A torsional social force model for simulating rotation behavior of pedestrians under multiple scenarios
Pedestrian behavior is a complex and important research subject, which has been studied extensively by simulation and experiment. As the basis or premise of other behaviors, rotation behavior is the most common pedestrian behavior in life. However, the current pedestrian simulation method is difficu...
Saved in:
Published in | Transportation research. Part C, Emerging technologies Vol. 163; p. 104630 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0968-090X 1879-2359 |
DOI | 10.1016/j.trc.2024.104630 |
Cover
Abstract | Pedestrian behavior is a complex and important research subject, which has been studied extensively by simulation and experiment. As the basis or premise of other behaviors, rotation behavior is the most common pedestrian behavior in life. However, the current pedestrian simulation method is difficult to depict the rotation, which results in insufficient authenticity of the simulation effect. This paper proposes a systematic work on the modeling and simulation problem of rotation behaviors under multiple scenarios. Firstly, we improve the body model based on elliptical structure to simulate the microscopic behavior of pedestrians in the most realistic way. Then, we modeling the pedestrian rotation behavior in multiple scenarios by proposing two indexes: rotation angle and rotation timing, which include the Case I: Traversing behavior in narrow areas, Case II: Avoidance behavior in counter flow and Case III: Overtaking behavior in medium density flow. After that, we propose a torsional social force model (T-SFM), which significantly improves original model from two aspects: (a) fusing the torsional force; (b) adding the rotation willingness. More than 500 times real experiments are conducted, and according to the analysis results of real experiments, this paper verifies the authenticity of rotation model from both qualitative and quantitative perspectives. Moreover, we calibrate the general parameters to verify the generality of the rotation model. The simulation results show that the T-SFM can not only simulate the rotation behavior with high authenticity, but also has good generality. Our research significantly improves the authenticity of pedestrian simulation and provides support for heterogeneous pedestrians modeling in complex environments.
•Rotation behavior was observed in traversing, avoidance and overtaking experiments.•We build a rotation behavior model considering rotation angle and rotation timing.•Torsional social force model (T-SFM) was proposed and validated by experiment.•Males will rotate more to avoid females due to the politeness. |
---|---|
AbstractList | Pedestrian behavior is a complex and important research subject, which has been studied extensively by simulation and experiment. As the basis or premise of other behaviors, rotation behavior is the most common pedestrian behavior in life. However, the current pedestrian simulation method is difficult to depict the rotation, which results in insufficient authenticity of the simulation effect. This paper proposes a systematic work on the modeling and simulation problem of rotation behaviors under multiple scenarios. Firstly, we improve the body model based on elliptical structure to simulate the microscopic behavior of pedestrians in the most realistic way. Then, we modeling the pedestrian rotation behavior in multiple scenarios by proposing two indexes: rotation angle and rotation timing, which include the Case I: Traversing behavior in narrow areas, Case II: Avoidance behavior in counter flow and Case III: Overtaking behavior in medium density flow. After that, we propose a torsional social force model (T-SFM), which significantly improves original model from two aspects: (a) fusing the torsional force; (b) adding the rotation willingness. More than 500 times real experiments are conducted, and according to the analysis results of real experiments, this paper verifies the authenticity of rotation model from both qualitative and quantitative perspectives. Moreover, we calibrate the general parameters to verify the generality of the rotation model. The simulation results show that the T-SFM can not only simulate the rotation behavior with high authenticity, but also has good generality. Our research significantly improves the authenticity of pedestrian simulation and provides support for heterogeneous pedestrians modeling in complex environments.
•Rotation behavior was observed in traversing, avoidance and overtaking experiments.•We build a rotation behavior model considering rotation angle and rotation timing.•Torsional social force model (T-SFM) was proposed and validated by experiment.•Males will rotate more to avoid females due to the politeness. |
ArticleNumber | 104630 |
Author | Peng, Jingxuan Wang, Shaofan Li, Yongxing Wei, Zhonghua Wang, Zijia Taku, Fujiyama Chen, Yanyan |
Author_xml | – sequence: 1 givenname: Jingxuan orcidid: 0000-0001-6903-1380 surname: Peng fullname: Peng, Jingxuan organization: College of Metropolitan Transportation, Beijing University of Technology, Beijing 100124, China – sequence: 2 givenname: Zhonghua surname: Wei fullname: Wei, Zhonghua organization: College of Metropolitan Transportation, Beijing University of Technology, Beijing 100124, China – sequence: 3 givenname: Shaofan surname: Wang fullname: Wang, Shaofan organization: Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China – sequence: 4 givenname: Yanyan surname: Chen fullname: Chen, Yanyan organization: College of Metropolitan Transportation, Beijing University of Technology, Beijing 100124, China – sequence: 5 givenname: Yongxing surname: Li fullname: Li, Yongxing email: liyx@bjut.edu.cn organization: College of Metropolitan Transportation, Beijing University of Technology, Beijing 100124, China – sequence: 6 givenname: Zijia orcidid: 0000-0002-5726-5451 surname: Wang fullname: Wang, Zijia organization: School of Civil Engineering, Beijing Jiaotong University, Beijing 100091, China – sequence: 7 givenname: Fujiyama surname: Taku fullname: Taku, Fujiyama organization: Department of Civil Environmental and Geomatic Engineering, Faculty of Engineering Science, University College London, WC1E 6BT, England, United Kingdom |
BookMark | eNp9kM1KAzEUhYNUsFYfwF1eYGp-JpMEV6X4BwU3Cu5CmrlTU6ZJSdKCb-_UceWiq3Mu934XzrlGkxADIHRHyZwS2txv5yW5OSOsHua64eQCTamSumJc6AmaEt2oimjyeYWuc94SQqgWcoo2C1xiyj4G2-McnR-ki8kB3sUWfj3OfnfobfFhg1Msg4kBr-HLHv2wjB3eQwu5JG9DxofQQsLDffH7HnB2EGzyMd-gy872GW7_dIY-nh7fly_V6u35dblYVY5pWSrBOG2c4rWSDaVqrbVmes0bEJ0UqiOitbLm3DElactaKUi9JlwxSjVjgls-Q3T861LMOUFn9snvbPo2lJhTU2ZrhqbMqSkzNjUw8h_j_BizJOv7s-TDSMIQ6eghmew8BAetT-CKaaM_Q_8AMLeFvg |
CitedBy_id | crossref_primary_10_1016_j_inffus_2024_102898 crossref_primary_10_1103_PhysRevE_111_014103 crossref_primary_10_1016_j_trc_2025_105086 |
Cites_doi | 10.1016/j.simpat.2019.04.011 10.1016/j.ssci.2005.11.007 10.1016/j.physa.2019.123233 10.3390/su14042003 10.1109/TITS.2009.2036152 10.1016/j.simpat.2016.12.001 10.1088/1742-5468/ac0f6e 10.1103/PhysRevE.56.2527 10.1016/j.physa.2022.128027 10.1109/TITS.2018.2873118 10.1016/j.trc.2013.12.007 10.1016/j.ijdrr.2022.103479 10.1109/ACCESS.2019.2894345 10.1016/j.ssci.2014.05.016 10.1016/j.physa.2013.12.049 10.1109/TITS.2021.3093714 10.1103/PhysRevE.51.4282 10.1016/j.physa.2009.05.027 10.1016/S0378-4371(02)00857-9 10.3390/su131910621 10.1016/j.physa.2017.04.117 10.1016/j.ssci.2019.04.048 10.1016/j.jocs.2016.08.002 10.1109/ACCESS.2020.3034348 10.1016/j.ress.2022.108851 10.1103/PhysRevE.90.063305 10.1103/PhysRevE.104.014313 10.1007/s11771-015-2997-5 10.1016/j.neucom.2014.04.057 10.1016/j.ssci.2011.12.020 10.1016/j.physa.2021.125923 10.1142/S0219525907001355 10.1103/PhysRevE.82.046111 10.1098/rspb.2009.0405 10.1016/j.jocs.2015.06.006 10.1109/ACCESS.2019.2937583 10.1016/j.trpro.2014.09.034 10.1109/ACCESS.2019.2939230 10.1103/RevModPhys.73.1067 10.1016/j.trb.2019.03.008 10.1016/S0378-4371(01)00141-8 10.1016/j.physa.2008.05.058 10.1016/j.physa.2013.01.012 10.1371/journal.pone.0169734 10.1016/j.ssci.2015.06.018 10.1016/j.physa.2020.124376 10.1016/j.physa.2006.11.035 10.1038/35035023 10.1109/TITS.2022.3140823 10.1016/j.physa.2016.08.001 10.1016/j.physa.2021.126593 10.1016/j.simpat.2020.102188 10.1109/TITS.2022.3150282 10.1016/j.physa.2021.126277 10.1016/j.simpat.2021.102385 10.1016/j.physleta.2018.08.024 10.1016/j.physa.2018.06.078 10.1088/1742-5468/ab8c38 10.1007/s00521-020-05385-6 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.trc.2024.104630 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
EISSN | 1879-2359 |
ExternalDocumentID | 10_1016_j_trc_2024_104630 S0968090X24001517 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABLJU ABMAC ABMMH ABUCO ABXDB ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD APLSM ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HMY HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY1 LY7 M3Y M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SDS SES SET SEW SPC SPCBC SSB SSD SSO SSS SST SSV SSZ T5K TN5 WUQ XPP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS EFLBG ~HD |
ID | FETCH-LOGICAL-c297t-52316c834876118b99929b36e5f758f05da7433c2871d2d7504b03821192253a3 |
IEDL.DBID | .~1 |
ISSN | 0968-090X |
IngestDate | Thu Apr 24 23:02:27 EDT 2025 Wed Oct 01 02:27:31 EDT 2025 Sat Jun 01 15:40:25 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multi-scenario simulation Rotation behavior Torsional social force model Pedestrian dynamics Real experiment |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-52316c834876118b99929b36e5f758f05da7433c2871d2d7504b03821192253a3 |
ORCID | 0000-0001-6903-1380 0000-0002-5726-5451 |
ParticipantIDs | crossref_primary_10_1016_j_trc_2024_104630 crossref_citationtrail_10_1016_j_trc_2024_104630 elsevier_sciencedirect_doi_10_1016_j_trc_2024_104630 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2024 2024-06-00 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
PublicationDecade | 2020 |
PublicationTitle | Transportation research. Part C, Emerging technologies |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Huo, Li, Li, Lv, Ma (b29) 2022; 604 Song, Xie, Sun, Han, Cui, Chen (b54) 2019; 20 Xu, Song, Zheng (b61) 2008; 387 Dai, Li, Liu (b10) 2013; 392 Zheng, Zhu, Sun, Wang, Li (b69) 2020; 8 Fu, Xiong, Luo, Yang, Feng, Chen (b16) 2022; 605 Li, Yang, Wang, Chen, Chen (b40) 2022; 589 Xu, Duh (b60) 2010; 11 Miyagawa, Ichinose (b45) 2020; 549 Du, Zhang, Shen, Zheng (b11) 2022; 23 Jiang, Zhou, Tian (b31) 2015; 10 Zheng, Li, Meng, Xu, Chen (b68) 2015; 22 Kolivand, Rahim, Sunar, Fata, Wren (b35) 2021; 33 Cui, Yanagisawa, Nishinari (b9) 2021; 583 Guo, Ding, Zhu, Ding (b18) 2020; 2020 Hoogendoorn, Daamen, Landman (b26) 2007 Farina, Fontanelli, Garulli, Giannitrapani, Prattichizzo (b12) 2017; 12 Yuan, Guo, Tang, He, Bian, Li (b64) 2019; 7 Liu, Jafari, Shim, Paley (b43) 2022; 23 Hou, Liu, Pan, Wang (b27) 2014; 400 Fukamachi, Nagatani (b17) 2007; 377 Imanishi, Sano (b30) 2014; 2 Helbing, Farkas, Vicsek (b22) 2000; 407 Helbing, Molnar (b23) 1995; 51 Chen, Li, Miao, Jiang, Jiang (b6) 2017; 71 Fu, Liu, Shi, Zhao (b14) 2021; 2021 Wang, Chen, Shi (b57) 2013; 41 Bandini, Mondini, Vizzari (b2) 2014; 40 Neumann (b48) 1966 Hongfei, Lili, Ming (b25) 2009; 9 Helbing, Schweitzer, Keltsch, Molnar (b24) 1997; 56 Chraibi, Seyfried, Schadschneider (b7) 2010; 82 Burstedde, Klauck, Schadschneider, Zittartz (b5) 2001; 295 Cui, Ji, Bai (b8) 2022; 6 Fu, Liu, Yang, Shi, Zhao, Fang (b15) 2020; 6 Liang, Xu, Jia, Qin (b42) 2020; 540 Langston, Masling, Asmar (b36) 2006; 44 Shao (b52) 2009 Li, Yang, Chen, Tang (b39) 2021; 106 Tang, Zhang, Xie (b55) 2019; 95 Song, Shao, Zhu, Dong, Yu (b53) 2023; 229 Sajjadi, Hashemi, Ghanbarnejad (b51) 2021; 104 Kirchner, Schadschneider (b34) 2002; 312 Fu, Cao, Shi, Chen, Yang, Fang (b13) 2019; 117 Guo, Hu, Jiang (b19) 2017; 465 Liu, Li, Shu (b44) 2021; 13 Bao (b3) 2021; 113 Zhang, Zhu, Du, Hostikka (b67) 2018; 382 Bao, Huo (b4) 2021; 572 Qu, Gao, Xiao, Li (b50) 2014; 70 Was, Lubas (b58) 2014; 146 Xu, X., Tang, Y., Urban Road and Traffic Planning (Volume 1). China Architecture and Building Press. Li, Wang, Meng, Chen, Fu (b37) 2019; 7 Helbing (b21) 2001; 73 Li, Zhao, He, Chen, Xu (b41) 2015; 79 Yamamoto, Yanagisawa, Feliciani, Nishinari (b63) 2019; 122 Jin, Jiang, Yin, Dong, Li (b32) 2017; 482 Zhang, Li, Kong, Xing, Luo, Mao (b66) 2021; 2021 Wu, Li, Yi, Zheng (b59) 2022; 23 Hrabak, Bukacek (b28) 2017; 21 Tong, Bode (b56) 2023; 84 Johansson, Helbing, Shukla (b33) 2007; 10 Moussaïd, Helbing, Garnier, Johansson, Combe, Theraulaz (b46) 2009; 276 Nagao, Yanagisawa, Nishinari (b47) 2018; 510 Yuen, Lee (b65) 2012; 50 Li, Wang, Meng, Wang (b38) 2019; 7 Parisi, Gilman, Moldovan (b49) 2009; 388 Alonso-Marroquin, Busch, Chiew, Lozano, Ramirez-Gomez (b1) 2014; 90 Guo, Ma, Wei, Lu, Sun, Wang (b20) 2022; 14 Fu (10.1016/j.trc.2024.104630_b15) 2020; 6 Moussaïd (10.1016/j.trc.2024.104630_b46) 2009; 276 Kolivand (10.1016/j.trc.2024.104630_b35) 2021; 33 Jiang (10.1016/j.trc.2024.104630_b31) 2015; 10 Zhang (10.1016/j.trc.2024.104630_b66) 2021; 2021 Cui (10.1016/j.trc.2024.104630_b8) 2022; 6 Hou (10.1016/j.trc.2024.104630_b27) 2014; 400 Yamamoto (10.1016/j.trc.2024.104630_b63) 2019; 122 Helbing (10.1016/j.trc.2024.104630_b23) 1995; 51 Huo (10.1016/j.trc.2024.104630_b29) 2022; 604 Xu (10.1016/j.trc.2024.104630_b61) 2008; 387 Yuan (10.1016/j.trc.2024.104630_b64) 2019; 7 Hongfei (10.1016/j.trc.2024.104630_b25) 2009; 9 Alonso-Marroquin (10.1016/j.trc.2024.104630_b1) 2014; 90 Song (10.1016/j.trc.2024.104630_b54) 2019; 20 Johansson (10.1016/j.trc.2024.104630_b33) 2007; 10 10.1016/j.trc.2024.104630_b62 Fukamachi (10.1016/j.trc.2024.104630_b17) 2007; 377 Jin (10.1016/j.trc.2024.104630_b32) 2017; 482 Chen (10.1016/j.trc.2024.104630_b6) 2017; 71 Burstedde (10.1016/j.trc.2024.104630_b5) 2001; 295 Dai (10.1016/j.trc.2024.104630_b10) 2013; 392 Li (10.1016/j.trc.2024.104630_b41) 2015; 79 Du (10.1016/j.trc.2024.104630_b11) 2022; 23 Fu (10.1016/j.trc.2024.104630_b13) 2019; 117 Helbing (10.1016/j.trc.2024.104630_b22) 2000; 407 Li (10.1016/j.trc.2024.104630_b39) 2021; 106 Hrabak (10.1016/j.trc.2024.104630_b28) 2017; 21 Zheng (10.1016/j.trc.2024.104630_b69) 2020; 8 Was (10.1016/j.trc.2024.104630_b58) 2014; 146 Nagao (10.1016/j.trc.2024.104630_b47) 2018; 510 Parisi (10.1016/j.trc.2024.104630_b49) 2009; 388 Yuen (10.1016/j.trc.2024.104630_b65) 2012; 50 Chraibi (10.1016/j.trc.2024.104630_b7) 2010; 82 Li (10.1016/j.trc.2024.104630_b40) 2022; 589 Cui (10.1016/j.trc.2024.104630_b9) 2021; 583 Helbing (10.1016/j.trc.2024.104630_b24) 1997; 56 Bao (10.1016/j.trc.2024.104630_b3) 2021; 113 Helbing (10.1016/j.trc.2024.104630_b21) 2001; 73 Kirchner (10.1016/j.trc.2024.104630_b34) 2002; 312 Miyagawa (10.1016/j.trc.2024.104630_b45) 2020; 549 Wang (10.1016/j.trc.2024.104630_b57) 2013; 41 Guo (10.1016/j.trc.2024.104630_b20) 2022; 14 Imanishi (10.1016/j.trc.2024.104630_b30) 2014; 2 Qu (10.1016/j.trc.2024.104630_b50) 2014; 70 Wu (10.1016/j.trc.2024.104630_b59) 2022; 23 Sajjadi (10.1016/j.trc.2024.104630_b51) 2021; 104 Tang (10.1016/j.trc.2024.104630_b55) 2019; 95 Guo (10.1016/j.trc.2024.104630_b19) 2017; 465 Fu (10.1016/j.trc.2024.104630_b14) 2021; 2021 Li (10.1016/j.trc.2024.104630_b37) 2019; 7 Fu (10.1016/j.trc.2024.104630_b16) 2022; 605 Guo (10.1016/j.trc.2024.104630_b18) 2020; 2020 Li (10.1016/j.trc.2024.104630_b38) 2019; 7 Xu (10.1016/j.trc.2024.104630_b60) 2010; 11 Bandini (10.1016/j.trc.2024.104630_b2) 2014; 40 Liu (10.1016/j.trc.2024.104630_b44) 2021; 13 Neumann (10.1016/j.trc.2024.104630_b48) 1966 Liang (10.1016/j.trc.2024.104630_b42) 2020; 540 Song (10.1016/j.trc.2024.104630_b53) 2023; 229 Zheng (10.1016/j.trc.2024.104630_b68) 2015; 22 Hoogendoorn (10.1016/j.trc.2024.104630_b26) 2007 Zhang (10.1016/j.trc.2024.104630_b67) 2018; 382 Shao (10.1016/j.trc.2024.104630_b52) 2009 Bao (10.1016/j.trc.2024.104630_b4) 2021; 572 Farina (10.1016/j.trc.2024.104630_b12) 2017; 12 Liu (10.1016/j.trc.2024.104630_b43) 2022; 23 Tong (10.1016/j.trc.2024.104630_b56) 2023; 84 Langston (10.1016/j.trc.2024.104630_b36) 2006; 44 |
References_xml | – volume: 79 start-page: 243 year: 2015 end-page: 253 ident: b41 article-title: The parameter calibration and optimization of social force model for the real-life 2013 Ya’an earthquake evacuation in China publication-title: Saf. Sci. – year: 1966 ident: b48 article-title: Theory of Self-Reproducing Automata – volume: 510 start-page: 145 year: 2018 end-page: 163 ident: b47 article-title: Estimation of crowd density applying wavelet transform and machine learning publication-title: Phys. A – volume: 2021 start-page: 1 year: 2021 end-page: 14 ident: b66 article-title: Modeling and simulation of departure passenger’s behavior based on an improved social force approach: A case study on an airport terminal in China publication-title: Adv. Civ. Eng. – volume: 113 year: 2021 ident: b3 article-title: Room evacuation in the presence of obstacles using an agent-based model with turning behavior publication-title: Simul. Model. Pract. Theory – volume: 407 start-page: 487 year: 2000 end-page: 490 ident: b22 article-title: Simulating dynamical features of escape panic publication-title: Nature – volume: 382 start-page: 3172 year: 2018 end-page: 3180 ident: b67 article-title: An optimization-based overtaking model for unidirectional pedestrian flow publication-title: Phys. Lett. A – volume: 6 start-page: 1 year: 2022 end-page: 25 ident: b8 article-title: Algorithm and examples of an agent-based evacuation model publication-title: Fire – volume: 312 start-page: 260 year: 2002 end-page: 276 ident: b34 article-title: Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics publication-title: Phys. A – volume: 117 start-page: 447 year: 2019 end-page: 457 ident: b13 article-title: Walking behavior of pedestrian social groups on stairs: A field study publication-title: Saf. Sci. – volume: 51 start-page: 4282 year: 1995 end-page: 4286 ident: b23 article-title: Social force model for pedestrian dynamics publication-title: Phys. Rev. E – volume: 71 start-page: 134 year: 2017 end-page: 148 ident: b6 article-title: A multiagent-based model for pedestrian simulation in subway stations publication-title: Simul. Model. Pract. Theory – volume: 7 start-page: 130120 year: 2019 end-page: 130132 ident: b38 article-title: Simulation of pedestrian evacuation in university canteen based on cellular automata publication-title: IEEE Access – volume: 540 year: 2020 ident: b42 article-title: An improved model of passenger merging in a Y-shaped passage publication-title: Phys. A – volume: 104 year: 2021 ident: b51 article-title: Social distancing in pedestrian dynamics and its effect on disease spreading publication-title: Phys. Rev. E – volume: 2020 year: 2020 ident: b18 article-title: Characteristics of pedestrian flow based on an improved least-effort model considering body rotation publication-title: J. Stat. Mech. Theory Exp. – volume: 44 start-page: 395 year: 2006 end-page: 417 ident: b36 article-title: Crowd dynamics discrete element multi-circle model publication-title: Saf. Sci. – volume: 106 year: 2021 ident: b39 article-title: A boarding model for heterogeneous passengers on the platform of high-speed railway station publication-title: Simul. Model. Pract. Theory – volume: 10 start-page: 271 year: 2007 end-page: 288 ident: b33 article-title: Specification of the social force pedestrian model by evolutionary adjustment to video tracking data publication-title: Adv. Complex Syst. – volume: 41 start-page: 90 year: 2013 end-page: 95 ident: b57 article-title: Agent-based realization of social force model and simulation of pedestrians in subway passageway publication-title: J. South China Univ. Technol. – volume: 8 start-page: 195989 year: 2020 end-page: 196001 ident: b69 article-title: Improved social force model based on emotional contagion and evacuation assistant publication-title: IEEE Access – volume: 392 start-page: 2202 year: 2013 end-page: 2211 ident: b10 article-title: Simulation of pedestrian counter flow through bottlenecks by using an agent-based model publication-title: Phys. A – volume: 482 start-page: 666 year: 2017 end-page: 681 ident: b32 article-title: Simulating bi-directional pedestrian flow in a cellular automaton model considering the body-turning behavior publication-title: Phys. A – volume: 388 start-page: 3600 year: 2009 end-page: 3608 ident: b49 article-title: A modification of the social force model can reproduce experimental data of pedestrian flows in normal conditions publication-title: Phys. A – volume: 90 year: 2014 ident: b1 article-title: Simulation of counterflow pedestrian dynamics using spheropolygons publication-title: Phys. Rev. E – volume: 377 start-page: 269 year: 2007 end-page: 278 ident: b17 article-title: Sidle effect on pedestrian counter flow publication-title: Phys. A – volume: 549 year: 2020 ident: b45 article-title: Cellular automaton model with turning behavior in crowd evacuation publication-title: Phys. A – volume: 23 start-page: 16448 year: 2022 end-page: 16461 ident: b43 article-title: Dynamic modeling and simulation of electric scooter interactions with a pedestrian crowd using a social force model publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 33 start-page: 6095 year: 2021 end-page: 6117 ident: b35 article-title: An integration of enhanced social force and crowd control models for high-density crowd simulation publication-title: Neural Comput. Appl. – volume: 583 year: 2021 ident: b9 article-title: Incorporating genetic algorithm to optimise initial condition of pedestrian evacuation based on agent aggressiveness publication-title: Phys. A – volume: 14 start-page: 2003 year: 2022 ident: b20 article-title: Analysis of behavior characteristics for pedestrian twice-crossing at signalized intersections based on an improved social force model publication-title: Sustainability – volume: 11 start-page: 153 year: 2010 end-page: 161 ident: b60 article-title: A simulation of bonding effects and their impacts on pedestrian dynamics publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 70 start-page: 189 year: 2014 end-page: 201 ident: b50 article-title: Modeling the pedestrian’s movement and simulating evacuation dynamics on stairs publication-title: Saf. Sci. – volume: 21 start-page: 486 year: 2017 end-page: 493 ident: b28 article-title: Influence of agents heterogeneity in cellular model of evacuation publication-title: J. Comput. Sci. – volume: 605 year: 2022 ident: b16 article-title: Influence of rotation on pedestrian flow considering bipedal features: Modeling using a fine discrete floor field cellular automaton publication-title: Phys. A – volume: 400 start-page: 93 year: 2014 end-page: 99 ident: b27 article-title: A social force evacuation model with the leadership effect publication-title: Phys. A – volume: 2021 year: 2021 ident: b14 article-title: Unidirectional pedestrian flow in a corridor involving individuals with disabilities: a modified floor field modelling approach publication-title: J. Stat. Mech. Theory Exp. – volume: 95 start-page: 96 year: 2019 end-page: 111 ident: b55 article-title: Modeling and simulation of pedestrian flow in university canteen publication-title: Simul. Model. Pract. Theory – reference: Xu, X., Tang, Y., Urban Road and Traffic Planning (Volume 1). China Architecture and Building Press. – volume: 73 start-page: 1067 year: 2001 end-page: 1141 ident: b21 article-title: Traffic and related self-driven many-particle systems publication-title: Rev. Modern Phys. – start-page: 24 year: 2009 end-page: 29 ident: b52 article-title: A more realistic simulation of pedestrian based on cellular automata publication-title: 2009 IEEE International Workshop on Open-Source Software for Scientific Computation – volume: 23 start-page: 10404 year: 2022 end-page: 10417 ident: b11 article-title: A dynamic sensitivity model for unidirectional pedestrian flow with overtaking behaviour and its application on social distancing’s impact during COVID-19 publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 7 start-page: 13668 year: 2019 end-page: 13682 ident: b64 article-title: Simulation of the separating crowd behavior in a T-shaped channel based on the social force model publication-title: IEEE Access – volume: 82 year: 2010 ident: b7 article-title: Generalized centrifugal-force model for pedestrian dynamics publication-title: Phys. Rev. E – volume: 20 start-page: 3142 year: 2019 end-page: 3155 ident: b54 article-title: Simulation of pedestrian rotation dynamics near crowded exits publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 465 start-page: 109 year: 2017 end-page: 114 ident: b19 article-title: Impact of variable body size on pedestrian dynamics by heuristics-based model publication-title: Phys. A – volume: 146 start-page: 199 year: 2014 end-page: 209 ident: b58 article-title: Towards realistic and effective agent-based models of crowd dynamics publication-title: Neurocomputing – volume: 22 start-page: 4490 year: 2015 end-page: 4497 ident: b68 article-title: Improved social force model based on exit selection for microscopic pedestrian simulation in subway station publication-title: J. Central South Univ. – volume: 40 start-page: 251 year: 2014 end-page: 270 ident: b2 article-title: Modelling negative interactions among pedestrians in high density situations publication-title: Transp. Res. C – volume: 6 year: 2020 ident: b15 article-title: Dynamic analysis of stepping behavior of pedestrian social groups on stairs publication-title: J. Stat. Mech.: Theory Exp. – start-page: 253 year: 2007 end-page: 265 ident: b26 article-title: Microscopic calibration and validation of pedestrian models: Cross-comparison of models using experimental data publication-title: Pedestrian and Evacuation Dynamics 2005 – volume: 56 start-page: 2527 year: 1997 end-page: 2539 ident: b24 article-title: Active walker model for the formation of human and animal trail systems publication-title: Phys. Rev. E – volume: 50 start-page: 1704 year: 2012 end-page: 1714 ident: b65 article-title: The effect of overtaking behavior on unidirectional pedestrian flow publication-title: Saf. Sci. – volume: 10 start-page: 36 year: 2015 end-page: 44 ident: b31 article-title: Macroscopic pedestrian flow model with degrading spatial information publication-title: J. Comput. Sci. – volume: 12 year: 2017 ident: b12 article-title: Walking ahead: The headed social force model publication-title: PLOS ONE – volume: 23 start-page: 15476 year: 2022 end-page: 15486 ident: b59 article-title: Modeling crowd evacuation via behavioral heterogeneity-based social force model publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 589 year: 2022 ident: b40 article-title: Lane-design for mixed pedestrian flow in T-shaped passage publication-title: Phys. A – volume: 7 start-page: 122006 year: 2019 end-page: 122018 ident: b37 article-title: Modeling pedestrian choice behavior of vertical walking facilities in rail transit station considering reminder sign publication-title: IEEE Access – volume: 604 year: 2022 ident: b29 article-title: An extended model for describing pedestrian evacuation considering the impact of obstacles on the visual view publication-title: Phys. A – volume: 2 start-page: 367 year: 2014 end-page: 375 ident: b30 article-title: Level of avoidance in crossing pedestrian flow publication-title: Transp. Res. Procedia – volume: 122 start-page: 486 year: 2019 end-page: 510 ident: b63 article-title: Body-rotation behavior of pedestrians for collision avoidance in passing and cross flow publication-title: Transp. Res. B – volume: 276 start-page: 2755 year: 2009 end-page: 2762 ident: b46 article-title: Experimental study of the behavioural mechanisms underlying self-organization in human crowds publication-title: Proc. R. Soc. B – volume: 13 start-page: 10621 year: 2021 ident: b44 article-title: Subdivided cellular automata model considering anticipation floor field and analysis of pedestrian detour behavior publication-title: Sustainability – volume: 9 start-page: 117 year: 2009 end-page: 123 ident: b25 article-title: Pedestrian flow characteristics analysis and model parameter calibration in comprehensive transport terminal publication-title: J. Transp. Syst. Eng. Inf. Technol. – volume: 84 year: 2023 ident: b56 article-title: Simulation investigation on crowd evacuation strategies for helping vulnerable pedestrians at different stages of egress publication-title: Int. J. Disaster Risk Reduct. – volume: 295 start-page: 507 year: 2001 end-page: 525 ident: b5 article-title: Simulation of pedestrian dynamics using a two-dimensional cellular automaton publication-title: Phys. A – volume: 387 start-page: 5567 year: 2008 end-page: 5574 ident: b61 article-title: Discretization effect in a multi-grid egress model publication-title: Phys. A – volume: 229 year: 2023 ident: b53 article-title: An emergency aircraft evacuation simulation considering passenger overtaking and luggage retrieval publication-title: Reliab. Eng. Syst. Saf. – volume: 572 year: 2021 ident: b4 article-title: An agent-based model for staircase evacuation considering agent’s rotational behavior publication-title: Phys. A – volume: 95 start-page: 96 year: 2019 ident: 10.1016/j.trc.2024.104630_b55 article-title: Modeling and simulation of pedestrian flow in university canteen publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2019.04.011 – volume: 44 start-page: 395 issue: 5 year: 2006 ident: 10.1016/j.trc.2024.104630_b36 article-title: Crowd dynamics discrete element multi-circle model publication-title: Saf. Sci. doi: 10.1016/j.ssci.2005.11.007 – volume: 540 year: 2020 ident: 10.1016/j.trc.2024.104630_b42 article-title: An improved model of passenger merging in a Y-shaped passage publication-title: Phys. A doi: 10.1016/j.physa.2019.123233 – volume: 14 start-page: 2003 issue: 4 year: 2022 ident: 10.1016/j.trc.2024.104630_b20 article-title: Analysis of behavior characteristics for pedestrian twice-crossing at signalized intersections based on an improved social force model publication-title: Sustainability doi: 10.3390/su14042003 – ident: 10.1016/j.trc.2024.104630_b62 – volume: 11 start-page: 153 issue: 1 year: 2010 ident: 10.1016/j.trc.2024.104630_b60 article-title: A simulation of bonding effects and their impacts on pedestrian dynamics publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2009.2036152 – volume: 71 start-page: 134 year: 2017 ident: 10.1016/j.trc.2024.104630_b6 article-title: A multiagent-based model for pedestrian simulation in subway stations publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2016.12.001 – volume: 2021 year: 2021 ident: 10.1016/j.trc.2024.104630_b14 article-title: Unidirectional pedestrian flow in a corridor involving individuals with disabilities: a modified floor field modelling approach publication-title: J. Stat. Mech. Theory Exp. doi: 10.1088/1742-5468/ac0f6e – volume: 56 start-page: 2527 issue: 3 year: 1997 ident: 10.1016/j.trc.2024.104630_b24 article-title: Active walker model for the formation of human and animal trail systems publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.56.2527 – volume: 605 year: 2022 ident: 10.1016/j.trc.2024.104630_b16 article-title: Influence of rotation on pedestrian flow considering bipedal features: Modeling using a fine discrete floor field cellular automaton publication-title: Phys. A doi: 10.1016/j.physa.2022.128027 – volume: 20 start-page: 3142 issue: 8 year: 2019 ident: 10.1016/j.trc.2024.104630_b54 article-title: Simulation of pedestrian rotation dynamics near crowded exits publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2018.2873118 – volume: 40 start-page: 251 year: 2014 ident: 10.1016/j.trc.2024.104630_b2 article-title: Modelling negative interactions among pedestrians in high density situations publication-title: Transp. Res. C doi: 10.1016/j.trc.2013.12.007 – volume: 84 year: 2023 ident: 10.1016/j.trc.2024.104630_b56 article-title: Simulation investigation on crowd evacuation strategies for helping vulnerable pedestrians at different stages of egress publication-title: Int. J. Disaster Risk Reduct. doi: 10.1016/j.ijdrr.2022.103479 – volume: 7 start-page: 13668 year: 2019 ident: 10.1016/j.trc.2024.104630_b64 article-title: Simulation of the separating crowd behavior in a T-shaped channel based on the social force model publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2894345 – volume: 70 start-page: 189 year: 2014 ident: 10.1016/j.trc.2024.104630_b50 article-title: Modeling the pedestrian’s movement and simulating evacuation dynamics on stairs publication-title: Saf. Sci. doi: 10.1016/j.ssci.2014.05.016 – volume: 400 start-page: 93 year: 2014 ident: 10.1016/j.trc.2024.104630_b27 article-title: A social force evacuation model with the leadership effect publication-title: Phys. A doi: 10.1016/j.physa.2013.12.049 – volume: 23 start-page: 10404 issue: 8 year: 2022 ident: 10.1016/j.trc.2024.104630_b11 article-title: A dynamic sensitivity model for unidirectional pedestrian flow with overtaking behaviour and its application on social distancing’s impact during COVID-19 publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2021.3093714 – volume: 51 start-page: 4282 issue: 5 year: 1995 ident: 10.1016/j.trc.2024.104630_b23 article-title: Social force model for pedestrian dynamics publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.51.4282 – volume: 388 start-page: 3600 issue: 17 year: 2009 ident: 10.1016/j.trc.2024.104630_b49 article-title: A modification of the social force model can reproduce experimental data of pedestrian flows in normal conditions publication-title: Phys. A doi: 10.1016/j.physa.2009.05.027 – volume: 6 year: 2020 ident: 10.1016/j.trc.2024.104630_b15 article-title: Dynamic analysis of stepping behavior of pedestrian social groups on stairs publication-title: J. Stat. Mech.: Theory Exp. – volume: 312 start-page: 260 issue: 1–2 year: 2002 ident: 10.1016/j.trc.2024.104630_b34 article-title: Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics publication-title: Phys. A doi: 10.1016/S0378-4371(02)00857-9 – volume: 13 start-page: 10621 issue: 19 year: 2021 ident: 10.1016/j.trc.2024.104630_b44 article-title: Subdivided cellular automata model considering anticipation floor field and analysis of pedestrian detour behavior publication-title: Sustainability doi: 10.3390/su131910621 – volume: 482 start-page: 666 year: 2017 ident: 10.1016/j.trc.2024.104630_b32 article-title: Simulating bi-directional pedestrian flow in a cellular automaton model considering the body-turning behavior publication-title: Phys. A doi: 10.1016/j.physa.2017.04.117 – volume: 117 start-page: 447 year: 2019 ident: 10.1016/j.trc.2024.104630_b13 article-title: Walking behavior of pedestrian social groups on stairs: A field study publication-title: Saf. Sci. doi: 10.1016/j.ssci.2019.04.048 – volume: 21 start-page: 486 year: 2017 ident: 10.1016/j.trc.2024.104630_b28 article-title: Influence of agents heterogeneity in cellular model of evacuation publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2016.08.002 – volume: 2021 start-page: 1 year: 2021 ident: 10.1016/j.trc.2024.104630_b66 article-title: Modeling and simulation of departure passenger’s behavior based on an improved social force approach: A case study on an airport terminal in China publication-title: Adv. Civ. Eng. – volume: 6 start-page: 1 issue: 11 year: 2022 ident: 10.1016/j.trc.2024.104630_b8 article-title: Algorithm and examples of an agent-based evacuation model publication-title: Fire – volume: 8 start-page: 195989 year: 2020 ident: 10.1016/j.trc.2024.104630_b69 article-title: Improved social force model based on emotional contagion and evacuation assistant publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3034348 – volume: 229 year: 2023 ident: 10.1016/j.trc.2024.104630_b53 article-title: An emergency aircraft evacuation simulation considering passenger overtaking and luggage retrieval publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2022.108851 – volume: 90 issue: 6 year: 2014 ident: 10.1016/j.trc.2024.104630_b1 article-title: Simulation of counterflow pedestrian dynamics using spheropolygons publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.90.063305 – volume: 104 issue: 1 year: 2021 ident: 10.1016/j.trc.2024.104630_b51 article-title: Social distancing in pedestrian dynamics and its effect on disease spreading publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.104.014313 – volume: 22 start-page: 4490 issue: 11 year: 2015 ident: 10.1016/j.trc.2024.104630_b68 article-title: Improved social force model based on exit selection for microscopic pedestrian simulation in subway station publication-title: J. Central South Univ. doi: 10.1007/s11771-015-2997-5 – volume: 146 start-page: 199 year: 2014 ident: 10.1016/j.trc.2024.104630_b58 article-title: Towards realistic and effective agent-based models of crowd dynamics publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.04.057 – year: 1966 ident: 10.1016/j.trc.2024.104630_b48 – volume: 50 start-page: 1704 issue: 8 year: 2012 ident: 10.1016/j.trc.2024.104630_b65 article-title: The effect of overtaking behavior on unidirectional pedestrian flow publication-title: Saf. Sci. doi: 10.1016/j.ssci.2011.12.020 – volume: 572 year: 2021 ident: 10.1016/j.trc.2024.104630_b4 article-title: An agent-based model for staircase evacuation considering agent’s rotational behavior publication-title: Phys. A doi: 10.1016/j.physa.2021.125923 – volume: 10 start-page: 271 issue: 2 year: 2007 ident: 10.1016/j.trc.2024.104630_b33 article-title: Specification of the social force pedestrian model by evolutionary adjustment to video tracking data publication-title: Adv. Complex Syst. doi: 10.1142/S0219525907001355 – volume: 82 issue: 4 year: 2010 ident: 10.1016/j.trc.2024.104630_b7 article-title: Generalized centrifugal-force model for pedestrian dynamics publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.82.046111 – volume: 276 start-page: 2755 issue: 1668 year: 2009 ident: 10.1016/j.trc.2024.104630_b46 article-title: Experimental study of the behavioural mechanisms underlying self-organization in human crowds publication-title: Proc. R. Soc. B doi: 10.1098/rspb.2009.0405 – start-page: 253 year: 2007 ident: 10.1016/j.trc.2024.104630_b26 article-title: Microscopic calibration and validation of pedestrian models: Cross-comparison of models using experimental data – volume: 10 start-page: 36 year: 2015 ident: 10.1016/j.trc.2024.104630_b31 article-title: Macroscopic pedestrian flow model with degrading spatial information publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2015.06.006 – volume: 7 start-page: 122006 year: 2019 ident: 10.1016/j.trc.2024.104630_b37 article-title: Modeling pedestrian choice behavior of vertical walking facilities in rail transit station considering reminder sign publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2937583 – volume: 41 start-page: 90 issue: 4 year: 2013 ident: 10.1016/j.trc.2024.104630_b57 article-title: Agent-based realization of social force model and simulation of pedestrians in subway passageway publication-title: J. South China Univ. Technol. – volume: 2 start-page: 367 year: 2014 ident: 10.1016/j.trc.2024.104630_b30 article-title: Level of avoidance in crossing pedestrian flow publication-title: Transp. Res. Procedia doi: 10.1016/j.trpro.2014.09.034 – volume: 7 start-page: 130120 year: 2019 ident: 10.1016/j.trc.2024.104630_b38 article-title: Simulation of pedestrian evacuation in university canteen based on cellular automata publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2939230 – volume: 73 start-page: 1067 issue: 4 year: 2001 ident: 10.1016/j.trc.2024.104630_b21 article-title: Traffic and related self-driven many-particle systems publication-title: Rev. Modern Phys. doi: 10.1103/RevModPhys.73.1067 – volume: 122 start-page: 486 year: 2019 ident: 10.1016/j.trc.2024.104630_b63 article-title: Body-rotation behavior of pedestrians for collision avoidance in passing and cross flow publication-title: Transp. Res. B doi: 10.1016/j.trb.2019.03.008 – volume: 295 start-page: 507 issue: 3–4 year: 2001 ident: 10.1016/j.trc.2024.104630_b5 article-title: Simulation of pedestrian dynamics using a two-dimensional cellular automaton publication-title: Phys. A doi: 10.1016/S0378-4371(01)00141-8 – volume: 387 start-page: 5567 issue: 22 year: 2008 ident: 10.1016/j.trc.2024.104630_b61 article-title: Discretization effect in a multi-grid egress model publication-title: Phys. A doi: 10.1016/j.physa.2008.05.058 – volume: 392 start-page: 2202 issue: 9 year: 2013 ident: 10.1016/j.trc.2024.104630_b10 article-title: Simulation of pedestrian counter flow through bottlenecks by using an agent-based model publication-title: Phys. A doi: 10.1016/j.physa.2013.01.012 – volume: 12 issue: 1 year: 2017 ident: 10.1016/j.trc.2024.104630_b12 article-title: Walking ahead: The headed social force model publication-title: PLOS ONE doi: 10.1371/journal.pone.0169734 – volume: 79 start-page: 243 year: 2015 ident: 10.1016/j.trc.2024.104630_b41 article-title: The parameter calibration and optimization of social force model for the real-life 2013 Ya’an earthquake evacuation in China publication-title: Saf. Sci. doi: 10.1016/j.ssci.2015.06.018 – volume: 549 year: 2020 ident: 10.1016/j.trc.2024.104630_b45 article-title: Cellular automaton model with turning behavior in crowd evacuation publication-title: Phys. A doi: 10.1016/j.physa.2020.124376 – start-page: 24 year: 2009 ident: 10.1016/j.trc.2024.104630_b52 article-title: A more realistic simulation of pedestrian based on cellular automata – volume: 377 start-page: 269 issue: 1 year: 2007 ident: 10.1016/j.trc.2024.104630_b17 article-title: Sidle effect on pedestrian counter flow publication-title: Phys. A doi: 10.1016/j.physa.2006.11.035 – volume: 407 start-page: 487 issue: 6803 year: 2000 ident: 10.1016/j.trc.2024.104630_b22 article-title: Simulating dynamical features of escape panic publication-title: Nature doi: 10.1038/35035023 – volume: 23 start-page: 15476 issue: 9 year: 2022 ident: 10.1016/j.trc.2024.104630_b59 article-title: Modeling crowd evacuation via behavioral heterogeneity-based social force model publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2022.3140823 – volume: 465 start-page: 109 year: 2017 ident: 10.1016/j.trc.2024.104630_b19 article-title: Impact of variable body size on pedestrian dynamics by heuristics-based model publication-title: Phys. A doi: 10.1016/j.physa.2016.08.001 – volume: 589 year: 2022 ident: 10.1016/j.trc.2024.104630_b40 article-title: Lane-design for mixed pedestrian flow in T-shaped passage publication-title: Phys. A doi: 10.1016/j.physa.2021.126593 – volume: 106 year: 2021 ident: 10.1016/j.trc.2024.104630_b39 article-title: A boarding model for heterogeneous passengers on the platform of high-speed railway station publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2020.102188 – volume: 23 start-page: 16448 issue: 9 year: 2022 ident: 10.1016/j.trc.2024.104630_b43 article-title: Dynamic modeling and simulation of electric scooter interactions with a pedestrian crowd using a social force model publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2022.3150282 – volume: 583 year: 2021 ident: 10.1016/j.trc.2024.104630_b9 article-title: Incorporating genetic algorithm to optimise initial condition of pedestrian evacuation based on agent aggressiveness publication-title: Phys. A doi: 10.1016/j.physa.2021.126277 – volume: 113 year: 2021 ident: 10.1016/j.trc.2024.104630_b3 article-title: Room evacuation in the presence of obstacles using an agent-based model with turning behavior publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2021.102385 – volume: 382 start-page: 3172 issue: 44 year: 2018 ident: 10.1016/j.trc.2024.104630_b67 article-title: An optimization-based overtaking model for unidirectional pedestrian flow publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2018.08.024 – volume: 510 start-page: 145 year: 2018 ident: 10.1016/j.trc.2024.104630_b47 article-title: Estimation of crowd density applying wavelet transform and machine learning publication-title: Phys. A doi: 10.1016/j.physa.2018.06.078 – volume: 604 year: 2022 ident: 10.1016/j.trc.2024.104630_b29 article-title: An extended model for describing pedestrian evacuation considering the impact of obstacles on the visual view publication-title: Phys. A – volume: 2020 issue: 7 year: 2020 ident: 10.1016/j.trc.2024.104630_b18 article-title: Characteristics of pedestrian flow based on an improved least-effort model considering body rotation publication-title: J. Stat. Mech. Theory Exp. doi: 10.1088/1742-5468/ab8c38 – volume: 9 start-page: 117 issue: 5 year: 2009 ident: 10.1016/j.trc.2024.104630_b25 article-title: Pedestrian flow characteristics analysis and model parameter calibration in comprehensive transport terminal publication-title: J. Transp. Syst. Eng. Inf. Technol. – volume: 33 start-page: 6095 issue: 11 year: 2021 ident: 10.1016/j.trc.2024.104630_b35 article-title: An integration of enhanced social force and crowd control models for high-density crowd simulation publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05385-6 |
SSID | ssj0001957 |
Score | 2.4347217 |
Snippet | Pedestrian behavior is a complex and important research subject, which has been studied extensively by simulation and experiment. As the basis or premise of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 104630 |
SubjectTerms | Multi-scenario simulation Pedestrian dynamics Real experiment Rotation behavior Torsional social force model |
Title | A torsional social force model for simulating rotation behavior of pedestrians under multiple scenarios |
URI | https://dx.doi.org/10.1016/j.trc.2024.104630 |
Volume | 163 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2359 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001957 issn: 0968-090X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-2359 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001957 issn: 0968-090X databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1879-2359 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001957 issn: 0968-090X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Journal Collection customDbUrl: eissn: 1879-2359 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001957 issn: 0968-090X databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KPagH0apYH2UPnoTazaN5HEuxVMVetJBbyG42paJJaeLV3-5MNqsV1IOXkIRdCJPd2Xl88w3AJeep62cUqBJBghd0WENlKdzxIpG-CDJLULzjYeZN5-5dNIxaMDa1MASrbHS_1um1tm7eDBppDlbL5eARje-AhzwiFCSeW1RRTuxfuKav379gHlao2T5xMMUkIpPZrDFe1ZpYDG23znQSEPqns2njvJnsw15jKLKR_pYDaKm8A9umjrjswO4GleAhLEaM-ubUgT2mA-EM7VGpWN3rhu5ZuXytm3XlC7YudAqemTJ9VmRspVJVt_HIS0a1ZWtm4IaMOJ_Qqy7KI5hPbp7G037TRKEv7dCvyNG0PBk46Jh46EwINAjtUDieGmboKmR8mCZoRDiSPKfUTontXXAnIOI33OpO4hxDOy9ydQJMySywEh-tMku5XuonnkxtnrmSWIyC0OoCN-KLZcMwTo0uXmIDJXuOUeIxSTzWEu_C1eeUlabX-Guwa_5J_G2NxKj-f592-r9pZ7BDTxoWdg7tav2mLtAAqUSvXmE92Brd3k9nH4xy2S4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe6geRKtife7Bk1Ca9-NYiiW1j4st5BaSzaZUNClJ_P_OZJOioB68hJDsQpjszsw3O_MNwIOixIadUKAqckK8IGB1hSpwx0chtyMnUSOKdyyWlrc2nn3Tb8G4qYWhtMpa90udXmnr-smwluZwt90OX9D5dhRX8SkLEu2WfQAdw0Sd3IbOaDrzlnuFrLqS8BPHU1jCbw43qzSvMiciQ82oDjspF_on8_TF5ExO4Lj2FdlIfs4ptETag25TSlz04OgLm-AZbEaMWudUsT0mY-EMXVIuWNXuhu5ZsX2v-nWlG5Zn8hSeNZX6LEvYTsSi6uSRFozKy3LWZBwyon1CYJ0V57CePK3G3qDuozDgmmuXhDVVizs6YhML8USEPqHmRrolzATRQqKYcYh-hM4JPMVaTITvkaI7xP2Gu10P9Qtop1kqLoEJnjhqaKNjpgrDiu3Q4rGmJAYnIiPHVfugNOILeE0yTr0u3oImm-w1QIkHJPFASrwPj_spO8mw8ddgo_knwbdlEqAF-H3a1f-m3UPXWy3mwXy6nF3DIb2RWWI30C7zD3GL_kgZ3dXr7RP_VtvZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+torsional+social+force+model+for+simulating+rotation+behavior+of+pedestrians+under+multiple+scenarios&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Peng%2C+Jingxuan&rft.au=Wei%2C+Zhonghua&rft.au=Wang%2C+Shaofan&rft.au=Chen%2C+Yanyan&rft.date=2024-06-01&rft.issn=0968-090X&rft.volume=163&rft.spage=104630&rft_id=info:doi/10.1016%2Fj.trc.2024.104630&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_trc_2024_104630 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon |