Multi-scale computational screening of all-silica zeolites for adsorptive separation of ternary (H2S/CO2/CH4) mixtures

•Computational modeling was conducted for H2S and CO2 removal from a ternary mixture (H2S/CO2/CH4).•Process and economic optimization showed APC-type zeolites are the best performing.•Orientation of adsorbed CO2 in APC zeolites leads to the selective adsorption of both H2S and CO2. Natural gas (NG)...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 496; p. 154116
Main Authors Yoon, Sunghyun, Hassan, Muhammad, Chung, Yongchul G.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.09.2024
Subjects
Online AccessGet full text
ISSN1385-8947
DOI10.1016/j.cej.2024.154116

Cover

Abstract •Computational modeling was conducted for H2S and CO2 removal from a ternary mixture (H2S/CO2/CH4).•Process and economic optimization showed APC-type zeolites are the best performing.•Orientation of adsorbed CO2 in APC zeolites leads to the selective adsorption of both H2S and CO2. Natural gas (NG) is a complex mixture of CH4, H2S and CO2, and the presence of H2S and CO2 molecules are detrimental to direct utilization of NG for energy generation. Adsorptive separation is a promising avenue to remove H2S and CO2 from a mixture NG however, the identification of high-performing adsorbents that could simultaneous remove both H2S and CO2 is a challenge. In this study, we carried out multi-scale computational modeling integrating molecular simulations, process modeling, and optimization to screen already-synthesized zeolites for the simultaneous removal of H2S and CO2 from a ternary mixture of H2S, CO2, and CH4. We performed the process cycle optimization using a genetic algorithm for three zeolites (APC-0, APC-2, and ATV-1) which show good match between EDSLF (extended dual-site Langmuir–Freundlich) and mixture GCMC (grand canonical Monte Carlo) results. Process optimization revealed the superior acid-gas removal capabilities of APC-0 and APC-2 over ATV-1. We also compared the simulation results obtained from EDSLF models with the results obtained using the Ideal Adsorbed Solution Theory (IAST). We found the optimized decision variable distributions are not always the same for the two different approaches. Economic optimizations on APC-type zeolites showed that the feed composition affects the characteristics of the mixture adsorption isotherms, which in turn affects the energy consumption trends of the two zeolites. Finally, we carried out molecular simulation to understand the impact of molecule siting on the process performance. We found that the siting of adsorbed CO2 within the zeolite’s pores impacts the adsorption behavior of CH4 for ATV-1 which led to low overall performance in the process-level performance of AVT-1 compared to APC-type zeolites.
AbstractList •Computational modeling was conducted for H2S and CO2 removal from a ternary mixture (H2S/CO2/CH4).•Process and economic optimization showed APC-type zeolites are the best performing.•Orientation of adsorbed CO2 in APC zeolites leads to the selective adsorption of both H2S and CO2. Natural gas (NG) is a complex mixture of CH4, H2S and CO2, and the presence of H2S and CO2 molecules are detrimental to direct utilization of NG for energy generation. Adsorptive separation is a promising avenue to remove H2S and CO2 from a mixture NG however, the identification of high-performing adsorbents that could simultaneous remove both H2S and CO2 is a challenge. In this study, we carried out multi-scale computational modeling integrating molecular simulations, process modeling, and optimization to screen already-synthesized zeolites for the simultaneous removal of H2S and CO2 from a ternary mixture of H2S, CO2, and CH4. We performed the process cycle optimization using a genetic algorithm for three zeolites (APC-0, APC-2, and ATV-1) which show good match between EDSLF (extended dual-site Langmuir–Freundlich) and mixture GCMC (grand canonical Monte Carlo) results. Process optimization revealed the superior acid-gas removal capabilities of APC-0 and APC-2 over ATV-1. We also compared the simulation results obtained from EDSLF models with the results obtained using the Ideal Adsorbed Solution Theory (IAST). We found the optimized decision variable distributions are not always the same for the two different approaches. Economic optimizations on APC-type zeolites showed that the feed composition affects the characteristics of the mixture adsorption isotherms, which in turn affects the energy consumption trends of the two zeolites. Finally, we carried out molecular simulation to understand the impact of molecule siting on the process performance. We found that the siting of adsorbed CO2 within the zeolite’s pores impacts the adsorption behavior of CH4 for ATV-1 which led to low overall performance in the process-level performance of AVT-1 compared to APC-type zeolites.
ArticleNumber 154116
Author Hassan, Muhammad
Chung, Yongchul G.
Yoon, Sunghyun
Author_xml – sequence: 1
  givenname: Sunghyun
  orcidid: 0000-0003-4151-1459
  surname: Yoon
  fullname: Yoon, Sunghyun
– sequence: 2
  givenname: Muhammad
  orcidid: 0000-0002-6658-5609
  surname: Hassan
  fullname: Hassan, Muhammad
– sequence: 3
  givenname: Yongchul G.
  orcidid: 0000-0002-7756-0589
  surname: Chung
  fullname: Chung, Yongchul G.
  email: drygchung@gmail.com
BookMark eNp90D1PwzAQgGEPRaIt_AA2jzAktZ1PiwlFQJFAHYDZcp0zcuTGke1WwK8nJUwMnW56TnfvAs161wNCV5SklNBy1aUKupQRlqe0yCktZ2hOs7pIap5X52gRQkcIKTnlc3R42dtokqCkBazcbthHGY3rpcVBeYDe9B_YaSytTYKxRkn8Dc6aCAFr57Fsg_NDNAfAAQbpf_ERRPC99F_4es1eV82GrZp1foN35jPuPYQLdKalDXD5N5fo_eH-rVknz5vHp-buOVGMVzEpW5JlZUFz0FVV1zWvQBIFwLY6q2tZatVq4G3N8rxkvCggKyvCgSnJNWNbmi0RnfYq70LwoMXgzW68S1AijrFEJ8ZY4hhLTLFGU_0zykxRopfGnpS3k4TxpYMBL4Iy0CtojQcVRevMCf0DcJ2JUA
CitedBy_id crossref_primary_10_1016_j_cej_2025_159384
Cites_doi 10.1137/S1064827594276424
10.1080/01496395.2017.1417315
10.1016/j.compchemeng.2016.03.015
10.1007/s10450-008-9102-4
10.1021/acs.chemrev.7b00095
10.1002/anie.201600612
10.1021/acs.iecr.8b03065
10.1039/D1TA04693D
10.1016/j.apsusc.2019.02.152
10.1080/15422119.2018.1476978
10.1016/j.cej.2017.05.008
10.1021/acs.iecr.3c01358
10.1016/j.fuproc.2015.08.015
10.1039/C8TA04939D
10.1021/ie302658y
10.1002/aic.690470719
10.1016/j.cej.2022.138948
10.1021/acs.est.9b07407
10.1038/s41560-018-0267-0
10.1021/ie50506a049
10.1021/acs.jpcb.5b02536
10.1126/science.1176731
10.1006/jcph.1994.1187
10.1515/revce-2017-0004
10.1039/D3EE00858D
10.1016/j.ijggc.2015.12.033
10.1002/aic.14684
10.1016/j.jcou.2021.101811
10.1021/acs.iecr.3c02211
10.1080/08927022.2021.2025232
10.1002/advs.202004940
10.1021/acssuschemeng.9b01418
10.1021/jp4074224
10.1002/aic.17433
10.1088/1361-648X/aa680e
10.1016/j.fuel.2023.128757
10.1021/acs.iecr.5b03122
10.1016/j.jece.2019.103058
10.1021/acsami.6b10482
10.1002/14356007.a17_073.pub2
10.1016/j.cej.2023.141597
10.1021/la9026656
10.1007/s10450-016-9841-6
10.1016/j.cej.2021.131787
10.1002/aic.690110125
10.1021/acsami.0c14259
10.1016/j.envpol.2022.120219
10.1080/08927022.2015.1010082
10.1021/acs.iecr.9b03800
10.1016/j.jngse.2016.06.030
10.1109/4235.996017
10.1021/jp972543+
10.2523/IPTC-10581-MS
10.1016/S1570-8659(00)07005-8
10.1039/D0ME00060D
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2024.154116
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_cej_2024_154116
S1385894724056055
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
AATTM
AAYWO
AAYXX
ABXDB
ACLOT
ACVFH
ADCNI
AEUPX
AFFNX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
ZY4
~HD
ID FETCH-LOGICAL-c297t-6d0336514ef7788897ea0cee2bf388a6fcdfe9d824462955e36709e2ca9f22b13
IEDL.DBID .~1
ISSN 1385-8947
IngestDate Wed Oct 01 05:59:00 EDT 2025
Thu Apr 24 22:57:14 EDT 2025
Sat Feb 08 15:52:53 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Pressure/vacuum swing adsorption
Process optimization
Multi-component separation
Multi-scale modeling
Natural gas upgrading
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-6d0336514ef7788897ea0cee2bf388a6fcdfe9d824462955e36709e2ca9f22b13
ORCID 0000-0003-4151-1459
0000-0002-7756-0589
0000-0002-6658-5609
ParticipantIDs crossref_primary_10_1016_j_cej_2024_154116
crossref_citationtrail_10_1016_j_cej_2024_154116
elsevier_sciencedirect_doi_10_1016_j_cej_2024_154116
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-15
PublicationDateYYYYMMDD 2024-09-15
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-15
  day: 15
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References M. Inc, MATLAB, Version: 9.13. 0 (R2022b), (2022).
Leperi, Chung, You, Snurr (b0140) 2019; 7
Abdelnaby, Cordova, Abdulazeez, Alloush, Al-Maythalony, Mankour, Alhooshani, Saleh, Al Hamouz (b0045) 2020; 12
Kang, Yoon, Ga, Kang, Han, Choe, Kim, Kim, Chung, Hong (b0170) 2021; 8
Dubbeldam, Calero, Ellis, Snurr (b0220) 2016; 42
I. Batatia, P. Benner, Y. Chiang, A.M. Elena, D.P. Kovács, J. Riebesell, X.R. Advincula, M. Asta, W.J. Baldwin, N. Bernstein, A foundation model for atomistic materials chemistry, arXiv preprint arXiv:2401.00096 (2023). doi: 10.48550/arXiv.2401.00096.
Zhao, Chen, Chung (b0175) 2023; 62
O.A. Habeeb, R. Kanthasamy, G.A.M. Ali, S. Sethupathi, R.B.M. Yunus, Hydrogen sulfide emission sources, regulations, and removal techniques: a review, 34(6) (2018) 837-854. doi: 10.1515/revce-2017-0004.
Haghpanah, Majumder, Nilam, Rajendran, Farooq, Karimi, Amanullah (b0295) 2013; 52
Gonzalez, Boyer, Almoucachar, Poulain, Cloarec, Magnon, de Meyer (b0060) 2023; 451
Belmabkhout, Bhatt, Adil, Pillai, Cadiau, Shkurenko, Maurin, Liu, Koros, Eddaoudi (b0190) 2018; 3
Potoff, Siepmann (b0210) 2001; 47
Khabazipour, Anbia (b0040) 2019; 58
Qiao, Xu, Jiang (b0125) 2018; 6
Yancy-Caballero, Leperi, Bucior, Richardson, Islamoglu, Farha, You, Snurr (b0145) 2020; 5
Ma, Guo, Selyanchyn, Wang, Deng, Dai, Jiang (b0050) 2021; 9
Ploymeerusmee, Janke, Remsungnen, Hannongbua, Chokbunpiam (b0115) 2022; 48
W. Kenneth, Generalized thermodynamic relationships, Thermodynamics, 5th (in English) (1988).
R. Eymard, T. Gallouët, R. Herbin, Finite volume methods, in: Handbook of Numerical Analysis, Elsevier, 2000, pp. 713–1018. doi: 10.1016/S1570-8659(00)07005-8.
C.B.a.L.B. McCusker, Database of Zeolite Structures
Rochelle (b0025) 2009; 325
Rajagopalan, Avila, Rajendran (b0155) 2016; 46
Deb, Pratap, Agarwal, Meyarivan (b0285) 2002; 6
Faramawy, Zaki, Sakr (b0005) 2016; 34
.
Bhatt, Belmabkhout, Assen, Weseliński, Jiang, Cadiau, Xue, Eddaoudi (b0095) 2017; 324
Vellingiri, Deep, Kim (b0090) 2016; 8
Heck, Hall, dos Santos, Tomadakis (b0080) 2018; 53
Ozekmekci, Salkic, Fellah (b0070) 2015; 139
Lu, Wu, Wu, Cao, Wei, Cai (b0130) 2022; 68
N.-O. Nylund, J. Laurikko, M. Ikonen, Pathways for natural gas into advanced vehicles, IANGV International Association for Natural Gas Vehicle, Edited Draft Report (2002) 1–10.
