Incomplete multi-modal brain image fusion for epilepsy classification
Multi-modal brain imaging data reflect brain structural and functional information from different aspects, which have been widely used in brain disease diagnosis, including epilepsy and Alzheimer's disease. In practice, it is difficult to obtain all the modalities of each subject due to high co...
Saved in:
Published in | Information sciences Vol. 582; pp. 316 - 333 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0020-0255 1872-6291 |
DOI | 10.1016/j.ins.2021.09.035 |
Cover
Abstract | Multi-modal brain imaging data reflect brain structural and functional information from different aspects, which have been widely used in brain disease diagnosis, including epilepsy and Alzheimer's disease. In practice, it is difficult to obtain all the modalities of each subject due to high cost or equipment limitation. Therefore, it is highly essential to fuse incomplete multi-modality data to improve the diagnostic accuracy. The traditional methods need to perform data cleansing and discard incomplete subjects from the data, which leads to inefficient training and poor robustness. For addressing this problem, this paper proposes an incomplete multi-modality data fusion method based on low-rank representation for the diagnosis of epilepsy and its subtypes. Specifically, we designed an objective function that simultaneously learns the low-rank representation of the complete modality part, and recovers the incomplete modality by the correlation between different modalities. The proposed model can be optimized by using alternating direction method of multipliers. Extensive evaluation of the proposed method on epilepsy classification task with incomplete DTI and fMRI data showed that our method can achieve promising classification results in identifying epilepsy and its subtypes. |
---|---|
AbstractList | Multi-modal brain imaging data reflect brain structural and functional information from different aspects, which have been widely used in brain disease diagnosis, including epilepsy and Alzheimer's disease. In practice, it is difficult to obtain all the modalities of each subject due to high cost or equipment limitation. Therefore, it is highly essential to fuse incomplete multi-modality data to improve the diagnostic accuracy. The traditional methods need to perform data cleansing and discard incomplete subjects from the data, which leads to inefficient training and poor robustness. For addressing this problem, this paper proposes an incomplete multi-modality data fusion method based on low-rank representation for the diagnosis of epilepsy and its subtypes. Specifically, we designed an objective function that simultaneously learns the low-rank representation of the complete modality part, and recovers the incomplete modality by the correlation between different modalities. The proposed model can be optimized by using alternating direction method of multipliers. Extensive evaluation of the proposed method on epilepsy classification task with incomplete DTI and fMRI data showed that our method can achieve promising classification results in identifying epilepsy and its subtypes. |
Author | Li, Huijie Zhang, Zhiqiang Fan, Zizhu Wang, Ran Zhang, Daoqiang Zhu, Qi Ye, Haizhou |
Author_xml | – sequence: 1 givenname: Qi surname: Zhu fullname: Zhu, Qi organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, PR China – sequence: 2 givenname: Huijie surname: Li fullname: Li, Huijie organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, PR China – sequence: 3 givenname: Haizhou surname: Ye fullname: Ye, Haizhou organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, PR China – sequence: 4 givenname: Zhiqiang surname: Zhang fullname: Zhang, Zhiqiang organization: Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, PR China – sequence: 5 givenname: Ran surname: Wang fullname: Wang, Ran email: wangran@nuaa.edu.cn organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, PR China – sequence: 6 givenname: Zizhu surname: Fan fullname: Fan, Zizhu organization: School of Basic Science, East China Jiaotong University, Nanchang 330013, PR China – sequence: 7 givenname: Daoqiang surname: Zhang fullname: Zhang, Daoqiang email: dqzhang@nuaa.edu.cn organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, PR China |
BookMark | eNp9kE1LAzEQhoNUsK3-AG_7B3adJLvZDZ6kVC0UvOg5JNmJpOwXySr035taTx56GobhGd73WZHFMA5IyD2FggIVD4fCD7FgwGgBsgBeXZElbWqWCybpgiwBGOTAquqGrGI8AEBZC7Ek291gx37qcMas_-pmn_djq7vMBO2HzPf6EzP3Ff04ZG4MGU6-wykeM9vpGL3zVs_pdkuune4i3v3NNfl43r5vXvP928tu87TPLZP1nAukwpRlWfEWG1qhFRRs3VB0Rsu6lsI0FceWmZYLrSU3nLeUpZU5Y2zJ-JrU5782jDEGdMr6-TfBnPJ2ioI62VAHlWyokw0FUiUbiaT_yCmkduF4kXk8M5gqfXsMKlqPg8XWB7Szakd_gf4BjNZ7WA |
CitedBy_id | crossref_primary_10_1186_s13634_024_01118_2 crossref_primary_10_1016_j_inffus_2023_102200 crossref_primary_10_1016_j_ins_2022_09_019 crossref_primary_10_1016_j_knosys_2024_111676 crossref_primary_10_1016_j_ins_2024_121622 crossref_primary_10_1016_j_isci_2024_110509 crossref_primary_10_1016_j_knosys_2024_112322 |
Cites_doi | 10.1109/TMI.2018.2868977 10.1016/j.nicl.2015.07.010 10.1016/j.eplepsyres.2017.03.004 10.1073/pnas.1009073107 10.1109/TCBB.2021.3065361 10.1109/TNB.2017.2707139 10.1016/j.jneumeth.2021.109441 10.1109/TIT.2010.2044061 10.1016/j.neucom.2012.12.012 10.1371/journal.pone.0010839 10.1109/TPAMI.2012.88 10.1159/000503831 10.1109/TNB.2015.2403274 10.3389/fnsys.2010.00013 10.1093/bioinformatics/17.6.520 10.2307/2531595 10.1609/aaai.v28i1.8973 10.1109/TMI.2017.2715285 10.1016/j.ins.2017.09.010 10.1016/j.eplepsyres.2017.06.004 10.1016/j.neunet.2013.11.009 10.1016/j.ins.2019.05.043 10.1186/s12938-018-0464-x 10.3389/fpsyt.2019.00924 10.1137/080730421 10.1016/S0140-6736(14)60456-6 10.1038/s41467-019-12765-7 10.1016/j.ins.2017.06.040 10.1109/ICICIP.2010.5565239 10.1007/s11063-018-9783-y 10.1007/s10208-009-9045-5 10.1109/JBHI.2017.2732287 10.1016/j.media.2016.11.002 10.1016/j.neuroimage.2012.03.059 10.1016/j.neuroimage.2013.08.015 10.1137/1.9781611972832.28 10.1007/BF02163027 10.1016/j.cub.2019.06.017 10.3390/bs8040039 10.3389/fnhum.2013.00042 10.1007/s11571-020-09614-5 10.1175/1520-0442(2001)014<0853:AOICDE>2.0.CO;2 10.1016/S0140-6736(18)32596-0 10.1137/080738970 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. |
Copyright_xml | – notice: 2021 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ins.2021.09.035 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Library & Information Science |
EISSN | 1872-6291 |
EndPage | 333 |
ExternalDocumentID | 10_1016_j_ins_2021_09_035 S002002552100966X |
GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- 77I AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
ID | FETCH-LOGICAL-c297t-6e16b44453de815ec610c781efba97796b853ed2bd36aa93b33d122bd2fbbc423 |
IEDL.DBID | AIKHN |
ISSN | 0020-0255 |
IngestDate | Thu Apr 24 23:04:40 EDT 2025 Thu Sep 25 00:31:19 EDT 2025 Fri Feb 23 02:44:46 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Incomplete data Computer-aided diagnosis Epilepsy diagnosis Classification Multi-modal data fusion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-6e16b44453de815ec610c781efba97796b853ed2bd36aa93b33d122bd2fbbc423 |
PageCount | 18 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ins_2021_09_035 crossref_primary_10_1016_j_ins_2021_09_035 elsevier_sciencedirect_doi_10_1016_j_ins_2021_09_035 |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationTitle | Information sciences |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Schneider (b0130) 2001; 14 Zhu, Huang, Xu (b0250) 2018; 17 Zhang, Yang (b0180) 2013; 111 R.H. Fletcher, S.W. Fletcher, G.S. Fletcher, Clinical epidemiology: The essentials: Fifth edition. 2013. Moshé, Perucca, Ryvlin, Tomson (b0010) 2015; 385 Huang, Hu, Zhao, Makkie, Dong, Zhao, Guo, Liu (b0025) Jul. 2018; 37 Y. Song, S. Zheng, L. Li, et al., “Deep learning Enables Accurate Diagnosis of Novel Coronavirus (COVID-19) with CT images,” 2020, 10.1101/2020.02.23.20026930. Ebrahimzadeh, Shams, Rahimpour Jounghani, Fayaz, Mirbagheri, Hakimi, Rajabion, Soltanian-Zadeh (b0020) 2021; 15 Gutierrez-Barragan, Basson, Panzeri, Gozzi (b0050) 2019; 29 Candès, Tao (b0150) 2010; 56 Sanches, Fujisao, Braga, Cristaldo, dos Reis, Yamashita, Betting (b0045) 2017; 132 Khotimah, Miswanto, Suprajitno (b0105) 2020; 13 Yang, Yin, Zhang, Wang (b0210) 2009; 2 M. Han, L. Sun, “EEG signal classification for epilepsy diagnosis based on AR model and RVM,” in International Conference on Intelligent Control and Information Processing, 2010, pp. 134–139. Troyanskaya, Cantor, Sherlock, Brown, Hastie, Tibshirani, Botstein, RB (b0120) 2001; 17 Mao, Su, Xu, Wang, Huang, Yue, Sun, Xiong (b0035) 2019; 499 B. Hunyadi, Aacute, and la, “Learning from Structured EEG and fMRI Data Supporting the Diagnosis of Epilepsy (Leren van gestructureerde EEG en fMRI data voor ondersteuning van de diagnose van epilepsie),” 2014. R. Of, F. Lemma, “Sparse Subspace Clustering Supplementary,” in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, 2009, pp. 1–4. Rai, Negi, Chaudhury, Deshmukh (b0165) 2017 Specht (b0030) 2020; 10 Thijs, Surges, O’Brien, Sander (b0015) 2019; 393 Liu, Wang, Hu, Wu, Pan (b0220) 2017; 16 Cai, Candes, Shen (b0145) 2008; 20 S.-Y. Li, Y. Jiang, Z.-H. Zhou, “Partial multi-view clustering,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2014, vol. 28, no. 1. Luo, Li, Yao (b0115) 2017; 417 Batista-García-Ramó, Fernández-Verdecia (b0080) 2018; 8 Douw, de Groot, van Dellen, Heimans, Ronner, Stam, Reijneveld, Sporns (b0060) 2010; 5 Zhang, Hu, Ma, Xu (b0230) 2015; 14 Beghi (b0005) 2020; 54 Zhu, Wei, Zhou, Wang, Wu (b0200) 2018; 48 Liu, Gao, Yap, Shen (b0135) 2018; 22 Pienaar, Sporns, Meuli, Madan, Wedeen, Grant, Hagmann, Thiran, Cammoun (b0075) 2010; 107 Cui, Zhong, Xu, He, Gong (b0195) 2013; 7 Zhu, Yin, Chai, Li, Qi (b0095) 2018; 432 van Tulder, de Bruijne (b0235) 2019; 38 Candès, Recht (b0140) 2009; 9 J. Liu, C. Wang, J. Gao, J. Han, “Multi-View Clustering via Joint Nonnegative Matrix Factorization,” in SDM, 2013, pp. 252–260, 10.1137/1.9781611972832.28. J. Yuan, X. Ran, K. Liu, C. Yao, Y. Yao, H. Wu, Q. Liu, “Machine Learning Applications on Neuroimaging for Diagnosis and Prognosis of Epilepsy: A Review,” arXiv Prepr. arXiv2102.03336, 2021. Cao, Zhang, Hou, Yang, Gong, Jiang, Huang, Xiao, Luo, Wang, Yao (b0090) 2017; 135 Wang, Bensmail, Gao (b0215) 2014; 51 Liu, Lin, Yan, Sun, Yu, Ma (b0170) Jan. 2013; 35 Xiang, Yuan, Fan, Wang, Thompson, Ye (b0100) 2014; 102 Pustina, Avants, Sperling, Gorniak, He, Doucet, Barnett, Mintzer, Sharan, Tracy (b0085) 2015; 9 Yan (b0190) 2010 Preti, Van De Ville (b0070) 2019; 10 Liu, Zhang, Yap, Shen (b0110) Feb. 2017; 36 Fazel (b0185) 2002 DeLong, DeLong, Clarke-Pearson (b0240) 1988; 44 Yuan, Narayan, Wang, Thompson, Ye (b0155) 2012; 61 Golub, Reinsch (b0125) 1970; 14 Douw (10.1016/j.ins.2021.09.035_b0060) 2010; 5 Pienaar (10.1016/j.ins.2021.09.035_b0075) 2010; 107 Xiang (10.1016/j.ins.2021.09.035_b0100) 2014; 102 Liu (10.1016/j.ins.2021.09.035_b0135) 2018; 22 van Tulder (10.1016/j.ins.2021.09.035_b0235) 2019; 38 Sanches (10.1016/j.ins.2021.09.035_b0045) 2017; 132 DeLong (10.1016/j.ins.2021.09.035_b0240) 1988; 44 Yuan (10.1016/j.ins.2021.09.035_b0155) 2012; 61 Liu (10.1016/j.ins.2021.09.035_b0220) 2017; 16 Batista-García-Ramó (10.1016/j.ins.2021.09.035_b0080) 2018; 8 Zhang (10.1016/j.ins.2021.09.035_b0230) 2015; 14 Cui (10.1016/j.ins.2021.09.035_b0195) 2013; 7 Thijs (10.1016/j.ins.2021.09.035_b0015) 2019; 393 10.1016/j.ins.2021.09.035_b0160 10.1016/j.ins.2021.09.035_b0040 Zhang (10.1016/j.ins.2021.09.035_b0180) 2013; 111 Cai (10.1016/j.ins.2021.09.035_b0145) 2008; 20 Khotimah (10.1016/j.ins.2021.09.035_b0105) 2020; 13 Luo (10.1016/j.ins.2021.09.035_b0115) 2017; 417 Ebrahimzadeh (10.1016/j.ins.2021.09.035_b0020) 2021; 15 Golub (10.1016/j.ins.2021.09.035_b0125) 1970; 14 Moshé (10.1016/j.ins.2021.09.035_b0010) 2015; 385 Cao (10.1016/j.ins.2021.09.035_b0090) 2017; 135 10.1016/j.ins.2021.09.035_b0065 10.1016/j.ins.2021.09.035_b0225 Candès (10.1016/j.ins.2021.09.035_b0150) 2010; 56 Gutierrez-Barragan (10.1016/j.ins.2021.09.035_b0050) 2019; 29 Wang (10.1016/j.ins.2021.09.035_b0215) 2014; 51 Fazel (10.1016/j.ins.2021.09.035_b0185) 2002 Zhu (10.1016/j.ins.2021.09.035_b0250) 2018; 17 Zhu (10.1016/j.ins.2021.09.035_b0200) 2018; 48 Pustina (10.1016/j.ins.2021.09.035_b0085) 2015; 9 Specht (10.1016/j.ins.2021.09.035_b0030) 2020; 10 Preti (10.1016/j.ins.2021.09.035_b0070) 2019; 10 10.1016/j.ins.2021.09.035_b0175 10.1016/j.ins.2021.09.035_b0055 Beghi (10.1016/j.ins.2021.09.035_b0005) 2020; 54 Liu (10.1016/j.ins.2021.09.035_b0170) 2013; 35 Candès (10.1016/j.ins.2021.09.035_b0140) 2009; 9 Yang (10.1016/j.ins.2021.09.035_b0210) 2009; 2 Mao (10.1016/j.ins.2021.09.035_b0035) 2019; 499 10.1016/j.ins.2021.09.035_b0205 Schneider (10.1016/j.ins.2021.09.035_b0130) 2001; 14 Zhu (10.1016/j.ins.2021.09.035_b0095) 2018; 432 Troyanskaya (10.1016/j.ins.2021.09.035_b0120) 2001; 17 10.1016/j.ins.2021.09.035_b0245 Rai (10.1016/j.ins.2021.09.035_b0165) 2017 Liu (10.1016/j.ins.2021.09.035_b0110) 2017; 36 Huang (10.1016/j.ins.2021.09.035_b0025) 2018; 37 Yan (10.1016/j.ins.2021.09.035_b0190) 2010 |
References_xml | – volume: 5 start-page: e10839 year: 2010 ident: b0060 article-title: ‘Functional connectivity’ is a sensitive predictor of epilepsy diagnosis after the first seizure publication-title: PLoS One – reference: S.-Y. Li, Y. Jiang, Z.-H. Zhou, “Partial multi-view clustering,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2014, vol. 28, no. 1. – volume: 385 start-page: 884 year: 2015 end-page: 898 ident: b0010 article-title: Epilepsy: new advances publication-title: Lancet – volume: 20 start-page: 1956 year: 2008 end-page: 1982 ident: b0145 article-title: A singular value thresholding algorithm for matrix completion publication-title: Siam J. Optim. – start-page: 2192 year: 2017 end-page: 2197 ident: b0165 article-title: Partial multi-view clustering using graph regularized NMF publication-title: International Conference on Pattern Recognition – year: 2002 ident: b0185 article-title: Matrix Rank Minimization with Applications publication-title: Dissertation – volume: 135 start-page: 56 year: 2017 end-page: 63 ident: b0090 article-title: Abnormal asymmetry in benign epilepsy with unilateral and bilateral centrotemporal spikes: a combined fMRI and DTI study publication-title: Epilepsy Res. – volume: 13 start-page: 334 year: 2020 end-page: 343 ident: b0105 article-title: Optimization of feature selection using genetic algorithm in naïve Bayes classification for incomplete data publication-title: Int. J. Intell. Eng. Syst – volume: 14 start-page: 237 year: 2015 end-page: 247 ident: b0230 article-title: Resting-state whole-brain functional connectivity networks for MCI classification using L2-regularized logistic regression publication-title: IEEE Trans. Nanobioscience – reference: Y. Song, S. Zheng, L. Li, et al., “Deep learning Enables Accurate Diagnosis of Novel Coronavirus (COVID-19) with CT images,” 2020, 10.1101/2020.02.23.20026930. – reference: J. Yuan, X. Ran, K. Liu, C. Yao, Y. Yao, H. Wu, Q. Liu, “Machine Learning Applications on Neuroimaging for Diagnosis and Prognosis of Epilepsy: A Review,” arXiv Prepr. arXiv2102.03336, 2021. – volume: 432 start-page: 516 year: 2018 end-page: 529 ident: b0095 article-title: A novel multi-modality image fusion method based on image decomposition and sparse representation publication-title: Inf. Sci. (Ny) – volume: 132 start-page: 100 year: 2017 end-page: 108 ident: b0045 article-title: Voxel-based analysis of diffusion tensor imaging in patients with mesial temporal lobe epilepsy publication-title: Epilepsy Res. – volume: 14 start-page: 403 year: 1970 end-page: 420 ident: b0125 article-title: Singular value decomposition and least squares solutions publication-title: Numer. Math. – volume: 17 start-page: 32 year: 2018 ident: b0250 article-title: Non-negative discriminative brain functional connectivity for identifying schizophrenia on resting-state fMRI publication-title: Biomed. Eng. Online – volume: 54 start-page: 185 year: 2020 end-page: 191 ident: b0005 article-title: The epidemiology of epilepsy publication-title: Neuroepidemiology – volume: 107 start-page: 19067 year: 2010 end-page: 19072 ident: b0075 article-title: White matter maturation reshapes structural connectivity in the late developing human brain publication-title: Proc. Natl. Acad. Sci. – volume: 51 start-page: 9 year: 2014 end-page: 16 ident: b0215 article-title: Feature selection and multi-kernel learning for sparse representation on a manifold publication-title: Neural Networks – volume: 37 start-page: 1551 year: Jul. 2018 end-page: 1561 ident: b0025 article-title: Modeling task fMRI data via deep convolutional autoencoder publication-title: IEEE Trans. Med. Imaging – volume: 35 start-page: 171 year: Jan. 2013 end-page: 184 ident: b0170 article-title: Robust recovery of subspace structures by low-rank representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: R. Of, F. Lemma, “Sparse Subspace Clustering Supplementary,” in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, 2009, pp. 1–4. – volume: 38 start-page: 638 year: 2019 end-page: 648 ident: b0235 article-title: Learning cross-modality representations from multi-modal images publication-title: IEEE Trans. Med. Imaging – volume: 61 start-page: 1149 year: 2012 ident: b0155 article-title: Multi-source learning for joint analysis of incomplete multi-modality neuroimaging data publication-title: Neuroimage – volume: 10 start-page: 1 year: 2019 end-page: 7 ident: b0070 article-title: Decoupling of brain function from structure reveals regional behavioral specialization in humans publication-title: Nat. Commun. – volume: 56 start-page: 2053 year: 2010 end-page: 2080 ident: b0150 article-title: The power of convex relaxation: near-optimal matrix completion publication-title: IEEE Trans. Inf. Theory – year: 2010 ident: b0190 article-title: DPARSF: a MATLAB toolbox for ‘pipeline’ data analysis of resting-state fMRI publication-title: Front. Syst. Neurosci. – volume: 15 start-page: 207 year: 2021 end-page: 222 ident: b0020 article-title: Localizing confined epileptic foci in patients with an unclear focus or presumed multifocality using a component-based EEG-fMRI method publication-title: Cogn. Neurodyn. – volume: 29 start-page: 2295 year: 2019 end-page: 2306 ident: b0050 article-title: Infraslow state fluctuations govern spontaneous fMRI network dynamics publication-title: Curr. Biol. – volume: 36 start-page: 123 year: Feb. 2017 end-page: 134 ident: b0110 article-title: View-aligned hypergraph learning for Alzheimer’s disease diagnosis with incomplete multi-modality data publication-title: Med. Image Anal. – volume: 393 start-page: 689 year: 2019 end-page: 701 ident: b0015 article-title: Epilepsy in adults publication-title: Lancet – volume: 10 start-page: 924 year: 2020 ident: b0030 article-title: Current challenges in translational and clinical fMRI and future directions publication-title: Front. psychiatry – volume: 14 start-page: 853 year: 2001 end-page: 871 ident: b0130 article-title: Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values publication-title: J. Clim. – reference: J. Liu, C. Wang, J. Gao, J. Han, “Multi-View Clustering via Joint Nonnegative Matrix Factorization,” in SDM, 2013, pp. 252–260, 10.1137/1.9781611972832.28. – volume: 8 start-page: 39 year: 2018 ident: b0080 article-title: What we know about the brain structure–function relationship publication-title: Behav. Sci. (Basel) – volume: 16 start-page: 428 year: 2017 end-page: 437 ident: b0220 article-title: Alzheimer’s disease classification based on individual hierarchical networks constructed with 3-D texture features publication-title: IEEE Trans. Nanobioscience – volume: 111 start-page: 13 year: 2013 end-page: 20 ident: b0180 article-title: Low-rank representation based discriminative projection for robust feature extraction publication-title: Neurocomputing – volume: 7 start-page: 42 year: 2013 ident: b0195 article-title: PANDA: a pipeline toolbox for analyzing brain diffusion images publication-title: Front. Hum. Neurosci. – volume: 102 start-page: 192 year: 2014 end-page: 206 ident: b0100 article-title: Bi-level multi-source learning for heterogeneous block-wise missing data publication-title: Neuroimage – reference: M. Han, L. Sun, “EEG signal classification for epilepsy diagnosis based on AR model and RVM,” in International Conference on Intelligent Control and Information Processing, 2010, pp. 134–139. – volume: 9 start-page: 717 year: 2009 end-page: 772 ident: b0140 article-title: Exact matrix completion via convex optimization publication-title: Found. Comput. Math. – reference: B. Hunyadi, Aacute, and la, “Learning from Structured EEG and fMRI Data Supporting the Diagnosis of Epilepsy (Leren van gestructureerde EEG en fMRI data voor ondersteuning van de diagnose van epilepsie),” 2014. – volume: 499 start-page: 1 year: 2019 end-page: 11 ident: b0035 article-title: Spatio-temporal deep learning method for adhd fmri classification publication-title: Inf. Sci. (Ny) – volume: 2 start-page: 569 year: 2009 end-page: 592 ident: b0210 article-title: a fast algorithm for edge-preserving variational multichannel image restoration publication-title: SIAM J. Imaging Sci. – reference: R.H. Fletcher, S.W. Fletcher, G.S. Fletcher, Clinical epidemiology: The essentials: Fifth edition. 2013. – volume: 17 start-page: 520 year: 2001 end-page: 525 ident: b0120 article-title: Missing value estimation methods for DNA microarrays publication-title: Bioinformatics – volume: 9 start-page: 20 year: 2015 end-page: 31 ident: b0085 article-title: Predicting the laterality of temporal lobe epilepsy from PET, MRI, and DTI: a multimodal study publication-title: NeuroImage Clin. – volume: 22 start-page: 1197 year: 2018 end-page: 1208 ident: b0135 article-title: Multi-hypergraph learning for incomplete multimodality data publication-title: IEEE J. Biomed. Heal. Informatics – volume: 48 start-page: 1671 year: 2018 end-page: 1691 ident: b0200 article-title: Robust subspace segmentation by self-representation constrained low-rank representation publication-title: Neural Processing Letters – volume: 417 start-page: 39 year: 2017 end-page: 54 ident: b0115 article-title: Dynamic probabilistic rough sets with incomplete data publication-title: Inf. Sci. (Ny) – volume: 44 start-page: 837 year: 1988 end-page: 845 ident: b0240 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach publication-title: Biometrics – volume: 38 start-page: 638 issue: 2 year: 2019 ident: 10.1016/j.ins.2021.09.035_b0235 article-title: Learning cross-modality representations from multi-modal images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2868977 – volume: 9 start-page: 20 year: 2015 ident: 10.1016/j.ins.2021.09.035_b0085 article-title: Predicting the laterality of temporal lobe epilepsy from PET, MRI, and DTI: a multimodal study publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2015.07.010 – volume: 132 start-page: 100 year: 2017 ident: 10.1016/j.ins.2021.09.035_b0045 article-title: Voxel-based analysis of diffusion tensor imaging in patients with mesial temporal lobe epilepsy publication-title: Epilepsy Res. doi: 10.1016/j.eplepsyres.2017.03.004 – volume: 107 start-page: 19067 issue: 44 year: 2010 ident: 10.1016/j.ins.2021.09.035_b0075 article-title: White matter maturation reshapes structural connectivity in the late developing human brain publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1009073107 – ident: 10.1016/j.ins.2021.09.035_b0205 doi: 10.1109/TCBB.2021.3065361 – volume: 16 start-page: 428 issue: 6 year: 2017 ident: 10.1016/j.ins.2021.09.035_b0220 article-title: Alzheimer’s disease classification based on individual hierarchical networks constructed with 3-D texture features publication-title: IEEE Trans. Nanobioscience doi: 10.1109/TNB.2017.2707139 – ident: 10.1016/j.ins.2021.09.035_b0040 doi: 10.1016/j.jneumeth.2021.109441 – volume: 56 start-page: 2053 issue: 5 year: 2010 ident: 10.1016/j.ins.2021.09.035_b0150 article-title: The power of convex relaxation: near-optimal matrix completion publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2010.2044061 – volume: 111 start-page: 13 issue: 6 year: 2013 ident: 10.1016/j.ins.2021.09.035_b0180 article-title: Low-rank representation based discriminative projection for robust feature extraction publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.12.012 – volume: 5 start-page: e10839 issue: 5 year: 2010 ident: 10.1016/j.ins.2021.09.035_b0060 article-title: ‘Functional connectivity’ is a sensitive predictor of epilepsy diagnosis after the first seizure publication-title: PLoS One doi: 10.1371/journal.pone.0010839 – volume: 13 start-page: 334 issue: 1 year: 2020 ident: 10.1016/j.ins.2021.09.035_b0105 article-title: Optimization of feature selection using genetic algorithm in naïve Bayes classification for incomplete data publication-title: Int. J. Intell. Eng. Syst – volume: 35 start-page: 171 issue: 1 year: 2013 ident: 10.1016/j.ins.2021.09.035_b0170 article-title: Robust recovery of subspace structures by low-rank representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.88 – volume: 54 start-page: 185 issue: Suppl. 2 year: 2020 ident: 10.1016/j.ins.2021.09.035_b0005 article-title: The epidemiology of epilepsy publication-title: Neuroepidemiology doi: 10.1159/000503831 – volume: 14 start-page: 237 issue: 2 year: 2015 ident: 10.1016/j.ins.2021.09.035_b0230 article-title: Resting-state whole-brain functional connectivity networks for MCI classification using L2-regularized logistic regression publication-title: IEEE Trans. Nanobioscience doi: 10.1109/TNB.2015.2403274 – year: 2010 ident: 10.1016/j.ins.2021.09.035_b0190 article-title: DPARSF: a MATLAB toolbox for ‘pipeline’ data analysis of resting-state fMRI publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2010.00013 – volume: 17 start-page: 520 issue: 6 year: 2001 ident: 10.1016/j.ins.2021.09.035_b0120 article-title: Missing value estimation methods for DNA microarrays publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.6.520 – year: 2002 ident: 10.1016/j.ins.2021.09.035_b0185 article-title: Matrix Rank Minimization with Applications publication-title: Dissertation – volume: 44 start-page: 837 issue: 3 year: 1988 ident: 10.1016/j.ins.2021.09.035_b0240 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach publication-title: Biometrics doi: 10.2307/2531595 – ident: 10.1016/j.ins.2021.09.035_b0160 doi: 10.1609/aaai.v28i1.8973 – volume: 37 start-page: 1551 issue: 7 year: 2018 ident: 10.1016/j.ins.2021.09.035_b0025 article-title: Modeling task fMRI data via deep convolutional autoencoder publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2017.2715285 – volume: 432 start-page: 516 year: 2018 ident: 10.1016/j.ins.2021.09.035_b0095 article-title: A novel multi-modality image fusion method based on image decomposition and sparse representation publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2017.09.010 – volume: 135 start-page: 56 year: 2017 ident: 10.1016/j.ins.2021.09.035_b0090 article-title: Abnormal asymmetry in benign epilepsy with unilateral and bilateral centrotemporal spikes: a combined fMRI and DTI study publication-title: Epilepsy Res. doi: 10.1016/j.eplepsyres.2017.06.004 – volume: 51 start-page: 9 year: 2014 ident: 10.1016/j.ins.2021.09.035_b0215 article-title: Feature selection and multi-kernel learning for sparse representation on a manifold publication-title: Neural Networks doi: 10.1016/j.neunet.2013.11.009 – volume: 499 start-page: 1 year: 2019 ident: 10.1016/j.ins.2021.09.035_b0035 article-title: Spatio-temporal deep learning method for adhd fmri classification publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2019.05.043 – volume: 17 start-page: 32 issue: 1 year: 2018 ident: 10.1016/j.ins.2021.09.035_b0250 article-title: Non-negative discriminative brain functional connectivity for identifying schizophrenia on resting-state fMRI publication-title: Biomed. Eng. Online doi: 10.1186/s12938-018-0464-x – volume: 10 start-page: 924 year: 2020 ident: 10.1016/j.ins.2021.09.035_b0030 article-title: Current challenges in translational and clinical fMRI and future directions publication-title: Front. psychiatry doi: 10.3389/fpsyt.2019.00924 – start-page: 2192 year: 2017 ident: 10.1016/j.ins.2021.09.035_b0165 article-title: Partial multi-view clustering using graph regularized NMF – volume: 2 start-page: 569 issue: 2 year: 2009 ident: 10.1016/j.ins.2021.09.035_b0210 article-title: a fast algorithm for edge-preserving variational multichannel image restoration publication-title: SIAM J. Imaging Sci. doi: 10.1137/080730421 – volume: 385 start-page: 884 issue: 9971 year: 2015 ident: 10.1016/j.ins.2021.09.035_b0010 article-title: Epilepsy: new advances publication-title: Lancet doi: 10.1016/S0140-6736(14)60456-6 – volume: 10 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.ins.2021.09.035_b0070 article-title: Decoupling of brain function from structure reveals regional behavioral specialization in humans publication-title: Nat. Commun. doi: 10.1038/s41467-019-12765-7 – volume: 417 start-page: 39 year: 2017 ident: 10.1016/j.ins.2021.09.035_b0115 article-title: Dynamic probabilistic rough sets with incomplete data publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2017.06.040 – ident: 10.1016/j.ins.2021.09.035_b0065 doi: 10.1109/ICICIP.2010.5565239 – volume: 48 start-page: 1671 issue: 3 year: 2018 ident: 10.1016/j.ins.2021.09.035_b0200 article-title: Robust subspace segmentation by self-representation constrained low-rank representation publication-title: Neural Processing Letters doi: 10.1007/s11063-018-9783-y – ident: 10.1016/j.ins.2021.09.035_b0175 – volume: 9 start-page: 717 issue: 6 year: 2009 ident: 10.1016/j.ins.2021.09.035_b0140 article-title: Exact matrix completion via convex optimization publication-title: Found. Comput. Math. doi: 10.1007/s10208-009-9045-5 – volume: 22 start-page: 1197 issue: 4 year: 2018 ident: 10.1016/j.ins.2021.09.035_b0135 article-title: Multi-hypergraph learning for incomplete multimodality data publication-title: IEEE J. Biomed. Heal. Informatics doi: 10.1109/JBHI.2017.2732287 – volume: 36 start-page: 123 year: 2017 ident: 10.1016/j.ins.2021.09.035_b0110 article-title: View-aligned hypergraph learning for Alzheimer’s disease diagnosis with incomplete multi-modality data publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.11.002 – volume: 61 start-page: 1149 issue: 3 year: 2012 ident: 10.1016/j.ins.2021.09.035_b0155 article-title: Multi-source learning for joint analysis of incomplete multi-modality neuroimaging data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.03.059 – volume: 102 start-page: 192 year: 2014 ident: 10.1016/j.ins.2021.09.035_b0100 article-title: Bi-level multi-source learning for heterogeneous block-wise missing data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.08.015 – ident: 10.1016/j.ins.2021.09.035_b0245 doi: 10.1137/1.9781611972832.28 – volume: 14 start-page: 403 issue: 5 year: 1970 ident: 10.1016/j.ins.2021.09.035_b0125 article-title: Singular value decomposition and least squares solutions publication-title: Numer. Math. doi: 10.1007/BF02163027 – volume: 29 start-page: 2295 issue: 14 year: 2019 ident: 10.1016/j.ins.2021.09.035_b0050 article-title: Infraslow state fluctuations govern spontaneous fMRI network dynamics publication-title: Curr. Biol. doi: 10.1016/j.cub.2019.06.017 – ident: 10.1016/j.ins.2021.09.035_b0225 – volume: 8 start-page: 39 issue: 4 year: 2018 ident: 10.1016/j.ins.2021.09.035_b0080 article-title: What we know about the brain structure–function relationship publication-title: Behav. Sci. (Basel) doi: 10.3390/bs8040039 – volume: 7 start-page: 42 year: 2013 ident: 10.1016/j.ins.2021.09.035_b0195 article-title: PANDA: a pipeline toolbox for analyzing brain diffusion images publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2013.00042 – volume: 15 start-page: 207 issue: 2 year: 2021 ident: 10.1016/j.ins.2021.09.035_b0020 article-title: Localizing confined epileptic foci in patients with an unclear focus or presumed multifocality using a component-based EEG-fMRI method publication-title: Cogn. Neurodyn. doi: 10.1007/s11571-020-09614-5 – volume: 14 start-page: 853 issue: 5 year: 2001 ident: 10.1016/j.ins.2021.09.035_b0130 article-title: Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values publication-title: J. Clim. doi: 10.1175/1520-0442(2001)014<0853:AOICDE>2.0.CO;2 – volume: 393 start-page: 689 issue: 10172 year: 2019 ident: 10.1016/j.ins.2021.09.035_b0015 article-title: Epilepsy in adults publication-title: Lancet doi: 10.1016/S0140-6736(18)32596-0 – ident: 10.1016/j.ins.2021.09.035_b0055 – volume: 20 start-page: 1956 issue: 4 year: 2008 ident: 10.1016/j.ins.2021.09.035_b0145 article-title: A singular value thresholding algorithm for matrix completion publication-title: Siam J. Optim. doi: 10.1137/080738970 |
SSID | ssj0004766 |
Score | 2.4197607 |
Snippet | Multi-modal brain imaging data reflect brain structural and functional information from different aspects, which have been widely used in brain disease... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 316 |
SubjectTerms | Classification Computer-aided diagnosis Epilepsy diagnosis Incomplete data Multi-modal data fusion |
Title | Incomplete multi-modal brain image fusion for epilepsy classification |
URI | https://dx.doi.org/10.1016/j.ins.2021.09.035 |
Volume | 582 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED71scCAoIAo0MoDYkAKtR0nbcaqKiogOlGpW-RXpCL6ELQDC7-dc-JAkYCBMVHOis6-u8_2fXcAF7pnDaWmG8gMjVxEkgWJSaLAGCa1UFRS6TaKD-N4NBF302hagUHJhXFpld73Fz4999b-Tcdrs7OazRzHl-eIGDctiMPjaRXqHKN9rwb1_u39aPxFj-wWV5Zup-QEysvNPM1rtnBFuzkrqp1GP4enrZBzsw97HiuSfvE7B1CxiwbsblUQbEDL8w7IJfHEIqdo4i32EIZo_y5pHKExyXMHg_nS4JjKdYYgszl6E5Jt3IkZQWliV-gkVq9vRDtQ7bKI8vGOYHIzfByMAt85IdA86a6D2LJYCSGi0Ngei6xGkKS7PWYzJRHwJbHCKG0NVyaMpUxCFYaGcXzkmVIaEdYx1BbLhT0BEgqTqShOtINe1NLEahsJZjLNudRUNIGWCku1Lyvuuls8p2X-2FOKOk6djlOapKjjJlx9iqyKmhp_fSzKWUi_LYwUff7vYqf_EzuDHe74DfkZyznU1i8b20LUsVZtqF6_s7ZfWx_EbddZ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdgAGxFO88YAYkCIcx0mbsUKgQh8TSN0svyIV0VJBGfj33CUODwkYGBPlrOiz7-6zfQ-AU9vxjnPXjnSBSi5THUe5y9PIuVhbabjmmjaKw1HWu5e343TcgMs6F4bCKoPtr2x6aa3Dm4uA5sV8MqEcX1EyYty0IA_PxkvQktTUugmt7k2_N_pMj2xXV5a0UyKB-nKzDPOazKhot4iraqfpz-7pi8u5Xoe1wBVZt_qdDWj42SasfqkguAlHIe-AnbGQWERAs6CxW3CF-k9B40iNWRk7GE2fHI5pqDMEm0zRmrDilU7MGEozP0cjMX95Y5ZINUURleNtw_311d1lLwqdEyIr8vYiynycGSllmjjfiVNvkSTZdif2hdFI-PLMoJf2ThiXZFrniUkSFwt8FIUxFhnWDjRnTzO_CyyRrjBplluiXtzz3FuPKLvCCqEtl3vAa8CUDWXFqbvFo6rjxx4UYqwIY8VzhRjvwfmHyLyqqfHXx7KeBfVtYSi0-b-L7f9P7ASWe3fDgRrcjPoHsCIo16E8bzmE5uL51R8hA1mY47DC3gHbgtk_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incomplete+multi-modal+brain+image+fusion+for+epilepsy+classification&rft.jtitle=Information+sciences&rft.au=Zhu%2C+Qi&rft.au=Li%2C+Huijie&rft.au=Ye%2C+Haizhou&rft.au=Zhang%2C+Zhiqiang&rft.date=2022-01-01&rft.issn=0020-0255&rft.volume=582&rft.spage=316&rft.epage=333&rft_id=info:doi/10.1016%2Fj.ins.2021.09.035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2021_09_035 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |