106948_b0145
Jaber (10.1016/j.cie.2020.106948_b0180) 2018; 8
Cotes (10.1016/j.cie.2020.106948_b0100) 1995; 20
Khuntia (10.1016/j.cie.2020.106948_b0200) 2019
10.1016/j.cie.2020.106948_b0380
Çakır (10.1016/j.cie.2020.106948_b0080) 2018
Zhao (10.1016/j.cie.2020.106948_b0375) 2008; 41
Nandi (10.1016/j.cie.2020.106948_b0270) 2005; 20
Rokach (10.1016/j.cie.2020.106948_b0305) 2005; 35
Fendt (10.1016/j.cie.2020.106948_b0115) 2016; 2
Gebraeel (10.1016/j.cie.2020.106948_b0130) 2004; 51
Fitch (10.1016/j.cie.2020.106948_b0120) 1992
Shi (10.1016/j.cie.2020.106948_b0325) 2020
Tian (10.1016/j.cie.2020.106948_b0350) 2016; 63
10.1016/j.cie.2020.106948_b0295
Liu (10.1016/j.cie.2020.106948_b0230) 2018; 108
Mistikoglu (10.1016/j.cie.2020.106948_b0260) 2018; 12
10.1016/j.cie.2020.106948_b0135
10.1016/j.cie.2020.106948_b0255
10.1016/j.cie.2020.106948_b0330
McLachlan (10.1016/j.cie.2020.106948_b0245) 2004
10.1016/j.cie.2020.106948_b0170
Huda (10.1016/j.cie.2020.106948_b0165) 2013; 61
Lu (10.1016/j.cie.2020.106948_b0235) 2018; 414
10.1016/j.cie.2020.106948_b0290
Heng (10.1016/j.cie.2020.106948_b0160) 1998; 53
Bhowmick (10.1016/j.cie.2020.106948_b0050) 2019; 537
Landset (10.1016/j.cie.2020.106948_b0220) 2015; 2
Widodo (10.1016/j.cie.2020.106948_b0360) 2007; 21
Breiman (10.1016/j.cie.2020.106948_b0060) 1996; 24
10.1016/j.cie.2020.106948_b0215
Konar (10.1016/j.cie.2020.106948_b0210) 2011; 11
10.1016/j.cie.2020.106948_b0285
10.1016/j.cie.2020.106948_b0240
Durkovic (10.1016/j.cie.2020.106948_b0105) 2008; 3
10.1016/j.cie.2020.106948_b0045
10.1016/j.cie.2020.106948_b0320
Kaya (10.1016/j.cie.2020.106948_b0195) 2018
Çakır (10.1016/j.cie.2020.106948_b0075) 2017
Liling (10.1016/j.cie.2020.106948_b0225) 2007; 50407016
Bayraktar (10.1016/j.cie.2020.106948_b0040) 2019
Oral (10.1016/j.cie.2020.106948_b0280) 2017; 177
Yadav (10.1016/j.cie.2020.106948_b0370) 2013; 1
Wang (10.1016/j.cie.2020.106948_b0355) 2016; 9
10.1016/j.cie.2020.106948_b0205
Altman (10.1016/j.cie.2020.106948_b0010) 1992; 46
10.1016/j.cie.2020.106948_b0125
Aksoy (10.1016/j.cie.2020.106948_b0005) 2019; 7
Moosavian (10.1016/j.cie.2020.106948_b0265) 2013; 20
10.1016/j.cie.2020.106948_b0035
10.1016/j.cie.2020.106948_b0155
10.1016/j.cie.2020.106948_b0110
10.1016/j.cie.2020.106948_b0275
Altuntas (10.1016/j.cie.2020.106948_b0015) 2016; 102
Banzi (10.1016/j.cie.2020.106948_b0030) 2014
Chhikara (10.1016/j.cie.2020.106948_b0085) 1984; 79
Han (10.1016/j.cie.2020.106948_b0150) 2003; 18
10.1016/j.cie.2020.106948_b0070
Sivarajah (10.1016/j.cie.2020.106948_b0335) 2017
10.1016/j.cie.2020.106948_b0190
Xia (10.1016/j.cie.2020.106948_b0365) 2016; 101
Aydın (10.1016/j.cie.2020.106948_b0025) 2011
Bilgic (10.1016/j.cie.2020.106948_b0055) 2019; 8055
Chiter (10.1016/j.cie.2020.106948_b0090) 2018; 123
Jabbar (10.1016/j.cie.2020.106948_b0175) 2018
Ruiz-Gonzalez (10.1016/j.cie.2020.106948_b0310) 2014; 14
10.1016/j.cie.2020.106948_b0315
Chu (10.1016/j.cie.2020.106948_b0095) 2018; 189
References_xml – start-page: 72
  year: 2017
  end-page: 79
  ident: b0075
  article-title: Makina ve Mekatronik Mühendisliğinde Arduino Kullanımı
  publication-title: Makinatek Dergisi
– reference: P, K., & P, A. S. (2018). Intelligent healthcare monitoring in IoT. International Journal of Advanced Engineering, Management and Science, 4(6), 441–445. https://doi.org/10.22161/ijaems.4.6.2.
– reference: Barrett, F. S. (2013). Arduino microcontroller processing for everyone! (3rd ed.). https://doi.org/10.2200/S00522ED1V01Y201307DCS043.
– volume: 2
  start-page: 180
  year: 2016
  end-page: 185
  ident: b0115
  article-title: Industrial experience with open source software process management
  publication-title: Proceedings - International Computer Software and Applications Conference
– volume: 1
  start-page: 34
  year: 2013
  end-page: 39
  ident: b0370
  article-title: Support vector machine based bearing fault detection of induction motor
  publication-title: Indian Journal of Advanced Electronics Engineering
– volume: 2
  start-page: 1
  year: 2015
  end-page: 36
  ident: b0220
  article-title: A survey of open source tools for machine learning with big data in the Hadoop ecosystem
  publication-title: Journal of Big Data
– volume: 79
  start-page: 899
  year: 1984
  end-page: 906
  ident: b0085
  article-title: Linear discriminant analysis with misallocation in training samples
  publication-title: Journal of the American Statistical Association
– volume: 11
  start-page: 4203
  year: 2011
  end-page: 4211
  ident: b0210
  article-title: Bearing fault detection of induction motor using wavelet and Support Vector Machines (SVMs)
  publication-title: Applied Soft Computing Journal
– start-page: 1
  year: 2018
  end-page: 6
  ident: b0175
  article-title: Automation System for smart home
  publication-title: 2018 International symposium on networks, computers and communications (ISNCC)
– volume: 20
  start-page: 263
  year: 2013
  end-page: 272
  ident: b0265
  article-title: Comparison of two classifiers; K-nearest neighbor and artificial neural network, for fault diagnosis on a main engine journal-bearing
  publication-title: Shock and Vibration
– volume: 51
  start-page: 694
  year: 2004
  end-page: 700
  ident: b0130
  article-title: Residual life predictions from vibration-based degradation signals: A neural network approach
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 41
  start-page: 1955
  year: 2008
  end-page: 1959
  ident: b0375
  article-title: Comparison of decision tree methods for finding active objects
  publication-title: Advances in Space Research
– volume: 8055
  start-page: 966
  year: 2019
  end-page: 974
  ident: b0055
  article-title: A study on prediction of surface roughness and cutting tool temperature
  publication-title: Konya Journal of Engineering Sciences
– reference: Kaparthi, S., & Bumblauskas, D. (2020). Designing predictive maintenance systems using decision tree-based machine learning techniques. International Journal of Quality and Reliability Management, (Ml). https://doi.org/10.1108/IJQRM-04-2019-0131.
– volume: 537
  start-page: 521
  year: 2019
  end-page: 528
  ident: b0050
  article-title: Application of IoT-enabled smart agriculture in vertical farming sutanni
  publication-title: Advances in Communication, Devices and Networking
– volume: 35
  start-page: 476
  year: 2005
  end-page: 487
  ident: b0305
  article-title: Top-down induction of decision trees classifiers - A survey
  publication-title: IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews
– reference: Girdhar, P. (2004b). Part-6: Correcting faults that cause vibration. In Practical machinery vibration analysis and predictive maintenance (pp. 134–167).
– volume: 8
  start-page: 996
  year: 2018
  end-page: 1009
  ident: b0180
  article-title: Development of a condition monitoring algorithm for industrial robots based on artificial intelligence and signal processing techniques
  publication-title: International Journal of Electrical and Computer Engineering
– reference: Jose, G., & Jose, V. (2013). Induction motor fault diagnosis methods: A comparative study. International Conference on Electrical Engineering, (July), 63–69.
– volume: 123
  year: 2018
  ident: b0090
  article-title: A new method for automatic defects detection and diagnosis in rolling element bearings using Wald test
  publication-title: Journal of Theoretical and Applied Mechanics
– reference: Analog Devices. (2009). Digital Accelorometer Data Sheet (p. 40). p. 40.
– volume: 108
  start-page: 33
  year: 2018
  end-page: 47
  ident: b0230
  article-title: Artificial intelligence for fault diagnosis of rotating machinery: A review
  publication-title: Mechanical Systems and Signal Processing
– year: 2004
  ident: b0245
  article-title: Discriminant analysis and statistical pattern recognition
– volume: 46
  start-page: 175
  year: 1992
  end-page: 185
  ident: b0010
  article-title: An introduction to kernel and nearest-neighbor nonparametric regression
  publication-title: American Statistician
– volume: 189
  start-page: 10
  year: 2018
  end-page: 15
  ident: b0095
  article-title: An effective method for monitoring the vibration data of bearings to diagnose and minimize defects
  publication-title: MATEC Web of Conferences
– reference: Stallman, R. M. (2001). Free Software: Freedom and Cooperation - GNU Project - Free Software Foundation. Retrieved March 7, 2020, from gnu.org website:
– year: 2014
  ident: b0030
  article-title: Getting started with Arduino: The open source electronics prototyping platform
– volume: 60
  start-page: 3398
  year: 2013
  end-page: 3407
  ident: b0300
  article-title: Bearing fault detection by a novel condition-monitoring scheme based on statistical-time features and neural networks
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 53
  start-page: 211
  year: 1998
  end-page: 226
  ident: b0160
  article-title: Statistical analysis of sound and vibration signals for monitoring rolling element bearing condition
  publication-title: Applied Acoustics
– volume: 177
  start-page: 172
  year: 2017
  end-page: 177
  ident: b0280
  article-title: Nesnelerin İnterneti Kavramı ve Örnek Bir Prototipin Oluşturulması
  publication-title: Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi
– reference: Eren, B., Guvenc, M. A., & Mistikoglu, S. (2020). Artificial intelligence applications for friction stir welding: A review. Metals and Materials International, (August). https://doi.org/10.1007/s12540-020-00854-y.
– volume: 20
  start-page: 719
  year: 2005
  end-page: 729
  ident: b0270
  article-title: Condition monitoring and fault diagnosis of electrical motors - A review
  publication-title: IEEE Transactions on Energy Conversion
– year: 2017
  ident: b0335
  article-title: Critical analysis of Big Data challenges and analytical methods
  publication-title: Journal of Business Research
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: b0060
  article-title: Bagging predictors
  publication-title: Machine Learning
– volume: 7
  start-page: 608
  year: 2019
  end-page: 618
  ident: b0005
  article-title: Comparision of the data matching performances of string similarity algorithms in big data
  publication-title: Mühendislik Bilimleri ve Tasarım Dergisi
– reference: Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (1987). Machine learning: An artificial intelligence approach (vol. 2). In Journal of Mathematical Psychology (Vol. 31). https://doi.org/10.1007/978-3-662-12405-5.
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: b0100
  article-title: Support-vector networks
  publication-title: Machine Learning
– year: 2020
  ident: b0325
  article-title: Mathematical theories of machine learning - theory and applications
  publication-title: Mathematical Theories of Machine Learning - Theory and Applications
– reference: Girdhar, P. (2004a). Part-1: Predictive maintenance basics. In Practical machinery vibration analysis and predictive maintenance (pp. 1–10). http://dx.doi.org/10.1016/B978-075066275-8/50001-1.
– volume: 3
  start-page: 29
  year: 2008
  end-page: 33
  ident: b0105
  article-title: Open source approach in software development - advantages and disadvantages
  publication-title: Management Information Systems
– volume: 14
  start-page: 20713
  year: 2014
  end-page: 20735
  ident: b0310
  article-title: An SVM-Based classifier for estimating the state of various rotating components in Agro-Industrial machinery with a vibration signal acquired from a single point on the machine chassis
  publication-title: Sensors (Switzerland)
– year: 2018
  ident: b0080
  article-title: RemoteXY ile Mobil Programlama
– reference: Çakır, M., Güvenç, M. A., & Mıstıkoğlu, S. (2019). IoT based condition monitoring system design for investigation of non-oil ball bearing in terms of vibration, temperature, acoustic emission, current and revolution parameters. Proceedings of 10th international symposium on intelligent manufacturing and service systems, 1059–1068. SAKARYA.
– reference: Brownlee, J. (2016). Machine learning mastery with R (1st ed.). Melbourne.
– volume: 50407016
  start-page: 2277
  year: 2007
  end-page: 2281
  ident: b0225
  article-title: An improvement of stator current based detection of bearing fault in induction motors
  publication-title: Conference Record - IAS Annual Meeting (IEEE Industry Applications Society)
– reference: Shrouf, F., Ordieres, J., & Miragliotta, G. (2014). Smart factories in Industry 4.0: A review of the concept and of energy management approached in production based on the Internet of Things paradigm. IEEE international conference on industrial engineering and engineering management, 2015-Janua, 697–701. https://doi.org/10.1109/IEEM.2014.7058728.
– reference: Zhou, H. (2012). The internet of things in the cloud: A middleware perspective. In The internet of things in the cloud: A middleware perspective. https://doi.org/10.1201/b13090.
– volume: 18
  start-page: 4
  year: 2003
  end-page: 13
  ident: b0150
  article-title: Condition monitoring techniques for electrical equipment - A literature survey
  publication-title: IEEE Transactions on Power Delivery
– volume: 9
  start-page: 295
  year: 2016
  end-page: 300
  ident: b0355
  article-title: Study on predictive maintenance strategy
  publication-title: International Journal of U- and e- Service, Science and Technology
– volume: 21
  start-page: 2560
  year: 2007
  end-page: 2574
  ident: b0360
  article-title: Support vector machine in machine condition monitoring and fault diagnosis
  publication-title: Mechanical Systems and Signal Processing
– year: 2019
  ident: b0040
  article-title: Rastgele Ormanlar ve Aşırı Öğrenme Makineleri Teknikleri ile Oltalama Saldırılarının Tespiti
– volume: 305
  year: 2011
  ident: b0345
  article-title: Research on bearing life prediction based on support vector machine and its application
  publication-title: Journal of Physics: Conference Series
– start-page: 1
  year: 2018
  end-page: 10
  ident: b0195
  article-title: Spatial data analysis with R programming for environment
  publication-title: Human and Ecological Risk Assessment
– reference: Köksal, M., & Uzun, A. (2016). Bakım Planlaması. Retrieved from Seçkin Yayıncılık website:
– year: 1992
  ident: b0120
  article-title: Proactive maintenance for mechanical systems
– volume: 63
  start-page: 1793
  year: 2016
  end-page: 1803
  ident: b0350
  article-title: Kurtosis-based feature extraction coupled with K-nearest neighbor distance analysis
  publication-title: IEEE Transactions on Industrial Electronics
– reference: O’Donnell, P. (1985). Report of large motor reliability survey of industrial and commercial installations, Part I.
– reference: Shekhar, J., Zerihun, D., & Haile Abebe, M. (2019). Automated classroom monitoring with IoT and virtuino app. International Journal of Advanced Research in IT and Engineering, (April).
– year: 2019
  ident: b0200
  article-title: Smart asset management for electric utilities: Big data and future
  publication-title: Lecture Notes in Mechanical Engineering
– volume: 101
  start-page: 5
  year: 2016
  end-page: 18
  ident: b0365
  article-title: Closed-loop design evolution of engineering system using condition monitoring through internet of things and cloud computing
  publication-title: Computer Networks
– reference: Harris, T. A. (1984). Rolling bearing analysis. Second Edition. 1086.
– volume: 61
  start-page: 220
  year: 2013
  end-page: 227
  ident: b0165
  article-title: Application of infrared thermography for predictive/preventive maintenance of thermal defect in electrical equipment
  publication-title: Applied Thermal Engineering
– reference: Pesaran, M. H. (2014). RSTUDIO: a platform-independent IDE for R and SWEAVE. Journal of Applied Econometrics, 21(August 2012), 1–21. https://doi.org/10.1002/jae.
– reference: Salin, E. D., & Winston, P. H. (1992). Machine learning and artificial intelligence an introduction. In R. Bellman (Ed.), Analytical chemistry (Vol. 64). https://doi.org/10.1021/ac00025a742.
– volume: 102
  start-page: 58
  year: 2016
  end-page: 68
  ident: b0015
  article-title: Assessment of corporate innovation capability with a data-mining approach: Industrial case studies
  publication-title: Computers and Industrial Engineering
– reference: Malla, C., & Panigrahi, I. (2019). Review of condition monitoring of rolling element bearing using vibration analysis and other techniques. Journal of Vibration Engineering & Technologies, (0123456789). https://doi.org/10.1007/s42417-019-00119-y.
– reference: Girdhar, P., Scheffer, C., Mulrow, C. D., Williams, J. W., Gerety, M. B., Ramirez, G., … Kerber, C. (2004). Predictive maintenance techniques: Part 1 predictive maintenance basics. In Practical machinery vibration analysis and predictive maintenance (pp. 1–10). http://dx.doi.org/10.1016/B978-075066275-8/50001-1.
– reference: PLX-DAQ | Parallax Inc. (n.d.). Retrieved July 9, 2019, from
– reference: .
– reference: Lamprou, I. (n.d.). Virtuino. Retrieved March 14, 2020, from
– year: 2011
  ident: b0025
  article-title: Gerçek Zamanlı Durum İzleme ve Arıza Teşhisi İçin Bağışık Akıllı Hesaplama Tekniklerinin Geliştirilmesi
– reference: Fu, K. C. (1968). Sequential methods in pattern recognition and machine learning (R. Bellman, Ed.).
– reference: Inc Allegro MycroSystems. (n.d.). Hall effect-based linear current sensor ACS712. 1–14. Retrieved from
– reference: Bellini, A., Immovilli, F., Rubini, R., & Tassoni, C. (2008). Diagnosis of bearing faults of induction machines by vibration or current signals: A critical comparison. Industry Applications Society Annual Meeting, 2008. IAS ’08. IEEE, 46(4), 1–8.
– volume: 12
  start-page: 60
  year: 2018
  end-page: 66
  ident: b0260
  article-title: Predictive maintenance
– volume: 414
  start-page: 81
  year: 2018
  end-page: 96
  ident: b0235
  article-title: Condition monitoring and fault diagnosis of motor bearings using undersampled vibration signals from a wireless sensor network
  publication-title: Journal of Sound and Vibration
– year: 2006
  ident: b0250
  article-title: MLX90614 - single and dual zone infrared thermometer in TO-39
  publication-title: Microeletronic Integrated Systems
– ident: 10.1016/j.cie.2020.106948_b0020
– volume: 102
  start-page: 58
  year: 2016
  ident: 10.1016/j.cie.2020.106948_b0015
  article-title: Assessment of corporate innovation capability with a data-mining approach: Industrial case studies
  publication-title: Computers and Industrial Engineering
  doi: 10.1016/j.cie.2016.10.018
– ident: 10.1016/j.cie.2020.106948_b0240
  doi: 10.1007/s42417-019-00119-y
– ident: 10.1016/j.cie.2020.106948_b0290
– ident: 10.1016/j.cie.2020.106948_b0135
  doi: 10.1016/B978-075066275-8/50001-1
– ident: 10.1016/j.cie.2020.106948_b0330
  doi: 10.1109/IEEM.2014.7058728
– year: 2017
  ident: 10.1016/j.cie.2020.106948_b0335
  article-title: Critical analysis of Big Data challenges and analytical methods
  publication-title: Journal of Business Research
  doi: 10.1016/j.jbusres.2016.08.001
– year: 2020
  ident: 10.1016/j.cie.2020.106948_b0325
  article-title: Mathematical theories of machine learning - theory and applications
  publication-title: Mathematical Theories of Machine Learning - Theory and Applications
  doi: 10.1007/978-3-030-17076-9
– volume: 2
  start-page: 180
  year: 2016
  ident: 10.1016/j.cie.2020.106948_b0115
  article-title: Industrial experience with open source software process management
  publication-title: Proceedings - International Computer Software and Applications Conference
– volume: 61
  start-page: 220
  issue: 2
  year: 2013
  ident: 10.1016/j.cie.2020.106948_b0165
  article-title: Application of infrared thermography for predictive/preventive maintenance of thermal defect in electrical equipment
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2013.07.028
– ident: 10.1016/j.cie.2020.106948_b0275
– volume: 3
  start-page: 29
  issue: 2
  year: 2008
  ident: 10.1016/j.cie.2020.106948_b0105
  article-title: Open source approach in software development - advantages and disadvantages
  publication-title: Management Information Systems
– volume: 537
  start-page: 521
  year: 2019
  ident: 10.1016/j.cie.2020.106948_b0050
  article-title: Application of IoT-enabled smart agriculture in vertical farming sutanni
  publication-title: Advances in Communication, Devices and Networking
  doi: 10.1007/978-981-13-3450-4_56
– ident: 10.1016/j.cie.2020.106948_b0145
  doi: 10.1016/B978-075066275-8/50001-1
– volume: 35
  start-page: 476
  issue: 4
  year: 2005
  ident: 10.1016/j.cie.2020.106948_b0305
  article-title: Top-down induction of decision trees classifiers - A survey
  publication-title: IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews
  doi: 10.1109/TSMCC.2004.843247
– volume: 24
  start-page: 123
  issue: 421
  year: 1996
  ident: 10.1016/j.cie.2020.106948_b0060
  article-title: Bagging predictors
  publication-title: Machine Learning
  doi: 10.1023/A:1018054314350
– volume: 8055
  start-page: 966
  issue: 7
  year: 2019
  ident: 10.1016/j.cie.2020.106948_b0055
  article-title: A study on prediction of surface roughness and cutting tool temperature
  publication-title: Konya Journal of Engineering Sciences
  doi: 10.36306/konjes.624725
– ident: 10.1016/j.cie.2020.106948_b0185
– year: 2018
  ident: 10.1016/j.cie.2020.106948_b0080
– volume: 177
  start-page: 172
  issue: 1
  year: 2017
  ident: 10.1016/j.cie.2020.106948_b0280
  article-title: Nesnelerin İnterneti Kavramı ve Örnek Bir Prototipin Oluşturulması
  publication-title: Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi
– ident: 10.1016/j.cie.2020.106948_b0315
  doi: 10.1021/ac00025a742
– volume: 101
  start-page: 5
  year: 2016
  ident: 10.1016/j.cie.2020.106948_b0365
  article-title: Closed-loop design evolution of engineering system using condition monitoring through internet of things and cloud computing
  publication-title: Computer Networks
  doi: 10.1016/j.comnet.2015.12.016
– ident: 10.1016/j.cie.2020.106948_b0065
– ident: 10.1016/j.cie.2020.106948_b0340
– volume: 53
  start-page: 211
  issue: 1–3
  year: 1998
  ident: 10.1016/j.cie.2020.106948_b0160
  article-title: Statistical analysis of sound and vibration signals for monitoring rolling element bearing condition
  publication-title: Applied Acoustics
  doi: 10.1016/S0003-682X(97)00018-2
– ident: 10.1016/j.cie.2020.106948_b0170
– volume: 123
  year: 2018
  ident: 10.1016/j.cie.2020.106948_b0090
  article-title: A new method for automatic defects detection and diagnosis in rolling element bearings using Wald test
  publication-title: Journal of Theoretical and Applied Mechanics
– volume: 46
  start-page: 175
  issue: 3
  year: 1992
  ident: 10.1016/j.cie.2020.106948_b0010
  article-title: An introduction to kernel and nearest-neighbor nonparametric regression
  publication-title: American Statistician
  doi: 10.1080/00031305.1992.10475879
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.cie.2020.106948_b0100
  article-title: Support-vector networks
  publication-title: Machine Learning
  doi: 10.1023/A:1022627411411
– ident: 10.1016/j.cie.2020.106948_b0125
– year: 2004
  ident: 10.1016/j.cie.2020.106948_b0245
– volume: 414
  start-page: 81
  year: 2018
  ident: 10.1016/j.cie.2020.106948_b0235
  article-title: Condition monitoring and fault diagnosis of motor bearings using undersampled vibration signals from a wireless sensor network
  publication-title: Journal of Sound and Vibration
  doi: 10.1016/j.jsv.2017.11.007
– ident: 10.1016/j.cie.2020.106948_b0380
  doi: 10.1201/b13090
– volume: 8
  start-page: 996
  issue: 2
  year: 2018
  ident: 10.1016/j.cie.2020.106948_b0180
  article-title: Development of a condition monitoring algorithm for industrial robots based on artificial intelligence and signal processing techniques
  publication-title: International Journal of Electrical and Computer Engineering
  doi: 10.11591/ijece.v8i2.pp996-1009
– ident: 10.1016/j.cie.2020.106948_b0215
– volume: 41
  start-page: 1955
  issue: 12
  year: 2008
  ident: 10.1016/j.cie.2020.106948_b0375
  article-title: Comparison of decision tree methods for finding active objects
  publication-title: Advances in Space Research
  doi: 10.1016/j.asr.2007.07.020
– start-page: 72
  year: 2017
  ident: 10.1016/j.cie.2020.106948_b0075
  article-title: Makina ve Mekatronik Mühendisliğinde Arduino Kullanımı
  publication-title: Makinatek Dergisi
– volume: 2
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.cie.2020.106948_b0220
  article-title: A survey of open source tools for machine learning with big data in the Hadoop ecosystem
  publication-title: Journal of Big Data
  doi: 10.1186/s40537-015-0032-1
– volume: 20
  start-page: 719
  issue: 4
  year: 2005
  ident: 10.1016/j.cie.2020.106948_b0270
  article-title: Condition monitoring and fault diagnosis of electrical motors - A review
  publication-title: IEEE Transactions on Energy Conversion
  doi: 10.1109/TEC.2005.847955
– volume: 189
  start-page: 10
  year: 2018
  ident: 10.1016/j.cie.2020.106948_b0095
  article-title: An effective method for monitoring the vibration data of bearings to diagnose and minimize defects
  publication-title: MATEC Web of Conferences
  doi: 10.1051/matecconf/201818903019
– ident: 10.1016/j.cie.2020.106948_b0320
– volume: 1
  start-page: 34
  issue: 1
  year: 2013
  ident: 10.1016/j.cie.2020.106948_b0370
  article-title: Support vector machine based bearing fault detection of induction motor
  publication-title: Indian Journal of Advanced Electronics Engineering
– year: 2011
  ident: 10.1016/j.cie.2020.106948_b0025
– ident: 10.1016/j.cie.2020.106948_b0140
  doi: 10.1016/B978-075066275-8/50006-0
– year: 2006
  ident: 10.1016/j.cie.2020.106948_b0250
  article-title: MLX90614 - single and dual zone infrared thermometer in TO-39
  publication-title: Microeletronic Integrated Systems
– year: 2014
  ident: 10.1016/j.cie.2020.106948_b0030
– volume: 21
  start-page: 2560
  issue: 6
  year: 2007
  ident: 10.1016/j.cie.2020.106948_b0360
  article-title: Support vector machine in machine condition monitoring and fault diagnosis
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2006.12.007
– ident: 10.1016/j.cie.2020.106948_b0285
  doi: 10.22161/ijaems.4.6.2
– volume: 60
  start-page: 3398
  issue: 8
  year: 2013
  ident: 10.1016/j.cie.2020.106948_b0300
  article-title: Bearing fault detection by a novel condition-monitoring scheme based on statistical-time features and neural networks
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2012.2219838
– volume: 108
  start-page: 33
  year: 2018
  ident: 10.1016/j.cie.2020.106948_b0230
  article-title: Artificial intelligence for fault diagnosis of rotating machinery: A review
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2018.02.016
– ident: 10.1016/j.cie.2020.106948_b0070
– volume: 50407016
  start-page: 2277
  year: 2007
  ident: 10.1016/j.cie.2020.106948_b0225
  article-title: An improvement of stator current based detection of bearing fault in induction motors
  publication-title: Conference Record - IAS Annual Meeting (IEEE Industry Applications Society)
– year: 2019
  ident: 10.1016/j.cie.2020.106948_b0040
– ident: 10.1016/j.cie.2020.106948_b0190
  doi: 10.1108/IJQRM-04-2019-0131
– year: 1992
  ident: 10.1016/j.cie.2020.106948_b0120
– ident: 10.1016/j.cie.2020.106948_b0155
– volume: 20
  start-page: 263
  issue: 2
  year: 2013
  ident: 10.1016/j.cie.2020.106948_b0265
  article-title: Comparison of two classifiers; K-nearest neighbor and artificial neural network, for fault diagnosis on a main engine journal-bearing
  publication-title: Shock and Vibration
  doi: 10.1155/2013/360236
– volume: 11
  start-page: 4203
  issue: 6
  year: 2011
  ident: 10.1016/j.cie.2020.106948_b0210
  article-title: Bearing fault detection of induction motor using wavelet and Support Vector Machines (SVMs)
  publication-title: Applied Soft Computing Journal
  doi: 10.1016/j.asoc.2011.03.014
– volume: 79
  start-page: 899
  issue: 388
  year: 1984
  ident: 10.1016/j.cie.2020.106948_b0085
  article-title: Linear discriminant analysis with misallocation in training samples
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1984.10477109
– volume: 51
  start-page: 694
  issue: 3
  year: 2004
  ident: 10.1016/j.cie.2020.106948_b0130
  article-title: Residual life predictions from vibration-based degradation signals: A neural network approach
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2004.824875
– volume: 63
  start-page: 1793
  issue: 3
  year: 2016
  ident: 10.1016/j.cie.2020.106948_b0350
  article-title: Kurtosis-based feature extraction coupled with K-nearest neighbor distance analysis
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2015.2509913
– ident: 10.1016/j.cie.2020.106948_b0255
  doi: 10.1016/0022-2496(87)90031-9
– ident: 10.1016/j.cie.2020.106948_b0045
  doi: 10.1109/08IAS.2008.26
– year: 2019
  ident: 10.1016/j.cie.2020.106948_b0200
  article-title: Smart asset management for electric utilities: Big data and future
  publication-title: Lecture Notes in Mechanical Engineering
  doi: 10.1007/978-3-319-95711-1_31
– volume: 7
  start-page: 608
  issue: 3
  year: 2019
  ident: 10.1016/j.cie.2020.106948_b0005
  article-title: Comparision of the data matching performances of string similarity algorithms in big data
  publication-title: Mühendislik Bilimleri ve Tasarım Dergisi
  doi: 10.21923/jesd.467036
– volume: 18
  start-page: 4
  issue: 1
  year: 2003
  ident: 10.1016/j.cie.2020.106948_b0150
  article-title: Condition monitoring techniques for electrical equipment - A literature survey
  publication-title: IEEE Transactions on Power Delivery
  doi: 10.1109/TPWRD.2002.801425
– volume: 14
  start-page: 20713
  issue: 11
  year: 2014
  ident: 10.1016/j.cie.2020.106948_b0310
  article-title: An SVM-Based classifier for estimating the state of various rotating components in Agro-Industrial machinery with a vibration signal acquired from a single point on the machine chassis
  publication-title: Sensors (Switzerland)
  doi: 10.3390/s141120713
– start-page: 1
  year: 2018
  ident: 10.1016/j.cie.2020.106948_b0175
  article-title: Automation System for smart home
– start-page: 1
  year: 2018
  ident: 10.1016/j.cie.2020.106948_b0195
  article-title: Spatial data analysis with R programming for environment
  publication-title: Human and Ecological Risk Assessment
– ident: 10.1016/j.cie.2020.106948_b0205
– ident: 10.1016/j.cie.2020.106948_b0295
– ident: 10.1016/j.cie.2020.106948_b0035
  doi: 10.1007/978-3-031-79864-1
– ident: 10.1016/j.cie.2020.106948_b0110
  doi: 10.1007/s12540-020-00854-y
– volume: 12
  start-page: 60
  issue: 101
  year: 2018
  ident: 10.1016/j.cie.2020.106948_b0260
  article-title: Predictive maintenance
  publication-title: Miller Magazine
– volume: 305
  issue: 1
  year: 2011
  ident: 10.1016/j.cie.2020.106948_b0345
  article-title: Research on bearing life prediction based on support vector machine and its application
  publication-title: Journal of Physics: Conference Series
– volume: 9
  start-page: 295
  issue: 4
  year: 2016
  ident: 10.1016/j.cie.2020.106948_b0355
  article-title: Study on predictive maintenance strategy
  publication-title: International Journal of U- and e- Service, Science and Technology
  doi: 10.14257/ijunesst.2016.9.4.29
SSID ssj0004591
Score 2.5896382
Snippet •Temperature, current, noise, and revolution features are increasing accuracy to %99.•Using open-source software and hardware provides flexibility and low-cost...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106948
SubjectTerms Condition monitoring
Industry 4.0
Internet of things
Machine learning
Predictive maintenance
Title The experimental application of popular machine learning algorithms on predictive maintenance and the design of IIoT based condition monitoring system
URI https://dx.doi.org/10.1016/j.cie.2020.106948
Volume 151
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: AKRWK
  dateStart: 19770101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLDDwRpRHdQMTUmiTOHYzogrUgsQCSGyR4wcU0YdKWfkZ_F7uHAcFCRgYY50tK2efv4u_fMfYiUHI4Lgto0S4HiYosoxKa-LIprE2iDCEUJ7leyMG9_zqIXtYYv36XxiiVYbYX8V0H61DSye8zc5sNOrcYuyt8APB3iSjOMy5pCoGZ-9xQzG8qpqHxhFZ1zebnuOFw2KKmNCzyKkE0E9nU-O8udxk6wEownk1ly22ZCfbbCOARghb8nWbrTUUBXfYB7odmqr90LihhqmDmS_YNYexJ1FaCFUjHkG9PE7no8XT-BXQcjanCxwKhWhJkhKky2FBTQwgYgTjeR803nA4vQM6Cg1gZm08AQzGPlDQjKBSit5l95cXd_1BFEovRDrJ5SKSmK0KLbNEJjwrFaY1ZeZcTyOa1Cq3RuWpiaUxyiAc0VIoZbo6cwazwcylmALtseXJdGL3GbjcOs0l2qQxV6Us067TgvcEbn0js7jFuvVLL3TQJafyGC9FTUB7xnZbkJ-Kyk8tdvrVZVaJcvxlzGtPFt9WVoGHxu_dDv7X7ZCtJsR68R9pjtjyYv5mjxG2LMq2X5dttnI-vB7cfALsie6-
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGICBRwHx5gYmpNDmZTcjqkAtlC4UiS1y_IAimkZtWfkZ_F7OjoOCBAyMsc5W5LPP3xd_uSPkTCJk0JHKvIDqDhIUlnmZkr6nQl9IRBiUcqvyHdLeQ3TzGD82SLf6F8bIKl3sL2O6jdaupeVms1WMx617jL0lfjCwN4gxDi9HccAMA7t492spw8uyeWjtGfPqatOKvHBc5IiBeaaJqQH00-FUO3CuN8m6Q4pwWb7MFmmovEk2HGoEtyfnTbJWSym4TT7Q71BP2w-1K2qYaihsxa4ZTKyKUoErG_EE_PVpOhsvnidzQMtiZm5wTCxES5NTwiTmUMBzCQgZQVrhhxmv35-OwJyFEpBaS6sAg4mNFOaNoEwVvUMerq9G3Z7nai94IkjYwmNIV6lgOJ9BFGcceU0Wa90RCCcFT5TkSSh9JiWXiEcEo5zLtoi1RDoY6xA50C5Zyqe52iOgE6VFxNAm9COesSxsa0GjDsW9L1ns75N2NempcInJTX2M17RSoL1gu0qNn9LST_vk_KtLUWbl-Ms4qjyZfltaKZ4av3c7-F-3U7LSG90N0kF_eHtIVgMjgbFfbI7I0mL2po4RwyyyE7tGPwF5uPBT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+experimental+application+of+popular+machine+learning+algorithms+on+predictive+maintenance+and+the+design+of+IIoT+based+condition+monitoring+system&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Cakir%2C+Mustafa&rft.au=Guvenc%2C+Mehmet+Ali&rft.au=Mistikoglu%2C+Selcuk&rft.date=2021-01-01&rft.pub=Elsevier+Ltd&rft.issn=0360-8352&rft.eissn=1879-0550&rft.volume=151&rft_id=info:doi/10.1016%2Fj.cie.2020.106948&rft.externalDocID=S0360835220306252
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon