The experimental application of popular machine learning algorithms on predictive maintenance and the design of IIoT based condition monitoring system
•Temperature, current, noise, and revolution features are increasing accuracy to %99.•Using open-source software and hardware provides flexibility and low-cost advantages.•Real-Time monitoring and e-mail/SMS notification provide ease to maintenance team.•Decision Trees algorithm gives higher accurac...
        Saved in:
      
    
          | Published in | Computers & industrial engineering Vol. 151; p. 106948 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.01.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0360-8352 1879-0550  | 
| DOI | 10.1016/j.cie.2020.106948 | 
Cover
| Abstract | •Temperature, current, noise, and revolution features are increasing accuracy to %99.•Using open-source software and hardware provides flexibility and low-cost advantages.•Real-Time monitoring and e-mail/SMS notification provide ease to maintenance team.•Decision Trees algorithm gives higher accuracy and faster results than others.•Microcontroller-based PdM System created and notification features added successfully.
With the fourth industrial revolution, which has become increasingly widespread in the manufacturing industry, traditional maintenance has been replaced by the industrial internet of things (IIoT) based on condition monitoring system (CMS). The IIoT concept provides easier and reliable maintenance. Unlike traditional maintenance, IIoT systems that perform real-time monitoring can provide great advantages to the company by notifying the related maintenance team members of the factory before a serious failure occurs. It is very important to detect faulty bearings before they reach the critical level during the rotation. In this study, an industry 4.0 compatible, IIoT based and low-cost CMS was created and it consists of three main parts. Firstly experimental setup, secondly IIoT based condition monitoring application (CMA) and finally machine learning (ML) models and their evaluation. The experimental setup contains mechanical and electronic materials. Although the most common method used in the classification of bearing damage is vibration data, it observed that characteristics such as sound level, current, rotational speed, and temperature should be included in the data set in order to increase the success of the classification. All these data were collected from the setup, which is 6203 type bearing connected to the universal motor shaft. The designed CMA provides real-time monitoring and recording of the data, which comes wirelessly from the setup, on a mobile device that has an Android operating system. The CMA can also send SMS and e-mail notifications to maintenance team supervisors over mobile devices in case critical thresholds are exceeded. Lastly, the data collected from the experimental setup was modeled for classification with popular ML algorithms such as support vector machine (SVM), linear discrimination analysis (LDA), random forest (RF), decision tree (DT), and k-nearest neighbor (kNN). The models were evaluated with accuracy, precision, TPR, TNR, FPR, FNR, F1 score and, Kappa metrics. During the evaluation of all models, it was observed that with the increase in the number of features in the data set, the accuracy, sensitivity, TPR, TNR, F1 score and Kappa metrics increased above 99% at 95% confidence interval, and FPR and FNR metrics fell below 1%. Although ML models gave successful results, LDA and DT models gave results much faster than others did. On the other hand, the classification success of the LDA model is relatively low. However, DT model is the optimum choice for CMS due to its convenience in determining threshold values, and its ability to give fast and acceptable classification rates. | 
    
|---|---|
| AbstractList | •Temperature, current, noise, and revolution features are increasing accuracy to %99.•Using open-source software and hardware provides flexibility and low-cost advantages.•Real-Time monitoring and e-mail/SMS notification provide ease to maintenance team.•Decision Trees algorithm gives higher accuracy and faster results than others.•Microcontroller-based PdM System created and notification features added successfully.
With the fourth industrial revolution, which has become increasingly widespread in the manufacturing industry, traditional maintenance has been replaced by the industrial internet of things (IIoT) based on condition monitoring system (CMS). The IIoT concept provides easier and reliable maintenance. Unlike traditional maintenance, IIoT systems that perform real-time monitoring can provide great advantages to the company by notifying the related maintenance team members of the factory before a serious failure occurs. It is very important to detect faulty bearings before they reach the critical level during the rotation. In this study, an industry 4.0 compatible, IIoT based and low-cost CMS was created and it consists of three main parts. Firstly experimental setup, secondly IIoT based condition monitoring application (CMA) and finally machine learning (ML) models and their evaluation. The experimental setup contains mechanical and electronic materials. Although the most common method used in the classification of bearing damage is vibration data, it observed that characteristics such as sound level, current, rotational speed, and temperature should be included in the data set in order to increase the success of the classification. All these data were collected from the setup, which is 6203 type bearing connected to the universal motor shaft. The designed CMA provides real-time monitoring and recording of the data, which comes wirelessly from the setup, on a mobile device that has an Android operating system. The CMA can also send SMS and e-mail notifications to maintenance team supervisors over mobile devices in case critical thresholds are exceeded. Lastly, the data collected from the experimental setup was modeled for classification with popular ML algorithms such as support vector machine (SVM), linear discrimination analysis (LDA), random forest (RF), decision tree (DT), and k-nearest neighbor (kNN). The models were evaluated with accuracy, precision, TPR, TNR, FPR, FNR, F1 score and, Kappa metrics. During the evaluation of all models, it was observed that with the increase in the number of features in the data set, the accuracy, sensitivity, TPR, TNR, F1 score and Kappa metrics increased above 99% at 95% confidence interval, and FPR and FNR metrics fell below 1%. Although ML models gave successful results, LDA and DT models gave results much faster than others did. On the other hand, the classification success of the LDA model is relatively low. However, DT model is the optimum choice for CMS due to its convenience in determining threshold values, and its ability to give fast and acceptable classification rates. | 
    
| ArticleNumber | 106948 | 
    
| Author | Guvenc, Mehmet Ali Cakir, Mustafa Mistikoglu, Selcuk  | 
    
| Author_xml | – sequence: 1 givenname: Mustafa surname: Cakir fullname: Cakir, Mustafa email: mustafa.cakir@iste.edu.tr – sequence: 2 givenname: Mehmet Ali surname: Guvenc fullname: Guvenc, Mehmet Ali email: mali.guvenc@iste.edu.tr – sequence: 3 givenname: Selcuk orcidid: 0000-0003-2985-8310 surname: Mistikoglu fullname: Mistikoglu, Selcuk email: selcuk.mistikoglu@iste.edu.tr  | 
    
| BookMark | eNp9kMFO4zAQhi0EEqXsA-zNL5BiJ3GciBNCLFRC4lLO0dSetFMldmR70fIiPO-67Z72wMka6__-0Xw37NJ5h4z9lGIlhWzuDitDuCpFeZybrm4v2EK2uiuEUuKSLUTViKKtVHnNbmI8CCFq1ckF-9rskeOfGQNN6BKMHOZ5JAOJvON-4LOff48Q-ARmTw75iBAcuR2HcecDpf0UeU7OAS2ZRB-Yk-QSOnAGOTjLU95gMdLu1Lde-w3fQkTLjXeWTnsm7yjltlwbP2PC6ZZdDTBG_PHvXbL3X0-bx5fi9e15_fjwWpiy06nQotSN0arUZa22oOp2q4ahNV0nDXRooaus1NaCVao2ugGwwqjBStWoodKqWjJ97jXBxxhw6A2l0-0pAI29FP1Rb3_I_9gf9fZnvZmU_5FzVgjh81vm_sxgPumDMPQxR7InSwFN6q2nb-i_FbmZEQ | 
    
| CitedBy_id | crossref_primary_10_1016_j_cie_2023_109006 crossref_primary_10_1016_j_cirpj_2024_02_003 crossref_primary_10_3390_cryst12040556 crossref_primary_10_1007_s42417_024_01730_4 crossref_primary_10_1016_j_cie_2023_109566 crossref_primary_10_1186_s13677_024_00649_1 crossref_primary_10_1007_s40032_025_01164_1 crossref_primary_10_3390_s21030972 crossref_primary_10_1108_JQME_12_2023_0115 crossref_primary_10_1080_02827581_2023_2168044 crossref_primary_10_1142_S0219686725500179 crossref_primary_10_3390_s25010180 crossref_primary_10_1177_1063293X241307456 crossref_primary_10_1002_nem_2263 crossref_primary_10_1007_s12008_023_01235_6 crossref_primary_10_1109_ACCESS_2025_3547863 crossref_primary_10_3390_su142114536 crossref_primary_10_1360_SSC_2022_0164 crossref_primary_10_1016_j_jksus_2023_102754 crossref_primary_10_1016_j_eswa_2024_124376 crossref_primary_10_1016_j_cie_2022_108129 crossref_primary_10_1016_j_procir_2021_11_083 crossref_primary_10_3390_en15082792 crossref_primary_10_1007_s00170_024_13351_y crossref_primary_10_1007_s11668_023_01765_x crossref_primary_10_1016_j_rineng_2024_102935 crossref_primary_10_1109_ACCESS_2024_3426279 crossref_primary_10_1016_j_fuel_2023_128548 crossref_primary_10_1109_ACCESS_2021_3104058 crossref_primary_10_1016_j_aei_2021_101370 crossref_primary_10_1016_j_measen_2022_100526 crossref_primary_10_3390_machines12110762 crossref_primary_10_3390_app14020898 crossref_primary_10_1109_ACCESS_2024_3514834 crossref_primary_10_1016_j_iot_2021_100441 crossref_primary_10_1080_0951192X_2021_1972469 crossref_primary_10_1080_10589759_2023_2273998 crossref_primary_10_3390_machines12070443 crossref_primary_10_3390_su151511487 crossref_primary_10_1016_j_cie_2023_109286 crossref_primary_10_1038_s41598_024_59958_9 crossref_primary_10_1145_3623378 crossref_primary_10_3390_sym14081553 crossref_primary_10_1016_j_apacoust_2021_108463 crossref_primary_10_1016_j_procs_2022_01_210 crossref_primary_10_1016_j_cie_2024_110214 crossref_primary_10_3390_app12168081 crossref_primary_10_1088_1361_6501_ac346d crossref_primary_10_3390_app12104931 crossref_primary_10_1109_ACCESS_2023_3312724 crossref_primary_10_1002_widm_1471 crossref_primary_10_3390_math9192405 crossref_primary_10_36306_konjes_1049489 crossref_primary_10_3390_s24134237 crossref_primary_10_1080_0951192X_2024_2397817 crossref_primary_10_3390_app11178033 crossref_primary_10_3390_w13121633 crossref_primary_10_17798_bitlisfen_1466339 crossref_primary_10_3390_s23249725 crossref_primary_10_1007_s11668_024_02049_8 crossref_primary_10_1016_j_cie_2023_109032 crossref_primary_10_33262_concienciadigital_v7i3_1_3120 crossref_primary_10_1007_s43681_021_00132_6 crossref_primary_10_3390_jmmp6050108 crossref_primary_10_21923_jesd_1412260 crossref_primary_10_51551_verimlilik_988104 crossref_primary_10_1016_j_jmsy_2024_04_012 crossref_primary_10_1109_TEC_2024_3405897 crossref_primary_10_1016_j_dajour_2023_100174 crossref_primary_10_1016_j_engappai_2023_107724 crossref_primary_10_1016_j_aei_2023_101952 crossref_primary_10_4018_IJISSCM_305849 crossref_primary_10_1021_acs_est_3c08331 crossref_primary_10_1016_j_asoc_2022_109820 crossref_primary_10_1016_j_procs_2022_01_318 crossref_primary_10_3390_automation2020004 crossref_primary_10_1177_17568293221150171  | 
    
| Cites_doi | 10.1016/j.cie.2016.10.018 10.1007/s42417-019-00119-y 10.1016/B978-075066275-8/50001-1 10.1109/IEEM.2014.7058728 10.1016/j.jbusres.2016.08.001 10.1007/978-3-030-17076-9 10.1016/j.applthermaleng.2013.07.028 10.1007/978-981-13-3450-4_56 10.1109/TSMCC.2004.843247 10.1023/A:1018054314350 10.36306/konjes.624725 10.1021/ac00025a742 10.1016/j.comnet.2015.12.016 10.1016/S0003-682X(97)00018-2 10.1080/00031305.1992.10475879 10.1023/A:1022627411411 10.1016/j.jsv.2017.11.007 10.1201/b13090 10.11591/ijece.v8i2.pp996-1009 10.1016/j.asr.2007.07.020 10.1186/s40537-015-0032-1 10.1109/TEC.2005.847955 10.1051/matecconf/201818903019 10.1016/B978-075066275-8/50006-0 10.1016/j.ymssp.2006.12.007 10.22161/ijaems.4.6.2 10.1109/TIE.2012.2219838 10.1016/j.ymssp.2018.02.016 10.1108/IJQRM-04-2019-0131 10.1155/2013/360236 10.1016/j.asoc.2011.03.014 10.1080/01621459.1984.10477109 10.1109/TIE.2004.824875 10.1109/TIE.2015.2509913 10.1016/0022-2496(87)90031-9 10.1109/08IAS.2008.26 10.1007/978-3-319-95711-1_31 10.21923/jesd.467036 10.1109/TPWRD.2002.801425 10.3390/s141120713 10.1007/978-3-031-79864-1 10.1007/s12540-020-00854-y 10.14257/ijunesst.2016.9.4.29  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2020 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2020 Elsevier Ltd | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.cie.2020.106948 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences Engineering  | 
    
| EISSN | 1879-0550 | 
    
| ExternalDocumentID | 10_1016_j_cie_2020_106948 S0360835220306252  | 
    
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKG AABNK AACTN AAEDT AAEDW AAFWJ AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARIN AAXUO ABAOU ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADRHT ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LX9 LY1 LY7 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SST SSW SSZ T5K TAE TN5 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD  | 
    
| ID | FETCH-LOGICAL-c297t-70276c7527245ba548b5ff8c991ca9eda93d17ddad554c76aad0c5fd1565f3753 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0360-8352 | 
    
| IngestDate | Thu Oct 09 00:41:58 EDT 2025 Thu Apr 24 23:01:07 EDT 2025 Fri Feb 23 02:44:26 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Condition monitoring Internet of things Industry 4.0 Machine learning Predictive maintenance  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c297t-70276c7527245ba548b5ff8c991ca9eda93d17ddad554c76aad0c5fd1565f3753 | 
    
| ORCID | 0000-0003-2985-8310 | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_cie_2020_106948 crossref_primary_10_1016_j_cie_2020_106948 elsevier_sciencedirect_doi_10_1016_j_cie_2020_106948  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | January 2021 2021-01-00  | 
    
| PublicationDateYYYYMMDD | 2021-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2021 text: January 2021  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Computers & industrial engineering | 
    
| PublicationYear | 2021 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Cotes, Vapnik (b0100) 1995; 20 Sun, Zhang, He (b0345) 2011; 305 Melexis (b0250) 2006 Bilgic, Guvenc, Cakir, Mistikoglu (b0055) 2019; 8055 Shekhar, J., Zerihun, D., & Haile Abebe, M. (2019). Automated classroom monitoring with IoT and virtuino app. International Journal of Advanced Research in IT and Engineering, (April). Köksal, M., & Uzun, A. (2016). Bakım Planlaması. Retrieved from Seçkin Yayıncılık website McLachlan (b0245) 2004 Shi, Iyengar (b0325) 2020 Oral, Çakır (b0280) 2017; 177 P, K., & P, A. S. (2018). Intelligent healthcare monitoring in IoT. International Journal of Advanced Engineering, Management and Science, 4(6), 441–445. https://doi.org/10.22161/ijaems.4.6.2. Durkovic, Vukovic, Rakovic (b0105) 2008; 3 Chu, Pham, Hsu, Tuw, Tan, Chay, Tsai (b0095) 2018; 189 Eren, B., Guvenc, M. A., & Mistikoglu, S. (2020). Artificial intelligence applications for friction stir welding: A review. Metals and Materials International, (August). https://doi.org/10.1007/s12540-020-00854-y. PLX-DAQ | Parallax Inc. (n.d.). Retrieved July 9, 2019, from Tian, Morillo, Azarian, Pecht (b0350) 2016; 63 Harris, T. A. (1984). Rolling bearing analysis. Second Edition. 1086. Landset, Khoshgoftaar, Richter, Hasanin (b0220) 2015; 2 Breiman (b0060) 1996; 24 Ruiz-Gonzalez, Gomez-Gil, Gomez-Gil, Martínez-Martínez (b0310) 2014; 14 Shrouf, F., Ordieres, J., & Miragliotta, G. (2014). Smart factories in Industry 4.0: A review of the concept and of energy management approached in production based on the Internet of Things paradigm. IEEE international conference on industrial engineering and engineering management, 2015-Janua, 697–701. https://doi.org/10.1109/IEEM.2014.7058728. Prieto, Cirrincione, Espinosa, Ortega, Henao (b0300) 2013; 60 Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (1987). Machine learning: An artificial intelligence approach (vol. 2). In Journal of Mathematical Psychology (Vol. 31). https://doi.org/10.1007/978-3-662-12405-5. Bayraktar (b0040) 2019 Çakır, M., Güvenç, M. A., & Mıstıkoğlu, S. (2019). IoT based condition monitoring system design for investigation of non-oil ball bearing in terms of vibration, temperature, acoustic emission, current and revolution parameters. Proceedings of 10th international symposium on intelligent manufacturing and service systems, 1059–1068. SAKARYA. Fu, K. C. (1968). Sequential methods in pattern recognition and machine learning (R. Bellman, Ed.). O’Donnell, P. (1985). Report of large motor reliability survey of industrial and commercial installations, Part I. Girdhar, P. (2004b). Part-6: Correcting faults that cause vibration. In Practical machinery vibration analysis and predictive maintenance (pp. 134–167). . Liu, Yang, Zio, Chen (b0230) 2018; 108 Mistikoglu (b0260) 2018; 12 Liling, Boqiang (b0225) 2007; 50407016 Widodo, Yang (b0360) 2007; 21 Heng, Nor (b0160) 1998; 53 Çakır, Kalpakçıoğlu, Mıstıkoğlu (b0075) 2017 Rokach, Maimon (b0305) 2005; 35 Fitch (b0120) 1992 Analog Devices. (2009). Digital Accelorometer Data Sheet (p. 40). p. 40. Konar, Chattopadhyay (b0210) 2011; 11 Han, Song (b0150) 2003; 18 Gebraeel, Lawley, Liu, Parmeshwaran (b0130) 2004; 51 Khuntia, Rueda, van der Meijden (b0200) 2019 Jose, G., & Jose, V. (2013). Induction motor fault diagnosis methods: A comparative study. International Conference on Electrical Engineering, (July), 63–69. Huda, Taib (b0165) 2013; 61 Bhowmick, Biswas, Biswas, Dey, Roy, Sarkar (b0050) 2019; 537 Chhikara, McKeon (b0085) 1984; 79 Chiter, Zegadi, Bekka, Felkaoui (b0090) 2018; 123 Lu, Zhou, Wang, Liu, Liu, Zhao (b0235) 2018; 414 Sivarajah, Kamal, Irani, Weerakkody (b0335) 2017 Girdhar, P., Scheffer, C., Mulrow, C. D., Williams, J. W., Gerety, M. B., Ramirez, G., … Kerber, C. (2004). Predictive maintenance techniques: Part 1 predictive maintenance basics. In Practical machinery vibration analysis and predictive maintenance (pp. 1–10). http://dx.doi.org/10.1016/B978-075066275-8/50001-1. Aydın (b0025) 2011 Wang, Ye, Yin (b0355) 2016; 9 Çakır, Oral (b0080) 2018 Yadav, Joshi, Pahuja (b0370) 2013; 1 Altuntas, Dereli, Kusiak (b0015) 2016; 102 Fendt, Jaeger, Serrano (b0115) 2016; 2 Malla, C., & Panigrahi, I. (2019). Review of condition monitoring of rolling element bearing using vibration analysis and other techniques. Journal of Vibration Engineering & Technologies, (0123456789). https://doi.org/10.1007/s42417-019-00119-y. Altman (b0010) 1992; 46 Stallman, R. M. (2001). Free Software: Freedom and Cooperation - GNU Project - Free Software Foundation. Retrieved March 7, 2020, from gnu.org website Kaya, Agca, Adiguzel, Cetin (b0195) 2018 Pesaran, M. H. (2014). RSTUDIO: a platform-independent IDE for R and SWEAVE. Journal of Applied Econometrics, 21(August 2012), 1–21. https://doi.org/10.1002/jae. Barrett, F. S. (2013). Arduino microcontroller processing for everyone! (3rd ed.). https://doi.org/10.2200/S00522ED1V01Y201307DCS043. Banzi, Shiloh (b0030) 2014 Aksoy, Uguz, Oral (b0005) 2019; 7 Brownlee, J. (2016). Machine learning mastery with R (1st ed.). Melbourne. Lamprou, I. (n.d.). Virtuino. Retrieved March 14, 2020, from Zhou, H. (2012). The internet of things in the cloud: A middleware perspective. In The internet of things in the cloud: A middleware perspective. https://doi.org/10.1201/b13090. Bellini, A., Immovilli, F., Rubini, R., & Tassoni, C. (2008). Diagnosis of bearing faults of induction machines by vibration or current signals: A critical comparison. Industry Applications Society Annual Meeting, 2008. IAS ’08. IEEE, 46(4), 1–8. Inc Allegro MycroSystems. (n.d.). Hall effect-based linear current sensor ACS712. 1–14. Retrieved from Jabbar, Alsibai, Amran, Mahayadin (b0175) 2018 Moosavian, Ahmadi, Tabatabaeefar, Khazaee (b0265) 2013; 20 Salin, E. D., & Winston, P. H. (1992). Machine learning and artificial intelligence an introduction. In R. Bellman (Ed.), Analytical chemistry (Vol. 64). https://doi.org/10.1021/ac00025a742. Girdhar, P. (2004a). Part-1: Predictive maintenance basics. In Practical machinery vibration analysis and predictive maintenance (pp. 1–10). http://dx.doi.org/10.1016/B978-075066275-8/50001-1. Zhao, Zhang (b0375) 2008; 41 Xia, Li, Zhang, De Silva (b0365) 2016; 101 Nandi, Toliyat, Li (b0270) 2005; 20 Jaber, Bicker (b0180) 2018; 8 Kaparthi, S., & Bumblauskas, D. (2020). Designing predictive maintenance systems using decision tree-based machine learning techniques. International Journal of Quality and Reliability Management, (Ml). https://doi.org/10.1108/IJQRM-04-2019-0131. 10.1016/j.cie.2020.106948_b0020 10.1016/j.cie.2020.106948_b0065 Melexis (10.1016/j.cie.2020.106948_b0250) 2006 10.1016/j.cie.2020.106948_b0340 10.1016/j.cie.2020.106948_b0185 Sun (10.1016/j.cie.2020.106948_b0345) 2011; 305 10.1016/j.cie.2020.106948_b0140 Prieto (10.1016/j.cie.2020.106948_b0300) 2013; 60 10.1016/j.cie.2020.106948_b0145 Jaber (10.1016/j.cie.2020.106948_b0180) 2018; 8 Cotes (10.1016/j.cie.2020.106948_b0100) 1995; 20 Khuntia (10.1016/j.cie.2020.106948_b0200) 2019 10.1016/j.cie.2020.106948_b0380 Çakır (10.1016/j.cie.2020.106948_b0080) 2018 Zhao (10.1016/j.cie.2020.106948_b0375) 2008; 41 Nandi (10.1016/j.cie.2020.106948_b0270) 2005; 20 Rokach (10.1016/j.cie.2020.106948_b0305) 2005; 35 Fendt (10.1016/j.cie.2020.106948_b0115) 2016; 2 Gebraeel (10.1016/j.cie.2020.106948_b0130) 2004; 51 Fitch (10.1016/j.cie.2020.106948_b0120) 1992 Shi (10.1016/j.cie.2020.106948_b0325) 2020 Tian (10.1016/j.cie.2020.106948_b0350) 2016; 63 10.1016/j.cie.2020.106948_b0295 Liu (10.1016/j.cie.2020.106948_b0230) 2018; 108 Mistikoglu (10.1016/j.cie.2020.106948_b0260) 2018; 12 10.1016/j.cie.2020.106948_b0135 10.1016/j.cie.2020.106948_b0255 10.1016/j.cie.2020.106948_b0330 McLachlan (10.1016/j.cie.2020.106948_b0245) 2004 10.1016/j.cie.2020.106948_b0170 Huda (10.1016/j.cie.2020.106948_b0165) 2013; 61 Lu (10.1016/j.cie.2020.106948_b0235) 2018; 414 10.1016/j.cie.2020.106948_b0290 Heng (10.1016/j.cie.2020.106948_b0160) 1998; 53 Bhowmick (10.1016/j.cie.2020.106948_b0050) 2019; 537 Landset (10.1016/j.cie.2020.106948_b0220) 2015; 2 Widodo (10.1016/j.cie.2020.106948_b0360) 2007; 21 Breiman (10.1016/j.cie.2020.106948_b0060) 1996; 24 10.1016/j.cie.2020.106948_b0215 Konar (10.1016/j.cie.2020.106948_b0210) 2011; 11 10.1016/j.cie.2020.106948_b0285 10.1016/j.cie.2020.106948_b0240 Durkovic (10.1016/j.cie.2020.106948_b0105) 2008; 3 10.1016/j.cie.2020.106948_b0045 10.1016/j.cie.2020.106948_b0320 Kaya (10.1016/j.cie.2020.106948_b0195) 2018 Çakır (10.1016/j.cie.2020.106948_b0075) 2017 Liling (10.1016/j.cie.2020.106948_b0225) 2007; 50407016 Bayraktar (10.1016/j.cie.2020.106948_b0040) 2019 Oral (10.1016/j.cie.2020.106948_b0280) 2017; 177 Yadav (10.1016/j.cie.2020.106948_b0370) 2013; 1 Wang (10.1016/j.cie.2020.106948_b0355) 2016; 9 10.1016/j.cie.2020.106948_b0205 Altman (10.1016/j.cie.2020.106948_b0010) 1992; 46 10.1016/j.cie.2020.106948_b0125 Aksoy (10.1016/j.cie.2020.106948_b0005) 2019; 7 Moosavian (10.1016/j.cie.2020.106948_b0265) 2013; 20 10.1016/j.cie.2020.106948_b0035 10.1016/j.cie.2020.106948_b0155 10.1016/j.cie.2020.106948_b0110 10.1016/j.cie.2020.106948_b0275 Altuntas (10.1016/j.cie.2020.106948_b0015) 2016; 102 Banzi (10.1016/j.cie.2020.106948_b0030) 2014 Chhikara (10.1016/j.cie.2020.106948_b0085) 1984; 79 Han (10.1016/j.cie.2020.106948_b0150) 2003; 18 10.1016/j.cie.2020.106948_b0070 Sivarajah (10.1016/j.cie.2020.106948_b0335) 2017 10.1016/j.cie.2020.106948_b0190 Xia (10.1016/j.cie.2020.106948_b0365) 2016; 101 Aydın (10.1016/j.cie.2020.106948_b0025) 2011 Bilgic (10.1016/j.cie.2020.106948_b0055) 2019; 8055 Chiter (10.1016/j.cie.2020.106948_b0090) 2018; 123 Jabbar (10.1016/j.cie.2020.106948_b0175) 2018 Ruiz-Gonzalez (10.1016/j.cie.2020.106948_b0310) 2014; 14 10.1016/j.cie.2020.106948_b0315 Chu (10.1016/j.cie.2020.106948_b0095) 2018; 189  | 
    
| References_xml | – start-page: 72 year: 2017 end-page: 79 ident: b0075 article-title: Makina ve Mekatronik Mühendisliğinde Arduino Kullanımı publication-title: Makinatek Dergisi – reference: P, K., & P, A. S. (2018). Intelligent healthcare monitoring in IoT. International Journal of Advanced Engineering, Management and Science, 4(6), 441–445. https://doi.org/10.22161/ijaems.4.6.2. – reference: Barrett, F. S. (2013). Arduino microcontroller processing for everyone! (3rd ed.). https://doi.org/10.2200/S00522ED1V01Y201307DCS043. – volume: 2 start-page: 180 year: 2016 end-page: 185 ident: b0115 article-title: Industrial experience with open source software process management publication-title: Proceedings - International Computer Software and Applications Conference – volume: 1 start-page: 34 year: 2013 end-page: 39 ident: b0370 article-title: Support vector machine based bearing fault detection of induction motor publication-title: Indian Journal of Advanced Electronics Engineering – volume: 2 start-page: 1 year: 2015 end-page: 36 ident: b0220 article-title: A survey of open source tools for machine learning with big data in the Hadoop ecosystem publication-title: Journal of Big Data – volume: 79 start-page: 899 year: 1984 end-page: 906 ident: b0085 article-title: Linear discriminant analysis with misallocation in training samples publication-title: Journal of the American Statistical Association – volume: 11 start-page: 4203 year: 2011 end-page: 4211 ident: b0210 article-title: Bearing fault detection of induction motor using wavelet and Support Vector Machines (SVMs) publication-title: Applied Soft Computing Journal – start-page: 1 year: 2018 end-page: 6 ident: b0175 article-title: Automation System for smart home publication-title: 2018 International symposium on networks, computers and communications (ISNCC) – volume: 20 start-page: 263 year: 2013 end-page: 272 ident: b0265 article-title: Comparison of two classifiers; K-nearest neighbor and artificial neural network, for fault diagnosis on a main engine journal-bearing publication-title: Shock and Vibration – volume: 51 start-page: 694 year: 2004 end-page: 700 ident: b0130 article-title: Residual life predictions from vibration-based degradation signals: A neural network approach publication-title: IEEE Transactions on Industrial Electronics – volume: 41 start-page: 1955 year: 2008 end-page: 1959 ident: b0375 article-title: Comparison of decision tree methods for finding active objects publication-title: Advances in Space Research – volume: 8055 start-page: 966 year: 2019 end-page: 974 ident: b0055 article-title: A study on prediction of surface roughness and cutting tool temperature publication-title: Konya Journal of Engineering Sciences – reference: Kaparthi, S., & Bumblauskas, D. (2020). Designing predictive maintenance systems using decision tree-based machine learning techniques. International Journal of Quality and Reliability Management, (Ml). https://doi.org/10.1108/IJQRM-04-2019-0131. – volume: 537 start-page: 521 year: 2019 end-page: 528 ident: b0050 article-title: Application of IoT-enabled smart agriculture in vertical farming sutanni publication-title: Advances in Communication, Devices and Networking – volume: 35 start-page: 476 year: 2005 end-page: 487 ident: b0305 article-title: Top-down induction of decision trees classifiers - A survey publication-title: IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews – reference: Girdhar, P. (2004b). Part-6: Correcting faults that cause vibration. In Practical machinery vibration analysis and predictive maintenance (pp. 134–167). – volume: 8 start-page: 996 year: 2018 end-page: 1009 ident: b0180 article-title: Development of a condition monitoring algorithm for industrial robots based on artificial intelligence and signal processing techniques publication-title: International Journal of Electrical and Computer Engineering – reference: Jose, G., & Jose, V. (2013). Induction motor fault diagnosis methods: A comparative study. International Conference on Electrical Engineering, (July), 63–69. – volume: 123 year: 2018 ident: b0090 article-title: A new method for automatic defects detection and diagnosis in rolling element bearings using Wald test publication-title: Journal of Theoretical and Applied Mechanics – reference: Analog Devices. (2009). Digital Accelorometer Data Sheet (p. 40). p. 40. – volume: 108 start-page: 33 year: 2018 end-page: 47 ident: b0230 article-title: Artificial intelligence for fault diagnosis of rotating machinery: A review publication-title: Mechanical Systems and Signal Processing – year: 2004 ident: b0245 article-title: Discriminant analysis and statistical pattern recognition – volume: 46 start-page: 175 year: 1992 end-page: 185 ident: b0010 article-title: An introduction to kernel and nearest-neighbor nonparametric regression publication-title: American Statistician – volume: 189 start-page: 10 year: 2018 end-page: 15 ident: b0095 article-title: An effective method for monitoring the vibration data of bearings to diagnose and minimize defects publication-title: MATEC Web of Conferences – reference: Stallman, R. M. (2001). Free Software: Freedom and Cooperation - GNU Project - Free Software Foundation. Retrieved March 7, 2020, from gnu.org website: – year: 2014 ident: b0030 article-title: Getting started with Arduino: The open source electronics prototyping platform – volume: 60 start-page: 3398 year: 2013 end-page: 3407 ident: b0300 article-title: Bearing fault detection by a novel condition-monitoring scheme based on statistical-time features and neural networks publication-title: IEEE Transactions on Industrial Electronics – volume: 53 start-page: 211 year: 1998 end-page: 226 ident: b0160 article-title: Statistical analysis of sound and vibration signals for monitoring rolling element bearing condition publication-title: Applied Acoustics – volume: 177 start-page: 172 year: 2017 end-page: 177 ident: b0280 article-title: Nesnelerin İnterneti Kavramı ve Örnek Bir Prototipin Oluşturulması publication-title: Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi – reference: Eren, B., Guvenc, M. A., & Mistikoglu, S. (2020). Artificial intelligence applications for friction stir welding: A review. Metals and Materials International, (August). https://doi.org/10.1007/s12540-020-00854-y. – volume: 20 start-page: 719 year: 2005 end-page: 729 ident: b0270 article-title: Condition monitoring and fault diagnosis of electrical motors - A review publication-title: IEEE Transactions on Energy Conversion – year: 2017 ident: b0335 article-title: Critical analysis of Big Data challenges and analytical methods publication-title: Journal of Business Research – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: b0060 article-title: Bagging predictors publication-title: Machine Learning – volume: 7 start-page: 608 year: 2019 end-page: 618 ident: b0005 article-title: Comparision of the data matching performances of string similarity algorithms in big data publication-title: Mühendislik Bilimleri ve Tasarım Dergisi – reference: Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (1987). Machine learning: An artificial intelligence approach (vol. 2). In Journal of Mathematical Psychology (Vol. 31). https://doi.org/10.1007/978-3-662-12405-5. – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: b0100 article-title: Support-vector networks publication-title: Machine Learning – year: 2020 ident: b0325 article-title: Mathematical theories of machine learning - theory and applications publication-title: Mathematical Theories of Machine Learning - Theory and Applications – reference: Girdhar, P. (2004a). Part-1: Predictive maintenance basics. In Practical machinery vibration analysis and predictive maintenance (pp. 1–10). http://dx.doi.org/10.1016/B978-075066275-8/50001-1. – volume: 3 start-page: 29 year: 2008 end-page: 33 ident: b0105 article-title: Open source approach in software development - advantages and disadvantages publication-title: Management Information Systems – volume: 14 start-page: 20713 year: 2014 end-page: 20735 ident: b0310 article-title: An SVM-Based classifier for estimating the state of various rotating components in Agro-Industrial machinery with a vibration signal acquired from a single point on the machine chassis publication-title: Sensors (Switzerland) – year: 2018 ident: b0080 article-title: RemoteXY ile Mobil Programlama – reference: Çakır, M., Güvenç, M. A., & Mıstıkoğlu, S. (2019). IoT based condition monitoring system design for investigation of non-oil ball bearing in terms of vibration, temperature, acoustic emission, current and revolution parameters. Proceedings of 10th international symposium on intelligent manufacturing and service systems, 1059–1068. SAKARYA. – reference: Brownlee, J. (2016). Machine learning mastery with R (1st ed.). Melbourne. – volume: 50407016 start-page: 2277 year: 2007 end-page: 2281 ident: b0225 article-title: An improvement of stator current based detection of bearing fault in induction motors publication-title: Conference Record - IAS Annual Meeting (IEEE Industry Applications Society) – reference: Shrouf, F., Ordieres, J., & Miragliotta, G. (2014). Smart factories in Industry 4.0: A review of the concept and of energy management approached in production based on the Internet of Things paradigm. IEEE international conference on industrial engineering and engineering management, 2015-Janua, 697–701. https://doi.org/10.1109/IEEM.2014.7058728. – reference: Zhou, H. (2012). The internet of things in the cloud: A middleware perspective. In The internet of things in the cloud: A middleware perspective. https://doi.org/10.1201/b13090. – volume: 18 start-page: 4 year: 2003 end-page: 13 ident: b0150 article-title: Condition monitoring techniques for electrical equipment - A literature survey publication-title: IEEE Transactions on Power Delivery – volume: 9 start-page: 295 year: 2016 end-page: 300 ident: b0355 article-title: Study on predictive maintenance strategy publication-title: International Journal of U- and e- Service, Science and Technology – volume: 21 start-page: 2560 year: 2007 end-page: 2574 ident: b0360 article-title: Support vector machine in machine condition monitoring and fault diagnosis publication-title: Mechanical Systems and Signal Processing – year: 2019 ident: b0040 article-title: Rastgele Ormanlar ve Aşırı Öğrenme Makineleri Teknikleri ile Oltalama Saldırılarının Tespiti – volume: 305 year: 2011 ident: b0345 article-title: Research on bearing life prediction based on support vector machine and its application publication-title: Journal of Physics: Conference Series – start-page: 1 year: 2018 end-page: 10 ident: b0195 article-title: Spatial data analysis with R programming for environment publication-title: Human and Ecological Risk Assessment – reference: Köksal, M., & Uzun, A. (2016). Bakım Planlaması. Retrieved from Seçkin Yayıncılık website: – year: 1992 ident: b0120 article-title: Proactive maintenance for mechanical systems – volume: 63 start-page: 1793 year: 2016 end-page: 1803 ident: b0350 article-title: Kurtosis-based feature extraction coupled with K-nearest neighbor distance analysis publication-title: IEEE Transactions on Industrial Electronics – reference: O’Donnell, P. (1985). Report of large motor reliability survey of industrial and commercial installations, Part I. – reference: Shekhar, J., Zerihun, D., & Haile Abebe, M. (2019). Automated classroom monitoring with IoT and virtuino app. International Journal of Advanced Research in IT and Engineering, (April). – year: 2019 ident: b0200 article-title: Smart asset management for electric utilities: Big data and future publication-title: Lecture Notes in Mechanical Engineering – volume: 101 start-page: 5 year: 2016 end-page: 18 ident: b0365 article-title: Closed-loop design evolution of engineering system using condition monitoring through internet of things and cloud computing publication-title: Computer Networks – reference: Harris, T. A. (1984). Rolling bearing analysis. Second Edition. 1086. – volume: 61 start-page: 220 year: 2013 end-page: 227 ident: b0165 article-title: Application of infrared thermography for predictive/preventive maintenance of thermal defect in electrical equipment publication-title: Applied Thermal Engineering – reference: Pesaran, M. H. (2014). RSTUDIO: a platform-independent IDE for R and SWEAVE. Journal of Applied Econometrics, 21(August 2012), 1–21. https://doi.org/10.1002/jae. – reference: Salin, E. D., & Winston, P. H. (1992). Machine learning and artificial intelligence an introduction. In R. Bellman (Ed.), Analytical chemistry (Vol. 64). https://doi.org/10.1021/ac00025a742. – volume: 102 start-page: 58 year: 2016 end-page: 68 ident: b0015 article-title: Assessment of corporate innovation capability with a data-mining approach: Industrial case studies publication-title: Computers and Industrial Engineering – reference: Malla, C., & Panigrahi, I. (2019). Review of condition monitoring of rolling element bearing using vibration analysis and other techniques. Journal of Vibration Engineering & Technologies, (0123456789). https://doi.org/10.1007/s42417-019-00119-y. – reference: Girdhar, P., Scheffer, C., Mulrow, C. D., Williams, J. W., Gerety, M. B., Ramirez, G., … Kerber, C. (2004). Predictive maintenance techniques: Part 1 predictive maintenance basics. In Practical machinery vibration analysis and predictive maintenance (pp. 1–10). http://dx.doi.org/10.1016/B978-075066275-8/50001-1. – reference: PLX-DAQ | Parallax Inc. (n.d.). Retrieved July 9, 2019, from – reference: . – reference: Lamprou, I. (n.d.). Virtuino. Retrieved March 14, 2020, from – year: 2011 ident: b0025 article-title: Gerçek Zamanlı Durum İzleme ve Arıza Teşhisi İçin Bağışık Akıllı Hesaplama Tekniklerinin Geliştirilmesi – reference: Fu, K. C. (1968). Sequential methods in pattern recognition and machine learning (R. Bellman, Ed.). – reference: Inc Allegro MycroSystems. (n.d.). Hall effect-based linear current sensor ACS712. 1–14. Retrieved from – reference: Bellini, A., Immovilli, F., Rubini, R., & Tassoni, C. (2008). Diagnosis of bearing faults of induction machines by vibration or current signals: A critical comparison. Industry Applications Society Annual Meeting, 2008. IAS ’08. IEEE, 46(4), 1–8. – volume: 12 start-page: 60 year: 2018 end-page: 66 ident: b0260 article-title: Predictive maintenance – volume: 414 start-page: 81 year: 2018 end-page: 96 ident: b0235 article-title: Condition monitoring and fault diagnosis of motor bearings using undersampled vibration signals from a wireless sensor network publication-title: Journal of Sound and Vibration – year: 2006 ident: b0250 article-title: MLX90614 - single and dual zone infrared thermometer in TO-39 publication-title: Microeletronic Integrated Systems – ident: 10.1016/j.cie.2020.106948_b0020 – volume: 102 start-page: 58 year: 2016 ident: 10.1016/j.cie.2020.106948_b0015 article-title: Assessment of corporate innovation capability with a data-mining approach: Industrial case studies publication-title: Computers and Industrial Engineering doi: 10.1016/j.cie.2016.10.018 – ident: 10.1016/j.cie.2020.106948_b0240 doi: 10.1007/s42417-019-00119-y – ident: 10.1016/j.cie.2020.106948_b0290 – ident: 10.1016/j.cie.2020.106948_b0135 doi: 10.1016/B978-075066275-8/50001-1 – ident: 10.1016/j.cie.2020.106948_b0330 doi: 10.1109/IEEM.2014.7058728 – year: 2017 ident: 10.1016/j.cie.2020.106948_b0335 article-title: Critical analysis of Big Data challenges and analytical methods publication-title: Journal of Business Research doi: 10.1016/j.jbusres.2016.08.001 – year: 2020 ident: 10.1016/j.cie.2020.106948_b0325 article-title: Mathematical theories of machine learning - theory and applications publication-title: Mathematical Theories of Machine Learning - Theory and Applications doi: 10.1007/978-3-030-17076-9 – volume: 2 start-page: 180 year: 2016 ident: 10.1016/j.cie.2020.106948_b0115 article-title: Industrial experience with open source software process management publication-title: Proceedings - International Computer Software and Applications Conference – volume: 61 start-page: 220 issue: 2 year: 2013 ident: 10.1016/j.cie.2020.106948_b0165 article-title: Application of infrared thermography for predictive/preventive maintenance of thermal defect in electrical equipment publication-title: Applied Thermal Engineering doi: 10.1016/j.applthermaleng.2013.07.028 – ident: 10.1016/j.cie.2020.106948_b0275 – volume: 3 start-page: 29 issue: 2 year: 2008 ident: 10.1016/j.cie.2020.106948_b0105 article-title: Open source approach in software development - advantages and disadvantages publication-title: Management Information Systems – volume: 537 start-page: 521 year: 2019 ident: 10.1016/j.cie.2020.106948_b0050 article-title: Application of IoT-enabled smart agriculture in vertical farming sutanni publication-title: Advances in Communication, Devices and Networking doi: 10.1007/978-981-13-3450-4_56 – ident: 10.1016/j.cie.2020.106948_b0145 doi: 10.1016/B978-075066275-8/50001-1 – volume: 35 start-page: 476 issue: 4 year: 2005 ident: 10.1016/j.cie.2020.106948_b0305 article-title: Top-down induction of decision trees classifiers - A survey publication-title: IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews doi: 10.1109/TSMCC.2004.843247 – volume: 24 start-page: 123 issue: 421 year: 1996 ident: 10.1016/j.cie.2020.106948_b0060 article-title: Bagging predictors publication-title: Machine Learning doi: 10.1023/A:1018054314350 – volume: 8055 start-page: 966 issue: 7 year: 2019 ident: 10.1016/j.cie.2020.106948_b0055 article-title: A study on prediction of surface roughness and cutting tool temperature publication-title: Konya Journal of Engineering Sciences doi: 10.36306/konjes.624725 – ident: 10.1016/j.cie.2020.106948_b0185 – year: 2018 ident: 10.1016/j.cie.2020.106948_b0080 – volume: 177 start-page: 172 issue: 1 year: 2017 ident: 10.1016/j.cie.2020.106948_b0280 article-title: Nesnelerin İnterneti Kavramı ve Örnek Bir Prototipin Oluşturulması publication-title: Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi – ident: 10.1016/j.cie.2020.106948_b0315 doi: 10.1021/ac00025a742 – volume: 101 start-page: 5 year: 2016 ident: 10.1016/j.cie.2020.106948_b0365 article-title: Closed-loop design evolution of engineering system using condition monitoring through internet of things and cloud computing publication-title: Computer Networks doi: 10.1016/j.comnet.2015.12.016 – ident: 10.1016/j.cie.2020.106948_b0065 – ident: 10.1016/j.cie.2020.106948_b0340 – volume: 53 start-page: 211 issue: 1–3 year: 1998 ident: 10.1016/j.cie.2020.106948_b0160 article-title: Statistical analysis of sound and vibration signals for monitoring rolling element bearing condition publication-title: Applied Acoustics doi: 10.1016/S0003-682X(97)00018-2 – ident: 10.1016/j.cie.2020.106948_b0170 – volume: 123 year: 2018 ident: 10.1016/j.cie.2020.106948_b0090 article-title: A new method for automatic defects detection and diagnosis in rolling element bearings using Wald test publication-title: Journal of Theoretical and Applied Mechanics – volume: 46 start-page: 175 issue: 3 year: 1992 ident: 10.1016/j.cie.2020.106948_b0010 article-title: An introduction to kernel and nearest-neighbor nonparametric regression publication-title: American Statistician doi: 10.1080/00031305.1992.10475879 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.cie.2020.106948_b0100 article-title: Support-vector networks publication-title: Machine Learning doi: 10.1023/A:1022627411411 – ident: 10.1016/j.cie.2020.106948_b0125 – year: 2004 ident: 10.1016/j.cie.2020.106948_b0245 – volume: 414 start-page: 81 year: 2018 ident: 10.1016/j.cie.2020.106948_b0235 article-title: Condition monitoring and fault diagnosis of motor bearings using undersampled vibration signals from a wireless sensor network publication-title: Journal of Sound and Vibration doi: 10.1016/j.jsv.2017.11.007 – ident: 10.1016/j.cie.2020.106948_b0380 doi: 10.1201/b13090 – volume: 8 start-page: 996 issue: 2 year: 2018 ident: 10.1016/j.cie.2020.106948_b0180 article-title: Development of a condition monitoring algorithm for industrial robots based on artificial intelligence and signal processing techniques publication-title: International Journal of Electrical and Computer Engineering doi: 10.11591/ijece.v8i2.pp996-1009 – ident: 10.1016/j.cie.2020.106948_b0215 – volume: 41 start-page: 1955 issue: 12 year: 2008 ident: 10.1016/j.cie.2020.106948_b0375 article-title: Comparison of decision tree methods for finding active objects publication-title: Advances in Space Research doi: 10.1016/j.asr.2007.07.020 – start-page: 72 year: 2017 ident: 10.1016/j.cie.2020.106948_b0075 article-title: Makina ve Mekatronik Mühendisliğinde Arduino Kullanımı publication-title: Makinatek Dergisi – volume: 2 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.cie.2020.106948_b0220 article-title: A survey of open source tools for machine learning with big data in the Hadoop ecosystem publication-title: Journal of Big Data doi: 10.1186/s40537-015-0032-1 – volume: 20 start-page: 719 issue: 4 year: 2005 ident: 10.1016/j.cie.2020.106948_b0270 article-title: Condition monitoring and fault diagnosis of electrical motors - A review publication-title: IEEE Transactions on Energy Conversion doi: 10.1109/TEC.2005.847955 – volume: 189 start-page: 10 year: 2018 ident: 10.1016/j.cie.2020.106948_b0095 article-title: An effective method for monitoring the vibration data of bearings to diagnose and minimize defects publication-title: MATEC Web of Conferences doi: 10.1051/matecconf/201818903019 – ident: 10.1016/j.cie.2020.106948_b0320 – volume: 1 start-page: 34 issue: 1 year: 2013 ident: 10.1016/j.cie.2020.106948_b0370 article-title: Support vector machine based bearing fault detection of induction motor publication-title: Indian Journal of Advanced Electronics Engineering – year: 2011 ident: 10.1016/j.cie.2020.106948_b0025 – ident: 10.1016/j.cie.2020.106948_b0140 doi: 10.1016/B978-075066275-8/50006-0 – year: 2006 ident: 10.1016/j.cie.2020.106948_b0250 article-title: MLX90614 - single and dual zone infrared thermometer in TO-39 publication-title: Microeletronic Integrated Systems – year: 2014 ident: 10.1016/j.cie.2020.106948_b0030 – volume: 21 start-page: 2560 issue: 6 year: 2007 ident: 10.1016/j.cie.2020.106948_b0360 article-title: Support vector machine in machine condition monitoring and fault diagnosis publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2006.12.007 – ident: 10.1016/j.cie.2020.106948_b0285 doi: 10.22161/ijaems.4.6.2 – volume: 60 start-page: 3398 issue: 8 year: 2013 ident: 10.1016/j.cie.2020.106948_b0300 article-title: Bearing fault detection by a novel condition-monitoring scheme based on statistical-time features and neural networks publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2012.2219838 – volume: 108 start-page: 33 year: 2018 ident: 10.1016/j.cie.2020.106948_b0230 article-title: Artificial intelligence for fault diagnosis of rotating machinery: A review publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2018.02.016 – ident: 10.1016/j.cie.2020.106948_b0070 – volume: 50407016 start-page: 2277 year: 2007 ident: 10.1016/j.cie.2020.106948_b0225 article-title: An improvement of stator current based detection of bearing fault in induction motors publication-title: Conference Record - IAS Annual Meeting (IEEE Industry Applications Society) – year: 2019 ident: 10.1016/j.cie.2020.106948_b0040 – ident: 10.1016/j.cie.2020.106948_b0190 doi: 10.1108/IJQRM-04-2019-0131 – year: 1992 ident: 10.1016/j.cie.2020.106948_b0120 – ident: 10.1016/j.cie.2020.106948_b0155 – volume: 20 start-page: 263 issue: 2 year: 2013 ident: 10.1016/j.cie.2020.106948_b0265 article-title: Comparison of two classifiers; K-nearest neighbor and artificial neural network, for fault diagnosis on a main engine journal-bearing publication-title: Shock and Vibration doi: 10.1155/2013/360236 – volume: 11 start-page: 4203 issue: 6 year: 2011 ident: 10.1016/j.cie.2020.106948_b0210 article-title: Bearing fault detection of induction motor using wavelet and Support Vector Machines (SVMs) publication-title: Applied Soft Computing Journal doi: 10.1016/j.asoc.2011.03.014 – volume: 79 start-page: 899 issue: 388 year: 1984 ident: 10.1016/j.cie.2020.106948_b0085 article-title: Linear discriminant analysis with misallocation in training samples publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1984.10477109 – volume: 51 start-page: 694 issue: 3 year: 2004 ident: 10.1016/j.cie.2020.106948_b0130 article-title: Residual life predictions from vibration-based degradation signals: A neural network approach publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2004.824875 – volume: 63 start-page: 1793 issue: 3 year: 2016 ident: 10.1016/j.cie.2020.106948_b0350 article-title: Kurtosis-based feature extraction coupled with K-nearest neighbor distance analysis publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2015.2509913 – ident: 10.1016/j.cie.2020.106948_b0255 doi: 10.1016/0022-2496(87)90031-9 – ident: 10.1016/j.cie.2020.106948_b0045 doi: 10.1109/08IAS.2008.26 – year: 2019 ident: 10.1016/j.cie.2020.106948_b0200 article-title: Smart asset management for electric utilities: Big data and future publication-title: Lecture Notes in Mechanical Engineering doi: 10.1007/978-3-319-95711-1_31 – volume: 7 start-page: 608 issue: 3 year: 2019 ident: 10.1016/j.cie.2020.106948_b0005 article-title: Comparision of the data matching performances of string similarity algorithms in big data publication-title: Mühendislik Bilimleri ve Tasarım Dergisi doi: 10.21923/jesd.467036 – volume: 18 start-page: 4 issue: 1 year: 2003 ident: 10.1016/j.cie.2020.106948_b0150 article-title: Condition monitoring techniques for electrical equipment - A literature survey publication-title: IEEE Transactions on Power Delivery doi: 10.1109/TPWRD.2002.801425 – volume: 14 start-page: 20713 issue: 11 year: 2014 ident: 10.1016/j.cie.2020.106948_b0310 article-title: An SVM-Based classifier for estimating the state of various rotating components in Agro-Industrial machinery with a vibration signal acquired from a single point on the machine chassis publication-title: Sensors (Switzerland) doi: 10.3390/s141120713 – start-page: 1 year: 2018 ident: 10.1016/j.cie.2020.106948_b0175 article-title: Automation System for smart home – start-page: 1 year: 2018 ident: 10.1016/j.cie.2020.106948_b0195 article-title: Spatial data analysis with R programming for environment publication-title: Human and Ecological Risk Assessment – ident: 10.1016/j.cie.2020.106948_b0205 – ident: 10.1016/j.cie.2020.106948_b0295 – ident: 10.1016/j.cie.2020.106948_b0035 doi: 10.1007/978-3-031-79864-1 – ident: 10.1016/j.cie.2020.106948_b0110 doi: 10.1007/s12540-020-00854-y – volume: 12 start-page: 60 issue: 101 year: 2018 ident: 10.1016/j.cie.2020.106948_b0260 article-title: Predictive maintenance publication-title: Miller Magazine – volume: 305 issue: 1 year: 2011 ident: 10.1016/j.cie.2020.106948_b0345 article-title: Research on bearing life prediction based on support vector machine and its application publication-title: Journal of Physics: Conference Series – volume: 9 start-page: 295 issue: 4 year: 2016 ident: 10.1016/j.cie.2020.106948_b0355 article-title: Study on predictive maintenance strategy publication-title: International Journal of U- and e- Service, Science and Technology doi: 10.14257/ijunesst.2016.9.4.29  | 
    
| SSID | ssj0004591 | 
    
| Score | 2.5896382 | 
    
| Snippet | •Temperature, current, noise, and revolution features are increasing accuracy to %99.•Using open-source software and hardware provides flexibility and low-cost... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 106948 | 
    
| SubjectTerms | Condition monitoring Industry 4.0 Internet of things Machine learning Predictive maintenance  | 
    
| Title | The experimental application of popular machine learning algorithms on predictive maintenance and the design of IIoT based condition monitoring system | 
    
| URI | https://dx.doi.org/10.1016/j.cie.2020.106948 | 
    
| Volume | 151 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: AKRWK dateStart: 19770101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLDDwRpRHdQMTUmiTOHYzogrUgsQCSGyR4wcU0YdKWfkZ_F7uHAcFCRgYY50tK2efv4u_fMfYiUHI4Lgto0S4HiYosoxKa-LIprE2iDCEUJ7leyMG9_zqIXtYYv36XxiiVYbYX8V0H61DSye8zc5sNOrcYuyt8APB3iSjOMy5pCoGZ-9xQzG8qpqHxhFZ1zebnuOFw2KKmNCzyKkE0E9nU-O8udxk6wEownk1ly22ZCfbbCOARghb8nWbrTUUBXfYB7odmqr90LihhqmDmS_YNYexJ1FaCFUjHkG9PE7no8XT-BXQcjanCxwKhWhJkhKky2FBTQwgYgTjeR803nA4vQM6Cg1gZm08AQzGPlDQjKBSit5l95cXd_1BFEovRDrJ5SKSmK0KLbNEJjwrFaY1ZeZcTyOa1Cq3RuWpiaUxyiAc0VIoZbo6cwazwcylmALtseXJdGL3GbjcOs0l2qQxV6Us067TgvcEbn0js7jFuvVLL3TQJafyGC9FTUB7xnZbkJ-Kyk8tdvrVZVaJcvxlzGtPFt9WVoGHxu_dDv7X7ZCtJsR68R9pjtjyYv5mjxG2LMq2X5dttnI-vB7cfALsie6- | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGICBRwHx5gYmpNDmZTcjqkAtlC4UiS1y_IAimkZtWfkZ_F7OjoOCBAyMsc5W5LPP3xd_uSPkTCJk0JHKvIDqDhIUlnmZkr6nQl9IRBiUcqvyHdLeQ3TzGD82SLf6F8bIKl3sL2O6jdaupeVms1WMx617jL0lfjCwN4gxDi9HccAMA7t492spw8uyeWjtGfPqatOKvHBc5IiBeaaJqQH00-FUO3CuN8m6Q4pwWb7MFmmovEk2HGoEtyfnTbJWSym4TT7Q71BP2w-1K2qYaihsxa4ZTKyKUoErG_EE_PVpOhsvnidzQMtiZm5wTCxES5NTwiTmUMBzCQgZQVrhhxmv35-OwJyFEpBaS6sAg4mNFOaNoEwVvUMerq9G3Z7nai94IkjYwmNIV6lgOJ9BFGcceU0Wa90RCCcFT5TkSSh9JiWXiEcEo5zLtoi1RDoY6xA50C5Zyqe52iOgE6VFxNAm9COesSxsa0GjDsW9L1ns75N2NempcInJTX2M17RSoL1gu0qNn9LST_vk_KtLUWbl-Ms4qjyZfltaKZ4av3c7-F-3U7LSG90N0kF_eHtIVgMjgbFfbI7I0mL2po4RwyyyE7tGPwF5uPBT | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+experimental+application+of+popular+machine+learning+algorithms+on+predictive+maintenance+and+the+design+of+IIoT+based+condition+monitoring+system&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Cakir%2C+Mustafa&rft.au=Guvenc%2C+Mehmet+Ali&rft.au=Mistikoglu%2C+Selcuk&rft.date=2021-01-01&rft.pub=Elsevier+Ltd&rft.issn=0360-8352&rft.eissn=1879-0550&rft.volume=151&rft_id=info:doi/10.1016%2Fj.cie.2020.106948&rft.externalDocID=S0360835220306252 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon |