Influence of eco-friendly agar-derivatives on the electrochemical performance of carbon felts electrodes of vanadium redox flow battery

In this study, bio-derived natural agar powder was used as an electrocatalyst for application as an electrode in all‑vanadium redox flow batteries. Different concentrations of agar solution were tested, and cyclic voltammetry studies confirmed that agar loaded felts have good catalytic activity towa...

Full description

Saved in:
Bibliographic Details
Published inJournal of energy storage Vol. 84; p. 110599
Main Authors Fetyan, Abdulmonem, Alhammadi, Ayoob, Matouk, Zineb, Andisetiawan, Anugrah, Bahaa, Ahmed
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.04.2024
Subjects
Online AccessGet full text
ISSN2352-152X
2352-1538
DOI10.1016/j.est.2024.110599

Cover

Abstract In this study, bio-derived natural agar powder was used as an electrocatalyst for application as an electrode in all‑vanadium redox flow batteries. Different concentrations of agar solution were tested, and cyclic voltammetry studies confirmed that agar loaded felts have good catalytic activity toward both redox couples V4+/V5+ at the positive and V2+/V3+ at the negative side. Energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy demonstrated the presence of higher amount of oxygen-functional groups on the surface of the fibers. Contact angle measurements demonstrated an enormous increase in hydrophilicity of the felts treated with agar. Long-term charge/discharge profiles revealed 6 % higher energy efficiency and 13 % better discharge capacity retention for agar modified felts when compared to thermally treated carbon felts at a relatively high current density of 150 mA cm−2. •Enormous increase in hydrophilicity of carbon felt is achieved.•High energy efficiency and discharge capacity are reported at high current density.•Stable enhancement in VRFB performance is evident.•Lower charge transfer resistance is reported.
AbstractList In this study, bio-derived natural agar powder was used as an electrocatalyst for application as an electrode in all‑vanadium redox flow batteries. Different concentrations of agar solution were tested, and cyclic voltammetry studies confirmed that agar loaded felts have good catalytic activity toward both redox couples V4+/V5+ at the positive and V2+/V3+ at the negative side. Energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy demonstrated the presence of higher amount of oxygen-functional groups on the surface of the fibers. Contact angle measurements demonstrated an enormous increase in hydrophilicity of the felts treated with agar. Long-term charge/discharge profiles revealed 6 % higher energy efficiency and 13 % better discharge capacity retention for agar modified felts when compared to thermally treated carbon felts at a relatively high current density of 150 mA cm−2. •Enormous increase in hydrophilicity of carbon felt is achieved.•High energy efficiency and discharge capacity are reported at high current density.•Stable enhancement in VRFB performance is evident.•Lower charge transfer resistance is reported.
ArticleNumber 110599
Author Matouk, Zineb
Bahaa, Ahmed
Alhammadi, Ayoob
Andisetiawan, Anugrah
Fetyan, Abdulmonem
Author_xml – sequence: 1
  givenname: Abdulmonem
  surname: Fetyan
  fullname: Fetyan, Abdulmonem
  email: Abdulmonem.fetyan@dewa.gov.ae, Abdulmonem.fetyan@zu.ac.ae
  organization: Research & Development Centre, Dubai Electricity and Water Authority (DEWA), P.O. Box 564, Dubai, United Arab Emirates
– sequence: 2
  givenname: Ayoob
  surname: Alhammadi
  fullname: Alhammadi, Ayoob
  organization: Research & Development Centre, Dubai Electricity and Water Authority (DEWA), P.O. Box 564, Dubai, United Arab Emirates
– sequence: 3
  givenname: Zineb
  surname: Matouk
  fullname: Matouk, Zineb
  organization: Technology innovation institute, P.O. Box: 9639, Masdar City, Abu Dhabi, United Arab Emirates
– sequence: 4
  givenname: Anugrah
  surname: Andisetiawan
  fullname: Andisetiawan, Anugrah
  organization: Research & Development Centre, Dubai Electricity and Water Authority (DEWA), P.O. Box 564, Dubai, United Arab Emirates
– sequence: 5
  givenname: Ahmed
  surname: Bahaa
  fullname: Bahaa, Ahmed
  organization: Research & Development Centre, Dubai Electricity and Water Authority (DEWA), P.O. Box 564, Dubai, United Arab Emirates
BookMark eNp9kM1KAzEUhYNUsNY-gLu8wNQk848rKf4UCm4U3IVMcmNTMpOSpKN9Al_bGaouXHR17-J8B853iSad6wCha0oWlNDiZruAEBeMsGxBKcnr-gxNWZqzhOZpNfn72dsFmoewJWSAckrrYoq-Vp22e-gkYKcxSJdob6BT9oDFu_CJAm96EU0PAbsOxw1gsCCjd3IDrZHC4h147Xwrfjqk8M2Q1GBj-M2qkda4F51QZt9iD8p9Ym3dB25EjOAPV-hcCxtg_nNn6PXh_mX5lKyfH1fLu3UiWV3GpKACGqKgKkAVRSaBkKbRTVFUeZrLvJQlE2lVsVJKUSpo0pRQLbQuM6pYRup0hspjr_QuBA-aSxOHfa6LXhjLKeGjUr7lg1I-KuVHpQNJ_5E7b1rhDyeZ2yMDw6TegOdBmlG2Mn4Qw5UzJ-hvrpmUwg
CitedBy_id crossref_primary_10_1002_cssc_202401010
crossref_primary_10_1002_ente_202401465
crossref_primary_10_3390_su162411289
Cites_doi 10.1002/celc.201801128
10.1149/2.0941915jes
10.1016/j.jpowsour.2008.04.016
10.1016/j.corsci.2009.08.027
10.1016/j.est.2022.104352
10.1016/j.foodchem.2018.04.098
10.1039/C7TA07759A
10.1016/j.electacta.2007.04.121
10.1016/j.ceramint.2019.03.128
10.1016/j.jelechem.2020.114577
10.1016/j.electacta.2011.02.083
10.1016/j.elecom.2016.12.003
10.1016/0013-4686(92)85064-R
10.1016/j.matchemphys.2019.121847
10.1002/cssc.201903589
10.1002/adfm.202005646
10.1016/j.jpowsour.2011.08.033
10.1021/nl403674a
10.3390/batteries4040056
10.1039/C4RA12339E
10.1007/s11581-018-2710-4
10.1088/2053-1591/aad2b8
10.1021/cr100290v
10.1016/j.carbon.2019.11.015
10.1016/j.carbon.2010.10.022
10.1016/j.electacta.2017.09.005
10.1016/j.jpowsour.2015.09.004
10.1002/ppap.202000173
10.1016/j.electacta.2016.09.099
10.1016/j.jpowsour.2017.07.020
10.1146/annurev-chembioeng-061010-114116
10.1021/acssuschemeng.0c02427
10.1002/celc.201700376
10.1016/j.electacta.2017.07.129
10.1016/j.jhazmat.2012.03.040
10.1016/j.jpowsour.2013.04.115
10.1016/j.electacta.2018.02.104
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
DOI 10.1016/j.est.2024.110599
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2352-1538
ExternalDocumentID 10_1016_j_est_2024_110599
S2352152X2400183X
GroupedDBID --M
0R~
457
4G.
7-5
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AFKWA
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
EBS
EFJIC
FDB
FIRID
FYGXN
KOM
O9-
OAUVE
ROL
SPC
SPCBC
SSB
SSD
SSR
SST
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
EJD
SSH
ID FETCH-LOGICAL-c297t-61aeb0de86ed664ce00bbfb668535c57c72a38827cca7deb3301faff741d24093
IEDL.DBID AIKHN
ISSN 2352-152X
IngestDate Thu Apr 24 23:01:07 EDT 2025
Tue Jul 01 00:52:03 EDT 2025
Sat Apr 13 16:39:56 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Agar
Redox flow batteries
Electrode
Bio-derived polymer
Carbon felt
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-61aeb0de86ed664ce00bbfb668535c57c72a38827cca7deb3301faff741d24093
ParticipantIDs crossref_citationtrail_10_1016_j_est_2024_110599
crossref_primary_10_1016_j_est_2024_110599
elsevier_sciencedirect_doi_10_1016_j_est_2024_110599
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-15
PublicationDateYYYYMMDD 2024-04-15
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of energy storage
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yang, Zhang, Kintner-Meyer, Lu, Choi, Lemmon, Liu (bb0010) 2011; 111
Sun, Skyllas-Kazacos (bb0040) 1992; 37
Li, Gu, Nie, Wei, Wang, Sprenkle, Wang (bb0070) 2014; 14
Matouk, Torriss, Rincón, Mirzaei, Margot, Chaker (bb0165) 2021; 18
Fetyan, Benetho, Bamgbopa (bb0080) 2023
Zhou, Xi, Li, Zhang, Yu, Liu, Qiu, Chen (bb0175) 2014; 4
Fetyan, El-Nagar, Derr, Kubella, Dau, Roth (bb0185) 2018; 268
Ribadeneyra, Grogan, Au, Schlee, Herou, Neville, Cullen, Kok, Hosseinaei, Danielsson, Tomani, Titirici, Brett, Shearing, Jervis, Jorge (bb0100) 2020; 157
Maharjan, Bhattarai, Ulaganathan, Wai, Oo, Wang, Lim (bb0030) 2017; 362
Zhang, Zhao, Bai, Zeng, Wei (bb0105) 2017; 248
Soloveichik (bb0005) 2011; 2
Fetyan, Schneider, Schnucklake, El-Nagar, Banerjee, Bevilacqua, Zeis, Roth (bb0045) 2019; 6
Xing, Zhang, Ma (bb0195) 2011; 196
Zhang, Xi, Zhou, Qiu (bb0055) 2016; 218
Jiang, Cheng, He, Chen, Li, Zhu, Meng, Zhou, Dai, Wang (bb0020) 2019; 166
Liew, Juan, Lai, Pan, Yang, Lee (bb0130) 2019; 25
Masri, Mohamad (bb0140) 2009; 51
Wang, Wang (bb0060) 2007; 52
Han, Wang, Liu, Chen, Ma, Yao, Zhu, Cui (bb0150) 2011; 49
M.S. Hosseini, M.T. Sadeghi, M. khazaei, Improving oleophobicity and hydrophilicity of superhydrophobic surface by TiO2-based coatings, Mater Res Express. 5 (2018) 85010. doi
Li, Liu, Yan (bb0160) 2011; 56
Liu, Wang, Wu, Yuan, Hu, Zhou, Liu, Wu (bb0090) 2015; 299
Cao, Skyllas-Kazacos, Wang (bb0075) 2017; 4
Krikstolaityte, Joshua, Veksha, Wai, Lisak, Lim (bb0025) 2018; 4
Taylor, Pătru, Fabbri, Schmidt (bb0190) 2017; 75
Miroshnikov, Mahankali, Thangavel, Satapathy, Arava, Ajayan, John (bb0015) 2020; 13
Soundarrajan, Sivasankar, Maruthamuthu, Veluchamy (bb0125) 2012; 217–218
Lizundia, Kundu (bb0135) 2021; 31
.
Anarghya, Anantha, Venkatesh, Santosh, Priya, Muralidhara (bb0095) 2020; 878
Schnucklake, Kuecken, Fetyan, Schmidt, Thomas, Roth (bb0050) 2017; 5
Lu, Li, Subburaj, Ou, Kumar (bb0120) 2019; 45
Ouyang, Hu, Li, Quan, Wen, Yang, Li (bb0145) 2018; 264
Ferreira, Silva, Santos, Silva, Raimundo, Morales, Macedo (bb0110) 2019; 237
Wan, López Barreiro, Forner-Cuenca, Barotta, Hawker, Han, Loh, Masic, Kaplan, Chiang, Brushett, Martin-Martinez, Buehler (bb0085) 2020; 8
Zhu, Zhang, Yue, Li, Li, Shu, Chen (bb0035) 2008; 184
Li, Liu, Yan (bb0180) 2011; 56
Bamgbopa, Fetyan, Vagin, Adelodun (bb0115) 2022; 50
González, Botas, Blanco, Santamaría, Granda, Álvarez, Menéndez (bb0155) 2013; 241
Lv, Zhang, Lv, Wu, Liu, Wang, Lu, Xiang (bb0065) 2017; 253
Taylor (10.1016/j.est.2024.110599_bb0190) 2017; 75
Soundarrajan (10.1016/j.est.2024.110599_bb0125) 2012; 217–218
Zhang (10.1016/j.est.2024.110599_bb0055) 2016; 218
Lu (10.1016/j.est.2024.110599_bb0120) 2019; 45
Zhou (10.1016/j.est.2024.110599_bb0175) 2014; 4
Wang (10.1016/j.est.2024.110599_bb0060) 2007; 52
Han (10.1016/j.est.2024.110599_bb0150) 2011; 49
Krikstolaityte (10.1016/j.est.2024.110599_bb0025) 2018; 4
Wan (10.1016/j.est.2024.110599_bb0085) 2020; 8
Zhu (10.1016/j.est.2024.110599_bb0035) 2008; 184
Yang (10.1016/j.est.2024.110599_bb0010) 2011; 111
Lv (10.1016/j.est.2024.110599_bb0065) 2017; 253
Ribadeneyra (10.1016/j.est.2024.110599_bb0100) 2020; 157
Lizundia (10.1016/j.est.2024.110599_bb0135) 2021; 31
González (10.1016/j.est.2024.110599_bb0155) 2013; 241
Fetyan (10.1016/j.est.2024.110599_bb0185) 2018; 268
Jiang (10.1016/j.est.2024.110599_bb0020) 2019; 166
Maharjan (10.1016/j.est.2024.110599_bb0030) 2017; 362
Li (10.1016/j.est.2024.110599_bb0070) 2014; 14
Fetyan (10.1016/j.est.2024.110599_bb0080) 2023
Liu (10.1016/j.est.2024.110599_bb0090) 2015; 299
Fetyan (10.1016/j.est.2024.110599_bb0045) 2019; 6
Xing (10.1016/j.est.2024.110599_bb0195) 2011; 196
Li (10.1016/j.est.2024.110599_bb0160) 2011; 56
10.1016/j.est.2024.110599_bb0170
Cao (10.1016/j.est.2024.110599_bb0075) 2017; 4
Bamgbopa (10.1016/j.est.2024.110599_bb0115) 2022; 50
Schnucklake (10.1016/j.est.2024.110599_bb0050) 2017; 5
Liew (10.1016/j.est.2024.110599_bb0130) 2019; 25
Zhang (10.1016/j.est.2024.110599_bb0105) 2017; 248
Anarghya (10.1016/j.est.2024.110599_bb0095) 2020; 878
Matouk (10.1016/j.est.2024.110599_bb0165) 2021; 18
Soloveichik (10.1016/j.est.2024.110599_bb0005) 2011; 2
Ferreira (10.1016/j.est.2024.110599_bb0110) 2019; 237
Ouyang (10.1016/j.est.2024.110599_bb0145) 2018; 264
Sun (10.1016/j.est.2024.110599_bb0040) 1992; 37
Li (10.1016/j.est.2024.110599_bb0180) 2011; 56
Miroshnikov (10.1016/j.est.2024.110599_bb0015) 2020; 13
Masri (10.1016/j.est.2024.110599_bb0140) 2009; 51
References_xml – volume: 4
  start-page: 61912
  year: 2014
  end-page: 61918
  ident: bb0175
  article-title: CeO2 decorated graphite felt as a high-performance electrode for vanadium redox flow batteries
  publication-title: RSC Adv.
– volume: 248
  start-page: 197
  year: 2017
  end-page: 205
  ident: bb0105
  article-title: A highly active biomass-derived electrode for all vanadium redox flow batteries
  publication-title: Electrochim. Acta
– volume: 51
  start-page: 3025
  year: 2009
  end-page: 3029
  ident: bb0140
  article-title: Effect of adding potassium hydroxide to an agar binder for use as the anode in Zn–air batteries
  publication-title: Corros. Sci.
– volume: 52
  start-page: 6755
  year: 2007
  end-page: 6762
  ident: bb0060
  article-title: Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery
  publication-title: Electrochim. Acta
– volume: 56
  start-page: 5290
  year: 2011
  end-page: 5294
  ident: bb0180
  article-title: Graphite–graphite oxide composite electrode for vanadium redox flow battery
  publication-title: Electrochim. Acta
– volume: 37
  start-page: 1253
  year: 1992
  end-page: 1260
  ident: bb0040
  article-title: Modification of graphite electrode materials for vanadium redox flow battery application—I
  publication-title: Thermal treatment, Electrochim Acta.
– volume: 157
  start-page: 847
  year: 2020
  end-page: 856
  ident: bb0100
  article-title: Lignin-derived electrospun freestanding carbons as alternative electrodes for redox flow batteries
  publication-title: Carbon N Y.
– year: 2023
  ident: bb0080
  article-title: Organized macro-scale membrane size reduction in vanadium redox flow batteries: part 1. General concept, journal of energy
  publication-title: Chemistry
– volume: 2
  start-page: 503
  year: 2011
  end-page: 527
  ident: bb0005
  article-title: Battery Technologies for Large-Scale Stationary Energy Storage
  publication-title: Annu. Rev. Chem. Biomol. Eng.
– volume: 166
  start-page: A3918
  year: 2019
  end-page: A3926
  ident: bb0020
  article-title: Biomass-derived porous graphitic carbon with excellent Electrocatalytic performances for vanadium redox reactions
  publication-title: J. Electrochem. Soc.
– volume: 241
  start-page: 349
  year: 2013
  end-page: 354
  ident: bb0155
  article-title: Graphite oxide-based graphene materials as positive electrodes in vanadium redox flow batteries
  publication-title: J. Power Sources
– volume: 31
  start-page: 2005646
  year: 2021
  ident: bb0135
  article-title: Advances in natural biopolymer-based electrolytes and separators for battery applications
  publication-title: Adv. Funct. Mater.
– volume: 878
  year: 2020
  ident: bb0095
  article-title: Bermuda grass derived nitrogen-doped carbon as electrocatalyst in graphite felt electrode to increase the efficiency of all-iron redox flow batteries
  publication-title: J. Electroanal. Chem.
– volume: 237
  year: 2019
  ident: bb0110
  article-title: Structure, magnetic behavior and OER activity of CoFe2O4 powders obtained using agar-agar from red seaweed (Rhodophyta)
  publication-title: Mater. Chem. Phys.
– volume: 75
  start-page: 13
  year: 2017
  end-page: 16
  ident: bb0190
  article-title: Influence of surface oxygen groups on V(II) oxidation reaction kinetics
  publication-title: Electrochem. Commun.
– volume: 111
  start-page: 3577
  year: 2011
  end-page: 3613
  ident: bb0010
  article-title: Electrochemical energy storage for green grid
  publication-title: Chem. Rev.
– volume: 45
  start-page: 12218
  year: 2019
  end-page: 12224
  ident: bb0120
  article-title: Influence of bio-derived agar addition on the electrochemical performance of LiFePO4 cathode powders for Li-ion batteries
  publication-title: Ceram. Int.
– volume: 362
  start-page: 50
  year: 2017
  end-page: 56
  ident: bb0030
  article-title: High surface area bio-waste based carbon as a superior electrode for vanadium redox flow battery
  publication-title: J. Power Sources
– volume: 49
  start-page: 693
  year: 2011
  end-page: 700
  ident: bb0150
  article-title: Graphene oxide nanoplatelets as excellent electrochemical active materials for VO2+/VO2+ and V2+/V3+ redox couples for a vanadium redox flow battery
  publication-title: Carbon N Y.
– volume: 299
  start-page: 301
  year: 2015
  end-page: 308
  ident: bb0090
  article-title: Porous carbon derived from disposable shaddock peel as an excellent catalyst toward VO2+/VO2+ couple for vanadium redox battery
  publication-title: J. Power Sources
– volume: 196
  start-page: 10753
  year: 2011
  end-page: 10757
  ident: bb0195
  article-title: Shunt current loss of the vanadium redox flow battery
  publication-title: J. Power Sources
– volume: 13
  start-page: 2186
  year: 2020
  end-page: 2204
  ident: bb0015
  article-title: Bioderived molecular electrodes for next-generation energy-storage materials
  publication-title: ChemSusChem
– volume: 8
  start-page: 9472
  year: 2020
  end-page: 9482
  ident: bb0085
  article-title: Exploration of biomass-derived activated carbons for use in vanadium redox flow batteries
  publication-title: ACS Sustain. Chem. Eng.
– volume: 56
  start-page: 5290
  year: 2011
  end-page: 5294
  ident: bb0160
  article-title: Graphite–graphite oxide composite electrode for vanadium redox flow battery
  publication-title: Electrochim. Acta
– volume: 50
  year: 2022
  ident: bb0115
  article-title: Towards eco-friendly redox flow batteries with all bio-sourced cell components
  publication-title: J Energy Storage.
– volume: 253
  start-page: 78
  year: 2017
  end-page: 84
  ident: bb0065
  article-title: Enhanced electrochemical activity of carbon felt for V2+/V3+ redox reaction via combining KOH-etched pretreatment with uniform deposition of bi nanoparticles
  publication-title: Electrochim. Acta
– volume: 4
  year: 2018
  ident: bb0025
  article-title: Conversion of spent coffee beans to electrode material for vanadium redox flow batteries
  publication-title: Batteries
– volume: 264
  start-page: 277
  year: 2018
  end-page: 283
  ident: bb0145
  article-title: Thermal degradation of agar: mechanism and toxicity of products
  publication-title: Food Chem.
– volume: 5
  start-page: 25193
  year: 2017
  end-page: 25199
  ident: bb0050
  article-title: Salt-templated porous carbon–carbon composite electrodes for application in vanadium redox flow batteries
  publication-title: J Mater Chem A Mater.
– volume: 218
  start-page: 15
  year: 2016
  end-page: 23
  ident: bb0055
  article-title: KOH etched graphite felt with improved wettability and activity for vanadium flow batteries
  publication-title: Electrochim. Acta
– reference: .
– volume: 6
  start-page: 130
  year: 2019
  end-page: 135
  ident: bb0045
  article-title: Comparison of electrospun carbon−carbon composite and commercial felt for their activity and electrolyte utilization in vanadium redox flow batteries
  publication-title: ChemElectroChem
– volume: 4
  start-page: 1836
  year: 2017
  end-page: 1839
  ident: bb0075
  article-title: Modification based on MoO3 as Electrocatalysts for high power density vanadium redox flow batteries
  publication-title: ChemElectroChem
– volume: 217–218
  start-page: 452
  year: 2012
  end-page: 456
  ident: bb0125
  article-title: Improved lead recovery and sulphate removal from used lead acid battery through Electrokinetic technique
  publication-title: J. Hazard. Mater.
– volume: 184
  start-page: 637
  year: 2008
  end-page: 640
  ident: bb0035
  article-title: Graphite–carbon nanotube composite electrodes for all vanadium redox flow battery
  publication-title: J. Power Sources
– volume: 268
  start-page: 59
  year: 2018
  end-page: 65
  ident: bb0185
  article-title: A neodymium oxide nanoparticle-doped carbon felt as promising electrode for vanadium redox flow batteries
  publication-title: Electrochim. Acta
– volume: 14
  start-page: 158
  year: 2014
  end-page: 165
  ident: bb0070
  article-title: Nanorod niobium oxide as powerful catalysts for an all vanadium redox flow battery
  publication-title: Nano Lett.
– volume: 25
  start-page: 1291
  year: 2019
  end-page: 1301
  ident: bb0130
  article-title: An eco-friendly water-soluble graphene-incorporated agar gel electrolyte for magnesium-air batteries
  publication-title: Ionics (Kiel).
– reference: M.S. Hosseini, M.T. Sadeghi, M. khazaei, Improving oleophobicity and hydrophilicity of superhydrophobic surface by TiO2-based coatings, Mater Res Express. 5 (2018) 85010. doi:
– volume: 18
  start-page: 2000173
  year: 2021
  ident: bb0165
  article-title: Atmospheric plasma dielectric barrier discharge: a simple route to produce superhydrophilic TiO2@carbon nanostructure
  publication-title: Plasma Processes Polym.
– volume: 6
  start-page: 130
  year: 2019
  ident: 10.1016/j.est.2024.110599_bb0045
  article-title: Comparison of electrospun carbon−carbon composite and commercial felt for their activity and electrolyte utilization in vanadium redox flow batteries
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201801128
– volume: 166
  start-page: A3918
  year: 2019
  ident: 10.1016/j.est.2024.110599_bb0020
  article-title: Biomass-derived porous graphitic carbon with excellent Electrocatalytic performances for vanadium redox reactions
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0941915jes
– volume: 184
  start-page: 637
  year: 2008
  ident: 10.1016/j.est.2024.110599_bb0035
  article-title: Graphite–carbon nanotube composite electrodes for all vanadium redox flow battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.04.016
– volume: 51
  start-page: 3025
  year: 2009
  ident: 10.1016/j.est.2024.110599_bb0140
  article-title: Effect of adding potassium hydroxide to an agar binder for use as the anode in Zn–air batteries
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2009.08.027
– volume: 50
  year: 2022
  ident: 10.1016/j.est.2024.110599_bb0115
  article-title: Towards eco-friendly redox flow batteries with all bio-sourced cell components
  publication-title: J Energy Storage.
  doi: 10.1016/j.est.2022.104352
– volume: 264
  start-page: 277
  year: 2018
  ident: 10.1016/j.est.2024.110599_bb0145
  article-title: Thermal degradation of agar: mechanism and toxicity of products
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2018.04.098
– volume: 5
  start-page: 25193
  year: 2017
  ident: 10.1016/j.est.2024.110599_bb0050
  article-title: Salt-templated porous carbon–carbon composite electrodes for application in vanadium redox flow batteries
  publication-title: J Mater Chem A Mater.
  doi: 10.1039/C7TA07759A
– volume: 52
  start-page: 6755
  year: 2007
  ident: 10.1016/j.est.2024.110599_bb0060
  article-title: Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2007.04.121
– volume: 45
  start-page: 12218
  year: 2019
  ident: 10.1016/j.est.2024.110599_bb0120
  article-title: Influence of bio-derived agar addition on the electrochemical performance of LiFePO4 cathode powders for Li-ion batteries
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.03.128
– volume: 878
  year: 2020
  ident: 10.1016/j.est.2024.110599_bb0095
  article-title: Bermuda grass derived nitrogen-doped carbon as electrocatalyst in graphite felt electrode to increase the efficiency of all-iron redox flow batteries
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2020.114577
– volume: 56
  start-page: 5290
  year: 2011
  ident: 10.1016/j.est.2024.110599_bb0180
  article-title: Graphite–graphite oxide composite electrode for vanadium redox flow battery
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2011.02.083
– volume: 75
  start-page: 13
  year: 2017
  ident: 10.1016/j.est.2024.110599_bb0190
  article-title: Influence of surface oxygen groups on V(II) oxidation reaction kinetics
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2016.12.003
– volume: 37
  start-page: 1253
  year: 1992
  ident: 10.1016/j.est.2024.110599_bb0040
  article-title: Modification of graphite electrode materials for vanadium redox flow battery application—I
  publication-title: Thermal treatment, Electrochim Acta.
  doi: 10.1016/0013-4686(92)85064-R
– volume: 237
  year: 2019
  ident: 10.1016/j.est.2024.110599_bb0110
  article-title: Structure, magnetic behavior and OER activity of CoFe2O4 powders obtained using agar-agar from red seaweed (Rhodophyta)
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2019.121847
– volume: 13
  start-page: 2186
  year: 2020
  ident: 10.1016/j.est.2024.110599_bb0015
  article-title: Bioderived molecular electrodes for next-generation energy-storage materials
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201903589
– volume: 31
  start-page: 2005646
  year: 2021
  ident: 10.1016/j.est.2024.110599_bb0135
  article-title: Advances in natural biopolymer-based electrolytes and separators for battery applications
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202005646
– volume: 196
  start-page: 10753
  year: 2011
  ident: 10.1016/j.est.2024.110599_bb0195
  article-title: Shunt current loss of the vanadium redox flow battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.08.033
– volume: 14
  start-page: 158
  year: 2014
  ident: 10.1016/j.est.2024.110599_bb0070
  article-title: Nanorod niobium oxide as powerful catalysts for an all vanadium redox flow battery
  publication-title: Nano Lett.
  doi: 10.1021/nl403674a
– volume: 4
  year: 2018
  ident: 10.1016/j.est.2024.110599_bb0025
  article-title: Conversion of spent coffee beans to electrode material for vanadium redox flow batteries
  publication-title: Batteries
  doi: 10.3390/batteries4040056
– volume: 4
  start-page: 61912
  year: 2014
  ident: 10.1016/j.est.2024.110599_bb0175
  article-title: CeO2 decorated graphite felt as a high-performance electrode for vanadium redox flow batteries
  publication-title: RSC Adv.
  doi: 10.1039/C4RA12339E
– volume: 25
  start-page: 1291
  year: 2019
  ident: 10.1016/j.est.2024.110599_bb0130
  article-title: An eco-friendly water-soluble graphene-incorporated agar gel electrolyte for magnesium-air batteries
  publication-title: Ionics (Kiel).
  doi: 10.1007/s11581-018-2710-4
– ident: 10.1016/j.est.2024.110599_bb0170
  doi: 10.1088/2053-1591/aad2b8
– volume: 111
  start-page: 3577
  year: 2011
  ident: 10.1016/j.est.2024.110599_bb0010
  article-title: Electrochemical energy storage for green grid
  publication-title: Chem. Rev.
  doi: 10.1021/cr100290v
– volume: 157
  start-page: 847
  year: 2020
  ident: 10.1016/j.est.2024.110599_bb0100
  article-title: Lignin-derived electrospun freestanding carbons as alternative electrodes for redox flow batteries
  publication-title: Carbon N Y.
  doi: 10.1016/j.carbon.2019.11.015
– volume: 49
  start-page: 693
  year: 2011
  ident: 10.1016/j.est.2024.110599_bb0150
  article-title: Graphene oxide nanoplatelets as excellent electrochemical active materials for VO2+/VO2+ and V2+/V3+ redox couples for a vanadium redox flow battery
  publication-title: Carbon N Y.
  doi: 10.1016/j.carbon.2010.10.022
– volume: 253
  start-page: 78
  year: 2017
  ident: 10.1016/j.est.2024.110599_bb0065
  article-title: Enhanced electrochemical activity of carbon felt for V2+/V3+ redox reaction via combining KOH-etched pretreatment with uniform deposition of bi nanoparticles
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.09.005
– volume: 299
  start-page: 301
  year: 2015
  ident: 10.1016/j.est.2024.110599_bb0090
  article-title: Porous carbon derived from disposable shaddock peel as an excellent catalyst toward VO2+/VO2+ couple for vanadium redox battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.09.004
– volume: 18
  start-page: 2000173
  year: 2021
  ident: 10.1016/j.est.2024.110599_bb0165
  article-title: Atmospheric plasma dielectric barrier discharge: a simple route to produce superhydrophilic TiO2@carbon nanostructure
  publication-title: Plasma Processes Polym.
  doi: 10.1002/ppap.202000173
– volume: 218
  start-page: 15
  year: 2016
  ident: 10.1016/j.est.2024.110599_bb0055
  article-title: KOH etched graphite felt with improved wettability and activity for vanadium flow batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.09.099
– year: 2023
  ident: 10.1016/j.est.2024.110599_bb0080
  article-title: Organized macro-scale membrane size reduction in vanadium redox flow batteries: part 1. General concept, journal of energy
  publication-title: Chemistry
– volume: 362
  start-page: 50
  year: 2017
  ident: 10.1016/j.est.2024.110599_bb0030
  article-title: High surface area bio-waste based carbon as a superior electrode for vanadium redox flow battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.07.020
– volume: 2
  start-page: 503
  year: 2011
  ident: 10.1016/j.est.2024.110599_bb0005
  article-title: Battery Technologies for Large-Scale Stationary Energy Storage
  publication-title: Annu. Rev. Chem. Biomol. Eng.
  doi: 10.1146/annurev-chembioeng-061010-114116
– volume: 8
  start-page: 9472
  year: 2020
  ident: 10.1016/j.est.2024.110599_bb0085
  article-title: Exploration of biomass-derived activated carbons for use in vanadium redox flow batteries
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c02427
– volume: 4
  start-page: 1836
  year: 2017
  ident: 10.1016/j.est.2024.110599_bb0075
  article-title: Modification based on MoO3 as Electrocatalysts for high power density vanadium redox flow batteries
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201700376
– volume: 248
  start-page: 197
  year: 2017
  ident: 10.1016/j.est.2024.110599_bb0105
  article-title: A highly active biomass-derived electrode for all vanadium redox flow batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.07.129
– volume: 56
  start-page: 5290
  year: 2011
  ident: 10.1016/j.est.2024.110599_bb0160
  article-title: Graphite–graphite oxide composite electrode for vanadium redox flow battery
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2011.02.083
– volume: 217–218
  start-page: 452
  year: 2012
  ident: 10.1016/j.est.2024.110599_bb0125
  article-title: Improved lead recovery and sulphate removal from used lead acid battery through Electrokinetic technique
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2012.03.040
– volume: 241
  start-page: 349
  year: 2013
  ident: 10.1016/j.est.2024.110599_bb0155
  article-title: Graphite oxide-based graphene materials as positive electrodes in vanadium redox flow batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.04.115
– volume: 268
  start-page: 59
  year: 2018
  ident: 10.1016/j.est.2024.110599_bb0185
  article-title: A neodymium oxide nanoparticle-doped carbon felt as promising electrode for vanadium redox flow batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.02.104
SSID ssj0001651196
Score 2.3128393
Snippet In this study, bio-derived natural agar powder was used as an electrocatalyst for application as an electrode in all‑vanadium redox flow batteries. Different...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110599
SubjectTerms Agar
Bio-derived polymer
Carbon felt
Electrode
Redox flow batteries
Title Influence of eco-friendly agar-derivatives on the electrochemical performance of carbon felts electrodes of vanadium redox flow battery
URI https://dx.doi.org/10.1016/j.est.2024.110599
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60XvQgPrG-2IMnYWncZjfZYylKq-BFhdzCPqVS29LGR3-Bf9vZZGMrqAePCTMh7Cwz32S_fIPQGVeMpYDrSQq1jsRaUiKENARaAw7tiHFClgTZW957iK8zlq2gbv0vjKdVhtxf5fQyW4c7rbCarclg0LqjgB2g-mSeBQkbM1tFaxSqfdpAa53-Te928amF-8Oyaswco8T71OebJdML0i80ijT2lHhWisD-UKGWqs7VFtoMcBF3qjfaRit2tIM2lkQEd9FHv54zgscOQzdJnNcuNsM5lo9ySgzYvZby3jM8HmEAfDjMvtFBLABPFn8P-GdoOVVg6eywmNW2xns7_FpyxF6esdcZfcduOH7DqpTonO-hh6vL-26PhPEKRFORFNA0SqsiY1NuDeextlGklFOcQwVnmiU6obINADyBICcGmm7IBU46BxjEwJqL9j5qjMYje4CwZTTSwloH-CaWRokLIa2OROSoUTxOmiiqlzTXQXvcj8AY5jXJ7CmHKOQ-CnkVhSY6_3KZVMIbfxnHdZzyb7snh8Lwu9vh_9yO0Lq_8mdKF-wYNYrpiz0BaFKo07D1PgGe7ORH
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2V9gAcEKvY8YETktUQYqc-IgRqofRCkXqLvCJQaatSti_gtxknDi0ScOCazESRx5p5E7-8ATjkirEG4nrawFpHEy1jKoQ0FFsDju2IcULmBNkOb94mlz3Wq8BZ-S-Mp1WG3F_k9Dxbhyv1sJr10f19_SZG7IDVp-dZkLgxe3NQS_xQ6yrUTltXzc70Uwv3h2XFmDkWU-9Tnm_mTC9Mv9goxomnxLNcBPaHCjVTdS6WYSnARXJavNEKVOxgFRZnRATX4KNVzhkhQ0ewm6TOaxeb_juRd3JMDdq95PLeT2Q4IAj4SJh9o4NYABlN_x7wz9ByrNDS2f7kqbQ13tuRl5wj9vxIvM7oG3H94StRuUTn-zrcXpx3z5o0jFegOhbpBJtGaVVkbINbw3mibRQp5RTnWMGZZqlOY3mCADzFIKcGm27MBU46hxjE4JqLkw2oDoYDuwnEsjjSwlqH-CaRRoljIa2ORORio3iSbkFULmmmg_a4H4HRz0qS2UOGUch8FLIiCltw9OUyKoQ3_jJOyjhl33ZPhoXhd7ft_7kdwHyze93O2q3O1Q4s-Dv-fOmY7UJ1Mn62ewhTJmo_bMNPY0rnKw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+eco-friendly+agar-derivatives+on+the+electrochemical+performance+of+carbon+felts+electrodes+of+vanadium+redox+flow+battery&rft.jtitle=Journal+of+energy+storage&rft.au=Fetyan%2C+Abdulmonem&rft.au=Alhammadi%2C+Ayoob&rft.au=Matouk%2C+Zineb&rft.au=Andisetiawan%2C+Anugrah&rft.date=2024-04-15&rft.pub=Elsevier+Ltd&rft.issn=2352-152X&rft.eissn=2352-1538&rft.volume=84&rft_id=info:doi/10.1016%2Fj.est.2024.110599&rft.externalDocID=S2352152X2400183X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-152X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-152X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-152X&client=summon