Bai, Tsapatsis, Siepmann (b0200) 2013; 117
Cleeton, de Oliveira, Neumann, Farmahini, Luan, Steiner, Sarkisov (b0160) 2023; 16
Hjorth Larsen, Jørgen Mortensen, Blomqvist, Castelli, Christensen, Dułak, Friis, Groves, Hammer, Hargus, Hermes, Jennings, Bjerre Jensen, Kermode, Kitchin, Leonhard Kolsbjerg, Kubal, Kaasbjerg, Lysgaard, Bergmann Maronsson, Maxson, Olsen, Pastewka, Peterson, Rostgaard, Schiøtz, Schütt, Strange, Thygesen, Vegge, Vilhelmsen, Walter, Zeng, Jacobsen (b0225) 2017; 29
Demir, Keskin (b0105) 2022; 55
Burns, Pai, Subraveti, Collins, Krykunov, Rajendran, Woo (b0150) 2020; 54
Peluso, Gargiulo, Aprea, Pepe, Caputo (b0085) 2019; 48
Shah, Tsapatsis, Siepmann (b0120) 2016; 55
Liu, First, Faruque Hasan, Floudas (b0185) 2016; 91
Jameh, Mohammadi, Bakhtiari, Mahdyarfar (b0110) 2019; 7
Leperi, Snurr, You (b0265) 2016; 55
Hammer, Lübcke, Kettner, Pillarella, Recknagel, Commichau, Neumann, Paczynska-Lahme (b0015) 2006
Shah, Tsapatsis, Siepmann (b0205) 2015; 119
2023.
Sokhanvaran, Gomar, Yeganegi (b0100) 2019; 479
Koble, Corrigan (b0235) 1952; 44
Reynolds, Mehrotra, Ebner, Ritter (b0260) 2008; 14
Moubarak, Moosavi, Charalambous, Garcia, Smit (b0245) 2023; 62
Mangano, Friedrich, Brandani (b0300) 2015; 61
Myers, Prausnitz (b0250) 1965; 11
Farmahini, Krishnamurthy, Friedrich, Brandani, Sarkisov (b0290) 2018; 57
Palomino, Corma, Rey, Valencia (b0065) 2010; 26
Shah, Tsapatsis, Siepmann (b0030) 2017; 117
Chan, Lock, Wong, Yiin, Loy, Cheah, Chai, Li, How, Chin, Chan, Lam (b0055) 2022; 314
Liu, Osher, Chan (b0275) 1994; 115
Shampine, Reichelt (b0280) 1997; 18
F. Lallemand, F. Lecomte, C. Streicher, Highly sour gas processing: H2S bulk removal with the Sprex process, in: International Petroleum Technology Conference, 2005.
Wynnyk, Hojjati, Pirzadeh, Marriott (b0075) 2017; 23
Deng, Gopalan, Sarkisov (b0165) 2023; 459
Martin, Siepmann (b0215) 1998; 102
Cha, Ga, Lee, Nam, Bae, Chung (b0180) 2021; 426
Gao, Zheng, Yan, Sun, Zhao (b0135) 2023; 350
Hammer (10.1016/j.cej.2024.154116_b0015) 2006
Kang (10.1016/j.cej.2024.154116_b0170) 2021; 8
Ploymeerusmee (10.1016/j.cej.2024.154116_b0115) 2022; 48
Gonzalez (10.1016/j.cej.2024.154116_b0060) 2023; 451
Shah (10.1016/j.cej.2024.154116_b0120) 2016; 55
Moubarak (10.1016/j.cej.2024.154116_b0245) 2023; 62
Heck (10.1016/j.cej.2024.154116_b0080) 2018; 53
Liu (10.1016/j.cej.2024.154116_b0275) 1994; 115
Koble (10.1016/j.cej.2024.154116_b0235) 1952; 44
10.1016/j.cej.2024.154116_b0255
Abdelnaby (10.1016/j.cej.2024.154116_b0045) 2020; 12
10.1016/j.cej.2024.154116_b0010
Mangano (10.1016/j.cej.2024.154116_b0300) 2015; 61
Zhao (10.1016/j.cej.2024.154116_b0175) 2023; 62
Bhatt (10.1016/j.cej.2024.154116_b0095) 2017; 324
Martin (10.1016/j.cej.2024.154116_b0215) 1998; 102
Rochelle (10.1016/j.cej.2024.154116_b0025) 2009; 325
Cha (10.1016/j.cej.2024.154116_b0180) 2021; 426
Dubbeldam (10.1016/j.cej.2024.154116_b0220) 2016; 42
Leperi (10.1016/j.cej.2024.154116_b0265) 2016; 55
Ma (10.1016/j.cej.2024.154116_b0050) 2021; 9
Farmahini (10.1016/j.cej.2024.154116_b0290) 2018; 57
Cleeton (10.1016/j.cej.2024.154116_b0160) 2023; 16
10.1016/j.cej.2024.154116_b0240
Belmabkhout (10.1016/j.cej.2024.154116_b0190) 2018; 3
Sokhanvaran (10.1016/j.cej.2024.154116_b0100) 2019; 479
Gao (10.1016/j.cej.2024.154116_b0135) 2023; 350
Ozekmekci (10.1016/j.cej.2024.154116_b0070) 2015; 139
Faramawy (10.1016/j.cej.2024.154116_b0005) 2016; 34
Demir (10.1016/j.cej.2024.154116_b0105) 2022; 55
10.1016/j.cej.2024.154116_b0035
Wynnyk (10.1016/j.cej.2024.154116_b0075) 2017; 23
Deb (10.1016/j.cej.2024.154116_b0285) 2002; 6
Burns (10.1016/j.cej.2024.154116_b0150) 2020; 54
10.1016/j.cej.2024.154116_b0230
Chan (10.1016/j.cej.2024.154116_b0055) 2022; 314
10.1016/j.cej.2024.154116_b0195
Shampine (10.1016/j.cej.2024.154116_b0280) 1997; 18
10.1016/j.cej.2024.154116_b0270
Haghpanah (10.1016/j.cej.2024.154116_b0295) 2013; 52
Jameh (10.1016/j.cej.2024.154116_b0110) 2019; 7
Shah (10.1016/j.cej.2024.154116_b0205) 2015; 119
Lu (10.1016/j.cej.2024.154116_b0130) 2022; 68
Yancy-Caballero (10.1016/j.cej.2024.154116_b0145) 2020; 5
Deng (10.1016/j.cej.2024.154116_b0165) 2023; 459
Hjorth Larsen (10.1016/j.cej.2024.154116_b0225) 2017; 29
Peluso (10.1016/j.cej.2024.154116_b0085) 2019; 48
Potoff (10.1016/j.cej.2024.154116_b0210) 2001; 47
Rajagopalan (10.1016/j.cej.2024.154116_b0155) 2016; 46
Vellingiri (10.1016/j.cej.2024.154116_b0090) 2016; 8
Palomino (10.1016/j.cej.2024.154116_b0065) 2010; 26
Reynolds (10.1016/j.cej.2024.154116_b0260) 2008; 14
Khabazipour (10.1016/j.cej.2024.154116_b0040) 2019; 58
Liu (10.1016/j.cej.2024.154116_b0185) 2016; 91
10.1016/j.cej.2024.154116_b0020
Shah (10.1016/j.cej.2024.154116_b0030) 2017; 117
Leperi (10.1016/j.cej.2024.154116_b0140) 2019; 7
Bai (10.1016/j.cej.2024.154116_b0200) 2013; 117
Myers (10.1016/j.cej.2024.154116_b0250) 1965; 11
Qiao (10.1016/j.cej.2024.154116_b0125) 2018; 6
References_xml – volume: 46
  start-page: 76
  year: 2016
  end-page: 85
  ident: b0155
  article-title: Do adsorbent screening metrics predict process performance? A process optimisation based study for post-combustion capture of CO2
  publication-title: Int. J. Greenhouse Gas Control
– volume: 115
  start-page: 200
  year: 1994
  end-page: 212
  ident: b0275
  article-title: Weighted essentially non-oscillatory schemes
  publication-title: J. Comput. Phys.
– volume: 119
  start-page: 7041
  year: 2015
  end-page: 7052
  ident: b0205
  article-title: Development of the transferable potentials for phase equilibria model for hydrogen sulfide
  publication-title: J. Phys. Chem. B
– volume: 9
  start-page: 20211
  year: 2021
  end-page: 20240
  ident: b0050
  article-title: Hydrogen sulfide removal from natural gas using membrane technology: a review
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 29835
  year: 2016
  end-page: 29857
  ident: b0090
  article-title: Metal-organic frameworks as a potential platform for selective treatment of gaseous sulfur compounds
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 121
  year: 1965
  end-page: 127
  ident: b0250
  article-title: Thermodynamics of mixed-gas adsorption
  publication-title: AIChE J.
– volume: 54
  start-page: 4536
  year: 2020
  end-page: 4544
  ident: b0150
  article-title: Prediction of MOF performance in vacuum swing adsorption systems for postcombustion CO2 capture based on integrated molecular simulations, process optimizations, and machine learning models
  publication-title: Environ. Sci. Technol.
– volume: 53
  start-page: 1490
  year: 2018
  end-page: 1497
  ident: b0080
  article-title: Pressure swing adsorption separation of H2S/CO2/CH4 gas mixtures with molecular sieves 4A, 5A, and 13X
  publication-title: Sep. Sci. Technol.
– volume: 324
  start-page: 392
  year: 2017
  end-page: 396
  ident: b0095
  article-title: Isoreticular rare earth fcu-MOFs for the selective removal of H2S from CO2 containing gases
  publication-title: Chem. Eng. J.
– volume: 62
  start-page: 15176
  year: 2023
  end-page: 15189
  ident: b0175
  article-title: High-throughput, multiscale computational screening of metal-organic frameworks for Xe/Kr separation with machine-learned parameters
  publication-title: Ind. Eng. Chem. Res.
– volume: 55
  start-page: 3338
  year: 2016
  end-page: 3350
  ident: b0265
  article-title: Optimization of two-stage pressure/vacuum swing adsorption with variable dehydration level for postcombustion carbon capture
  publication-title: Ind. Eng. Chem. Res.
– reference: N.-O. Nylund, J. Laurikko, M. Ikonen, Pathways for natural gas into advanced vehicles, IANGV International Association for Natural Gas Vehicle, Edited Draft Report (2002) 1–10.
– volume: 325
  start-page: 1652
  year: 2009
  end-page: 1654
  ident: b0025
  article-title: Amine scrubbing for CO2 capture
  publication-title: Science
– reference: W. Kenneth, Generalized thermodynamic relationships, Thermodynamics, 5th (in English) (1988).
– volume: 14
  start-page: 399
  year: 2008
  end-page: 413
  ident: b0260
  article-title: Heavy reflux PSA cycles for CO2 recovery from flue gas: Part I. Performance evaluation
  publication-title: Adsorption
– volume: 350
  year: 2023
  ident: b0135
  article-title: Accelerating the discovery of acid gas-selective MOFs for natural gas purification: a combination of machine learning and molecular fingerprint
  publication-title: Fuel
– reference: , 2023.
– volume: 18
  start-page: 1
  year: 1997
  end-page: 22
  ident: b0280
  article-title: The MATLAB ODE suite
  publication-title: SIAM J. Sci. Comput.
– reference: F. Lallemand, F. Lecomte, C. Streicher, Highly sour gas processing: H2S bulk removal with the Sprex process, in: International Petroleum Technology Conference, 2005.
– volume: 61
  start-page: 981
  year: 2015
  end-page: 991
  ident: b0300
  article-title: Robust algorithms for the solution of the ideal adsorbed solution theory equations
  publication-title: AIChE J.
– volume: 34
  start-page: 34
  year: 2016
  end-page: 54
  ident: b0005
  article-title: Natural gas origin, composition, and processing: a review
  publication-title: J. Nat. Gas Sci. Eng.
– volume: 55
  year: 2022
  ident: b0105
  article-title: Computational insights into efficient CO2 and H2S capture through zirconium MOFs
  publication-title: J. CO2 Util.
– volume: 55
  start-page: 5938
  year: 2016
  end-page: 5942
  ident: b0120
  article-title: Identifying optimal zeolitic sorbents for sweetening of highly sour natural gas
  publication-title: Angew. Chem. Int. Ed.
– volume: 451
  year: 2023
  ident: b0060
  article-title: CO2 and H2S absorption in aqueous MDEA with ethylene glycol: electrolyte NRTL, rate-based process model and pilot plant experimental validation
  publication-title: Chem. Eng. J.
– volume: 7
  year: 2019
  ident: b0110
  article-title: Synthesis and modification of Zeolitic Imidazolate Framework (ZIF-8) nanoparticles as highly efficient adsorbent for H2S and CO2 removal from natural gas
  publication-title: J. Environ. Chem. Eng.
– volume: 117
  start-page: 9755
  year: 2017
  end-page: 9803
  ident: b0030
  article-title: Hydrogen sulfide capture: from absorption in polar liquids to oxide, zeolite, and metal-organic framework adsorbents and membranes
  publication-title: Chem. Rev.
– volume: 23
  start-page: 149
  year: 2017
  end-page: 162
  ident: b0075
  article-title: High-pressure sour gas adsorption on zeolite 4A
  publication-title: Adsorption
– volume: 26
  start-page: 1910
  year: 2010
  end-page: 1917
  ident: b0065
  article-title: New insights on CO2−methane separation using LTA zeolites with different Si/Al ratios and a first comparison with MOFs
  publication-title: Langmuir
– reference: I. Batatia, P. Benner, Y. Chiang, A.M. Elena, D.P. Kovács, J. Riebesell, X.R. Advincula, M. Asta, W.J. Baldwin, N. Bernstein, A foundation model for atomistic materials chemistry, arXiv preprint arXiv:2401.00096 (2023). doi: 10.48550/arXiv.2401.00096.
– reference: O.A. Habeeb, R. Kanthasamy, G.A.M. Ali, S. Sethupathi, R.B.M. Yunus, Hydrogen sulfide emission sources, regulations, and removal techniques: a review, 34(6) (2018) 837-854. doi: 10.1515/revce-2017-0004.
– volume: 12
  start-page: 47984
  year: 2020
  end-page: 47992
  ident: b0045
  article-title: Novel porous organic polymer for the concurrent and selective removal of hydrogen sulfide and carbon dioxide from natural gas streams
  publication-title: ACS Appl. Mater. Interfaces
– volume: 52
  start-page: 4249
  year: 2013
  end-page: 4265
  ident: b0295
  article-title: Multiobjective optimization of a four-step adsorption process for postcombustion CO2 capture via finite volume simulation
  publication-title: Ind. Eng. Chem. Res.
– volume: 48
  start-page: 417
  year: 2022
  end-page: 426
  ident: b0115
  article-title: Porous material adsorbents ZIF-8, ZIF-67, Co/Zn-ZIF and MIL-127(Fe) for separation of H2S from a H2S/CH4 mixture
  publication-title: Mol. Simul.
– volume: 426
  year: 2021
  ident: b0180
  article-title: Integrated material and process evaluation of metal–organic frameworks database for energy-efficient SF6/N2 separation
  publication-title: Chem. Eng. J.
– volume: 29
  year: 2017
  ident: b0225
  article-title: The atomic simulation environment—a Python library for working with atoms
  publication-title: J. Phys. Condens. Matter
– volume: 42
  start-page: 81
  year: 2016
  end-page: 101
  ident: b0220
  article-title: RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials
  publication-title: Mol. Simul.
– volume: 139
  start-page: 49
  year: 2015
  end-page: 60
  ident: b0070
  article-title: Use of zeolites for the removal of H2S: a mini-review
  publication-title: Fuel Process. Technol.
– volume: 58
  start-page: 22133
  year: 2019
  end-page: 22164
  ident: b0040
  article-title: Removal of hydrogen sulfide from gas streams using porous materials: a review
  publication-title: Ind. Eng. Chem. Res.
– volume: 48
  start-page: 78
  year: 2019
  end-page: 89
  ident: b0085
  article-title: Nanoporous materials as H2S adsorbents for biogas purification: a review
  publication-title: Sep. Purif. Rev.
– volume: 47
  start-page: 1676
  year: 2001
  end-page: 1682
  ident: b0210
  article-title: Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen
  publication-title: AIChE J.
– volume: 57
  start-page: 15491
  year: 2018
  end-page: 15511
  ident: b0290
  article-title: From crystal to adsorption column: challenges in multiscale computational screening of materials for adsorption separation processes
  publication-title: Ind. Eng. Chem. Res.
– volume: 314
  year: 2022
  ident: b0055
  article-title: A state-of-the-art review on capture and separation of hazardous hydrogen sulfide (H2S): recent advances, challenges and outlook
  publication-title: Environ. Pollut.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b0285
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 6
  start-page: 18898
  year: 2018
  end-page: 18905
  ident: b0125
  article-title: Computational screening of hydrophobic metal–organic frameworks for the separation of H2S and CO2 from natural gas
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 2004940
  year: 2021
  ident: b0170
  article-title: High-throughput discovery of Ni(IN)2 for ethane/ethylene separation
  publication-title: Adv. Sci.
– reference: C.B.a.L.B. McCusker, Database of Zeolite Structures:
– year: 2006
  ident: b0015
  article-title: Natural gas
  publication-title: Ullmann's Encyclopedia Ind. Chem.
– volume: 117
  start-page: 24375
  year: 2013
  end-page: 24387
  ident: b0200
  article-title: TraPPE-zeo: transferable potentials for phase equilibria force field for all-silica zeolites
  publication-title: J. Phys. Chem. C
– reference: R. Eymard, T. Gallouët, R. Herbin, Finite volume methods, in: Handbook of Numerical Analysis, Elsevier, 2000, pp. 713–1018. doi: 10.1016/S1570-8659(00)07005-8.
– volume: 68
  start-page: e17433
  year: 2022
  ident: b0130
  article-title: High-throughput computational screening of porous polymer networks for natural gas sweetening based on a neural network
  publication-title: AIChE J
– volume: 91
  start-page: 206
  year: 2016
  end-page: 218
  ident: b0185
  article-title: A multi-scale approach for the discovery of zeolites for hydrogen sulfide removal
  publication-title: Comput. Chem. Eng.
– volume: 102
  start-page: 2569
  year: 1998
  end-page: 2577
  ident: b0215
  article-title: Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes
  publication-title: J. Phys. Chem. B
– volume: 62
  start-page: 10252
  year: 2023
  end-page: 10265
  ident: b0245
  article-title: A robust framework for generating adsorption isotherms to screen materials for carbon capture
  publication-title: Ind. Eng. Chem. Res.
– volume: 479
  start-page: 1006
  year: 2019
  end-page: 1013
  ident: b0100
  article-title: H2S separation from biogas by adsorption on functionalized MIL-47-X (X = −OH and − OCH3): a simulation study
  publication-title: Appl. Surf. Sci.
– reference: .
– volume: 16
  start-page: 3899
  year: 2023
  end-page: 3918
  ident: b0160
  article-title: A process-level perspective of the impact of molecular force fields on the computational screening of MOFs for carbon capture
  publication-title: Energ. Environ. Sci.
– volume: 3
  start-page: 1059
  year: 2018
  end-page: 1066
  ident: b0190
  article-title: Natural gas upgrading using a fluorinated MOF with tuned H2S and CO2 adsorption selectivity
  publication-title: Nat. Energy
– reference: M. Inc, MATLAB, Version: 9.13. 0 (R2022b), (2022).
– volume: 5
  start-page: 1205
  year: 2020
  end-page: 1218
  ident: b0145
  article-title: Process-level modelling and optimization to evaluate metal–organic frameworks for post-combustion capture of CO2
  publication-title: Mol. Syst. Des. Eng.
– volume: 459
  year: 2023
  ident: b0165
  article-title: In silico engineering of ion-exchanged zeolites for high-performance carbon capture in PSA processes
  publication-title: Chem. Eng. J.
– volume: 44
  start-page: 383
  year: 1952
  end-page: 387
  ident: b0235
  article-title: Adsorption isotherms for pure hydrocarbons
  publication-title: Ind. Eng. Chem.
– volume: 7
  start-page: 11529
  year: 2019
  end-page: 11539
  ident: b0140
  article-title: Development of a General evaluation metric for rapid screening of adsorbent materials for postcombustion CO2 capture
  publication-title: ACS Sustain. Chem. Eng.
– volume: 18
  start-page: 1
  issue: 1
  year: 1997
  ident: 10.1016/j.cej.2024.154116_b0280
  article-title: The MATLAB ODE suite
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827594276424
– volume: 53
  start-page: 1490
  issue: 10
  year: 2018
  ident: 10.1016/j.cej.2024.154116_b0080
  article-title: Pressure swing adsorption separation of H2S/CO2/CH4 gas mixtures with molecular sieves 4A, 5A, and 13X
  publication-title: Sep. Sci. Technol.
  doi: 10.1080/01496395.2017.1417315
– volume: 91
  start-page: 206
  year: 2016
  ident: 10.1016/j.cej.2024.154116_b0185
  article-title: A multi-scale approach for the discovery of zeolites for hydrogen sulfide removal
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2016.03.015
– ident: 10.1016/j.cej.2024.154116_b0240
– volume: 14
  start-page: 399
  issue: 2
  year: 2008
  ident: 10.1016/j.cej.2024.154116_b0260
  article-title: Heavy reflux PSA cycles for CO2 recovery from flue gas: Part I. Performance evaluation
  publication-title: Adsorption
  doi: 10.1007/s10450-008-9102-4
– volume: 117
  start-page: 9755
  issue: 14
  year: 2017
  ident: 10.1016/j.cej.2024.154116_b0030
  article-title: Hydrogen sulfide capture: from absorption in polar liquids to oxide, zeolite, and metal-organic framework adsorbents and membranes
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00095
– volume: 55
  start-page: 5938
  issue: 20
  year: 2016
  ident: 10.1016/j.cej.2024.154116_b0120
  article-title: Identifying optimal zeolitic sorbents for sweetening of highly sour natural gas
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201600612
– volume: 57
  start-page: 15491
  issue: 45
  year: 2018
  ident: 10.1016/j.cej.2024.154116_b0290
  article-title: From crystal to adsorption column: challenges in multiscale computational screening of materials for adsorption separation processes
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b03065
– volume: 9
  start-page: 20211
  issue: 36
  year: 2021
  ident: 10.1016/j.cej.2024.154116_b0050
  article-title: Hydrogen sulfide removal from natural gas using membrane technology: a review
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA04693D
– volume: 479
  start-page: 1006
  year: 2019
  ident: 10.1016/j.cej.2024.154116_b0100
  article-title: H2S separation from biogas by adsorption on functionalized MIL-47-X (X = −OH and − OCH3): a simulation study
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.02.152
– volume: 48
  start-page: 78
  issue: 1
  year: 2019
  ident: 10.1016/j.cej.2024.154116_b0085
  article-title: Nanoporous materials as H2S adsorbents for biogas purification: a review
  publication-title: Sep. Purif. Rev.
  doi: 10.1080/15422119.2018.1476978
– volume: 324
  start-page: 392
  year: 2017
  ident: 10.1016/j.cej.2024.154116_b0095
  article-title: Isoreticular rare earth fcu-MOFs for the selective removal of H2S from CO2 containing gases
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.05.008
– volume: 62
  start-page: 10252
  issue: 26
  year: 2023
  ident: 10.1016/j.cej.2024.154116_b0245
  article-title: A robust framework for generating adsorption isotherms to screen materials for carbon capture
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.3c01358
– volume: 139
  start-page: 49
  year: 2015
  ident: 10.1016/j.cej.2024.154116_b0070
  article-title: Use of zeolites for the removal of H2S: a mini-review
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2015.08.015
– volume: 6
  start-page: 18898
  issue: 39
  year: 2018
  ident: 10.1016/j.cej.2024.154116_b0125
  article-title: Computational screening of hydrophobic metal–organic frameworks for the separation of H2S and CO2 from natural gas
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA04939D
– volume: 52
  start-page: 4249
  issue: 11
  year: 2013
  ident: 10.1016/j.cej.2024.154116_b0295
  article-title: Multiobjective optimization of a four-step adsorption process for postcombustion CO2 capture via finite volume simulation
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie302658y
– volume: 47
  start-page: 1676
  issue: 7
  year: 2001
  ident: 10.1016/j.cej.2024.154116_b0210
  article-title: Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen
  publication-title: AIChE J.
  doi: 10.1002/aic.690470719
– volume: 451
  year: 2023
  ident: 10.1016/j.cej.2024.154116_b0060
  article-title: CO2 and H2S absorption in aqueous MDEA with ethylene glycol: electrolyte NRTL, rate-based process model and pilot plant experimental validation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.138948
– volume: 54
  start-page: 4536
  issue: 7
  year: 2020
  ident: 10.1016/j.cej.2024.154116_b0150
  article-title: Prediction of MOF performance in vacuum swing adsorption systems for postcombustion CO2 capture based on integrated molecular simulations, process optimizations, and machine learning models
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b07407
– volume: 3
  start-page: 1059
  issue: 12
  year: 2018
  ident: 10.1016/j.cej.2024.154116_b0190
  article-title: Natural gas upgrading using a fluorinated MOF with tuned H2S and CO2 adsorption selectivity
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0267-0
– volume: 44
  start-page: 383
  issue: 2
  year: 1952
  ident: 10.1016/j.cej.2024.154116_b0235
  article-title: Adsorption isotherms for pure hydrocarbons
  publication-title: Ind. Eng. Chem.
  doi: 10.1021/ie50506a049
– volume: 119
  start-page: 7041
  issue: 23
  year: 2015
  ident: 10.1016/j.cej.2024.154116_b0205
  article-title: Development of the transferable potentials for phase equilibria model for hydrogen sulfide
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.5b02536
– volume: 325
  start-page: 1652
  issue: 5948
  year: 2009
  ident: 10.1016/j.cej.2024.154116_b0025
  article-title: Amine scrubbing for CO2 capture
  publication-title: Science
  doi: 10.1126/science.1176731
– volume: 115
  start-page: 200
  issue: 1
  year: 1994
  ident: 10.1016/j.cej.2024.154116_b0275
  article-title: Weighted essentially non-oscillatory schemes
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1994.1187
– ident: 10.1016/j.cej.2024.154116_b0035
  doi: 10.1515/revce-2017-0004
– volume: 16
  start-page: 3899
  issue: 9
  year: 2023
  ident: 10.1016/j.cej.2024.154116_b0160
  article-title: A process-level perspective of the impact of molecular force fields on the computational screening of MOFs for carbon capture
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/D3EE00858D
– volume: 46
  start-page: 76
  year: 2016
  ident: 10.1016/j.cej.2024.154116_b0155
  article-title: Do adsorbent screening metrics predict process performance? A process optimisation based study for post-combustion capture of CO2
  publication-title: Int. J. Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2015.12.033
– ident: 10.1016/j.cej.2024.154116_b0010
– volume: 61
  start-page: 981
  issue: 3
  year: 2015
  ident: 10.1016/j.cej.2024.154116_b0300
  article-title: Robust algorithms for the solution of the ideal adsorbed solution theory equations
  publication-title: AIChE J.
  doi: 10.1002/aic.14684
– volume: 55
  year: 2022
  ident: 10.1016/j.cej.2024.154116_b0105
  article-title: Computational insights into efficient CO2 and H2S capture through zirconium MOFs
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2021.101811
– volume: 62
  start-page: 15176
  issue: 37
  year: 2023
  ident: 10.1016/j.cej.2024.154116_b0175
  article-title: High-throughput, multiscale computational screening of metal-organic frameworks for Xe/Kr separation with machine-learned parameters
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.3c02211
– volume: 48
  start-page: 417
  issue: 5
  year: 2022
  ident: 10.1016/j.cej.2024.154116_b0115
  article-title: Porous material adsorbents ZIF-8, ZIF-67, Co/Zn-ZIF and MIL-127(Fe) for separation of H2S from a H2S/CH4 mixture
  publication-title: Mol. Simul.
  doi: 10.1080/08927022.2021.2025232
– volume: 8
  start-page: 2004940
  issue: 11
  year: 2021
  ident: 10.1016/j.cej.2024.154116_b0170
  article-title: High-throughput discovery of Ni(IN)2 for ethane/ethylene separation
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202004940
– volume: 7
  start-page: 11529
  issue: 13
  year: 2019
  ident: 10.1016/j.cej.2024.154116_b0140
  article-title: Development of a General evaluation metric for rapid screening of adsorbent materials for postcombustion CO2 capture
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b01418
– volume: 117
  start-page: 24375
  issue: 46
  year: 2013
  ident: 10.1016/j.cej.2024.154116_b0200
  article-title: TraPPE-zeo: transferable potentials for phase equilibria force field for all-silica zeolites
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp4074224
– volume: 68
  start-page: e17433
  issue: 1
  year: 2022
  ident: 10.1016/j.cej.2024.154116_b0130
  article-title: High-throughput computational screening of porous polymer networks for natural gas sweetening based on a neural network
  publication-title: AIChE J
  doi: 10.1002/aic.17433
– volume: 29
  issue: 27
  year: 2017
  ident: 10.1016/j.cej.2024.154116_b0225
  article-title: The atomic simulation environment—a Python library for working with atoms
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/1361-648X/aa680e
– volume: 350
  year: 2023
  ident: 10.1016/j.cej.2024.154116_b0135
  article-title: Accelerating the discovery of acid gas-selective MOFs for natural gas purification: a combination of machine learning and molecular fingerprint
  publication-title: Fuel
  doi: 10.1016/j.fuel.2023.128757
– volume: 55
  start-page: 3338
  issue: 12
  year: 2016
  ident: 10.1016/j.cej.2024.154116_b0265
  article-title: Optimization of two-stage pressure/vacuum swing adsorption with variable dehydration level for postcombustion carbon capture
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.5b03122
– volume: 7
  issue: 3
  year: 2019
  ident: 10.1016/j.cej.2024.154116_b0110
  article-title: Synthesis and modification of Zeolitic Imidazolate Framework (ZIF-8) nanoparticles as highly efficient adsorbent for H2S and CO2 removal from natural gas
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2019.103058
– volume: 8
  start-page: 29835
  issue: 44
  year: 2016
  ident: 10.1016/j.cej.2024.154116_b0090
  article-title: Metal-organic frameworks as a potential platform for selective treatment of gaseous sulfur compounds
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b10482
– year: 2006
  ident: 10.1016/j.cej.2024.154116_b0015
  article-title: Natural gas
  publication-title: Ullmann's Encyclopedia Ind. Chem.
  doi: 10.1002/14356007.a17_073.pub2
– volume: 459
  year: 2023
  ident: 10.1016/j.cej.2024.154116_b0165
  article-title: In silico engineering of ion-exchanged zeolites for high-performance carbon capture in PSA processes
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.141597
– volume: 26
  start-page: 1910
  issue: 3
  year: 2010
  ident: 10.1016/j.cej.2024.154116_b0065
  article-title: New insights on CO2−methane separation using LTA zeolites with different Si/Al ratios and a first comparison with MOFs
  publication-title: Langmuir
  doi: 10.1021/la9026656
– volume: 23
  start-page: 149
  issue: 1
  year: 2017
  ident: 10.1016/j.cej.2024.154116_b0075
  article-title: High-pressure sour gas adsorption on zeolite 4A
  publication-title: Adsorption
  doi: 10.1007/s10450-016-9841-6
– volume: 426
  year: 2021
  ident: 10.1016/j.cej.2024.154116_b0180
  article-title: Integrated material and process evaluation of metal–organic frameworks database for energy-efficient SF6/N2 separation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131787
– ident: 10.1016/j.cej.2024.154116_b0195
– volume: 11
  start-page: 121
  issue: 1
  year: 1965
  ident: 10.1016/j.cej.2024.154116_b0250
  article-title: Thermodynamics of mixed-gas adsorption
  publication-title: AIChE J.
  doi: 10.1002/aic.690110125
– volume: 12
  start-page: 47984
  issue: 42
  year: 2020
  ident: 10.1016/j.cej.2024.154116_b0045
  article-title: Novel porous organic polymer for the concurrent and selective removal of hydrogen sulfide and carbon dioxide from natural gas streams
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c14259
– volume: 314
  year: 2022
  ident: 10.1016/j.cej.2024.154116_b0055
  article-title: A state-of-the-art review on capture and separation of hazardous hydrogen sulfide (H2S): recent advances, challenges and outlook
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2022.120219
– volume: 42
  start-page: 81
  issue: 2
  year: 2016
  ident: 10.1016/j.cej.2024.154116_b0220
  article-title: RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials
  publication-title: Mol. Simul.
  doi: 10.1080/08927022.2015.1010082
– volume: 58
  start-page: 22133
  issue: 49
  year: 2019
  ident: 10.1016/j.cej.2024.154116_b0040
  article-title: Removal of hydrogen sulfide from gas streams using porous materials: a review
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b03800
– volume: 34
  start-page: 34
  year: 2016
  ident: 10.1016/j.cej.2024.154116_b0005
  article-title: Natural gas origin, composition, and processing: a review
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2016.06.030
– ident: 10.1016/j.cej.2024.154116_b0230
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.cej.2024.154116_b0285
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 102
  start-page: 2569
  issue: 14
  year: 1998
  ident: 10.1016/j.cej.2024.154116_b0215
  article-title: Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp972543+
– ident: 10.1016/j.cej.2024.154116_b0020
  doi: 10.2523/IPTC-10581-MS
– ident: 10.1016/j.cej.2024.154116_b0270
  doi: 10.1016/S1570-8659(00)07005-8
– volume: 5
  start-page: 1205
  issue: 7
  year: 2020
  ident: 10.1016/j.cej.2024.154116_b0145
  article-title: Process-level modelling and optimization to evaluate metal–organic frameworks for post-combustion capture of CO2
  publication-title: Mol. Syst. Des. Eng.
  doi: 10.1039/D0ME00060D
– ident: 10.1016/j.cej.2024.154116_b0255
SSID ssj0006919
Score 2.471002
Snippet •Computational modeling was conducted for H2S and CO2 removal from a ternary mixture (H2S/CO2/CH4).•Process and economic optimization showed APC-type zeolites...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 154116
SubjectTerms Multi-component separation
Multi-scale modeling
Natural gas upgrading
Pressure/vacuum swing adsorption
Process optimization
Title Multi-scale computational screening of all-silica zeolites for adsorptive separation of ternary (H2S/CO2/CH4) mixtures
URI https://dx.doi.org/10.1016/j.cej.2024.154116
Volume 496
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 1385-8947
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006919
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 1385-8947
  databaseCode: .~1
  dateStart: 19970115
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006919
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  issn: 1385-8947
  databaseCode: ACRLP
  dateStart: 19970115
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006919
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 1385-8947
  databaseCode: AIKHN
  dateStart: 19970115
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006919
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 1385-8947
  databaseCode: AKRWK
  dateStart: 19970115
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006919
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kXvQgPvFZ9uBBhZhms9lkj6Uo0aKCD-wt7G420FLb0lRRD_52Z_LwAerBU9gwA2F2M9_M7DwI2Q-jljCBwfIzzRwuVIA9ILXjKc9EXCkpPCxOvrgU8R0_7wW9OdKpa2EwrbLS_aVOL7R19catpOlO-n33xsM7LclDwCSA7QALzTms4Ewfv32meQhZDPdAYgep65vNIsfL2AG4iIxjfMXDkec_YdMXvDldJkuVoUjb5beskDk7WiWLX9oHrpGnonrWyUHMlppiPEMV2qOgDMBBBSo6zqgaDp28j9E5-mox383mFGxVqtJ8PJ2gvqO5LXuAj0fIUAQJpy_0IGY3bueKuZ2YH9KH_jNeN-Tr5O705LYTO9UcBccwGc4ckbZ8X4BlZLMQPV4ZWtUCcGQ686NIicykmZVpBEgvmAwCWzR1s8womTGmPX-DNEbjkd0klGeZ0pGN0kBrzuFv10qZNPLRTbOKyy3SqiWYmKrJOM66GCZ1NtkgAaEnKPSkFPoWOfpgmZQdNv4i5vW2JN-OSQII8Dvb9v_YdsgCrjA9xAt2SWM2fbR7YIPMdLM4ZE0y3z7rxpf47F7fd98BSj7cnQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDMCAeIry9MAASCGNYzvxiCpQgBaGFoktsh1HalXaqikIGPjt-PKAIgEDa3InRRf7vnsfQkdB2OCaaWg_U8ShXDKYAakcT3o6pFIK7kFzcvuWR_f0-oE9zKFm1QsDZZWl7i90eq6tyyduKU133Ou5HQ9yWoIGFpMsbDM2jxYoIwF4YGfvX3UeXOTbPYDaAfIqtZkXeWnTtz4ioRBg8WDn-U_gNAM4l6topbQU8XnxMWtozgzX0fLM_MAN9Jy3zzqZlbPBOt_PUMb2sNUG1kO1VHiUYjkYOFkPwnP4zUDBm8mwNVaxTLLRZAwKD2emGAI-GgJDHiWcvOLjiHTc5h1xmxE9wY-9F8g3ZJvo_vKi24yccpGCo4kIpg5PGr7PrWlk0gBcXhEY2bDoSFTqh6HkqU5SI5LQQj0ngjGTT3UzREuREqI8fwvVhqOh2UaYpqlUoQkTphSl9rorKXUS-uCnGUlFHTUqCca6nDIOyy4GcVVO1o-t0GMQelwIvY5OP1nGxYiNv4hp9Vvib-ckthDwO9vO_9gO0WLUbbfi1tXtzS5agjdQK-KxPVSbTp7MvjVIpuogP3AfniPcjw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-scale+computational+screening+of+all-silica+zeolites+for+adsorptive+separation+of+ternary+%28H2S%2FCO2%2FCH4%29+mixtures&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Yoon%2C+Sunghyun&rft.au=Hassan%2C+Muhammad&rft.au=Chung%2C+Yongchul+G.&rft.date=2024-09-15&rft.issn=1385-8947&rft.volume=496&rft.spage=154116&rft_id=info:doi/10.1016%2Fj.cej.2024.154116&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2024_154116
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon