An energy stable fourth order finite difference scheme for the Cahn–Hilliard equation

In this paper we propose and analyze an energy stable numerical scheme for the Cahn–Hilliard equation, with second order accuracy in time and the fourth order finite difference approximation in space. In particular, the truncation error for the long stencil fourth order finite difference approximati...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and applied mathematics Vol. 362; pp. 574 - 595
Main Authors Cheng, Kelong, Feng, Wenqiang, Wang, Cheng, Wise, Steven M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.12.2019
Subjects
Online AccessGet full text
ISSN0377-0427
1879-1778
DOI10.1016/j.cam.2018.05.039

Cover

Abstract In this paper we propose and analyze an energy stable numerical scheme for the Cahn–Hilliard equation, with second order accuracy in time and the fourth order finite difference approximation in space. In particular, the truncation error for the long stencil fourth order finite difference approximation, over a uniform numerical grid with a periodic boundary condition, is analyzed, via the help of discrete Fourier analysis instead of the standard Taylor expansion. This in turn results in a reduced regularity requirement for the test function. In the temporal approximation, we apply a second order BDF stencil, combined with a second order extrapolation formula applied to the concave diffusion term, as well as a second order artificial Douglas–Dupont regularization term, for the sake of energy stability. As a result, the unique solvability, energy stability are established for the proposed numerical scheme, and an optimal rate convergence analysis is derived in the ℓ∞(0,T;ℓ2)∩ℓ2(0,T;Hh2) norm. A few numerical experiments are presented, which confirm the robustness and accuracy of the proposed scheme.
AbstractList In this paper we propose and analyze an energy stable numerical scheme for the Cahn–Hilliard equation, with second order accuracy in time and the fourth order finite difference approximation in space. In particular, the truncation error for the long stencil fourth order finite difference approximation, over a uniform numerical grid with a periodic boundary condition, is analyzed, via the help of discrete Fourier analysis instead of the standard Taylor expansion. This in turn results in a reduced regularity requirement for the test function. In the temporal approximation, we apply a second order BDF stencil, combined with a second order extrapolation formula applied to the concave diffusion term, as well as a second order artificial Douglas–Dupont regularization term, for the sake of energy stability. As a result, the unique solvability, energy stability are established for the proposed numerical scheme, and an optimal rate convergence analysis is derived in the ℓ∞(0,T;ℓ2)∩ℓ2(0,T;Hh2) norm. A few numerical experiments are presented, which confirm the robustness and accuracy of the proposed scheme.
Author Feng, Wenqiang
Wang, Cheng
Cheng, Kelong
Wise, Steven M.
Author_xml – sequence: 1
  givenname: Kelong
  surname: Cheng
  fullname: Cheng, Kelong
  email: zhengkelong@swust.edu.cn
  organization: School of Science, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
– sequence: 2
  givenname: Wenqiang
  surname: Feng
  fullname: Feng, Wenqiang
  email: wfeng1@utk.edu
  organization: Department of Mathematics, The University of Tennessee, Knoxville, TN 37996, United States
– sequence: 3
  givenname: Cheng
  orcidid: 0000-0003-4220-8080
  surname: Wang
  fullname: Wang, Cheng
  email: cwang1@umassd.edu
  organization: Department of Mathematics, The University of Massachusetts, North Dartmouth, MA 02747, United States
– sequence: 4
  givenname: Steven M.
  surname: Wise
  fullname: Wise, Steven M.
  email: swise1@utk.edu
  organization: Department of Mathematics, The University of Tennessee, Knoxville, TN 37996, United States
BookMark eNp9kE1OwzAQRi1UJNrCAdj5Agm28-NErKoKKFIlNiCWlmOPiavUAdtF6o47cENO0oSyYlHNYjbzPn3zZmjiegcIXVOSUkLLm02q5DZlhFYpKVKS1WdoSiteJ5TzaoKmJOM8ITnjF2gWwoYQUtY0n6LXhcPgwL_tcYiy6QCbfudji3uvwWNjnY2AtTUGPDgFOKgWtuOVx7EFvJSt-_n6Xtmus9JrDB87GW3vLtG5kV2Aq789Ry_3d8_LVbJ-enhcLtaJYjWPSclInUndVHnVZEzVNOPMFERlutBlRYt8qM9UKStT8II2hPJxQOaS5VI2ZTZH_JirfB-CByOUjb8Nope2E5SI0Y_YiMGPGP0IUojBz0DSf-S7t1vp9yeZ2yMDw0ufFrwIyo5atPWgotC9PUEfAPZggLg
CitedBy_id crossref_primary_10_1007_s12190_021_01635_5
crossref_primary_10_1016_j_rinp_2022_106031
crossref_primary_10_1016_j_cnsns_2020_105658
crossref_primary_10_1007_s10444_023_10031_5
crossref_primary_10_1007_s10915_021_01593_x
crossref_primary_10_1016_j_camwa_2021_04_016
crossref_primary_10_1016_j_cam_2022_114405
crossref_primary_10_1016_j_enganabound_2025_106118
crossref_primary_10_1007_s10915_022_01862_3
crossref_primary_10_1016_j_anucene_2023_109689
crossref_primary_10_1007_s42967_023_00350_1
crossref_primary_10_1016_j_ijmecsci_2022_107846
crossref_primary_10_1016_j_cam_2020_112855
crossref_primary_10_1137_22M1541307
crossref_primary_10_1007_s11075_019_00804_9
crossref_primary_10_1002_num_22784
crossref_primary_10_1016_j_cam_2019_05_003
crossref_primary_10_1016_j_apnum_2020_03_007
crossref_primary_10_1007_s11075_022_01355_2
crossref_primary_10_1016_j_cnsns_2021_105923
crossref_primary_10_1016_j_cnsns_2021_105766
crossref_primary_10_1016_j_camwa_2025_01_032
crossref_primary_10_1093_imanum_draa075
crossref_primary_10_1016_j_cam_2021_113843
crossref_primary_10_1007_s11425_022_2036_8
crossref_primary_10_1090_mcom_3843
crossref_primary_10_1016_j_cam_2022_114474
crossref_primary_10_1016_j_cam_2020_113300
crossref_primary_10_1007_s10915_023_02235_0
crossref_primary_10_1016_j_apnum_2020_01_004
crossref_primary_10_1007_s11075_024_01910_z
crossref_primary_10_1002_mma_7952
crossref_primary_10_1016_j_apnum_2022_11_016
crossref_primary_10_1002_mma_6229
crossref_primary_10_1002_nme_7479
crossref_primary_10_1007_s10543_021_00843_6
crossref_primary_10_1016_j_jcp_2024_113632
crossref_primary_10_2298_TSCI2202095Z
crossref_primary_10_1007_s10915_019_01008_y
crossref_primary_10_1016_j_cnsns_2024_108503
crossref_primary_10_1016_j_cpc_2020_107418
crossref_primary_10_1016_j_apnum_2020_02_012
crossref_primary_10_1016_j_jocs_2023_102200
crossref_primary_10_1016_j_cpc_2022_108558
crossref_primary_10_1016_j_camwa_2023_05_002
crossref_primary_10_1093_imanum_drae057
crossref_primary_10_1016_j_apm_2020_08_045
crossref_primary_10_1016_j_aml_2020_106412
crossref_primary_10_1016_j_enganabound_2023_07_010
crossref_primary_10_1016_j_cma_2021_114186
crossref_primary_10_3934_math_2022209
crossref_primary_10_1016_j_cam_2024_116039
crossref_primary_10_1016_j_apnum_2023_11_014
crossref_primary_10_1016_j_ijmecsci_2021_106985
crossref_primary_10_1016_j_cnsns_2025_108649
crossref_primary_10_1007_s10915_024_02753_5
crossref_primary_10_1080_00207160_2023_2266068
crossref_primary_10_1002_nme_7131
crossref_primary_10_1007_s00366_022_01618_5
crossref_primary_10_1016_j_jcp_2023_112467
crossref_primary_10_1051_m2an_2019054
crossref_primary_10_1007_s10915_019_00999_y
crossref_primary_10_1016_j_jcp_2019_109179
crossref_primary_10_1016_j_apnum_2024_12_004
crossref_primary_10_1016_j_amc_2021_126880
crossref_primary_10_1016_j_cam_2021_113875
crossref_primary_10_1016_j_cam_2024_116463
crossref_primary_10_1016_j_apnum_2022_04_007
crossref_primary_10_1002_mma_10113
crossref_primary_10_1016_j_compfluid_2021_104948
crossref_primary_10_1016_j_cam_2024_116224
crossref_primary_10_3934_era_2023068
crossref_primary_10_1016_j_jcp_2021_110854
crossref_primary_10_1137_20M1375656
crossref_primary_10_1016_j_matcom_2022_05_011
crossref_primary_10_1016_j_jcp_2021_110451
crossref_primary_10_1007_s10915_020_01276_z
crossref_primary_10_1016_j_ijmecsci_2022_107489
crossref_primary_10_1002_num_23034
crossref_primary_10_1007_s11075_019_00829_0
crossref_primary_10_1016_j_matcom_2023_07_028
crossref_primary_10_1007_s10915_023_02418_9
crossref_primary_10_1016_j_jcp_2024_112873
crossref_primary_10_1360_SSM_20223_0014
crossref_primary_10_1016_j_commatsci_2023_112187
crossref_primary_10_1016_j_cpc_2023_109050
crossref_primary_10_1007_s00285_023_01928_2
crossref_primary_10_1016_j_cnsns_2022_106717
crossref_primary_10_1016_j_cam_2021_113766
crossref_primary_10_1016_j_jcp_2019_109109
crossref_primary_10_1016_j_cam_2023_115145
crossref_primary_10_1007_s11075_022_01338_3
crossref_primary_10_1016_j_jcp_2024_112907
crossref_primary_10_1016_j_matcom_2022_05_024
crossref_primary_10_1007_s10665_021_10155_x
crossref_primary_10_1137_18M1213579
crossref_primary_10_1007_s10915_020_01196_y
crossref_primary_10_1016_j_heliyon_2023_e16597
crossref_primary_10_1186_s13662_022_03725_5
crossref_primary_10_3934_dcdss_2022110
crossref_primary_10_1016_j_amc_2022_127599
crossref_primary_10_1007_s10915_022_01861_4
crossref_primary_10_1016_j_jcp_2024_113391
crossref_primary_10_1016_j_cnsns_2020_105276
crossref_primary_10_1137_19M1288280
crossref_primary_10_1016_j_cnsns_2023_107175
crossref_primary_10_1016_j_cam_2020_112719
crossref_primary_10_1016_j_jcp_2020_109610
crossref_primary_10_1007_s11075_024_01968_9
crossref_primary_10_1007_s10915_021_01717_3
crossref_primary_10_1016_j_jcp_2022_111444
crossref_primary_10_1016_j_apnum_2024_07_008
crossref_primary_10_1016_j_physd_2024_134372
crossref_primary_10_1002_nme_7222
crossref_primary_10_1007_s40687_020_00212_9
crossref_primary_10_1016_j_matcom_2022_10_009
crossref_primary_10_1016_j_commatsci_2022_111192
crossref_primary_10_1007_s10665_021_10122_6
crossref_primary_10_1016_j_jcp_2024_113382
crossref_primary_10_1016_j_camwa_2020_12_003
crossref_primary_10_1007_s10915_020_01127_x
crossref_primary_10_1016_j_camwa_2023_11_026
crossref_primary_10_1016_j_jocs_2021_101491
crossref_primary_10_1016_j_aml_2022_108440
crossref_primary_10_1016_j_apnum_2021_07_013
crossref_primary_10_1016_j_jcp_2022_111314
Cites_doi 10.1007/s10915-011-9559-2
10.1080/00207160.2014.964694
10.1016/j.jcp.2015.02.046
10.1093/imanum/drv065
10.1137/110827119
10.1007/BF01396363
10.1090/S0025-5718-1982-0637287-3
10.1007/BF00251803
10.3934/dcds.2010.28.405
10.1137/0723001
10.4208/cicp.OA-2016-0197
10.1007/s10915-016-0228-3
10.1007/s00211-004-0546-5
10.1142/S0219891608001623
10.1016/j.jcp.2016.12.046
10.1007/s10255-015-0536-7
10.1137/130950628
10.1137/S0036144596322507
10.1002/num.20189
10.1137/0730084
10.1007/s10915-016-0251-4
10.1137/050648110
10.1016/j.jcp.2009.04.020
10.1007/s00211-014-0608-2
10.1007/s10915-010-9363-4
10.1137/110822839
10.1090/S0025-5718-99-01015-7
10.1016/j.jcp.2007.04.020
10.1007/s10915-013-9774-0
10.1007/s00211-014-0644-y
10.1007/s00211-017-0887-5
10.1007/s11425-011-4290-x
10.1007/s00211-016-0813-2
10.1007/s00211-003-0508-3
10.1002/num.22271
10.1002/mma.4497
10.1016/j.jcp.2013.04.024
10.1007/s00211-007-0104-z
10.1137/120880677
10.1137/080738143
10.1090/mcom3052
10.1016/j.jcp.2003.07.035
10.1016/j.physa.2014.04.038
10.1137/S0036142997331669
10.1023/A:1021168924020
10.1007/PL00005429
10.1137/0728069
10.1137/0726049
10.1063/1.1744102
10.1016/S0167-2789(03)00030-7
10.1137/090752675
10.1016/j.jcp.2005.07.004
10.1090/S0025-5718-1988-0935077-0
10.1016/j.jcp.2014.08.001
10.1016/j.cpc.2015.11.006
10.4310/CMS.2016.v14.n2.a8
10.1002/num.21899
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cam.2018.05.039
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1879-1778
EndPage 595
ExternalDocumentID 10_1016_j_cam_2018_05_039
S0377042718303169
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABAOU
ABJNI
ABMAC
ABVKL
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
XPP
YQT
ZMT
~02
~G-
29K
5VS
AAFWJ
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
CITATION
D-I
EFKBS
FGOYB
G-2
HZ~
NHB
R2-
SEW
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c297t-62093adb848b32c91372f50c3d5d681541772c6a8f5751b0171717ea4a24aab63
IEDL.DBID .~1
ISSN 0377-0427
IngestDate Thu Apr 24 23:00:59 EDT 2025
Thu Oct 09 00:28:01 EDT 2025
Fri Feb 23 02:31:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Second order accuracy in time
65M06
Energy stability
Optimal rate convergence analysis
65K10
Long stencil fourth order finite difference approximation
35K35
65M12
Preconditioned steepest descent iteration
35K55
Cahn–Hilliard equation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-62093adb848b32c91372f50c3d5d681541772c6a8f5751b0171717ea4a24aab63
ORCID 0000-0003-4220-8080
PageCount 22
ParticipantIDs crossref_citationtrail_10_1016_j_cam_2018_05_039
crossref_primary_10_1016_j_cam_2018_05_039
elsevier_sciencedirect_doi_10_1016_j_cam_2018_05_039
PublicationCentury 2000
PublicationDate 2019-12-15
PublicationDateYYYYMMDD 2019-12-15
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-15
  day: 15
PublicationDecade 2010
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Guan, Wang, Wise (b54) 2014; 128
Chen, Conde, Wang, Wang, Wise (b48) 2012; 52
Fornberg (b27) 1998; 40
Diegel, Feng, Wise (b56) 2015; 53
Feng, Wang, Wise, Zhang (b41) 2018
Elliott, French (b64) 1989; 26
Liu, Wang (b32) 2008; 4
Guan, Lowengrub, Wang (b52) 2017; 40
Guo, Wang, Wise, Yue (b9) 2016; 14
Baskaran, Hu, Lowengrub, Wang, Wise, Zhou (b43) 2013; 250
Cheng, Wang, Wise, Yue (b17) 2016; 69
Yan, Chen, Wang, Wise (b25) 2018; 23
Orszag, Bender (b29) 1978
Elliott, French (b63) 1987; 38
Kay, Welford (b12) 2007; 29
Cheng, Feng, Gottlieb, Wang (b67) 2015; 31
Feng, Wise (b57) 2012; 50
Wang, Wang, Wise (b51) 2010; 28
Diegel, Wang, Wise (b3) 2016; 36
Fornberg (b26) 1988; 51
Hu, Wise, Wang, Lowengrub (b45) 2009; 228
Wise, Kim, Lowengrub (b16) 2007; 226
Fathy, Wang, Wilson, Yang (b34) 2008; 5
Du, Nicolaides (b23) 1991; 28
Furihata (b8) 2001; 87
Lee, Jeong, Shin, Li, Kim (b20) 2014; 409
Barrett, Blowey (b2) 1999; 68
Hesthaven, Gottlieb, Gottlieb (b37) 2007
Khiari, Achouri, Ben Mohamed, Omrani (b13) 2007; 23
Song (b22) 2015; 92
Liu, Wang, Johnston (b30) 2003; 18
Han, Wang (b24) 2015; 290
Canuto, Quarteroni (b38) 1982; 38
Tadmor (b39) 1986; 23
Guan, Lowengrub, Wang, Wise (b53) 2014; 277
Elliott, Stuart (b5) 1993; 30
Li, Lee, Xia, Kim (b21) 2016; 200
Feng, Salgado, Wang, Wise (b40) 2017; 334
Shen, Wang, Wang, Wise (b50) 2012; 50
Wang, Wise (b46) 2011; 49
He, Liu, Tang (b10) 2006; 57
Liu, Chen, Wang, Wise (b58) 2017; 135
Barrett, Blowey, Garcke (b62) 1999; 37
Chen, Wang, Wang, Wise (b49) 2014; 59
Chen, Liu, Wang, Wise (b55) 2016; 85
Elliott, Ranner (b65) 2015; 129
Kay, Welford (b11) 2006; 212
Wise, Wang, Lowengrub (b47) 2009; 47
Chen, Feng, Liu, Wang, Wise (b61) 2018
Eyre (b42) 1998
Wang, Liu, Johnston (b31) 2004; 97
Baskaran, Lowengrub, Wang, Wise (b44) 2013; 51
Li, Sun, Zhao (b19) 2012; 55
Li, Qiao (b18) 2017; 70
Elliott, Zheng (b66) 1986; 96
Kim, Kang, Lowengrub (b14) 2003; 193
Wise (b59) 2010; 44
Cahn, Hilliard (b1) 1958; 28
Feng, Prohl (b7) 2004; 99
Boyd (b35) 2001
Liu, Shen (b60) 2003; 179
Diegel, Wang, Wang, Wise (b4) 2017; 137
Elliott, French, Milner (b6) 1989; 54
Gottlieb, Orszag (b36) 1983
Wang, Zhao, Guo (b15) 2015; 31
Iserles (b28) 2009
Samelson, Temam, Wang, Wang (b33) 2007; 107
Wise (10.1016/j.cam.2018.05.039_b47) 2009; 47
Li (10.1016/j.cam.2018.05.039_b18) 2017; 70
Elliott (10.1016/j.cam.2018.05.039_b65) 2015; 129
Lee (10.1016/j.cam.2018.05.039_b20) 2014; 409
Feng (10.1016/j.cam.2018.05.039_b40) 2017; 334
Guan (10.1016/j.cam.2018.05.039_b53) 2014; 277
Wang (10.1016/j.cam.2018.05.039_b31) 2004; 97
Liu (10.1016/j.cam.2018.05.039_b32) 2008; 4
Elliott (10.1016/j.cam.2018.05.039_b5) 1993; 30
Liu (10.1016/j.cam.2018.05.039_b58) 2017; 135
Diegel (10.1016/j.cam.2018.05.039_b3) 2016; 36
Wang (10.1016/j.cam.2018.05.039_b15) 2015; 31
Iserles (10.1016/j.cam.2018.05.039_b28) 2009
Chen (10.1016/j.cam.2018.05.039_b49) 2014; 59
Chen (10.1016/j.cam.2018.05.039_b55) 2016; 85
Baskaran (10.1016/j.cam.2018.05.039_b43) 2013; 250
Elliott (10.1016/j.cam.2018.05.039_b6) 1989; 54
Samelson (10.1016/j.cam.2018.05.039_b33) 2007; 107
Diegel (10.1016/j.cam.2018.05.039_b4) 2017; 137
Chen (10.1016/j.cam.2018.05.039_b61) 2018
Han (10.1016/j.cam.2018.05.039_b24) 2015; 290
Orszag (10.1016/j.cam.2018.05.039_b29) 1978
Liu (10.1016/j.cam.2018.05.039_b60) 2003; 179
Kay (10.1016/j.cam.2018.05.039_b11) 2006; 212
Fornberg (10.1016/j.cam.2018.05.039_b27) 1998; 40
Feng (10.1016/j.cam.2018.05.039_b57) 2012; 50
Wise (10.1016/j.cam.2018.05.039_b16) 2007; 226
Tadmor (10.1016/j.cam.2018.05.039_b39) 1986; 23
Du (10.1016/j.cam.2018.05.039_b23) 1991; 28
Kay (10.1016/j.cam.2018.05.039_b12) 2007; 29
Canuto (10.1016/j.cam.2018.05.039_b38) 1982; 38
Baskaran (10.1016/j.cam.2018.05.039_b44) 2013; 51
Eyre (10.1016/j.cam.2018.05.039_b42) 1998
Barrett (10.1016/j.cam.2018.05.039_b2) 1999; 68
Guan (10.1016/j.cam.2018.05.039_b54) 2014; 128
Fornberg (10.1016/j.cam.2018.05.039_b26) 1988; 51
Gottlieb (10.1016/j.cam.2018.05.039_b36) 1983
Cahn (10.1016/j.cam.2018.05.039_b1) 1958; 28
Hu (10.1016/j.cam.2018.05.039_b45) 2009; 228
Song (10.1016/j.cam.2018.05.039_b22) 2015; 92
Wise (10.1016/j.cam.2018.05.039_b59) 2010; 44
Elliott (10.1016/j.cam.2018.05.039_b63) 1987; 38
Feng (10.1016/j.cam.2018.05.039_b41) 2018
Cheng (10.1016/j.cam.2018.05.039_b17) 2016; 69
Khiari (10.1016/j.cam.2018.05.039_b13) 2007; 23
Cheng (10.1016/j.cam.2018.05.039_b67) 2015; 31
Guan (10.1016/j.cam.2018.05.039_b52) 2017; 40
Fathy (10.1016/j.cam.2018.05.039_b34) 2008; 5
Barrett (10.1016/j.cam.2018.05.039_b62) 1999; 37
Shen (10.1016/j.cam.2018.05.039_b50) 2012; 50
Kim (10.1016/j.cam.2018.05.039_b14) 2003; 193
Wang (10.1016/j.cam.2018.05.039_b46) 2011; 49
Boyd (10.1016/j.cam.2018.05.039_b35) 2001
Li (10.1016/j.cam.2018.05.039_b19) 2012; 55
Yan (10.1016/j.cam.2018.05.039_b25) 2018; 23
Elliott (10.1016/j.cam.2018.05.039_b66) 1986; 96
Chen (10.1016/j.cam.2018.05.039_b48) 2012; 52
Furihata (10.1016/j.cam.2018.05.039_b8) 2001; 87
Hesthaven (10.1016/j.cam.2018.05.039_b37) 2007
He (10.1016/j.cam.2018.05.039_b10) 2006; 57
Elliott (10.1016/j.cam.2018.05.039_b64) 1989; 26
Wang (10.1016/j.cam.2018.05.039_b51) 2010; 28
Diegel (10.1016/j.cam.2018.05.039_b56) 2015; 53
Guo (10.1016/j.cam.2018.05.039_b9) 2016; 14
Li (10.1016/j.cam.2018.05.039_b21) 2016; 200
Feng (10.1016/j.cam.2018.05.039_b7) 2004; 99
Liu (10.1016/j.cam.2018.05.039_b30) 2003; 18
References_xml – volume: 200
  start-page: 108
  year: 2016
  end-page: 116
  ident: b21
  article-title: A compact fourth-order finite difference scheme for the three-dimensional Cahn-Hilliard equation
  publication-title: Comput. Phys. Comm.
– volume: 128
  start-page: 377
  year: 2014
  end-page: 406
  ident: b54
  article-title: A convergent convex splitting scheme for the periodic nonlocal Cahn-Hilliard equation
  publication-title: Numer. Math.
– volume: 228
  start-page: 5323
  year: 2009
  end-page: 5339
  ident: b45
  article-title: Stable and efficient finite-difference nonlinear-multigrid schemes for the phase-field crystal equation
  publication-title: J. Comput. Phys.
– volume: 212
  start-page: 288
  year: 2006
  end-page: 304
  ident: b11
  article-title: A multigrid finite element solver for the Cahn-Hilliard equation
  publication-title: J. Comput. Phys.
– volume: 38
  start-page: 97
  year: 1987
  end-page: 128
  ident: b63
  article-title: Numerical studies of the Cahn-Hilliard equation for phase separation
  publication-title: IMA J. Numer. Anal.
– volume: 96
  start-page: 339
  year: 1986
  end-page: 357
  ident: b66
  article-title: On the Cahn-Hilliard equation
  publication-title: Arch. Ration. Mech. Anal.
– year: 1978
  ident: b29
  article-title: Advanced Mathematical Methods for Scientists and Engineers
– volume: 23
  start-page: 572
  year: 2018
  end-page: 602
  ident: b25
  article-title: A second-order energy stable BDF numerical scheme for the Cahn-Hilliard equation
  publication-title: Commun. Comput. Phys.
– volume: 44
  start-page: 38
  year: 2010
  end-page: 68
  ident: b59
  article-title: Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn-Hilliard-Hele-Shaw system of equations
  publication-title: J. Sci. Comput.
– volume: 50
  start-page: 1320
  year: 2012
  end-page: 1343
  ident: b57
  article-title: Analysis of a fully discrete finite element approximation of a Darcy-Cahn-Hilliard diffuse interface model for the Hele-Shaw flow
  publication-title: SIAM J. Numer. Anal.
– volume: 29
  start-page: 2241
  year: 2007
  end-page: 2257
  ident: b12
  article-title: Efficient numerical solution of Cahn-Hilliard-Navier-Stokes fluids in 2D
  publication-title: SIAM J. Sci. Comput.
– volume: 30
  start-page: 1622
  year: 1993
  end-page: 1663
  ident: b5
  article-title: The global dynamics of discrete semilinear parabolic equations
  publication-title: SIAM J. Numer. Anal.
– volume: 51
  start-page: 2851
  year: 2013
  end-page: 2873
  ident: b44
  article-title: Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation
  publication-title: SIAM J. Numer. Anal.
– year: 2018
  ident: b41
  article-title: A second-order energy stable Backward Differentiation Formula method for the epitaxial thin film equation with slope selection
  publication-title: Numer. Methods Partial Differential Equations
– volume: 69
  start-page: 1083
  year: 2016
  end-page: 1114
  ident: b17
  article-title: A second-order, weakly energy-stable pseudo-spectral scheme for the Cahn-Hilliard equation and its solution by the homogeneous linear iteration method
  publication-title: J. Sci. Comput.
– volume: 277
  start-page: 48
  year: 2014
  end-page: 71
  ident: b53
  article-title: Second-order convex splitting schemes for nonlocal Cahn-Hilliard and Allen-Cahn equations
  publication-title: J. Comput. Phys.
– volume: 36
  start-page: 1867
  year: 2016
  end-page: 1897
  ident: b3
  article-title: Stability and convergence of a second order mixed finite element method for the Cahn-Hilliard equation
  publication-title: IMA J. Numer. Anal.
– volume: 107
  start-page: 669
  year: 2007
  end-page: 705
  ident: b33
  article-title: A fourth-order numerical method for the planetary geostrophic equations with inviscid geostrophic balance
  publication-title: Numer. Math.
– volume: 135
  start-page: 679
  year: 2017
  end-page: 709
  ident: b58
  article-title: Error analysis of a mixed finite element method for a Cahn-Hilliard-Hele-Shaw system
  publication-title: Numer. Math.
– volume: 85
  start-page: 2231
  year: 2016
  end-page: 2257
  ident: b55
  article-title: An optimal-rate convergence analysis of a fully discrete finite difference scheme for Cahn-Hilliard-Hele-Shaw equation
  publication-title: Math. Comp.
– volume: 409
  start-page: 17
  year: 2014
  end-page: 28
  ident: b20
  article-title: A fourth-order spatial accurate and practically stable compact scheme for the Cahn-Hilliard equation
  publication-title: Physica A
– volume: 50
  start-page: 105
  year: 2012
  end-page: 125
  ident: b50
  article-title: Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: Application to thin film epitaxy
  publication-title: SIAM J. Numer. Anal.
– volume: 193
  start-page: 511
  year: 2003
  end-page: 543
  ident: b14
  article-title: Conservative multigrid methods for Cahn-Hilliard fluids
  publication-title: J. Comput. Phys.
– volume: 23
  start-page: 437
  year: 2007
  end-page: 455
  ident: b13
  article-title: Finite difference approximate solutions for the Cahn-Hilliard equation
  publication-title: Numer. Methods Partial Differential Equations
– volume: 129
  start-page: 483
  year: 2015
  end-page: 534
  ident: b65
  article-title: Evolving surface finite element method for the Cahn-Hilliard equation
  publication-title: Numer. Math.
– volume: 59
  start-page: 574
  year: 2014
  end-page: 601
  ident: b49
  article-title: A linear iteration algorithm for energy stable second order scheme for a thin film model without slope selection
  publication-title: J. Sci. Comput.
– volume: 38
  start-page: 67
  year: 1982
  end-page: 86
  ident: b38
  article-title: Approximation results for orthogonal polynomials in Sobolev spaces
  publication-title: Math. Comp.
– volume: 31
  start-page: 202
  year: 2015
  end-page: 224
  ident: b67
  article-title: A Fourier pseudospectral method for the “Good” Boussinesq equation with second-order temporal accuracy
  publication-title: Numer. Methods Partial Differential Equations
– volume: 226
  start-page: 414
  year: 2007
  end-page: 446
  ident: b16
  article-title: Solving the regularized, strongly anisotropic Chan-Hilliard equation by an adaptive nonlinear multigrid method
  publication-title: J. Comput. Phys.
– volume: 137
  start-page: 495
  year: 2017
  end-page: 534
  ident: b4
  article-title: Convergence analysis and error estimates for a second order accurate finite element method for the Cahn-Hilliard-Navier-Stokes system
  publication-title: Numer. Math.
– volume: 4
  start-page: 26
  year: 2008
  end-page: 55
  ident: b32
  article-title: A fourth order numerical method for the primitive equations formulated in mean vorticity
  publication-title: Commun. Comput. Phys.
– volume: 28
  start-page: 258
  year: 1958
  end-page: 267
  ident: b1
  article-title: Free energy of a nonuniform system. i. interfacial free energy
  publication-title: J. Chem. Phys.
– volume: 87
  start-page: 675
  year: 2001
  end-page: 699
  ident: b8
  article-title: A stable and conservative finite difference scheme for the Cahn-Hilliard equation
  publication-title: Numer. Math.
– volume: 54
  start-page: 575
  year: 1989
  end-page: 590
  ident: b6
  article-title: A second-order splitting method for the Cahn-Hilliard equation
  publication-title: Numer. Math.
– volume: 49
  start-page: 945
  year: 2011
  end-page: 969
  ident: b46
  article-title: An energy stable and convergent finite-difference scheme for the modified phase field crystal equation
  publication-title: SIAM J. Numer. Anal.
– volume: 5
  start-page: 613
  year: 2008
  end-page: 642
  ident: b34
  article-title: A fourth order difference scheme for the maxwell equations on yee grid
  publication-title: J. Hyperbolic Differ. Equ.
– volume: 51
  start-page: 699
  year: 1988
  end-page: 706
  ident: b26
  article-title: Generation of finite difference formulas on arbitrarily spaced grids
  publication-title: Math. Comp.
– volume: 14
  start-page: 489
  year: 2016
  end-page: 515
  ident: b9
  article-title: An
  publication-title: Commun. Math. Sci.
– volume: 334
  start-page: 45
  year: 2017
  end-page: 67
  ident: b40
  article-title: Preconditioned steepest descent methods for some nonlinear elliptic equations involving p-Laplacian terms
  publication-title: J. Comput. Phys.
– year: 2007
  ident: b37
  article-title: Spectral Methods for Time-Dependent Problems, Vol. 21
– volume: 290
  start-page: 139
  year: 2015
  end-page: 156
  ident: b24
  article-title: A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation
  publication-title: J. Comput. Phys.
– year: 2009
  ident: b28
  article-title: A First Course in the Numerical Analysis of Differential Equations, Vol. 44
– volume: 23
  start-page: 1
  year: 1986
  end-page: 10
  ident: b39
  article-title: The exponential accuracy of Fourier and Chebyshev differencing methods
  publication-title: SIAM J. Numer. Anal.
– volume: 250
  start-page: 270
  year: 2013
  end-page: 292
  ident: b43
  article-title: Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation
  publication-title: J. Comput. Phys.
– year: 1983
  ident: b36
  article-title: Numerical Analysis of Spectral Methods: Theory and Applications
– volume: 37
  start-page: 286
  year: 1999
  end-page: 318
  ident: b62
  article-title: Finite element approximation of the Cahn-Hilliard equation with degenerate mobility
  publication-title: SIAM J. Numer. Anal.
– year: 2001
  ident: b35
  article-title: Chebyshev and Fourier Spectral Methods
– volume: 179
  start-page: 211
  year: 2003
  end-page: 228
  ident: b60
  article-title: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method
  publication-title: Physica D
– volume: 31
  start-page: 863
  year: 2015
  end-page: 878
  ident: b15
  article-title: A class of stable and conservative finite difference schemes for the Cahn-Hilliard equation
  publication-title: Acta Math. Appl. Sin. Engl. Ser.
– volume: 18
  start-page: 253
  year: 2003
  end-page: 285
  ident: b30
  article-title: A fourth order scheme for incompressible Boussinesq equations
  publication-title: J. Sci. Comput.
– volume: 52
  start-page: 546
  year: 2012
  end-page: 562
  ident: b48
  article-title: A linear energy stable scheme for a thin film model without slope selection
  publication-title: J. Sci. Comput.
– year: 2018
  ident: b61
  article-title: A second order energy stable scheme for the Cahn-Hilliard-Hele-Shaw equation
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
– volume: 28
  start-page: 1310
  year: 1991
  end-page: 1322
  ident: b23
  article-title: Numerical analysis of a continuum model of a phase transition
  publication-title: SIAM J. Numer. Anal.
– volume: 92
  start-page: 2091
  year: 2015
  end-page: 2108
  ident: b22
  article-title: Energy stable and large time-stepping methods for the Cahn-Hilliard equation
  publication-title: Int. J. Comput. Math.
– volume: 57
  start-page: 616
  year: 2006
  end-page: 628
  ident: b10
  article-title: On large time-stepping methods for the Cahn-Hilliard equation
  publication-title: Appl. Numer. Math.
– volume: 53
  start-page: 127
  year: 2015
  end-page: 152
  ident: b56
  article-title: Convergence analysis of an unconditionally stable method for a Cahn-Hilliard-Stokes system of equations
  publication-title: SIAM J. Numer. Anal.
– volume: 99
  start-page: 47
  year: 2004
  end-page: 84
  ident: b7
  article-title: Error analysis of a mixed finite element method for the Cahn-Hilliard equation
  publication-title: Numer. Math.
– volume: 28
  start-page: 405
  year: 2010
  end-page: 423
  ident: b51
  article-title: Unconditionally stable schemes for equations of thin film epitaxy
  publication-title: Discrete Contin. Dyn. Syst.
– volume: 40
  start-page: 685
  year: 1998
  end-page: 691
  ident: b27
  article-title: Classroom note: Calculation of weights in finite difference formulas
  publication-title: SIAM Rev.
– volume: 97
  start-page: 555
  year: 2004
  end-page: 594
  ident: b31
  article-title: Analysis of a fourth order finite difference method for the incompressible Boussinesq equations
  publication-title: Numer. Math.
– volume: 70
  start-page: 301
  year: 2017
  end-page: 341
  ident: b18
  article-title: On second order semi-implicit Fourier spectral methods for 2D Cahn-Hilliard equations
  publication-title: J. Sci. Comput.
– start-page: 1686
  year: 1998
  end-page: 1712
  ident: b42
  article-title: Unconditionally gradient stable time marching the Cahn-Hilliard equation
  publication-title: Computational and Mathematical Models of Microstructural Evolution, Vol. 53
– volume: 47
  start-page: 2269
  year: 2009
  end-page: 2288
  ident: b47
  article-title: An energy stable and convergent finite-difference scheme for the phase field crystal equation
  publication-title: SIAM J. Numer. Anal.
– volume: 26
  start-page: 884
  year: 1989
  end-page: 903
  ident: b64
  article-title: A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation
  publication-title: SIAM J. Numer. Anal.
– volume: 55
  start-page: 805
  year: 2012
  end-page: 826
  ident: b19
  article-title: A three level linearized compact difference scheme for the Cahn-Hilliard equation
  publication-title: Sci. China Math.
– volume: 68
  start-page: 487
  year: 1999
  end-page: 517
  ident: b2
  article-title: Finite element approximation of the Cahn-Hilliard equation with concentration dependent mobility
  publication-title: Math. Comp.
– volume: 40
  start-page: 6836
  year: 2017
  end-page: 6863
  ident: b52
  article-title: Convergence analysis for second order accurate schemes for the periodic nonlocal Allen-Cahn and Cahn-Hilliard equations
  publication-title: Math. Methods Appl. Sci.
– volume: 52
  start-page: 546
  year: 2012
  ident: 10.1016/j.cam.2018.05.039_b48
  article-title: A linear energy stable scheme for a thin film model without slope selection
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-011-9559-2
– volume: 92
  start-page: 2091
  year: 2015
  ident: 10.1016/j.cam.2018.05.039_b22
  article-title: Energy stable and large time-stepping methods for the Cahn-Hilliard equation
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160.2014.964694
– volume: 290
  start-page: 139
  year: 2015
  ident: 10.1016/j.cam.2018.05.039_b24
  article-title: A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.02.046
– volume: 36
  start-page: 1867
  year: 2016
  ident: 10.1016/j.cam.2018.05.039_b3
  article-title: Stability and convergence of a second order mixed finite element method for the Cahn-Hilliard equation
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drv065
– volume: 50
  start-page: 1320
  year: 2012
  ident: 10.1016/j.cam.2018.05.039_b57
  article-title: Analysis of a fully discrete finite element approximation of a Darcy-Cahn-Hilliard diffuse interface model for the Hele-Shaw flow
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/110827119
– volume: 54
  start-page: 575
  year: 1989
  ident: 10.1016/j.cam.2018.05.039_b6
  article-title: A second-order splitting method for the Cahn-Hilliard equation
  publication-title: Numer. Math.
  doi: 10.1007/BF01396363
– volume: 38
  start-page: 67
  year: 1982
  ident: 10.1016/j.cam.2018.05.039_b38
  article-title: Approximation results for orthogonal polynomials in Sobolev spaces
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-1982-0637287-3
– year: 2007
  ident: 10.1016/j.cam.2018.05.039_b37
– volume: 96
  start-page: 339
  year: 1986
  ident: 10.1016/j.cam.2018.05.039_b66
  article-title: On the Cahn-Hilliard equation
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00251803
– volume: 28
  start-page: 405
  year: 2010
  ident: 10.1016/j.cam.2018.05.039_b51
  article-title: Unconditionally stable schemes for equations of thin film epitaxy
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2010.28.405
– volume: 23
  start-page: 1
  year: 1986
  ident: 10.1016/j.cam.2018.05.039_b39
  article-title: The exponential accuracy of Fourier and Chebyshev differencing methods
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0723001
– volume: 23
  start-page: 572
  year: 2018
  ident: 10.1016/j.cam.2018.05.039_b25
  article-title: A second-order energy stable BDF numerical scheme for the Cahn-Hilliard equation
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.OA-2016-0197
– volume: 69
  start-page: 1083
  year: 2016
  ident: 10.1016/j.cam.2018.05.039_b17
  article-title: A second-order, weakly energy-stable pseudo-spectral scheme for the Cahn-Hilliard equation and its solution by the homogeneous linear iteration method
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-016-0228-3
– volume: 99
  start-page: 47
  year: 2004
  ident: 10.1016/j.cam.2018.05.039_b7
  article-title: Error analysis of a mixed finite element method for the Cahn-Hilliard equation
  publication-title: Numer. Math.
  doi: 10.1007/s00211-004-0546-5
– volume: 5
  start-page: 613
  issue: 03
  year: 2008
  ident: 10.1016/j.cam.2018.05.039_b34
  article-title: A fourth order difference scheme for the maxwell equations on yee grid
  publication-title: J. Hyperbolic Differ. Equ.
  doi: 10.1142/S0219891608001623
– volume: 334
  start-page: 45
  year: 2017
  ident: 10.1016/j.cam.2018.05.039_b40
  article-title: Preconditioned steepest descent methods for some nonlinear elliptic equations involving p-Laplacian terms
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.12.046
– volume: 31
  start-page: 863
  year: 2015
  ident: 10.1016/j.cam.2018.05.039_b15
  article-title: A class of stable and conservative finite difference schemes for the Cahn-Hilliard equation
  publication-title: Acta Math. Appl. Sin. Engl. Ser.
  doi: 10.1007/s10255-015-0536-7
– year: 2009
  ident: 10.1016/j.cam.2018.05.039_b28
– volume: 53
  start-page: 127
  year: 2015
  ident: 10.1016/j.cam.2018.05.039_b56
  article-title: Convergence analysis of an unconditionally stable method for a Cahn-Hilliard-Stokes system of equations
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/130950628
– volume: 40
  start-page: 685
  issue: 3
  year: 1998
  ident: 10.1016/j.cam.2018.05.039_b27
  article-title: Classroom note: Calculation of weights in finite difference formulas
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144596322507
– volume: 23
  start-page: 437
  year: 2007
  ident: 10.1016/j.cam.2018.05.039_b13
  article-title: Finite difference approximate solutions for the Cahn-Hilliard equation
  publication-title: Numer. Methods Partial Differential Equations
  doi: 10.1002/num.20189
– volume: 30
  start-page: 1622
  year: 1993
  ident: 10.1016/j.cam.2018.05.039_b5
  article-title: The global dynamics of discrete semilinear parabolic equations
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0730084
– volume: 70
  start-page: 301
  year: 2017
  ident: 10.1016/j.cam.2018.05.039_b18
  article-title: On second order semi-implicit Fourier spectral methods for 2D Cahn-Hilliard equations
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-016-0251-4
– volume: 57
  start-page: 616
  issue: 4
  year: 2006
  ident: 10.1016/j.cam.2018.05.039_b10
  article-title: On large time-stepping methods for the Cahn-Hilliard equation
  publication-title: Appl. Numer. Math.
– volume: 4
  start-page: 26
  year: 2008
  ident: 10.1016/j.cam.2018.05.039_b32
  article-title: A fourth order numerical method for the primitive equations formulated in mean vorticity
  publication-title: Commun. Comput. Phys.
– volume: 29
  start-page: 2241
  year: 2007
  ident: 10.1016/j.cam.2018.05.039_b12
  article-title: Efficient numerical solution of Cahn-Hilliard-Navier-Stokes fluids in 2D
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/050648110
– volume: 228
  start-page: 5323
  year: 2009
  ident: 10.1016/j.cam.2018.05.039_b45
  article-title: Stable and efficient finite-difference nonlinear-multigrid schemes for the phase-field crystal equation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.04.020
– volume: 128
  start-page: 377
  year: 2014
  ident: 10.1016/j.cam.2018.05.039_b54
  article-title: A convergent convex splitting scheme for the periodic nonlocal Cahn-Hilliard equation
  publication-title: Numer. Math.
  doi: 10.1007/s00211-014-0608-2
– volume: 44
  start-page: 38
  year: 2010
  ident: 10.1016/j.cam.2018.05.039_b59
  article-title: Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn-Hilliard-Hele-Shaw system of equations
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-010-9363-4
– volume: 50
  start-page: 105
  year: 2012
  ident: 10.1016/j.cam.2018.05.039_b50
  article-title: Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: Application to thin film epitaxy
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/110822839
– volume: 68
  start-page: 487
  year: 1999
  ident: 10.1016/j.cam.2018.05.039_b2
  article-title: Finite element approximation of the Cahn-Hilliard equation with concentration dependent mobility
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-99-01015-7
– volume: 38
  start-page: 97
  year: 1987
  ident: 10.1016/j.cam.2018.05.039_b63
  article-title: Numerical studies of the Cahn-Hilliard equation for phase separation
  publication-title: IMA J. Numer. Anal.
– volume: 226
  start-page: 414
  year: 2007
  ident: 10.1016/j.cam.2018.05.039_b16
  article-title: Solving the regularized, strongly anisotropic Chan-Hilliard equation by an adaptive nonlinear multigrid method
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2007.04.020
– volume: 59
  start-page: 574
  year: 2014
  ident: 10.1016/j.cam.2018.05.039_b49
  article-title: A linear iteration algorithm for energy stable second order scheme for a thin film model without slope selection
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-013-9774-0
– volume: 129
  start-page: 483
  year: 2015
  ident: 10.1016/j.cam.2018.05.039_b65
  article-title: Evolving surface finite element method for the Cahn-Hilliard equation
  publication-title: Numer. Math.
  doi: 10.1007/s00211-014-0644-y
– volume: 137
  start-page: 495
  year: 2017
  ident: 10.1016/j.cam.2018.05.039_b4
  article-title: Convergence analysis and error estimates for a second order accurate finite element method for the Cahn-Hilliard-Navier-Stokes system
  publication-title: Numer. Math.
  doi: 10.1007/s00211-017-0887-5
– volume: 55
  start-page: 805
  year: 2012
  ident: 10.1016/j.cam.2018.05.039_b19
  article-title: A three level linearized compact difference scheme for the Cahn-Hilliard equation
  publication-title: Sci. China Math.
  doi: 10.1007/s11425-011-4290-x
– volume: 135
  start-page: 679
  year: 2017
  ident: 10.1016/j.cam.2018.05.039_b58
  article-title: Error analysis of a mixed finite element method for a Cahn-Hilliard-Hele-Shaw system
  publication-title: Numer. Math.
  doi: 10.1007/s00211-016-0813-2
– volume: 97
  start-page: 555
  issue: 3
  year: 2004
  ident: 10.1016/j.cam.2018.05.039_b31
  article-title: Analysis of a fourth order finite difference method for the incompressible Boussinesq equations
  publication-title: Numer. Math.
  doi: 10.1007/s00211-003-0508-3
– year: 2018
  ident: 10.1016/j.cam.2018.05.039_b41
  article-title: A second-order energy stable Backward Differentiation Formula method for the epitaxial thin film equation with slope selection
  publication-title: Numer. Methods Partial Differential Equations
  doi: 10.1002/num.22271
– volume: 40
  start-page: 6836
  issue: 18
  year: 2017
  ident: 10.1016/j.cam.2018.05.039_b52
  article-title: Convergence analysis for second order accurate schemes for the periodic nonlocal Allen-Cahn and Cahn-Hilliard equations
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.4497
– volume: 250
  start-page: 270
  year: 2013
  ident: 10.1016/j.cam.2018.05.039_b43
  article-title: Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.04.024
– volume: 107
  start-page: 669
  issue: 4
  year: 2007
  ident: 10.1016/j.cam.2018.05.039_b33
  article-title: A fourth-order numerical method for the planetary geostrophic equations with inviscid geostrophic balance
  publication-title: Numer. Math.
  doi: 10.1007/s00211-007-0104-z
– volume: 51
  start-page: 2851
  year: 2013
  ident: 10.1016/j.cam.2018.05.039_b44
  article-title: Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/120880677
– volume: 47
  start-page: 2269
  year: 2009
  ident: 10.1016/j.cam.2018.05.039_b47
  article-title: An energy stable and convergent finite-difference scheme for the phase field crystal equation
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/080738143
– volume: 85
  start-page: 2231
  year: 2016
  ident: 10.1016/j.cam.2018.05.039_b55
  article-title: An optimal-rate convergence analysis of a fully discrete finite difference scheme for Cahn-Hilliard-Hele-Shaw equation
  publication-title: Math. Comp.
  doi: 10.1090/mcom3052
– volume: 193
  start-page: 511
  year: 2003
  ident: 10.1016/j.cam.2018.05.039_b14
  article-title: Conservative multigrid methods for Cahn-Hilliard fluids
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2003.07.035
– start-page: 1686
  year: 1998
  ident: 10.1016/j.cam.2018.05.039_b42
  article-title: Unconditionally gradient stable time marching the Cahn-Hilliard equation
– volume: 409
  start-page: 17
  year: 2014
  ident: 10.1016/j.cam.2018.05.039_b20
  article-title: A fourth-order spatial accurate and practically stable compact scheme for the Cahn-Hilliard equation
  publication-title: Physica A
  doi: 10.1016/j.physa.2014.04.038
– year: 2001
  ident: 10.1016/j.cam.2018.05.039_b35
– volume: 37
  start-page: 286
  year: 1999
  ident: 10.1016/j.cam.2018.05.039_b62
  article-title: Finite element approximation of the Cahn-Hilliard equation with degenerate mobility
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142997331669
– year: 1978
  ident: 10.1016/j.cam.2018.05.039_b29
– volume: 18
  start-page: 253
  issue: 2
  year: 2003
  ident: 10.1016/j.cam.2018.05.039_b30
  article-title: A fourth order scheme for incompressible Boussinesq equations
  publication-title: J. Sci. Comput.
  doi: 10.1023/A:1021168924020
– volume: 87
  start-page: 675
  year: 2001
  ident: 10.1016/j.cam.2018.05.039_b8
  article-title: A stable and conservative finite difference scheme for the Cahn-Hilliard equation
  publication-title: Numer. Math.
  doi: 10.1007/PL00005429
– volume: 28
  start-page: 1310
  year: 1991
  ident: 10.1016/j.cam.2018.05.039_b23
  article-title: Numerical analysis of a continuum model of a phase transition
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0728069
– volume: 26
  start-page: 884
  year: 1989
  ident: 10.1016/j.cam.2018.05.039_b64
  article-title: A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0726049
– volume: 28
  start-page: 258
  year: 1958
  ident: 10.1016/j.cam.2018.05.039_b1
  article-title: Free energy of a nonuniform system. i. interfacial free energy
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1744102
– volume: 179
  start-page: 211
  year: 2003
  ident: 10.1016/j.cam.2018.05.039_b60
  article-title: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method
  publication-title: Physica D
  doi: 10.1016/S0167-2789(03)00030-7
– volume: 49
  start-page: 945
  year: 2011
  ident: 10.1016/j.cam.2018.05.039_b46
  article-title: An energy stable and convergent finite-difference scheme for the modified phase field crystal equation
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/090752675
– volume: 212
  start-page: 288
  year: 2006
  ident: 10.1016/j.cam.2018.05.039_b11
  article-title: A multigrid finite element solver for the Cahn-Hilliard equation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.07.004
– year: 2018
  ident: 10.1016/j.cam.2018.05.039_b61
  article-title: A second order energy stable scheme for the Cahn-Hilliard-Hele-Shaw equation
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
– volume: 51
  start-page: 699
  issue: 184
  year: 1988
  ident: 10.1016/j.cam.2018.05.039_b26
  article-title: Generation of finite difference formulas on arbitrarily spaced grids
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-1988-0935077-0
– volume: 277
  start-page: 48
  year: 2014
  ident: 10.1016/j.cam.2018.05.039_b53
  article-title: Second-order convex splitting schemes for nonlocal Cahn-Hilliard and Allen-Cahn equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.08.001
– volume: 200
  start-page: 108
  year: 2016
  ident: 10.1016/j.cam.2018.05.039_b21
  article-title: A compact fourth-order finite difference scheme for the three-dimensional Cahn-Hilliard equation
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2015.11.006
– volume: 14
  start-page: 489
  year: 2016
  ident: 10.1016/j.cam.2018.05.039_b9
  article-title: An H2 convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn-Hilliard equation
  publication-title: Commun. Math. Sci.
  doi: 10.4310/CMS.2016.v14.n2.a8
– year: 1983
  ident: 10.1016/j.cam.2018.05.039_b36
– volume: 31
  start-page: 202
  issue: 1
  year: 2015
  ident: 10.1016/j.cam.2018.05.039_b67
  article-title: A Fourier pseudospectral method for the “Good” Boussinesq equation with second-order temporal accuracy
  publication-title: Numer. Methods Partial Differential Equations
  doi: 10.1002/num.21899
SSID ssj0006914
Score 2.6234488
Snippet In this paper we propose and analyze an energy stable numerical scheme for the Cahn–Hilliard equation, with second order accuracy in time and the fourth order...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 574
SubjectTerms Cahn–Hilliard equation
Energy stability
Long stencil fourth order finite difference approximation
Optimal rate convergence analysis
Preconditioned steepest descent iteration
Second order accuracy in time
Title An energy stable fourth order finite difference scheme for the Cahn–Hilliard equation
URI https://dx.doi.org/10.1016/j.cam.2018.05.039
Volume 362
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Open Access Journals
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 20211105
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: IXB
  dateStart: 19750301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 20211105
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: ACRLP
  dateStart: 19950220
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 20211015
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: AIKHN
  dateStart: 19950220
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-1778
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: AKRWK
  dateStart: 19750301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvQgPrE-yh48CbHJZpNsjrVYUqW9aLG3sNkHrdRYa7yK_8F_6C9xdpNUBfUgOW2YCWEYZr9NZr4PoROfMFdTHTqSEO0ApBYO04YIWQd-BkcxJaxqyWAYJiN6OQ7GDdStZ2FMW2VV-8uabqt1daddRbM9n07b164fRUYpApISMjM0Q3yURkbF4Ozls80jjEt-bzB2jHX9Z9P2eAluhtE9Zsk7jV74T3vTl_2mt4k2KqCIO-W7bKGGyrfR-mDJsvq0g247OVZ2dg8DxstmCmvwKibY8mliPTV4EtcSKEJhOMmqe2O1wPAY3OWT_P31LbGfXBYSq8eS93sXjXoXN93EqYQSHEHiqHBC4sY-lxmjLPOJiD0_IjpwhS8DGTIASR5gaBFyps1flsxQ5MClOOWEcp6F_h5ayR9ytY9wwJTnxVpyArH1OI1hB5MAIQMNOI_IrIncOkSpqFjEjZjFLK3bxe5SiGpqopq6QQpRbaLTpcu8pND4y5jWcU-_5UEKJf53t4P_uR2iNVhZPQgvOEIrxeJZHQPIKLKWzaIWWu30r5IhrPrj8w-Ws9CU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTl6YEJKTRx4jzGqqIK0HahFd0sx7HVohJKCSviP_AP-SWcnaSABAwoW3IXRafT-XN8930InboktJWnfCslRFkAqYUVKk2ErKibwFZMCqNa0uv78dC7GtFRDbWrWRjdVlnW_qKmm2pd3mmW0WzOJpPmje0GgVaKgKSEzPSjJbTsURLoHdj5y2efhx8VBN9gbWnz6mjTNHkJrqfRndCwd2rB8J8Wpy8LTmcDrZdIEbeKj9lENZltobXegmb1aRvdtjIszfAeBpCXTCVW4JWPsSHUxGqiASWuNFCExLCVlffaao7hNbjNx9n761ts_rnMUywfC-LvHTTsXAzasVUqJViCREFu-cSOXJ4moRcmLhGR4wZEUVu4KU39EFCSAyBa-DxU-pgl0Rw5cEnuceJxnvjuLqpnD5ncQ5iG0nEilXICwXW4F8ESlgKGpAqAHkmTBrKrEDFR0ohrNYspq_rF7hhElemoMpsyiGoDnS1cZgWHxl_GXhV39i0RGNT43932_-d2glbiQa_Lupf96wO0Ck-MOIRDD1E9nz_LI0AceXJsMuoDs5TRJQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+energy+stable+fourth+order+finite+difference+scheme+for+the+Cahn%E2%80%93Hilliard+equation&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Cheng%2C+Kelong&rft.au=Feng%2C+Wenqiang&rft.au=Wang%2C+Cheng&rft.au=Wise%2C+Steven+M.&rft.date=2019-12-15&rft.issn=0377-0427&rft.volume=362&rft.spage=574&rft.epage=595&rft_id=info:doi/10.1016%2Fj.cam.2018.05.039&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cam_2018_05_039
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon