Stiffness design of plate/shell structures by evolutionary topology optimization
This work aims at developing a simple and viable evolutionary design approach to optimally orient stiffeners for plate and shell structures so as to maximize stiffness while satisfying volume requirements. The evolutionary algorithm is transformed into a mathematical model, where stiffeners are trea...
Saved in:
| Published in | Thin-walled structures Vol. 141; pp. 232 - 250 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.08.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0263-8231 1879-3223 |
| DOI | 10.1016/j.tws.2019.04.012 |
Cover
| Abstract | This work aims at developing a simple and viable evolutionary design approach to optimally orient stiffeners for plate and shell structures so as to maximize stiffness while satisfying volume requirements. The evolutionary algorithm is transformed into a mathematical model, where stiffeners are treated as being alive, and the optimization is perceived as an adaptive growth procedure that starts from the constraint points and extends along the gradient directions of plate and shell stiffness. To eliminate the expensive re-meshing upon design changes, a special numerical treatment called “stiffness transformation approach” is developed. In this approach, the stiffness matrix of growing stiffeners is interpolated within their surrounding regions, and the stiffness of neighboring finite elements is modified to simulate the presence of stiffeners. Such a transformation allows the growing stiffeners to be mathematically separated from the underlying finite element method mesh; thus, stiffeners can extend toward arbitrary directions to form an optimized layout solution. An easy-to-use implementation of the evolutionary algorithm is demonstrated in detail through a machine tool design example. Compared to the original design, both numerical and experimental tests confirm that the stiffness in the proposed design is improved; as a result, new possibilities emerge for the design of large-scale plate and shell structures in engineering.
•An explicit topology optimization approach is proposed based on the adaptive growth simulation.•The growth rule is transformed into a mathematical model and written as an evolutionary algorithm.•Propose a numerical method (STA) to make stiffeners being able to grow freely in the design domain.•The re-design of an actual boring-milling machine bed validates the method's effectiveness. |
|---|---|
| AbstractList | This work aims at developing a simple and viable evolutionary design approach to optimally orient stiffeners for plate and shell structures so as to maximize stiffness while satisfying volume requirements. The evolutionary algorithm is transformed into a mathematical model, where stiffeners are treated as being alive, and the optimization is perceived as an adaptive growth procedure that starts from the constraint points and extends along the gradient directions of plate and shell stiffness. To eliminate the expensive re-meshing upon design changes, a special numerical treatment called “stiffness transformation approach” is developed. In this approach, the stiffness matrix of growing stiffeners is interpolated within their surrounding regions, and the stiffness of neighboring finite elements is modified to simulate the presence of stiffeners. Such a transformation allows the growing stiffeners to be mathematically separated from the underlying finite element method mesh; thus, stiffeners can extend toward arbitrary directions to form an optimized layout solution. An easy-to-use implementation of the evolutionary algorithm is demonstrated in detail through a machine tool design example. Compared to the original design, both numerical and experimental tests confirm that the stiffness in the proposed design is improved; as a result, new possibilities emerge for the design of large-scale plate and shell structures in engineering.
•An explicit topology optimization approach is proposed based on the adaptive growth simulation.•The growth rule is transformed into a mathematical model and written as an evolutionary algorithm.•Propose a numerical method (STA) to make stiffeners being able to grow freely in the design domain.•The re-design of an actual boring-milling machine bed validates the method's effectiveness. |
| Author | Liu, Honglei Yang, Zihui Li, Baotong Zhang, Jinhua |
| Author_xml | – sequence: 1 givenname: Baotong surname: Li fullname: Li, Baotong – sequence: 2 givenname: Honglei surname: Liu fullname: Liu, Honglei – sequence: 3 givenname: Zihui surname: Yang fullname: Yang, Zihui – sequence: 4 givenname: Jinhua surname: Zhang fullname: Zhang, Jinhua email: jjshua@mail.xjtu.edu.cn |
| BookMark | eNp9kE1LAzEQhoNUsK3-AG_5A7vNJLvJBk9S_IKCgnoO2-xsTdluSpJW6q93q5489DQMw_My7zMho973SMg1sBwYyNk6T58x5wx0zoqcAT8jY6iUzgTnYkTGjEuRVVzABZnEuGYMFOhiTF5ek2vbHmOkDUa36qlv6barE87iB3YdjSnsbNoFjHR5oLj33S4539fhQJPf-s6vDtRvk9u4r_p4uCTnbd1FvPqbU_J-f_c2f8wWzw9P89tFZrlWKStLqaQFCVI3lWSMYaO1ZrLgqHnJ9VIKq6qaNxxaLQFqhcNqmUUrShRKTIn6zbXBxxiwNdalnw9SqF1ngJmjGLM2gxhzFGNYYQYxAwn_yG1wm6HQSebml8Gh0t5hMNE67C02LqBNpvHuBP0N_DF_TQ |
| CitedBy_id | crossref_primary_10_1016_j_cma_2023_116431 crossref_primary_10_1016_j_tws_2020_106855 crossref_primary_10_3390_machines11121067 crossref_primary_10_1007_s00158_021_02912_4 crossref_primary_10_1016_j_tws_2020_107324 crossref_primary_10_1016_j_tws_2022_109309 crossref_primary_10_1007_s00366_021_01465_w crossref_primary_10_32604_cmes_2023_027603 crossref_primary_10_1002_aisy_202200368 crossref_primary_10_1016_j_compstruct_2021_114414 crossref_primary_10_1016_j_tws_2025_112915 crossref_primary_10_1016_j_tws_2024_111655 crossref_primary_10_1016_j_apm_2022_02_031 crossref_primary_10_1080_15376494_2021_2018740 crossref_primary_10_1115_1_4055375 crossref_primary_10_1016_j_tws_2025_113210 crossref_primary_10_1007_s12206_022_1021_x crossref_primary_10_1007_s00158_021_02945_9 crossref_primary_10_1016_j_apenergy_2020_114982 crossref_primary_10_1016_j_tws_2020_107419 crossref_primary_10_1016_j_tws_2021_108848 crossref_primary_10_1080_15397734_2020_1800488 crossref_primary_10_1002_tal_1817 crossref_primary_10_1007_s00158_021_02880_9 crossref_primary_10_1016_j_tws_2020_107334 crossref_primary_10_26732_j_st_2022_2_01 crossref_primary_10_1016_j_ijmecsci_2023_108603 crossref_primary_10_1007_s10409_020_01034_2 crossref_primary_10_1016_j_compstruct_2022_116074 crossref_primary_10_1016_j_cma_2022_115745 crossref_primary_10_1016_j_cja_2022_06_010 crossref_primary_10_1016_j_compstruc_2024_107633 |
| Cites_doi | 10.1016/j.icheatmasstransfer.2016.04.016 10.1108/02644400510598769 10.1016/j.tws.2012.05.001 10.1016/j.compstruc.2007.05.005 10.1007/s00158-016-1563-6 10.1007/s00158-015-1241-0 10.1002/nme.1620381303 10.1007/s00158-007-0169-4 10.1016/j.ijmachtools.2014.03.005 10.1007/s00158-013-1005-7 10.1007/s00158-016-1407-4 10.1016/j.cnsns.2009.04.014 10.1115/1.2936929 10.1016/j.jclepro.2019.03.163 10.1115/1.4042020 10.1007/s00158-016-1542-y 10.1016/j.tws.2016.01.027 10.1016/j.compstruc.2016.07.006 10.1007/s00158-013-0895-8 10.1115/1.1480817 10.1016/0142-1123(90)90094-U 10.1007/s00158-002-0270-7 10.1007/s00158-015-1281-5 10.1007/s00158-008-0237-4 10.1115/1.2936930 10.1007/s00033-018-1000-3 10.15632/jtam-pl/104594 10.1016/j.tws.2018.02.022 10.1016/j.jmsy.2017.02.002 10.1007/s00158-006-0043-9 10.1007/BF01271435 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd |
| Copyright_xml | – notice: 2019 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.tws.2019.04.012 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-3223 |
| EndPage | 250 |
| ExternalDocumentID | 10_1016_j_tws_2019_04_012 S0263823118304683 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K WH7 WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c297t-55676c16169d86000ed9990642e92529b63c78a2d21f9611a7e78ac0cec35e373 |
| IEDL.DBID | .~1 |
| ISSN | 0263-8231 |
| IngestDate | Thu Apr 24 22:50:39 EDT 2025 Thu Oct 09 00:40:22 EDT 2025 Fri Feb 23 02:48:18 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Topology optimization Plate/shell structures Stiffness Evolutionary algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c297t-55676c16169d86000ed9990642e92529b63c78a2d21f9611a7e78ac0cec35e373 |
| PageCount | 19 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_tws_2019_04_012 crossref_primary_10_1016_j_tws_2019_04_012 elsevier_sciencedirect_doi_10_1016_j_tws_2019_04_012 |
| PublicationCentury | 2000 |
| PublicationDate | August 2019 2019-08-00 |
| PublicationDateYYYYMMDD | 2019-08-01 |
| PublicationDate_xml | – month: 08 year: 2019 text: August 2019 |
| PublicationDecade | 2010 |
| PublicationTitle | Thin-walled structures |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Wei, Ma, Wang (bib36) 2013; 49 Liu, Li, Yang, Hong (bib33) 2017; 43 Buhmann (bib35) 2004 Lam, Santhikumar (bib7) 2003; 25 Junker, Hackl (bib24) 2015; 52 Kim, Jang, Kim (bib27) 2008; 130 Yang, Ganzosch, Giorgio, Abali (bib5) 2018; 69 Hagishita, Ohsaki (bib28) 2008; 37 Goo, Wang, Hyun, Jung (bib15) 2016; 175 Cai, Chen, Zhang, Shi (bib20) 2008; 75 Jantos, Junker, Hackl (bib26) 2016; 310 Omidali, Khedmati (bib11) 2018; 127 Park, Youn (bib9) 2007; 36 Yang, Müller (bib4) 2019; 57 Hao, Wang, Tian, Li, Du, L (bib10) 2016; 103 Li, Xuan, Liu, Hong (bib30) 2019; 141 Liu, Li, Tang (bib34) 2019; 225 Mattheck, Burkhardt (bib18) 1990; 12 Martínez, Martí, Querin (bib19) 2006; 33 Liu, Li, Chen, Hu, Tong (bib25) 2015; 52 Cao, Ma, Wei (bib37) 2012 Foundry Institution of Chinese Mechanical Engineering Society (bib40) 2011 Inoue, Yamanaka, Kihara (bib1) 2002; 124 Bedair (bib13) 2015; 62 Sui, Gao (bib42) 2010 Zegard, Paulino (bib38) 2013; 48 Cheng, Xu (bib14) 2016; 54 Rahman, Geni, Mamut, Yusup, Yusup (bib22) 2014 Luo, Gea (bib6) 1998; 16 Zhang, Ding, Dong, Xiong (bib29) 2017; 1 Li, Hong, Liu (bib31) 2014; 84 Guest (bib39) 2015; 283 Quiroz, Beckers (bib43) 1995; 38 Zhao, Liu, Hua, Mao (bib12) 2016; 54 C Liu, K Wang (bib3) 2012; 59 Gartling (bib44) 2005; 47 Bojczuk, Szteleblak (bib2) 2008; 86 Li, Hong, Tian (bib32) 2016; 75 Zhang, Li, Zhang, Guo (bib17) 2016; 311 Lohan, Dede, Allison (bib23) 2016; 55 Kobayashi (bib21) 2010; 15 Welding Society of Chinese Mechanical Engineering Society (bib41) 2014 Afonso, Sienz, Belblidia (bib8) 2005; 22 Norato, Bell, Tortorelli (bib16) 2015; 293 Cheng (10.1016/j.tws.2019.04.012_bib14) 2016; 54 Bojczuk (10.1016/j.tws.2019.04.012_bib2) 2008; 86 Yang (10.1016/j.tws.2019.04.012_bib5) 2018; 69 Liu (10.1016/j.tws.2019.04.012_bib25) 2015; 52 Cao (10.1016/j.tws.2019.04.012_bib37) 2012 Liu (10.1016/j.tws.2019.04.012_bib33) 2017; 43 Zhao (10.1016/j.tws.2019.04.012_bib12) 2016; 54 Goo (10.1016/j.tws.2019.04.012_bib15) 2016; 175 Kobayashi (10.1016/j.tws.2019.04.012_bib21) 2010; 15 Luo (10.1016/j.tws.2019.04.012_bib6) 1998; 16 Gartling (10.1016/j.tws.2019.04.012_bib44) 2005; 47 Foundry Institution of Chinese Mechanical Engineering Society (10.1016/j.tws.2019.04.012_bib40) 2011 Hagishita (10.1016/j.tws.2019.04.012_bib28) 2008; 37 Yang (10.1016/j.tws.2019.04.012_bib4) 2019; 57 Afonso (10.1016/j.tws.2019.04.012_bib8) 2005; 22 Rahman (10.1016/j.tws.2019.04.012_bib22) 2014 Martínez (10.1016/j.tws.2019.04.012_bib19) 2006; 33 Omidali (10.1016/j.tws.2019.04.012_bib11) 2018; 127 Zegard (10.1016/j.tws.2019.04.012_bib38) 2013; 48 Liu (10.1016/j.tws.2019.04.012_bib34) 2019; 225 Li (10.1016/j.tws.2019.04.012_bib30) 2019; 141 Kim (10.1016/j.tws.2019.04.012_bib27) 2008; 130 Cai (10.1016/j.tws.2019.04.012_bib20) 2008; 75 Sui (10.1016/j.tws.2019.04.012_bib42) 2010 Lam (10.1016/j.tws.2019.04.012_bib7) 2003; 25 Bedair (10.1016/j.tws.2019.04.012_bib13) 2015; 62 Hao (10.1016/j.tws.2019.04.012_bib10) 2016; 103 Park (10.1016/j.tws.2019.04.012_bib9) 2007; 36 Buhmann (10.1016/j.tws.2019.04.012_bib35) 2004 Inoue (10.1016/j.tws.2019.04.012_bib1) 2002; 124 Zhang (10.1016/j.tws.2019.04.012_bib29) 2017; 1 Guest (10.1016/j.tws.2019.04.012_bib39) 2015; 283 Li (10.1016/j.tws.2019.04.012_bib31) 2014; 84 Jantos (10.1016/j.tws.2019.04.012_bib26) 2016; 310 Quiroz (10.1016/j.tws.2019.04.012_bib43) 1995; 38 Norato (10.1016/j.tws.2019.04.012_bib16) 2015; 293 Lohan (10.1016/j.tws.2019.04.012_bib23) 2016; 55 Li (10.1016/j.tws.2019.04.012_bib32) 2016; 75 Welding Society of Chinese Mechanical Engineering Society (10.1016/j.tws.2019.04.012_bib41) 2014 Mattheck (10.1016/j.tws.2019.04.012_bib18) 1990; 12 Junker (10.1016/j.tws.2019.04.012_bib24) 2015; 52 C Liu (10.1016/j.tws.2019.04.012_bib3) 2012; 59 Wei (10.1016/j.tws.2019.04.012_bib36) 2013; 49 Zhang (10.1016/j.tws.2019.04.012_bib17) 2016; 311 |
| References_xml | – volume: 86 start-page: 1436 year: 2008 end-page: 1446 ident: bib2 article-title: Optimization of layout and shape of stiffeners in 2D structures publication-title: Comput. Struct. – volume: 1 start-page: 1 year: 2017 end-page: 16 ident: bib29 article-title: Optimal topology design of internal stiffeners for machine pedestal structures using biological branching phenomena publication-title: Struct. Multidisc. Optim. – year: 2011 ident: bib40 article-title: Froundary handbook – volume: 16 start-page: 280 year: 1998 end-page: 288 ident: bib6 article-title: A systematic topology optimization approach for optimal stiffener design publication-title: Struct. Optim. – volume: 310 start-page: 780 year: 2016 end-page: 801 ident: bib26 article-title: An evolutionary topology optimization approach with variationally controlled growth publication-title: Comput. Methods Appl. Math. – volume: 311 start-page: 327 year: 2016 end-page: 355 ident: bib17 article-title: Minimum length scale control in structural topology optimization based on the moving morphable components (MMC) approach publication-title: Comput. Methods Appl. Math. – volume: 12 start-page: 185 year: 1990 end-page: 190 ident: bib18 article-title: A new method of structural shape optimization based on biological growth publication-title: Int. J. Fatigue – volume: 75 start-page: 177 year: 2016 end-page: 182 ident: bib32 article-title: Generating optimal topologies for heat conduction by heat flow paths identification publication-title: Int. Commun. Heat Mass Transf. – volume: 38 start-page: 2165 year: 1995 end-page: 2184 ident: bib43 article-title: Non‐conforming mesh gluing in the finite elements method publication-title: Int. J. Numer. Methods Eng. – year: 2010 ident: bib42 article-title: Pactical Design Handbook for Machine Tools – volume: 55 start-page: 1063 year: 2016 end-page: 1077 ident: bib23 article-title: Topology optimization for heat conduction using generative design algorithms publication-title: Struct. Multidiscipl. O – volume: 124 start-page: 518 year: 2002 end-page: 523 ident: bib1 article-title: Optimum stiffener layout for the reduction of vibration and noise of gearbox housing publication-title: J. Mech. Des. Trans. ASME – start-page: 1 year: 2014 end-page: 12 ident: bib22 article-title: Experimental observation of the skeletal adaptive repair mechanism and bionic topology optimization method publication-title: Math. Probl Eng. – volume: 49 start-page: 667 year: 2013 end-page: 682 ident: bib36 article-title: The stiffness spreading method for layout optimization of truss structures publication-title: Struct. Multidiscip. Optim. – volume: 43 start-page: 375 year: 2017 end-page: 384 ident: bib33 article-title: Topology optimization of stiffened plate/shell structures based on adaptive morphogenesis algorithm publication-title: J. Manuf. Syst. – volume: 54 start-page: 1283 year: 2016 end-page: 1296 ident: bib14 article-title: Two-scale topology design optimization of stiffened or porous plate subject to out-of-plane buckling constraint publication-title: Struct. Multidiscipl. O – volume: 48 start-page: 1 year: 2013 end-page: 16 ident: bib38 article-title: Truss layout optimization with a continuum publication-title: Struct. Multidiscip. Optim. – volume: 15 start-page: 787 year: 2010 end-page: 802 ident: bib21 article-title: On biologically inspired topology optimization method publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 59 start-page: 78 year: 2012 end-page: 86 ident: bib3 article-title: Computational study of strengthening effects of stiffeners on regular and arbitrarily stiffened plates publication-title: Thin Wall. Struct. – volume: 52 start-page: 293 year: 2015 end-page: 304 ident: bib24 article-title: A variational growth approach to topology optimization publication-title: Struct. Multidiscipl. O – volume: 175 start-page: 134 year: 2016 end-page: 143 ident: bib15 article-title: Topology optimization of thin plate structures with bending stress constraints publication-title: Comput. Struct. – volume: 293 start-page: 306 year: 2015 end-page: 327 ident: bib16 article-title: A geometry projection method for continuum-based topology optimization with discrete elements publication-title: Comput. Methods Appl. Math. – volume: 69 year: 2018 ident: bib5 article-title: Material characterization and computations of a polymeric metamaterial with a pantographic substructure publication-title: Z. Angew. Math. Phys. – volume: 225 start-page: 755 year: 2019 end-page: 770 ident: bib34 article-title: Manufacturing oriented topology optimization of 3D structures for carbon emission reduction in casting process publication-title: J. Clean.Prod. – year: 2004 ident: bib35 article-title: Radial Basis Functions: Theory and Implementations – volume: 37 start-page: 377 year: 2008 end-page: 393 ident: bib28 article-title: Topology optimization of trusses by growing ground structure method publication-title: Struct. Multidiscipl. O – volume: 283 start-page: 330 year: 2015 end-page: 351 ident: bib39 article-title: Optimizing the layout of discrete objects in structures and materials: a projection-based topology optimization approach publication-title: Comput. Methods Appl. Math. – volume: 54 start-page: 375 year: 2016 end-page: 389 ident: bib12 article-title: Finite element analysis and topology optimization of a 12000KN fine blanking press frame publication-title: Struct. Multidiscipl. O – volume: 84 start-page: 33 year: 2014 end-page: 44 ident: bib31 article-title: Stiffness design of machine tool structures by a biologically inspired topology optimization method publication-title: Int. J. Mach. Tool Manuf. – volume: 57 start-page: 421 year: 2019 end-page: 434 ident: bib4 article-title: Computation and experimental comparison of the deformation behavior of pantographic structures with different micro-geometry under shear and torsion publication-title: J. Theor. Appl. Mech. – volume: 52 start-page: 903 year: 2015 end-page: 913 ident: bib25 article-title: H-DGTP-a Heaviside-function based directional growth topology parameterization for design optimization of stiffener layout and height of thin-walled structures publication-title: Struct. Multidiscipl. O – volume: 103 start-page: 171 year: 2016 end-page: 182 ident: bib10 article-title: Integrated optimization of hybrid-stiffness stiffened shells based on sub-panel elements publication-title: Thin Wall. Struct. – volume: 130 start-page: 081401-1 year: 2008 end-page: 081401-9 ident: bib27 article-title: Application of a ground beam-joint topology optimization method for multi-piece frame structure design publication-title: J. Mech. Des. Trans. ASME – volume: 22 start-page: 429 year: 2005 end-page: 452 ident: bib8 article-title: Structural optimization strategies for simple and integrally stiffened plates and shells publication-title: Eng. Comput. – volume: 127 start-page: 416 year: 2018 end-page: 424 ident: bib11 article-title: Reliability-based design of stiffened plates in ship structures subject to wheel patch loading publication-title: Thin Wall. Struct. – volume: 25 start-page: 35 year: 2003 end-page: 45 ident: bib7 article-title: Automated rib location and optimization for plate structures publication-title: Struct. Multidiscipl. O – volume: 75 year: 2008 ident: bib20 article-title: Stiffness design of continuum structures by a bionics topology optimization method publication-title: J. Appl. Mech. Trans. ASME – volume: 36 start-page: 43 year: 2007 end-page: 58 ident: bib9 article-title: Topology optimization of shell structures using adaptive inner-front (AIF) level set method publication-title: Struct. Multidiscipl. O – volume: 141 start-page: 051401 year: 2019 end-page: 051416 ident: bib30 article-title: Generating constructal networks for area-to-point (AP) conduction problems via moving morphable components (MMC) approach publication-title: J. Mech. Desgn. Trans. ASME – year: 2012 ident: bib37 article-title: Modified Stiffness Spreading Method for Layout Optimization of Truss Structures, the Seventh China-Japan-Korea Joint Symposium on Optimization of Structural and Mechanical Systems, June 18–21 – volume: 47 start-page: 471 year: 2005 end-page: 489 ident: bib44 article-title: Multipoint constraint methods for moving body and non‐contiguous mesh simulations publication-title: Adv. Challeng. Flow Simulat. Model. – volume: 33 start-page: 13 year: 2006 end-page: 26 ident: bib19 article-title: Growth method for size, topology and geometry optimization of truss structures publication-title: Struct. Multidiscipl. O – volume: 62 start-page: 020801-1 year: 2015 end-page: 020801-16 ident: bib13 article-title: Analysis and limit state design of stiffened plates and shells: a world view publication-title: Appl. Mech. Rev. – year: 2014 ident: bib41 article-title: Welding handbook – volume: 75 start-page: 177 year: 2016 ident: 10.1016/j.tws.2019.04.012_bib32 article-title: Generating optimal topologies for heat conduction by heat flow paths identification publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2016.04.016 – volume: 22 start-page: 429 year: 2005 ident: 10.1016/j.tws.2019.04.012_bib8 article-title: Structural optimization strategies for simple and integrally stiffened plates and shells publication-title: Eng. Comput. doi: 10.1108/02644400510598769 – volume: 59 start-page: 78 year: 2012 ident: 10.1016/j.tws.2019.04.012_bib3 article-title: Computational study of strengthening effects of stiffeners on regular and arbitrarily stiffened plates publication-title: Thin Wall. Struct. doi: 10.1016/j.tws.2012.05.001 – volume: 86 start-page: 1436 year: 2008 ident: 10.1016/j.tws.2019.04.012_bib2 article-title: Optimization of layout and shape of stiffeners in 2D structures publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2007.05.005 – volume: 1 start-page: 1 year: 2017 ident: 10.1016/j.tws.2019.04.012_bib29 article-title: Optimal topology design of internal stiffeners for machine pedestal structures using biological branching phenomena publication-title: Struct. Multidisc. Optim. – volume: 55 start-page: 1063 issue: 3 year: 2016 ident: 10.1016/j.tws.2019.04.012_bib23 article-title: Topology optimization for heat conduction using generative design algorithms publication-title: Struct. Multidiscipl. O doi: 10.1007/s00158-016-1563-6 – start-page: 1 year: 2014 ident: 10.1016/j.tws.2019.04.012_bib22 article-title: Experimental observation of the skeletal adaptive repair mechanism and bionic topology optimization method publication-title: Math. Probl Eng. – volume: 52 start-page: 293 year: 2015 ident: 10.1016/j.tws.2019.04.012_bib24 article-title: A variational growth approach to topology optimization publication-title: Struct. Multidiscipl. O doi: 10.1007/s00158-015-1241-0 – volume: 47 start-page: 471 issue: 6–7 year: 2005 ident: 10.1016/j.tws.2019.04.012_bib44 article-title: Multipoint constraint methods for moving body and non‐contiguous mesh simulations publication-title: Adv. Challeng. Flow Simulat. Model. – volume: 38 start-page: 2165 issue: 13 year: 1995 ident: 10.1016/j.tws.2019.04.012_bib43 article-title: Non‐conforming mesh gluing in the finite elements method publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1620381303 – volume: 36 start-page: 43 year: 2007 ident: 10.1016/j.tws.2019.04.012_bib9 article-title: Topology optimization of shell structures using adaptive inner-front (AIF) level set method publication-title: Struct. Multidiscipl. O doi: 10.1007/s00158-007-0169-4 – volume: 84 start-page: 33 year: 2014 ident: 10.1016/j.tws.2019.04.012_bib31 article-title: Stiffness design of machine tool structures by a biologically inspired topology optimization method publication-title: Int. J. Mach. Tool Manuf. doi: 10.1016/j.ijmachtools.2014.03.005 – volume: 49 start-page: 667 issue: 4 year: 2013 ident: 10.1016/j.tws.2019.04.012_bib36 article-title: The stiffness spreading method for layout optimization of truss structures publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-013-1005-7 – volume: 54 start-page: 375 year: 2016 ident: 10.1016/j.tws.2019.04.012_bib12 article-title: Finite element analysis and topology optimization of a 12000KN fine blanking press frame publication-title: Struct. Multidiscipl. O doi: 10.1007/s00158-016-1407-4 – volume: 15 start-page: 787 issue: 3 year: 2010 ident: 10.1016/j.tws.2019.04.012_bib21 article-title: On biologically inspired topology optimization method publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2009.04.014 – year: 2011 ident: 10.1016/j.tws.2019.04.012_bib40 – volume: 75 issue: 5 year: 2008 ident: 10.1016/j.tws.2019.04.012_bib20 article-title: Stiffness design of continuum structures by a bionics topology optimization method publication-title: J. Appl. Mech. Trans. ASME doi: 10.1115/1.2936929 – volume: 225 start-page: 755 year: 2019 ident: 10.1016/j.tws.2019.04.012_bib34 article-title: Manufacturing oriented topology optimization of 3D structures for carbon emission reduction in casting process publication-title: J. Clean.Prod. doi: 10.1016/j.jclepro.2019.03.163 – volume: 141 start-page: 051401 issue: 5 year: 2019 ident: 10.1016/j.tws.2019.04.012_bib30 article-title: Generating constructal networks for area-to-point (AP) conduction problems via moving morphable components (MMC) approach publication-title: J. Mech. Desgn. Trans. ASME doi: 10.1115/1.4042020 – volume: 54 start-page: 1283 issue: 5 year: 2016 ident: 10.1016/j.tws.2019.04.012_bib14 article-title: Two-scale topology design optimization of stiffened or porous plate subject to out-of-plane buckling constraint publication-title: Struct. Multidiscipl. O doi: 10.1007/s00158-016-1542-y – volume: 103 start-page: 171 year: 2016 ident: 10.1016/j.tws.2019.04.012_bib10 article-title: Integrated optimization of hybrid-stiffness stiffened shells based on sub-panel elements publication-title: Thin Wall. Struct. doi: 10.1016/j.tws.2016.01.027 – volume: 175 start-page: 134 year: 2016 ident: 10.1016/j.tws.2019.04.012_bib15 article-title: Topology optimization of thin plate structures with bending stress constraints publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2016.07.006 – volume: 48 start-page: 1 year: 2013 ident: 10.1016/j.tws.2019.04.012_bib38 article-title: Truss layout optimization with a continuum publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-013-0895-8 – volume: 124 start-page: 518 year: 2002 ident: 10.1016/j.tws.2019.04.012_bib1 article-title: Optimum stiffener layout for the reduction of vibration and noise of gearbox housing publication-title: J. Mech. Des. Trans. ASME doi: 10.1115/1.1480817 – volume: 283 start-page: 330 year: 2015 ident: 10.1016/j.tws.2019.04.012_bib39 article-title: Optimizing the layout of discrete objects in structures and materials: a projection-based topology optimization approach publication-title: Comput. Methods Appl. Math. – year: 2014 ident: 10.1016/j.tws.2019.04.012_bib41 – volume: 12 start-page: 185 issue: 3 year: 1990 ident: 10.1016/j.tws.2019.04.012_bib18 article-title: A new method of structural shape optimization based on biological growth publication-title: Int. J. Fatigue doi: 10.1016/0142-1123(90)90094-U – volume: 25 start-page: 35 year: 2003 ident: 10.1016/j.tws.2019.04.012_bib7 article-title: Automated rib location and optimization for plate structures publication-title: Struct. Multidiscipl. O doi: 10.1007/s00158-002-0270-7 – volume: 52 start-page: 903 year: 2015 ident: 10.1016/j.tws.2019.04.012_bib25 article-title: H-DGTP-a Heaviside-function based directional growth topology parameterization for design optimization of stiffener layout and height of thin-walled structures publication-title: Struct. Multidiscipl. O doi: 10.1007/s00158-015-1281-5 – volume: 310 start-page: 780 year: 2016 ident: 10.1016/j.tws.2019.04.012_bib26 article-title: An evolutionary topology optimization approach with variationally controlled growth publication-title: Comput. Methods Appl. Math. – volume: 311 start-page: 327 year: 2016 ident: 10.1016/j.tws.2019.04.012_bib17 article-title: Minimum length scale control in structural topology optimization based on the moving morphable components (MMC) approach publication-title: Comput. Methods Appl. Math. – volume: 37 start-page: 377 year: 2008 ident: 10.1016/j.tws.2019.04.012_bib28 article-title: Topology optimization of trusses by growing ground structure method publication-title: Struct. Multidiscipl. O doi: 10.1007/s00158-008-0237-4 – volume: 130 start-page: 081401-1 year: 2008 ident: 10.1016/j.tws.2019.04.012_bib27 article-title: Application of a ground beam-joint topology optimization method for multi-piece frame structure design publication-title: J. Mech. Des. Trans. ASME doi: 10.1115/1.2936930 – volume: 69 issue: 4 year: 2018 ident: 10.1016/j.tws.2019.04.012_bib5 article-title: Material characterization and computations of a polymeric metamaterial with a pantographic substructure publication-title: Z. Angew. Math. Phys. doi: 10.1007/s00033-018-1000-3 – volume: 57 start-page: 421 issue: 2 year: 2019 ident: 10.1016/j.tws.2019.04.012_bib4 article-title: Computation and experimental comparison of the deformation behavior of pantographic structures with different micro-geometry under shear and torsion publication-title: J. Theor. Appl. Mech. doi: 10.15632/jtam-pl/104594 – volume: 127 start-page: 416 year: 2018 ident: 10.1016/j.tws.2019.04.012_bib11 article-title: Reliability-based design of stiffened plates in ship structures subject to wheel patch loading publication-title: Thin Wall. Struct. doi: 10.1016/j.tws.2018.02.022 – volume: 43 start-page: 375 year: 2017 ident: 10.1016/j.tws.2019.04.012_bib33 article-title: Topology optimization of stiffened plate/shell structures based on adaptive morphogenesis algorithm publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2017.02.002 – year: 2004 ident: 10.1016/j.tws.2019.04.012_bib35 – volume: 293 start-page: 306 year: 2015 ident: 10.1016/j.tws.2019.04.012_bib16 article-title: A geometry projection method for continuum-based topology optimization with discrete elements publication-title: Comput. Methods Appl. Math. – volume: 33 start-page: 13 year: 2006 ident: 10.1016/j.tws.2019.04.012_bib19 article-title: Growth method for size, topology and geometry optimization of truss structures publication-title: Struct. Multidiscipl. O doi: 10.1007/s00158-006-0043-9 – year: 2010 ident: 10.1016/j.tws.2019.04.012_bib42 – volume: 16 start-page: 280 year: 1998 ident: 10.1016/j.tws.2019.04.012_bib6 article-title: A systematic topology optimization approach for optimal stiffener design publication-title: Struct. Optim. doi: 10.1007/BF01271435 – volume: 62 start-page: 020801-1 year: 2015 ident: 10.1016/j.tws.2019.04.012_bib13 article-title: Analysis and limit state design of stiffened plates and shells: a world view publication-title: Appl. Mech. Rev. – year: 2012 ident: 10.1016/j.tws.2019.04.012_bib37 |
| SSID | ssj0017194 |
| Score | 2.3911307 |
| Snippet | This work aims at developing a simple and viable evolutionary design approach to optimally orient stiffeners for plate and shell structures so as to maximize... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 232 |
| SubjectTerms | Evolutionary algorithm Plate/shell structures Stiffness Topology optimization |
| Title | Stiffness design of plate/shell structures by evolutionary topology optimization |
| URI | https://dx.doi.org/10.1016/j.tws.2019.04.012 |
| Volume | 141 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-3223 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017194 issn: 0263-8231 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect (LUT) customDbUrl: eissn: 1879-3223 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017194 issn: 0263-8231 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-3223 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017194 issn: 0263-8231 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-3223 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017194 issn: 0263-8231 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-3223 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017194 issn: 0263-8231 databaseCode: AKRWK dateStart: 19830301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14EtZk0002eyzFUi0WsRZ7W5J9QKW2RaPSi7_d2TxKBfXgKWyYgTAZ5sF-8w1C55YarliUEshtjDChFUljpUkSCMY1TQxN3HDy7SDqjdjNOBzXUKeahXGwyjL2FzE9j9blG6-0preYTLwhdA_5JRY4JTR5sWP8ZIy7LQaXnyuYB-U0X4bohImTrm42c4xX9uEYu6nI2U5p8HNuWss33R20XRaKuF18yy6qmdke2lqjD9xHd8NsYq2LVVjnQAw8t3gxherRe3X4TlyQw75BR43TJTbvpZslL0ucFcsRlngOMeO5HMY8QKPu1UOnR8oNCUQFgmckDCMeKSjaIqFjKF18o6Hgcz2FEUEYiDRqKR4ngQ6oFRGlCTdwVL4yqhWaFm8dovpsPjNHCPtUQ7NA08RawZgJ0tC32k3hamWZNbSB_Mo2UpX04W6LxVRWOLEnCeaUzpzSZxLM2UAXK5VFwZ3xlzCrDC6_OYCE2P672vH_1E7QpjsVSL5TVIffYc6gusjSZu4-TbTRvu73Bu7Zv3_sfwGnKdG4 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qPagH8Yn1uQdPQmx2s8l2j1IsVdsitIXelmQfUKlt0aj04m93No9SQT14TDID4dthHuw3MwhdWmK4YlHiQWxjHhNaeUlDaS-mgnFNYkNi15zc7UXtIbsfhaMKapa9MI5WWfj-3Kdn3rp4Uy_QrM_H43ofqofsEguMEoq8RrCG1llIuavArj-XPA_CSbYN0Ul7Try82sxIXumHG9lNRDbulNCfg9NKwGntoO0iU8Q3-c_sooqZ7qGtlfmB--ixn46tdc4K64yJgWcWzyeQPtZfHcET59Nh36CkxskCm_fCzuKXBU7z7QgLPAOn8Vx0Yx6gYet20Gx7xYoET1HBUy8MIx4pyNoioRuQu_hGQ8bnigojaEhFEgWKN2KqKbEiIiTmBh6Vr4wKQhPw4BBVp7OpOULYJxqqBZLE1grGDE1C32rXhquVZdaQGvJLbKQq5oe7NRYTWRLFniTAKR2c0mcS4Kyhq6XKPB-e8ZcwKwGX3yxAgnP_Xe34f2oXaKM96HZk5673cII23Zec1neKqnA05gxSjTQ5z0zpCx850ao |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stiffness+design+of+plate%2Fshell+structures+by+evolutionary+topology+optimization&rft.jtitle=Thin-walled+structures&rft.au=Li%2C+Baotong&rft.au=Liu%2C+Honglei&rft.au=Yang%2C+Zihui&rft.au=Zhang%2C+Jinhua&rft.date=2019-08-01&rft.pub=Elsevier+Ltd&rft.issn=0263-8231&rft.eissn=1879-3223&rft.volume=141&rft.spage=232&rft.epage=250&rft_id=info:doi/10.1016%2Fj.tws.2019.04.012&rft.externalDocID=S0263823118304683 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8231&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8231&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8231&client=summon |