An energy stable fourth order finite difference scheme for the Cahn–Hilliard equation
In this paper we propose and analyze an energy stable numerical scheme for the Cahn–Hilliard equation, with second order accuracy in time and the fourth order finite difference approximation in space. In particular, the truncation error for the long stencil fourth order finite difference approximati...
Saved in:
| Published in | Journal of computational and applied mathematics Vol. 362; pp. 574 - 595 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
15.12.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0377-0427 1879-1778 |
| DOI | 10.1016/j.cam.2018.05.039 |
Cover
| Abstract | In this paper we propose and analyze an energy stable numerical scheme for the Cahn–Hilliard equation, with second order accuracy in time and the fourth order finite difference approximation in space. In particular, the truncation error for the long stencil fourth order finite difference approximation, over a uniform numerical grid with a periodic boundary condition, is analyzed, via the help of discrete Fourier analysis instead of the standard Taylor expansion. This in turn results in a reduced regularity requirement for the test function. In the temporal approximation, we apply a second order BDF stencil, combined with a second order extrapolation formula applied to the concave diffusion term, as well as a second order artificial Douglas–Dupont regularization term, for the sake of energy stability. As a result, the unique solvability, energy stability are established for the proposed numerical scheme, and an optimal rate convergence analysis is derived in the ℓ∞(0,T;ℓ2)∩ℓ2(0,T;Hh2) norm. A few numerical experiments are presented, which confirm the robustness and accuracy of the proposed scheme. |
|---|---|
| AbstractList | In this paper we propose and analyze an energy stable numerical scheme for the Cahn–Hilliard equation, with second order accuracy in time and the fourth order finite difference approximation in space. In particular, the truncation error for the long stencil fourth order finite difference approximation, over a uniform numerical grid with a periodic boundary condition, is analyzed, via the help of discrete Fourier analysis instead of the standard Taylor expansion. This in turn results in a reduced regularity requirement for the test function. In the temporal approximation, we apply a second order BDF stencil, combined with a second order extrapolation formula applied to the concave diffusion term, as well as a second order artificial Douglas–Dupont regularization term, for the sake of energy stability. As a result, the unique solvability, energy stability are established for the proposed numerical scheme, and an optimal rate convergence analysis is derived in the ℓ∞(0,T;ℓ2)∩ℓ2(0,T;Hh2) norm. A few numerical experiments are presented, which confirm the robustness and accuracy of the proposed scheme. |
| Author | Feng, Wenqiang Wang, Cheng Cheng, Kelong Wise, Steven M. |
| Author_xml | – sequence: 1 givenname: Kelong surname: Cheng fullname: Cheng, Kelong email: zhengkelong@swust.edu.cn organization: School of Science, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China – sequence: 2 givenname: Wenqiang surname: Feng fullname: Feng, Wenqiang email: wfeng1@utk.edu organization: Department of Mathematics, The University of Tennessee, Knoxville, TN 37996, United States – sequence: 3 givenname: Cheng orcidid: 0000-0003-4220-8080 surname: Wang fullname: Wang, Cheng email: cwang1@umassd.edu organization: Department of Mathematics, The University of Massachusetts, North Dartmouth, MA 02747, United States – sequence: 4 givenname: Steven M. surname: Wise fullname: Wise, Steven M. email: swise1@utk.edu organization: Department of Mathematics, The University of Tennessee, Knoxville, TN 37996, United States |
| BookMark | eNp9kE1OwzAQRi1UJNrCAdj5Agm28-NErKoKKFIlNiCWlmOPiavUAdtF6o47cENO0oSyYlHNYjbzPn3zZmjiegcIXVOSUkLLm02q5DZlhFYpKVKS1WdoSiteJ5TzaoKmJOM8ITnjF2gWwoYQUtY0n6LXhcPgwL_tcYiy6QCbfudji3uvwWNjnY2AtTUGPDgFOKgWtuOVx7EFvJSt-_n6Xtmus9JrDB87GW3vLtG5kV2Aq789Ry_3d8_LVbJ-enhcLtaJYjWPSclInUndVHnVZEzVNOPMFERlutBlRYt8qM9UKStT8II2hPJxQOaS5VI2ZTZH_JirfB-CByOUjb8Nope2E5SI0Y_YiMGPGP0IUojBz0DSf-S7t1vp9yeZ2yMDw0ufFrwIyo5atPWgotC9PUEfAPZggLg |
| CitedBy_id | crossref_primary_10_1007_s12190_021_01635_5 crossref_primary_10_1016_j_rinp_2022_106031 crossref_primary_10_1016_j_cnsns_2020_105658 crossref_primary_10_1007_s10444_023_10031_5 crossref_primary_10_1007_s10915_021_01593_x crossref_primary_10_1016_j_camwa_2021_04_016 crossref_primary_10_1016_j_cam_2022_114405 crossref_primary_10_1016_j_enganabound_2025_106118 crossref_primary_10_1007_s10915_022_01862_3 crossref_primary_10_1016_j_anucene_2023_109689 crossref_primary_10_1007_s42967_023_00350_1 crossref_primary_10_1016_j_ijmecsci_2022_107846 crossref_primary_10_1016_j_cam_2020_112855 crossref_primary_10_1137_22M1541307 crossref_primary_10_1007_s11075_019_00804_9 crossref_primary_10_1002_num_22784 crossref_primary_10_1016_j_cam_2019_05_003 crossref_primary_10_1016_j_apnum_2020_03_007 crossref_primary_10_1007_s11075_022_01355_2 crossref_primary_10_1016_j_cnsns_2021_105923 crossref_primary_10_1016_j_cnsns_2021_105766 crossref_primary_10_1016_j_camwa_2025_01_032 crossref_primary_10_1093_imanum_draa075 crossref_primary_10_1016_j_cam_2021_113843 crossref_primary_10_1007_s11425_022_2036_8 crossref_primary_10_1090_mcom_3843 crossref_primary_10_1016_j_cam_2022_114474 crossref_primary_10_1016_j_cam_2020_113300 crossref_primary_10_1007_s10915_023_02235_0 crossref_primary_10_1016_j_apnum_2020_01_004 crossref_primary_10_1007_s11075_024_01910_z crossref_primary_10_1002_mma_7952 crossref_primary_10_1016_j_apnum_2022_11_016 crossref_primary_10_1002_mma_6229 crossref_primary_10_1002_nme_7479 crossref_primary_10_1007_s10543_021_00843_6 crossref_primary_10_1016_j_jcp_2024_113632 crossref_primary_10_2298_TSCI2202095Z crossref_primary_10_1007_s10915_019_01008_y crossref_primary_10_1016_j_cnsns_2024_108503 crossref_primary_10_1016_j_cpc_2020_107418 crossref_primary_10_1016_j_apnum_2020_02_012 crossref_primary_10_1016_j_jocs_2023_102200 crossref_primary_10_1016_j_cpc_2022_108558 crossref_primary_10_1016_j_camwa_2023_05_002 crossref_primary_10_1093_imanum_drae057 crossref_primary_10_1016_j_apm_2020_08_045 crossref_primary_10_1016_j_aml_2020_106412 crossref_primary_10_1016_j_enganabound_2023_07_010 crossref_primary_10_1016_j_cma_2021_114186 crossref_primary_10_3934_math_2022209 crossref_primary_10_1016_j_cam_2024_116039 crossref_primary_10_1016_j_apnum_2023_11_014 crossref_primary_10_1016_j_ijmecsci_2021_106985 crossref_primary_10_1016_j_cnsns_2025_108649 crossref_primary_10_1007_s10915_024_02753_5 crossref_primary_10_1080_00207160_2023_2266068 crossref_primary_10_1002_nme_7131 crossref_primary_10_1007_s00366_022_01618_5 crossref_primary_10_1016_j_jcp_2023_112467 crossref_primary_10_1051_m2an_2019054 crossref_primary_10_1007_s10915_019_00999_y crossref_primary_10_1016_j_jcp_2019_109179 crossref_primary_10_1016_j_apnum_2024_12_004 crossref_primary_10_1016_j_amc_2021_126880 crossref_primary_10_1016_j_cam_2021_113875 crossref_primary_10_1016_j_cam_2024_116463 crossref_primary_10_1016_j_apnum_2022_04_007 crossref_primary_10_1002_mma_10113 crossref_primary_10_1016_j_compfluid_2021_104948 crossref_primary_10_1016_j_cam_2024_116224 crossref_primary_10_3934_era_2023068 crossref_primary_10_1016_j_jcp_2021_110854 crossref_primary_10_1137_20M1375656 crossref_primary_10_1016_j_matcom_2022_05_011 crossref_primary_10_1016_j_jcp_2021_110451 crossref_primary_10_1007_s10915_020_01276_z crossref_primary_10_1016_j_ijmecsci_2022_107489 crossref_primary_10_1002_num_23034 crossref_primary_10_1007_s11075_019_00829_0 crossref_primary_10_1016_j_matcom_2023_07_028 crossref_primary_10_1007_s10915_023_02418_9 crossref_primary_10_1016_j_jcp_2024_112873 crossref_primary_10_1360_SSM_20223_0014 crossref_primary_10_1016_j_commatsci_2023_112187 crossref_primary_10_1016_j_cpc_2023_109050 crossref_primary_10_1007_s00285_023_01928_2 crossref_primary_10_1016_j_cnsns_2022_106717 crossref_primary_10_1016_j_cam_2021_113766 crossref_primary_10_1016_j_jcp_2019_109109 crossref_primary_10_1016_j_cam_2023_115145 crossref_primary_10_1007_s11075_022_01338_3 crossref_primary_10_1016_j_jcp_2024_112907 crossref_primary_10_1016_j_matcom_2022_05_024 crossref_primary_10_1007_s10665_021_10155_x crossref_primary_10_1137_18M1213579 crossref_primary_10_1007_s10915_020_01196_y crossref_primary_10_1016_j_heliyon_2023_e16597 crossref_primary_10_1186_s13662_022_03725_5 crossref_primary_10_3934_dcdss_2022110 crossref_primary_10_1016_j_amc_2022_127599 crossref_primary_10_1007_s10915_022_01861_4 crossref_primary_10_1016_j_jcp_2024_113391 crossref_primary_10_1016_j_cnsns_2020_105276 crossref_primary_10_1137_19M1288280 crossref_primary_10_1016_j_cnsns_2023_107175 crossref_primary_10_1016_j_cam_2020_112719 crossref_primary_10_1016_j_jcp_2020_109610 crossref_primary_10_1007_s11075_024_01968_9 crossref_primary_10_1007_s10915_021_01717_3 crossref_primary_10_1016_j_jcp_2022_111444 crossref_primary_10_1016_j_apnum_2024_07_008 crossref_primary_10_1016_j_physd_2024_134372 crossref_primary_10_1002_nme_7222 crossref_primary_10_1007_s40687_020_00212_9 crossref_primary_10_1016_j_matcom_2022_10_009 crossref_primary_10_1016_j_commatsci_2022_111192 crossref_primary_10_1007_s10665_021_10122_6 crossref_primary_10_1016_j_jcp_2024_113382 crossref_primary_10_1016_j_camwa_2020_12_003 crossref_primary_10_1007_s10915_020_01127_x crossref_primary_10_1016_j_camwa_2023_11_026 crossref_primary_10_1016_j_jocs_2021_101491 crossref_primary_10_1016_j_aml_2022_108440 crossref_primary_10_1016_j_apnum_2021_07_013 crossref_primary_10_1016_j_jcp_2022_111314 |
| Cites_doi | 10.1007/s10915-011-9559-2 10.1080/00207160.2014.964694 10.1016/j.jcp.2015.02.046 10.1093/imanum/drv065 10.1137/110827119 10.1007/BF01396363 10.1090/S0025-5718-1982-0637287-3 10.1007/BF00251803 10.3934/dcds.2010.28.405 10.1137/0723001 10.4208/cicp.OA-2016-0197 10.1007/s10915-016-0228-3 10.1007/s00211-004-0546-5 10.1142/S0219891608001623 10.1016/j.jcp.2016.12.046 10.1007/s10255-015-0536-7 10.1137/130950628 10.1137/S0036144596322507 10.1002/num.20189 10.1137/0730084 10.1007/s10915-016-0251-4 10.1137/050648110 10.1016/j.jcp.2009.04.020 10.1007/s00211-014-0608-2 10.1007/s10915-010-9363-4 10.1137/110822839 10.1090/S0025-5718-99-01015-7 10.1016/j.jcp.2007.04.020 10.1007/s10915-013-9774-0 10.1007/s00211-014-0644-y 10.1007/s00211-017-0887-5 10.1007/s11425-011-4290-x 10.1007/s00211-016-0813-2 10.1007/s00211-003-0508-3 10.1002/num.22271 10.1002/mma.4497 10.1016/j.jcp.2013.04.024 10.1007/s00211-007-0104-z 10.1137/120880677 10.1137/080738143 10.1090/mcom3052 10.1016/j.jcp.2003.07.035 10.1016/j.physa.2014.04.038 10.1137/S0036142997331669 10.1023/A:1021168924020 10.1007/PL00005429 10.1137/0728069 10.1137/0726049 10.1063/1.1744102 10.1016/S0167-2789(03)00030-7 10.1137/090752675 10.1016/j.jcp.2005.07.004 10.1090/S0025-5718-1988-0935077-0 10.1016/j.jcp.2014.08.001 10.1016/j.cpc.2015.11.006 10.4310/CMS.2016.v14.n2.a8 10.1002/num.21899 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier B.V. |
| Copyright_xml | – notice: 2018 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cam.2018.05.039 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1879-1778 |
| EndPage | 595 |
| ExternalDocumentID | 10_1016_j_cam_2018_05_039 S0377042718303169 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABAOU ABJNI ABMAC ABVKL ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE IXB J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSW SSZ T5K TN5 UPT XPP YQT ZMT ~02 ~G- 29K 5VS AAFWJ AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AXJTR AZFZN CITATION D-I EFKBS FGOYB G-2 HZ~ NHB R2- SEW WUQ ZY4 ~HD |
| ID | FETCH-LOGICAL-c297t-62093adb848b32c91372f50c3d5d681541772c6a8f5751b0171717ea4a24aab63 |
| IEDL.DBID | .~1 |
| ISSN | 0377-0427 |
| IngestDate | Thu Apr 24 23:00:59 EDT 2025 Thu Oct 09 00:28:01 EDT 2025 Fri Feb 23 02:31:35 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Second order accuracy in time 65M06 Energy stability Optimal rate convergence analysis 65K10 Long stencil fourth order finite difference approximation 35K35 65M12 Preconditioned steepest descent iteration 35K55 Cahn–Hilliard equation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c297t-62093adb848b32c91372f50c3d5d681541772c6a8f5751b0171717ea4a24aab63 |
| ORCID | 0000-0003-4220-8080 |
| PageCount | 22 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_cam_2018_05_039 crossref_primary_10_1016_j_cam_2018_05_039 elsevier_sciencedirect_doi_10_1016_j_cam_2018_05_039 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-12-15 |
| PublicationDateYYYYMMDD | 2019-12-15 |
| PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of computational and applied mathematics |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Guan, Wang, Wise (b54) 2014; 128 Chen, Conde, Wang, Wang, Wise (b48) 2012; 52 Fornberg (b27) 1998; 40 Diegel, Feng, Wise (b56) 2015; 53 Feng, Wang, Wise, Zhang (b41) 2018 Elliott, French (b64) 1989; 26 Liu, Wang (b32) 2008; 4 Guan, Lowengrub, Wang (b52) 2017; 40 Guo, Wang, Wise, Yue (b9) 2016; 14 Baskaran, Hu, Lowengrub, Wang, Wise, Zhou (b43) 2013; 250 Cheng, Wang, Wise, Yue (b17) 2016; 69 Yan, Chen, Wang, Wise (b25) 2018; 23 Orszag, Bender (b29) 1978 Elliott, French (b63) 1987; 38 Kay, Welford (b12) 2007; 29 Cheng, Feng, Gottlieb, Wang (b67) 2015; 31 Feng, Wise (b57) 2012; 50 Wang, Wang, Wise (b51) 2010; 28 Diegel, Wang, Wise (b3) 2016; 36 Fornberg (b26) 1988; 51 Hu, Wise, Wang, Lowengrub (b45) 2009; 228 Wise, Kim, Lowengrub (b16) 2007; 226 Fathy, Wang, Wilson, Yang (b34) 2008; 5 Du, Nicolaides (b23) 1991; 28 Furihata (b8) 2001; 87 Lee, Jeong, Shin, Li, Kim (b20) 2014; 409 Barrett, Blowey (b2) 1999; 68 Hesthaven, Gottlieb, Gottlieb (b37) 2007 Khiari, Achouri, Ben Mohamed, Omrani (b13) 2007; 23 Song (b22) 2015; 92 Liu, Wang, Johnston (b30) 2003; 18 Han, Wang (b24) 2015; 290 Canuto, Quarteroni (b38) 1982; 38 Tadmor (b39) 1986; 23 Guan, Lowengrub, Wang, Wise (b53) 2014; 277 Elliott, Stuart (b5) 1993; 30 Li, Lee, Xia, Kim (b21) 2016; 200 Feng, Salgado, Wang, Wise (b40) 2017; 334 Shen, Wang, Wang, Wise (b50) 2012; 50 Wang, Wise (b46) 2011; 49 He, Liu, Tang (b10) 2006; 57 Liu, Chen, Wang, Wise (b58) 2017; 135 Barrett, Blowey, Garcke (b62) 1999; 37 Chen, Wang, Wang, Wise (b49) 2014; 59 Chen, Liu, Wang, Wise (b55) 2016; 85 Elliott, Ranner (b65) 2015; 129 Kay, Welford (b11) 2006; 212 Wise, Wang, Lowengrub (b47) 2009; 47 Chen, Feng, Liu, Wang, Wise (b61) 2018 Eyre (b42) 1998 Wang, Liu, Johnston (b31) 2004; 97 Baskaran, Lowengrub, Wang, Wise (b44) 2013; 51 Li, Sun, Zhao (b19) 2012; 55 Li, Qiao (b18) 2017; 70 Elliott, Zheng (b66) 1986; 96 Kim, Kang, Lowengrub (b14) 2003; 193 Wise (b59) 2010; 44 Cahn, Hilliard (b1) 1958; 28 Feng, Prohl (b7) 2004; 99 Boyd (b35) 2001 Liu, Shen (b60) 2003; 179 Diegel, Wang, Wang, Wise (b4) 2017; 137 Elliott, French, Milner (b6) 1989; 54 Gottlieb, Orszag (b36) 1983 Wang, Zhao, Guo (b15) 2015; 31 Iserles (b28) 2009 Samelson, Temam, Wang, Wang (b33) 2007; 107 Wise (10.1016/j.cam.2018.05.039_b47) 2009; 47 Li (10.1016/j.cam.2018.05.039_b18) 2017; 70 Elliott (10.1016/j.cam.2018.05.039_b65) 2015; 129 Lee (10.1016/j.cam.2018.05.039_b20) 2014; 409 Feng (10.1016/j.cam.2018.05.039_b40) 2017; 334 Guan (10.1016/j.cam.2018.05.039_b53) 2014; 277 Wang (10.1016/j.cam.2018.05.039_b31) 2004; 97 Liu (10.1016/j.cam.2018.05.039_b32) 2008; 4 Elliott (10.1016/j.cam.2018.05.039_b5) 1993; 30 Liu (10.1016/j.cam.2018.05.039_b58) 2017; 135 Diegel (10.1016/j.cam.2018.05.039_b3) 2016; 36 Wang (10.1016/j.cam.2018.05.039_b15) 2015; 31 Iserles (10.1016/j.cam.2018.05.039_b28) 2009 Chen (10.1016/j.cam.2018.05.039_b49) 2014; 59 Chen (10.1016/j.cam.2018.05.039_b55) 2016; 85 Baskaran (10.1016/j.cam.2018.05.039_b43) 2013; 250 Elliott (10.1016/j.cam.2018.05.039_b6) 1989; 54 Samelson (10.1016/j.cam.2018.05.039_b33) 2007; 107 Diegel (10.1016/j.cam.2018.05.039_b4) 2017; 137 Chen (10.1016/j.cam.2018.05.039_b61) 2018 Han (10.1016/j.cam.2018.05.039_b24) 2015; 290 Orszag (10.1016/j.cam.2018.05.039_b29) 1978 Liu (10.1016/j.cam.2018.05.039_b60) 2003; 179 Kay (10.1016/j.cam.2018.05.039_b11) 2006; 212 Fornberg (10.1016/j.cam.2018.05.039_b27) 1998; 40 Feng (10.1016/j.cam.2018.05.039_b57) 2012; 50 Wise (10.1016/j.cam.2018.05.039_b16) 2007; 226 Tadmor (10.1016/j.cam.2018.05.039_b39) 1986; 23 Du (10.1016/j.cam.2018.05.039_b23) 1991; 28 Kay (10.1016/j.cam.2018.05.039_b12) 2007; 29 Canuto (10.1016/j.cam.2018.05.039_b38) 1982; 38 Baskaran (10.1016/j.cam.2018.05.039_b44) 2013; 51 Eyre (10.1016/j.cam.2018.05.039_b42) 1998 Barrett (10.1016/j.cam.2018.05.039_b2) 1999; 68 Guan (10.1016/j.cam.2018.05.039_b54) 2014; 128 Fornberg (10.1016/j.cam.2018.05.039_b26) 1988; 51 Gottlieb (10.1016/j.cam.2018.05.039_b36) 1983 Cahn (10.1016/j.cam.2018.05.039_b1) 1958; 28 Hu (10.1016/j.cam.2018.05.039_b45) 2009; 228 Song (10.1016/j.cam.2018.05.039_b22) 2015; 92 Wise (10.1016/j.cam.2018.05.039_b59) 2010; 44 Elliott (10.1016/j.cam.2018.05.039_b63) 1987; 38 Feng (10.1016/j.cam.2018.05.039_b41) 2018 Cheng (10.1016/j.cam.2018.05.039_b17) 2016; 69 Khiari (10.1016/j.cam.2018.05.039_b13) 2007; 23 Cheng (10.1016/j.cam.2018.05.039_b67) 2015; 31 Guan (10.1016/j.cam.2018.05.039_b52) 2017; 40 Fathy (10.1016/j.cam.2018.05.039_b34) 2008; 5 Barrett (10.1016/j.cam.2018.05.039_b62) 1999; 37 Shen (10.1016/j.cam.2018.05.039_b50) 2012; 50 Kim (10.1016/j.cam.2018.05.039_b14) 2003; 193 Wang (10.1016/j.cam.2018.05.039_b46) 2011; 49 Boyd (10.1016/j.cam.2018.05.039_b35) 2001 Li (10.1016/j.cam.2018.05.039_b19) 2012; 55 Yan (10.1016/j.cam.2018.05.039_b25) 2018; 23 Elliott (10.1016/j.cam.2018.05.039_b66) 1986; 96 Chen (10.1016/j.cam.2018.05.039_b48) 2012; 52 Furihata (10.1016/j.cam.2018.05.039_b8) 2001; 87 Hesthaven (10.1016/j.cam.2018.05.039_b37) 2007 He (10.1016/j.cam.2018.05.039_b10) 2006; 57 Elliott (10.1016/j.cam.2018.05.039_b64) 1989; 26 Wang (10.1016/j.cam.2018.05.039_b51) 2010; 28 Diegel (10.1016/j.cam.2018.05.039_b56) 2015; 53 Guo (10.1016/j.cam.2018.05.039_b9) 2016; 14 Li (10.1016/j.cam.2018.05.039_b21) 2016; 200 Feng (10.1016/j.cam.2018.05.039_b7) 2004; 99 Liu (10.1016/j.cam.2018.05.039_b30) 2003; 18 |
| References_xml | – volume: 200 start-page: 108 year: 2016 end-page: 116 ident: b21 article-title: A compact fourth-order finite difference scheme for the three-dimensional Cahn-Hilliard equation publication-title: Comput. Phys. Comm. – volume: 128 start-page: 377 year: 2014 end-page: 406 ident: b54 article-title: A convergent convex splitting scheme for the periodic nonlocal Cahn-Hilliard equation publication-title: Numer. Math. – volume: 228 start-page: 5323 year: 2009 end-page: 5339 ident: b45 article-title: Stable and efficient finite-difference nonlinear-multigrid schemes for the phase-field crystal equation publication-title: J. Comput. Phys. – volume: 212 start-page: 288 year: 2006 end-page: 304 ident: b11 article-title: A multigrid finite element solver for the Cahn-Hilliard equation publication-title: J. Comput. Phys. – volume: 38 start-page: 97 year: 1987 end-page: 128 ident: b63 article-title: Numerical studies of the Cahn-Hilliard equation for phase separation publication-title: IMA J. Numer. Anal. – volume: 96 start-page: 339 year: 1986 end-page: 357 ident: b66 article-title: On the Cahn-Hilliard equation publication-title: Arch. Ration. Mech. Anal. – year: 1978 ident: b29 article-title: Advanced Mathematical Methods for Scientists and Engineers – volume: 23 start-page: 572 year: 2018 end-page: 602 ident: b25 article-title: A second-order energy stable BDF numerical scheme for the Cahn-Hilliard equation publication-title: Commun. Comput. Phys. – volume: 44 start-page: 38 year: 2010 end-page: 68 ident: b59 article-title: Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn-Hilliard-Hele-Shaw system of equations publication-title: J. Sci. Comput. – volume: 50 start-page: 1320 year: 2012 end-page: 1343 ident: b57 article-title: Analysis of a fully discrete finite element approximation of a Darcy-Cahn-Hilliard diffuse interface model for the Hele-Shaw flow publication-title: SIAM J. Numer. Anal. – volume: 29 start-page: 2241 year: 2007 end-page: 2257 ident: b12 article-title: Efficient numerical solution of Cahn-Hilliard-Navier-Stokes fluids in 2D publication-title: SIAM J. Sci. Comput. – volume: 30 start-page: 1622 year: 1993 end-page: 1663 ident: b5 article-title: The global dynamics of discrete semilinear parabolic equations publication-title: SIAM J. Numer. Anal. – volume: 51 start-page: 2851 year: 2013 end-page: 2873 ident: b44 article-title: Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation publication-title: SIAM J. Numer. Anal. – year: 2018 ident: b41 article-title: A second-order energy stable Backward Differentiation Formula method for the epitaxial thin film equation with slope selection publication-title: Numer. Methods Partial Differential Equations – volume: 69 start-page: 1083 year: 2016 end-page: 1114 ident: b17 article-title: A second-order, weakly energy-stable pseudo-spectral scheme for the Cahn-Hilliard equation and its solution by the homogeneous linear iteration method publication-title: J. Sci. Comput. – volume: 277 start-page: 48 year: 2014 end-page: 71 ident: b53 article-title: Second-order convex splitting schemes for nonlocal Cahn-Hilliard and Allen-Cahn equations publication-title: J. Comput. Phys. – volume: 36 start-page: 1867 year: 2016 end-page: 1897 ident: b3 article-title: Stability and convergence of a second order mixed finite element method for the Cahn-Hilliard equation publication-title: IMA J. Numer. Anal. – volume: 107 start-page: 669 year: 2007 end-page: 705 ident: b33 article-title: A fourth-order numerical method for the planetary geostrophic equations with inviscid geostrophic balance publication-title: Numer. Math. – volume: 135 start-page: 679 year: 2017 end-page: 709 ident: b58 article-title: Error analysis of a mixed finite element method for a Cahn-Hilliard-Hele-Shaw system publication-title: Numer. Math. – volume: 85 start-page: 2231 year: 2016 end-page: 2257 ident: b55 article-title: An optimal-rate convergence analysis of a fully discrete finite difference scheme for Cahn-Hilliard-Hele-Shaw equation publication-title: Math. Comp. – volume: 409 start-page: 17 year: 2014 end-page: 28 ident: b20 article-title: A fourth-order spatial accurate and practically stable compact scheme for the Cahn-Hilliard equation publication-title: Physica A – volume: 50 start-page: 105 year: 2012 end-page: 125 ident: b50 article-title: Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: Application to thin film epitaxy publication-title: SIAM J. Numer. Anal. – volume: 193 start-page: 511 year: 2003 end-page: 543 ident: b14 article-title: Conservative multigrid methods for Cahn-Hilliard fluids publication-title: J. Comput. Phys. – volume: 23 start-page: 437 year: 2007 end-page: 455 ident: b13 article-title: Finite difference approximate solutions for the Cahn-Hilliard equation publication-title: Numer. Methods Partial Differential Equations – volume: 129 start-page: 483 year: 2015 end-page: 534 ident: b65 article-title: Evolving surface finite element method for the Cahn-Hilliard equation publication-title: Numer. Math. – volume: 59 start-page: 574 year: 2014 end-page: 601 ident: b49 article-title: A linear iteration algorithm for energy stable second order scheme for a thin film model without slope selection publication-title: J. Sci. Comput. – volume: 38 start-page: 67 year: 1982 end-page: 86 ident: b38 article-title: Approximation results for orthogonal polynomials in Sobolev spaces publication-title: Math. Comp. – volume: 31 start-page: 202 year: 2015 end-page: 224 ident: b67 article-title: A Fourier pseudospectral method for the “Good” Boussinesq equation with second-order temporal accuracy publication-title: Numer. Methods Partial Differential Equations – volume: 226 start-page: 414 year: 2007 end-page: 446 ident: b16 article-title: Solving the regularized, strongly anisotropic Chan-Hilliard equation by an adaptive nonlinear multigrid method publication-title: J. Comput. Phys. – volume: 137 start-page: 495 year: 2017 end-page: 534 ident: b4 article-title: Convergence analysis and error estimates for a second order accurate finite element method for the Cahn-Hilliard-Navier-Stokes system publication-title: Numer. Math. – volume: 4 start-page: 26 year: 2008 end-page: 55 ident: b32 article-title: A fourth order numerical method for the primitive equations formulated in mean vorticity publication-title: Commun. Comput. Phys. – volume: 28 start-page: 258 year: 1958 end-page: 267 ident: b1 article-title: Free energy of a nonuniform system. i. interfacial free energy publication-title: J. Chem. Phys. – volume: 87 start-page: 675 year: 2001 end-page: 699 ident: b8 article-title: A stable and conservative finite difference scheme for the Cahn-Hilliard equation publication-title: Numer. Math. – volume: 54 start-page: 575 year: 1989 end-page: 590 ident: b6 article-title: A second-order splitting method for the Cahn-Hilliard equation publication-title: Numer. Math. – volume: 49 start-page: 945 year: 2011 end-page: 969 ident: b46 article-title: An energy stable and convergent finite-difference scheme for the modified phase field crystal equation publication-title: SIAM J. Numer. Anal. – volume: 5 start-page: 613 year: 2008 end-page: 642 ident: b34 article-title: A fourth order difference scheme for the maxwell equations on yee grid publication-title: J. Hyperbolic Differ. Equ. – volume: 51 start-page: 699 year: 1988 end-page: 706 ident: b26 article-title: Generation of finite difference formulas on arbitrarily spaced grids publication-title: Math. Comp. – volume: 14 start-page: 489 year: 2016 end-page: 515 ident: b9 article-title: An publication-title: Commun. Math. Sci. – volume: 334 start-page: 45 year: 2017 end-page: 67 ident: b40 article-title: Preconditioned steepest descent methods for some nonlinear elliptic equations involving p-Laplacian terms publication-title: J. Comput. Phys. – year: 2007 ident: b37 article-title: Spectral Methods for Time-Dependent Problems, Vol. 21 – volume: 290 start-page: 139 year: 2015 end-page: 156 ident: b24 article-title: A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation publication-title: J. Comput. Phys. – year: 2009 ident: b28 article-title: A First Course in the Numerical Analysis of Differential Equations, Vol. 44 – volume: 23 start-page: 1 year: 1986 end-page: 10 ident: b39 article-title: The exponential accuracy of Fourier and Chebyshev differencing methods publication-title: SIAM J. Numer. Anal. – volume: 250 start-page: 270 year: 2013 end-page: 292 ident: b43 article-title: Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation publication-title: J. Comput. Phys. – year: 1983 ident: b36 article-title: Numerical Analysis of Spectral Methods: Theory and Applications – volume: 37 start-page: 286 year: 1999 end-page: 318 ident: b62 article-title: Finite element approximation of the Cahn-Hilliard equation with degenerate mobility publication-title: SIAM J. Numer. Anal. – year: 2001 ident: b35 article-title: Chebyshev and Fourier Spectral Methods – volume: 179 start-page: 211 year: 2003 end-page: 228 ident: b60 article-title: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method publication-title: Physica D – volume: 31 start-page: 863 year: 2015 end-page: 878 ident: b15 article-title: A class of stable and conservative finite difference schemes for the Cahn-Hilliard equation publication-title: Acta Math. Appl. Sin. Engl. Ser. – volume: 18 start-page: 253 year: 2003 end-page: 285 ident: b30 article-title: A fourth order scheme for incompressible Boussinesq equations publication-title: J. Sci. Comput. – volume: 52 start-page: 546 year: 2012 end-page: 562 ident: b48 article-title: A linear energy stable scheme for a thin film model without slope selection publication-title: J. Sci. Comput. – year: 2018 ident: b61 article-title: A second order energy stable scheme for the Cahn-Hilliard-Hele-Shaw equation publication-title: Discrete Contin. Dyn. Syst. Ser. B – volume: 28 start-page: 1310 year: 1991 end-page: 1322 ident: b23 article-title: Numerical analysis of a continuum model of a phase transition publication-title: SIAM J. Numer. Anal. – volume: 92 start-page: 2091 year: 2015 end-page: 2108 ident: b22 article-title: Energy stable and large time-stepping methods for the Cahn-Hilliard equation publication-title: Int. J. Comput. Math. – volume: 57 start-page: 616 year: 2006 end-page: 628 ident: b10 article-title: On large time-stepping methods for the Cahn-Hilliard equation publication-title: Appl. Numer. Math. – volume: 53 start-page: 127 year: 2015 end-page: 152 ident: b56 article-title: Convergence analysis of an unconditionally stable method for a Cahn-Hilliard-Stokes system of equations publication-title: SIAM J. Numer. Anal. – volume: 99 start-page: 47 year: 2004 end-page: 84 ident: b7 article-title: Error analysis of a mixed finite element method for the Cahn-Hilliard equation publication-title: Numer. Math. – volume: 28 start-page: 405 year: 2010 end-page: 423 ident: b51 article-title: Unconditionally stable schemes for equations of thin film epitaxy publication-title: Discrete Contin. Dyn. Syst. – volume: 40 start-page: 685 year: 1998 end-page: 691 ident: b27 article-title: Classroom note: Calculation of weights in finite difference formulas publication-title: SIAM Rev. – volume: 97 start-page: 555 year: 2004 end-page: 594 ident: b31 article-title: Analysis of a fourth order finite difference method for the incompressible Boussinesq equations publication-title: Numer. Math. – volume: 70 start-page: 301 year: 2017 end-page: 341 ident: b18 article-title: On second order semi-implicit Fourier spectral methods for 2D Cahn-Hilliard equations publication-title: J. Sci. Comput. – start-page: 1686 year: 1998 end-page: 1712 ident: b42 article-title: Unconditionally gradient stable time marching the Cahn-Hilliard equation publication-title: Computational and Mathematical Models of Microstructural Evolution, Vol. 53 – volume: 47 start-page: 2269 year: 2009 end-page: 2288 ident: b47 article-title: An energy stable and convergent finite-difference scheme for the phase field crystal equation publication-title: SIAM J. Numer. Anal. – volume: 26 start-page: 884 year: 1989 end-page: 903 ident: b64 article-title: A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation publication-title: SIAM J. Numer. Anal. – volume: 55 start-page: 805 year: 2012 end-page: 826 ident: b19 article-title: A three level linearized compact difference scheme for the Cahn-Hilliard equation publication-title: Sci. China Math. – volume: 68 start-page: 487 year: 1999 end-page: 517 ident: b2 article-title: Finite element approximation of the Cahn-Hilliard equation with concentration dependent mobility publication-title: Math. Comp. – volume: 40 start-page: 6836 year: 2017 end-page: 6863 ident: b52 article-title: Convergence analysis for second order accurate schemes for the periodic nonlocal Allen-Cahn and Cahn-Hilliard equations publication-title: Math. Methods Appl. Sci. – volume: 52 start-page: 546 year: 2012 ident: 10.1016/j.cam.2018.05.039_b48 article-title: A linear energy stable scheme for a thin film model without slope selection publication-title: J. Sci. Comput. doi: 10.1007/s10915-011-9559-2 – volume: 92 start-page: 2091 year: 2015 ident: 10.1016/j.cam.2018.05.039_b22 article-title: Energy stable and large time-stepping methods for the Cahn-Hilliard equation publication-title: Int. J. Comput. Math. doi: 10.1080/00207160.2014.964694 – volume: 290 start-page: 139 year: 2015 ident: 10.1016/j.cam.2018.05.039_b24 article-title: A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.02.046 – volume: 36 start-page: 1867 year: 2016 ident: 10.1016/j.cam.2018.05.039_b3 article-title: Stability and convergence of a second order mixed finite element method for the Cahn-Hilliard equation publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/drv065 – volume: 50 start-page: 1320 year: 2012 ident: 10.1016/j.cam.2018.05.039_b57 article-title: Analysis of a fully discrete finite element approximation of a Darcy-Cahn-Hilliard diffuse interface model for the Hele-Shaw flow publication-title: SIAM J. Numer. Anal. doi: 10.1137/110827119 – volume: 54 start-page: 575 year: 1989 ident: 10.1016/j.cam.2018.05.039_b6 article-title: A second-order splitting method for the Cahn-Hilliard equation publication-title: Numer. Math. doi: 10.1007/BF01396363 – volume: 38 start-page: 67 year: 1982 ident: 10.1016/j.cam.2018.05.039_b38 article-title: Approximation results for orthogonal polynomials in Sobolev spaces publication-title: Math. Comp. doi: 10.1090/S0025-5718-1982-0637287-3 – year: 2007 ident: 10.1016/j.cam.2018.05.039_b37 – volume: 96 start-page: 339 year: 1986 ident: 10.1016/j.cam.2018.05.039_b66 article-title: On the Cahn-Hilliard equation publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00251803 – volume: 28 start-page: 405 year: 2010 ident: 10.1016/j.cam.2018.05.039_b51 article-title: Unconditionally stable schemes for equations of thin film epitaxy publication-title: Discrete Contin. Dyn. Syst. doi: 10.3934/dcds.2010.28.405 – volume: 23 start-page: 1 year: 1986 ident: 10.1016/j.cam.2018.05.039_b39 article-title: The exponential accuracy of Fourier and Chebyshev differencing methods publication-title: SIAM J. Numer. Anal. doi: 10.1137/0723001 – volume: 23 start-page: 572 year: 2018 ident: 10.1016/j.cam.2018.05.039_b25 article-title: A second-order energy stable BDF numerical scheme for the Cahn-Hilliard equation publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.OA-2016-0197 – volume: 69 start-page: 1083 year: 2016 ident: 10.1016/j.cam.2018.05.039_b17 article-title: A second-order, weakly energy-stable pseudo-spectral scheme for the Cahn-Hilliard equation and its solution by the homogeneous linear iteration method publication-title: J. Sci. Comput. doi: 10.1007/s10915-016-0228-3 – volume: 99 start-page: 47 year: 2004 ident: 10.1016/j.cam.2018.05.039_b7 article-title: Error analysis of a mixed finite element method for the Cahn-Hilliard equation publication-title: Numer. Math. doi: 10.1007/s00211-004-0546-5 – volume: 5 start-page: 613 issue: 03 year: 2008 ident: 10.1016/j.cam.2018.05.039_b34 article-title: A fourth order difference scheme for the maxwell equations on yee grid publication-title: J. Hyperbolic Differ. Equ. doi: 10.1142/S0219891608001623 – volume: 334 start-page: 45 year: 2017 ident: 10.1016/j.cam.2018.05.039_b40 article-title: Preconditioned steepest descent methods for some nonlinear elliptic equations involving p-Laplacian terms publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.12.046 – volume: 31 start-page: 863 year: 2015 ident: 10.1016/j.cam.2018.05.039_b15 article-title: A class of stable and conservative finite difference schemes for the Cahn-Hilliard equation publication-title: Acta Math. Appl. Sin. Engl. Ser. doi: 10.1007/s10255-015-0536-7 – year: 2009 ident: 10.1016/j.cam.2018.05.039_b28 – volume: 53 start-page: 127 year: 2015 ident: 10.1016/j.cam.2018.05.039_b56 article-title: Convergence analysis of an unconditionally stable method for a Cahn-Hilliard-Stokes system of equations publication-title: SIAM J. Numer. Anal. doi: 10.1137/130950628 – volume: 40 start-page: 685 issue: 3 year: 1998 ident: 10.1016/j.cam.2018.05.039_b27 article-title: Classroom note: Calculation of weights in finite difference formulas publication-title: SIAM Rev. doi: 10.1137/S0036144596322507 – volume: 23 start-page: 437 year: 2007 ident: 10.1016/j.cam.2018.05.039_b13 article-title: Finite difference approximate solutions for the Cahn-Hilliard equation publication-title: Numer. Methods Partial Differential Equations doi: 10.1002/num.20189 – volume: 30 start-page: 1622 year: 1993 ident: 10.1016/j.cam.2018.05.039_b5 article-title: The global dynamics of discrete semilinear parabolic equations publication-title: SIAM J. Numer. Anal. doi: 10.1137/0730084 – volume: 70 start-page: 301 year: 2017 ident: 10.1016/j.cam.2018.05.039_b18 article-title: On second order semi-implicit Fourier spectral methods for 2D Cahn-Hilliard equations publication-title: J. Sci. Comput. doi: 10.1007/s10915-016-0251-4 – volume: 57 start-page: 616 issue: 4 year: 2006 ident: 10.1016/j.cam.2018.05.039_b10 article-title: On large time-stepping methods for the Cahn-Hilliard equation publication-title: Appl. Numer. Math. – volume: 4 start-page: 26 year: 2008 ident: 10.1016/j.cam.2018.05.039_b32 article-title: A fourth order numerical method for the primitive equations formulated in mean vorticity publication-title: Commun. Comput. Phys. – volume: 29 start-page: 2241 year: 2007 ident: 10.1016/j.cam.2018.05.039_b12 article-title: Efficient numerical solution of Cahn-Hilliard-Navier-Stokes fluids in 2D publication-title: SIAM J. Sci. Comput. doi: 10.1137/050648110 – volume: 228 start-page: 5323 year: 2009 ident: 10.1016/j.cam.2018.05.039_b45 article-title: Stable and efficient finite-difference nonlinear-multigrid schemes for the phase-field crystal equation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.04.020 – volume: 128 start-page: 377 year: 2014 ident: 10.1016/j.cam.2018.05.039_b54 article-title: A convergent convex splitting scheme for the periodic nonlocal Cahn-Hilliard equation publication-title: Numer. Math. doi: 10.1007/s00211-014-0608-2 – volume: 44 start-page: 38 year: 2010 ident: 10.1016/j.cam.2018.05.039_b59 article-title: Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn-Hilliard-Hele-Shaw system of equations publication-title: J. Sci. Comput. doi: 10.1007/s10915-010-9363-4 – volume: 50 start-page: 105 year: 2012 ident: 10.1016/j.cam.2018.05.039_b50 article-title: Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: Application to thin film epitaxy publication-title: SIAM J. Numer. Anal. doi: 10.1137/110822839 – volume: 68 start-page: 487 year: 1999 ident: 10.1016/j.cam.2018.05.039_b2 article-title: Finite element approximation of the Cahn-Hilliard equation with concentration dependent mobility publication-title: Math. Comp. doi: 10.1090/S0025-5718-99-01015-7 – volume: 38 start-page: 97 year: 1987 ident: 10.1016/j.cam.2018.05.039_b63 article-title: Numerical studies of the Cahn-Hilliard equation for phase separation publication-title: IMA J. Numer. Anal. – volume: 226 start-page: 414 year: 2007 ident: 10.1016/j.cam.2018.05.039_b16 article-title: Solving the regularized, strongly anisotropic Chan-Hilliard equation by an adaptive nonlinear multigrid method publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2007.04.020 – volume: 59 start-page: 574 year: 2014 ident: 10.1016/j.cam.2018.05.039_b49 article-title: A linear iteration algorithm for energy stable second order scheme for a thin film model without slope selection publication-title: J. Sci. Comput. doi: 10.1007/s10915-013-9774-0 – volume: 129 start-page: 483 year: 2015 ident: 10.1016/j.cam.2018.05.039_b65 article-title: Evolving surface finite element method for the Cahn-Hilliard equation publication-title: Numer. Math. doi: 10.1007/s00211-014-0644-y – volume: 137 start-page: 495 year: 2017 ident: 10.1016/j.cam.2018.05.039_b4 article-title: Convergence analysis and error estimates for a second order accurate finite element method for the Cahn-Hilliard-Navier-Stokes system publication-title: Numer. Math. doi: 10.1007/s00211-017-0887-5 – volume: 55 start-page: 805 year: 2012 ident: 10.1016/j.cam.2018.05.039_b19 article-title: A three level linearized compact difference scheme for the Cahn-Hilliard equation publication-title: Sci. China Math. doi: 10.1007/s11425-011-4290-x – volume: 135 start-page: 679 year: 2017 ident: 10.1016/j.cam.2018.05.039_b58 article-title: Error analysis of a mixed finite element method for a Cahn-Hilliard-Hele-Shaw system publication-title: Numer. Math. doi: 10.1007/s00211-016-0813-2 – volume: 97 start-page: 555 issue: 3 year: 2004 ident: 10.1016/j.cam.2018.05.039_b31 article-title: Analysis of a fourth order finite difference method for the incompressible Boussinesq equations publication-title: Numer. Math. doi: 10.1007/s00211-003-0508-3 – year: 2018 ident: 10.1016/j.cam.2018.05.039_b41 article-title: A second-order energy stable Backward Differentiation Formula method for the epitaxial thin film equation with slope selection publication-title: Numer. Methods Partial Differential Equations doi: 10.1002/num.22271 – volume: 40 start-page: 6836 issue: 18 year: 2017 ident: 10.1016/j.cam.2018.05.039_b52 article-title: Convergence analysis for second order accurate schemes for the periodic nonlocal Allen-Cahn and Cahn-Hilliard equations publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.4497 – volume: 250 start-page: 270 year: 2013 ident: 10.1016/j.cam.2018.05.039_b43 article-title: Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.04.024 – volume: 107 start-page: 669 issue: 4 year: 2007 ident: 10.1016/j.cam.2018.05.039_b33 article-title: A fourth-order numerical method for the planetary geostrophic equations with inviscid geostrophic balance publication-title: Numer. Math. doi: 10.1007/s00211-007-0104-z – volume: 51 start-page: 2851 year: 2013 ident: 10.1016/j.cam.2018.05.039_b44 article-title: Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation publication-title: SIAM J. Numer. Anal. doi: 10.1137/120880677 – volume: 47 start-page: 2269 year: 2009 ident: 10.1016/j.cam.2018.05.039_b47 article-title: An energy stable and convergent finite-difference scheme for the phase field crystal equation publication-title: SIAM J. Numer. Anal. doi: 10.1137/080738143 – volume: 85 start-page: 2231 year: 2016 ident: 10.1016/j.cam.2018.05.039_b55 article-title: An optimal-rate convergence analysis of a fully discrete finite difference scheme for Cahn-Hilliard-Hele-Shaw equation publication-title: Math. Comp. doi: 10.1090/mcom3052 – volume: 193 start-page: 511 year: 2003 ident: 10.1016/j.cam.2018.05.039_b14 article-title: Conservative multigrid methods for Cahn-Hilliard fluids publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2003.07.035 – start-page: 1686 year: 1998 ident: 10.1016/j.cam.2018.05.039_b42 article-title: Unconditionally gradient stable time marching the Cahn-Hilliard equation – volume: 409 start-page: 17 year: 2014 ident: 10.1016/j.cam.2018.05.039_b20 article-title: A fourth-order spatial accurate and practically stable compact scheme for the Cahn-Hilliard equation publication-title: Physica A doi: 10.1016/j.physa.2014.04.038 – year: 2001 ident: 10.1016/j.cam.2018.05.039_b35 – volume: 37 start-page: 286 year: 1999 ident: 10.1016/j.cam.2018.05.039_b62 article-title: Finite element approximation of the Cahn-Hilliard equation with degenerate mobility publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142997331669 – year: 1978 ident: 10.1016/j.cam.2018.05.039_b29 – volume: 18 start-page: 253 issue: 2 year: 2003 ident: 10.1016/j.cam.2018.05.039_b30 article-title: A fourth order scheme for incompressible Boussinesq equations publication-title: J. Sci. Comput. doi: 10.1023/A:1021168924020 – volume: 87 start-page: 675 year: 2001 ident: 10.1016/j.cam.2018.05.039_b8 article-title: A stable and conservative finite difference scheme for the Cahn-Hilliard equation publication-title: Numer. Math. doi: 10.1007/PL00005429 – volume: 28 start-page: 1310 year: 1991 ident: 10.1016/j.cam.2018.05.039_b23 article-title: Numerical analysis of a continuum model of a phase transition publication-title: SIAM J. Numer. Anal. doi: 10.1137/0728069 – volume: 26 start-page: 884 year: 1989 ident: 10.1016/j.cam.2018.05.039_b64 article-title: A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation publication-title: SIAM J. Numer. Anal. doi: 10.1137/0726049 – volume: 28 start-page: 258 year: 1958 ident: 10.1016/j.cam.2018.05.039_b1 article-title: Free energy of a nonuniform system. i. interfacial free energy publication-title: J. Chem. Phys. doi: 10.1063/1.1744102 – volume: 179 start-page: 211 year: 2003 ident: 10.1016/j.cam.2018.05.039_b60 article-title: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method publication-title: Physica D doi: 10.1016/S0167-2789(03)00030-7 – volume: 49 start-page: 945 year: 2011 ident: 10.1016/j.cam.2018.05.039_b46 article-title: An energy stable and convergent finite-difference scheme for the modified phase field crystal equation publication-title: SIAM J. Numer. Anal. doi: 10.1137/090752675 – volume: 212 start-page: 288 year: 2006 ident: 10.1016/j.cam.2018.05.039_b11 article-title: A multigrid finite element solver for the Cahn-Hilliard equation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2005.07.004 – year: 2018 ident: 10.1016/j.cam.2018.05.039_b61 article-title: A second order energy stable scheme for the Cahn-Hilliard-Hele-Shaw equation publication-title: Discrete Contin. Dyn. Syst. Ser. B – volume: 51 start-page: 699 issue: 184 year: 1988 ident: 10.1016/j.cam.2018.05.039_b26 article-title: Generation of finite difference formulas on arbitrarily spaced grids publication-title: Math. Comp. doi: 10.1090/S0025-5718-1988-0935077-0 – volume: 277 start-page: 48 year: 2014 ident: 10.1016/j.cam.2018.05.039_b53 article-title: Second-order convex splitting schemes for nonlocal Cahn-Hilliard and Allen-Cahn equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.08.001 – volume: 200 start-page: 108 year: 2016 ident: 10.1016/j.cam.2018.05.039_b21 article-title: A compact fourth-order finite difference scheme for the three-dimensional Cahn-Hilliard equation publication-title: Comput. Phys. Comm. doi: 10.1016/j.cpc.2015.11.006 – volume: 14 start-page: 489 year: 2016 ident: 10.1016/j.cam.2018.05.039_b9 article-title: An H2 convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn-Hilliard equation publication-title: Commun. Math. Sci. doi: 10.4310/CMS.2016.v14.n2.a8 – year: 1983 ident: 10.1016/j.cam.2018.05.039_b36 – volume: 31 start-page: 202 issue: 1 year: 2015 ident: 10.1016/j.cam.2018.05.039_b67 article-title: A Fourier pseudospectral method for the “Good” Boussinesq equation with second-order temporal accuracy publication-title: Numer. Methods Partial Differential Equations doi: 10.1002/num.21899 |
| SSID | ssj0006914 |
| Score | 2.6234488 |
| Snippet | In this paper we propose and analyze an energy stable numerical scheme for the Cahn–Hilliard equation, with second order accuracy in time and the fourth order... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 574 |
| SubjectTerms | Cahn–Hilliard equation Energy stability Long stencil fourth order finite difference approximation Optimal rate convergence analysis Preconditioned steepest descent iteration Second order accuracy in time |
| Title | An energy stable fourth order finite difference scheme for the Cahn–Hilliard equation |
| URI | https://dx.doi.org/10.1016/j.cam.2018.05.039 |
| Volume | 362 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-1778 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006914 issn: 0377-0427 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Open Access Journals customDbUrl: eissn: 1879-1778 dateEnd: 20211105 omitProxy: true ssIdentifier: ssj0006914 issn: 0377-0427 databaseCode: IXB dateStart: 19750301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-1778 dateEnd: 20211105 omitProxy: true ssIdentifier: ssj0006914 issn: 0377-0427 databaseCode: ACRLP dateStart: 19950220 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-1778 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006914 issn: 0377-0427 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-1778 dateEnd: 20211015 omitProxy: true ssIdentifier: ssj0006914 issn: 0377-0427 databaseCode: AIKHN dateStart: 19950220 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-1778 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006914 issn: 0377-0427 databaseCode: AKRWK dateStart: 19750301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvQgPrE-yh48CbHJZpNsjrVYUqW9aLG3sNkHrdRYa7yK_8F_6C9xdpNUBfUgOW2YCWEYZr9NZr4PoROfMFdTHTqSEO0ApBYO04YIWQd-BkcxJaxqyWAYJiN6OQ7GDdStZ2FMW2VV-8uabqt1daddRbM9n07b164fRUYpApISMjM0Q3yURkbF4Ozls80jjEt-bzB2jHX9Z9P2eAluhtE9Zsk7jV74T3vTl_2mt4k2KqCIO-W7bKGGyrfR-mDJsvq0g247OVZ2dg8DxstmCmvwKibY8mliPTV4EtcSKEJhOMmqe2O1wPAY3OWT_P31LbGfXBYSq8eS93sXjXoXN93EqYQSHEHiqHBC4sY-lxmjLPOJiD0_IjpwhS8DGTIASR5gaBFyps1flsxQ5MClOOWEcp6F_h5ayR9ytY9wwJTnxVpyArH1OI1hB5MAIQMNOI_IrIncOkSpqFjEjZjFLK3bxe5SiGpqopq6QQpRbaLTpcu8pND4y5jWcU-_5UEKJf53t4P_uR2iNVhZPQgvOEIrxeJZHQPIKLKWzaIWWu30r5IhrPrj8w-Ws9CU |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTl6YEJKTRx4jzGqqIK0HahFd0sx7HVohJKCSviP_AP-SWcnaSABAwoW3IXRafT-XN8930InboktJWnfCslRFkAqYUVKk2ErKibwFZMCqNa0uv78dC7GtFRDbWrWRjdVlnW_qKmm2pd3mmW0WzOJpPmje0GgVaKgKSEzPSjJbTsURLoHdj5y2efhx8VBN9gbWnz6mjTNHkJrqfRndCwd2rB8J8Wpy8LTmcDrZdIEbeKj9lENZltobXegmb1aRvdtjIszfAeBpCXTCVW4JWPsSHUxGqiASWuNFCExLCVlffaao7hNbjNx9n761ts_rnMUywfC-LvHTTsXAzasVUqJViCREFu-cSOXJ4moRcmLhGR4wZEUVu4KU39EFCSAyBa-DxU-pgl0Rw5cEnuceJxnvjuLqpnD5ncQ5iG0nEilXICwXW4F8ESlgKGpAqAHkmTBrKrEDFR0ohrNYspq_rF7hhElemoMpsyiGoDnS1cZgWHxl_GXhV39i0RGNT43932_-d2glbiQa_Lupf96wO0Ck-MOIRDD1E9nz_LI0AceXJsMuoDs5TRJQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+energy+stable+fourth+order+finite+difference+scheme+for+the+Cahn%E2%80%93Hilliard+equation&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Cheng%2C+Kelong&rft.au=Feng%2C+Wenqiang&rft.au=Wang%2C+Cheng&rft.au=Wise%2C+Steven+M.&rft.date=2019-12-15&rft.issn=0377-0427&rft.volume=362&rft.spage=574&rft.epage=595&rft_id=info:doi/10.1016%2Fj.cam.2018.05.039&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cam_2018_05_039 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon |