Fusing Local and Global Features for High-Resolution Scene Classification

In this paper, a fused global saliency-based multiscale multiresolution multistructure local binary pattern (salM 3 LBP) feature and local codebookless model (CLM) feature is proposed for high-resolution image scene classification. First, two different but complementary types of descriptors (pixel i...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in applied earth observations and remote sensing Vol. 10; no. 6; pp. 2889 - 2901
Main Authors Bian, Xiaoyong, Chen, Chen, Tian, Long, Du, Qian
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.06.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1939-1404
2151-1535
DOI10.1109/JSTARS.2017.2683799

Cover

Abstract In this paper, a fused global saliency-based multiscale multiresolution multistructure local binary pattern (salM 3 LBP) feature and local codebookless model (CLM) feature is proposed for high-resolution image scene classification. First, two different but complementary types of descriptors (pixel intensities and differences) are developed to extract global features, characterizing the dominant spatial features in multiple scale, multiple resolution, and multiple structure manner. The micro/macrostructure information and rotation invariance are guaranteed in the global feature extraction process. For dense local feature extraction, CLM is utilized to model local enrichment scale invariant feature transform descriptor and dimension reduction is conducted via joint low-rank learning with support vector machine. Finally, a fused feature representation between salM 3 LBP and CLM as the scene descriptor to train a kernel-based extreme learning machine for scene classification is presented. The proposed approach is extensively evaluated on three challenging benchmark scene datasets (the 21-class land-use scene, 19-class satellite scene, and a newly available 30-class aerial scene), and the experimental results show that the proposed approach leads to superior classification performance compared with the state-of-the-art classification methods.
AbstractList In this paper, a fused global saliency-based multiscale multiresolution multistructure local binary pattern (salM 3LBP) feature and local codebookless model (CLM) feature is proposed for high-resolution image scene classification. First, two different but complementary types of descriptors (pixel intensities and differences) are developed to extract global features, characterizing the dominant spatial features in multiple scale, multiple resolution, and multiple structure manner. The micro/macrostructure information and rotation invariance are guaranteed in the global feature extraction process. For dense local feature extraction, CLM is utilized to model local enrichment scale invariant feature transform descriptor and dimension reduction is conducted via joint low-rank learning with support vector machine. Finally, a fused feature representation between salM3LBP and CLM as the scene descriptor to train a kernel-based extreme learning machine for scene classification is presented. The proposed approach is extensively evaluated on three challenging benchmark scene datasets (the 21-class land-use scene, 19-class satellite scene, and a newly available 30-class aerial scene), and the experimental results show that the proposed approach leads to superior classification performance compared with the state-of-the-art classification methods.
In this paper, a fused global saliency-based multiscale multiresolution multistructure local binary pattern (salM 3 LBP) feature and local codebookless model (CLM) feature is proposed for high-resolution image scene classification. First, two different but complementary types of descriptors (pixel intensities and differences) are developed to extract global features, characterizing the dominant spatial features in multiple scale, multiple resolution, and multiple structure manner. The micro/macrostructure information and rotation invariance are guaranteed in the global feature extraction process. For dense local feature extraction, CLM is utilized to model local enrichment scale invariant feature transform descriptor and dimension reduction is conducted via joint low-rank learning with support vector machine. Finally, a fused feature representation between salM 3 LBP and CLM as the scene descriptor to train a kernel-based extreme learning machine for scene classification is presented. The proposed approach is extensively evaluated on three challenging benchmark scene datasets (the 21-class land-use scene, 19-class satellite scene, and a newly available 30-class aerial scene), and the experimental results show that the proposed approach leads to superior classification performance compared with the state-of-the-art classification methods.
Author Bian, Xiaoyong
Chen, Chen
Tian, Long
Du, Qian
Author_xml – sequence: 1
  givenname: Xiaoyong
  surname: Bian
  fullname: Bian, Xiaoyong
  email: xyongwh12@gmail.com
  organization: School of Computer Science, Wuhan University of Science and Technology, Wuhan, China
– sequence: 2
  givenname: Chen
  surname: Chen
  fullname: Chen, Chen
  email: chenchen870713@gmail.com
  organization: Center for Research in Computer Vision, University of Central Florida, Orlando, FL, USA
– sequence: 3
  givenname: Long
  surname: Tian
  fullname: Tian, Long
  email: lt766@sstate.edu
  organization: Department of Electrical and Computer Engineering, Mississippi State University, Starkville, MS, USA
– sequence: 4
  givenname: Qian
  surname: Du
  fullname: Du, Qian
  email: du@ece.msstate.edu
  organization: Department of Electrical and Computer Engineering, Mississippi State University, Starkville, MS, USA
BookMark eNqFkDtPwzAUhS1UJNrCL-gSiTnF1484HquKPlAlpLbMkRPbxVWIi50M_HtSWjGwMN2HzrlH9xuhQeMbg9AE8BQAy6eX3X623U0JBjElWU6FlDdoSIBDCpzyARqCpDIFhtkdGsV4xDgjQtIhWi-66JpDsvGVqhPV6GRZ-7JvF0a1XTAxsT4kK3d4T7cm-rprnW-SXWUak8xrFaOzrlLn5T26taqO5uFax-ht8byfr9LN63I9n23SikjRphw0GG5ZqVWlc8JlzkjZD4wwyHSpS8mwtbm2lpeQy0qXXGAhhDUUZwYsHaPHy91T8J-diW1x9F1o-sgCJMEsE5iQXkUvqir4GIOxxSm4DxW-CsDFmVlxYVacmRVXZr1L_nFVrv35rg3K1f94JxevM8b8pgkJQASh35YXfPE
CODEN IJSTHZ
CitedBy_id crossref_primary_10_3390_rs12071092
crossref_primary_10_1109_TGRS_2023_3295797
crossref_primary_10_1016_j_infrared_2018_06_030
crossref_primary_10_1109_TPAMI_2020_3048268
crossref_primary_10_3390_s20071999
crossref_primary_10_1109_TBDATA_2019_2916880
crossref_primary_10_3390_rs14235913
crossref_primary_10_1155_2018_8639367
crossref_primary_10_1038_s41598_024_73252_8
crossref_primary_10_1109_LGRS_2018_2883310
crossref_primary_10_1364_OE_395866
crossref_primary_10_1016_j_jksuci_2022_07_005
crossref_primary_10_1109_LGRS_2017_2786241
crossref_primary_10_1016_j_ins_2018_07_074
crossref_primary_10_1109_LGRS_2024_3522464
crossref_primary_10_3390_rs13224537
crossref_primary_10_1109_TGRS_2019_2917161
crossref_primary_10_1109_JSTARS_2020_3021045
crossref_primary_10_1109_TGRS_2019_2931801
crossref_primary_10_1109_JSTARS_2020_3030257
crossref_primary_10_1109_JSTARS_2021_3107543
crossref_primary_10_1109_TGRS_2020_3044655
crossref_primary_10_4236_jcc_2018_611018
crossref_primary_10_1109_TFUZZ_2022_3214241
crossref_primary_10_1016_j_bspc_2024_106978
crossref_primary_10_1109_ACCESS_2024_3466220
crossref_primary_10_1109_JSTARS_2024_3353796
crossref_primary_10_1117_1_JRS_18_014525
crossref_primary_10_14358_PERS_21_00062R2
crossref_primary_10_1007_s00371_018_1503_0
crossref_primary_10_1016_j_infrared_2018_02_006
crossref_primary_10_1007_s12046_020_01423_0
crossref_primary_10_1016_j_patcog_2024_110752
crossref_primary_10_1080_01431161_2019_1667551
crossref_primary_10_1016_j_neucom_2021_08_022
crossref_primary_10_3390_rs12162603
crossref_primary_10_1080_19475683_2023_2165544
crossref_primary_10_1117_1_JRS_13_016520
crossref_primary_10_1109_LGRS_2018_2880136
crossref_primary_10_3390_s24103211
crossref_primary_10_1109_ACCESS_2019_2918732
crossref_primary_10_1007_s12524_021_01310_z
crossref_primary_10_1088_1755_1315_1138_1_012017
crossref_primary_10_1109_JSTARS_2020_3011333
crossref_primary_10_1109_TBDATA_2022_3196314
crossref_primary_10_1109_TGRS_2023_3297560
crossref_primary_10_1109_TNNLS_2020_3042276
crossref_primary_10_1016_j_cja_2023_12_012
crossref_primary_10_1016_j_ecoinf_2021_101452
crossref_primary_10_1109_JSTARS_2022_3141826
crossref_primary_10_3390_app10175792
crossref_primary_10_1080_09500340_2019_1601273
crossref_primary_10_1109_ACCESS_2025_3543459
crossref_primary_10_3390_rs15133408
crossref_primary_10_1016_j_isprsjprs_2018_01_003
crossref_primary_10_3788_LOP212616
crossref_primary_10_1109_LGRS_2020_3040359
crossref_primary_10_1109_TGRS_2023_3333401
crossref_primary_10_3390_rs11050494
crossref_primary_10_1109_TGRS_2018_2845668
crossref_primary_10_1109_TGRS_2017_2778300
crossref_primary_10_1038_s41598_025_92629_x
crossref_primary_10_1109_TNNLS_2021_3106391
crossref_primary_10_1007_s42044_022_00133_6
crossref_primary_10_32604_cmc_2021_017481
crossref_primary_10_1016_j_inffus_2022_12_025
crossref_primary_10_1109_ACCESS_2022_3147543
crossref_primary_10_1109_ACCESS_2024_3520253
crossref_primary_10_1109_ACCESS_2020_2976484
crossref_primary_10_1109_JSTARS_2021_3135566
crossref_primary_10_1007_s11063_019_10119_4
crossref_primary_10_1016_j_asoc_2020_106310
crossref_primary_10_1109_TGRS_2022_3169835
crossref_primary_10_1016_j_ins_2020_06_011
crossref_primary_10_1080_01431161_2018_1500726
crossref_primary_10_1016_j_ijleo_2022_170408
crossref_primary_10_1109_TGRS_2018_2873966
crossref_primary_10_3390_rs16214084
crossref_primary_10_1109_TGRS_2017_2783902
crossref_primary_10_1109_JSTARS_2020_3006241
crossref_primary_10_1109_JSTARS_2021_3056883
crossref_primary_10_1109_LGRS_2017_2779469
crossref_primary_10_1109_JSTARS_2020_3009352
crossref_primary_10_1109_TGRS_2020_2987060
crossref_primary_10_1016_j_infrared_2018_07_035
crossref_primary_10_1088_1742_6596_1168_4_042003
crossref_primary_10_1109_LGRS_2019_2960026
crossref_primary_10_3390_rs10050734
crossref_primary_10_1145_3583682
crossref_primary_10_1109_JSTARS_2018_2871046
crossref_primary_10_1109_TMI_2021_3065753
crossref_primary_10_3390_rs10071158
crossref_primary_10_1109_TGRS_2018_2864987
crossref_primary_10_1109_LGRS_2020_3016769
crossref_primary_10_1109_TGRS_2024_3424489
crossref_primary_10_1117_1_JRS_12_015023
crossref_primary_10_1007_s11227_019_03106_y
crossref_primary_10_1109_JSTARS_2024_3350129
crossref_primary_10_3390_app10186151
crossref_primary_10_1109_JSTARS_2021_3117857
crossref_primary_10_1109_ACCESS_2021_3093308
crossref_primary_10_1109_LGRS_2022_3228287
crossref_primary_10_1049_ipr2_12139
crossref_primary_10_1049_iet_cvi_2018_5069
crossref_primary_10_3390_s20143906
crossref_primary_10_3390_rs16050738
crossref_primary_10_1049_iet_ipr_2018_5458
crossref_primary_10_1109_LGRS_2018_2864216
crossref_primary_10_1016_j_ijleo_2020_165356
crossref_primary_10_1109_TFUZZ_2023_3276263
crossref_primary_10_1109_TNNLS_2021_3071369
crossref_primary_10_3390_rs11091079
crossref_primary_10_1109_LGRS_2018_2859024
crossref_primary_10_3390_app12126000
crossref_primary_10_1109_TGRS_2022_3190934
crossref_primary_10_3390_rs11171996
crossref_primary_10_1007_s11760_020_01801_5
crossref_primary_10_1109_TGRS_2025_3532612
crossref_primary_10_1109_TGRS_2018_2848473
crossref_primary_10_1109_ACCESS_2021_3051085
crossref_primary_10_1016_j_inffus_2021_11_014
crossref_primary_10_1109_TGRS_2022_3192321
crossref_primary_10_1109_JSTARS_2021_3109661
crossref_primary_10_1016_j_ins_2019_07_077
crossref_primary_10_3390_rs11141687
crossref_primary_10_1109_LGRS_2017_2731997
crossref_primary_10_1109_ACCESS_2021_3052977
crossref_primary_10_1007_s11554_018_0780_1
crossref_primary_10_3390_s21165575
crossref_primary_10_1051_e3sconf_202342007022
crossref_primary_10_1109_TGRS_2020_2979011
crossref_primary_10_3390_rs13030433
crossref_primary_10_1109_ACCESS_2020_3038989
crossref_primary_10_3390_s20041188
crossref_primary_10_1080_10095020_2021_2021786
Cites_doi 10.1109/TIP.2010.2044957
10.1109/TPAMI.2014.2361137
10.1145/1290082.1290111
10.1109/TGRS.2016.2601622
10.1007/s11760-015-0804-2
10.1109/CBMI.2014.6849835
10.1016/j.patcog.2016.03.004
10.1109/LGRS.2012.2216499
10.1109/JSTARS.2014.2339842
10.1109/TPAMI.2011.235
10.1016/j.isprsjprs.2016.03.014
10.1109/TGRS.2015.2488681
10.1109/TCYB.2014.2362959
10.1109/TSMCB.2011.2168604
10.1007/BF01085007
10.1109/ISSPIT.2011.6151558
10.1016/j.imavis.2012.01.001
10.1016/j.ins.2016.02.021
10.1109/TGRS.2015.2393857
10.1109/TGRS.2014.2374218
10.1016/j.isprsjprs.2013.12.011
10.1109/CVPR.2006.68
10.1109/MGRS.2016.2540798
10.1109/CVPR.2015.7298594
10.1109/ICCV.2011.6126403
10.1109/TGRS.2017.2685945
10.1109/IGARSS.2016.7730338
10.1109/MSP.2013.2279179
10.1109/TGRS.2014.2351395
10.1109/TPAMI.2002.1017623
10.1109/JSTARS.2012.2228254
10.1023/B:VISI.0000029664.99615.94
10.1109/TGRS.2016.2523563
10.1007/978-3-642-20267-4_6
10.3390/rs5116026
10.1145/2647868.2654889
10.1145/1869790.1869829
10.1016/j.patcog.2016.07.001
10.1016/j.patcog.2012.07.017
10.1109/CVPRW.2015.7301382
10.3390/rs71114680
10.3390/rs8060483
10.1023/A:1011139631724
10.1109/TGRS.2013.2241444
10.1080/01431161.2011.608740
10.1109/TGRS.2014.2357078
10.1364/OL.37.001580
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/JSTARS.2017.2683799
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 2901
ExternalDocumentID 10_1109_JSTARS_2017_2683799
7911272
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61625305; 61471275; 61501337; 61273225; 61273303; 61572381
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
RIG
ID FETCH-LOGICAL-c297t-51d1e5f4bdacd8259842bbda42416dbdb940ff8dff5b189cdb570777fe306e1f3
IEDL.DBID RIE
ISSN 1939-1404
IngestDate Fri Jul 25 10:46:23 EDT 2025
Thu Apr 24 22:54:14 EDT 2025
Wed Oct 01 03:51:14 EDT 2025
Wed Aug 27 02:50:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-51d1e5f4bdacd8259842bbda42416dbdb940ff8dff5b189cdb570777fe306e1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1920467022
PQPubID 75722
PageCount 13
ParticipantIDs proquest_journals_1920467022
ieee_primary_7911272
crossref_primary_10_1109_JSTARS_2017_2683799
crossref_citationtrail_10_1109_JSTARS_2017_2683799
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-01
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref11
ref10
shao (ref50) 0
ref17
ref16
ref19
ref18
guo (ref14) 2010; 19
ref51
hu (ref33) 2015; 7
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref30
castelluccio (ref31) 2015
ref32
ref2
ref1
ref39
ref38
sermanet (ref29) 0
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
perronnin (ref24) 0
References_xml – volume: 19
  start-page: 1657
  year: 2010
  ident: ref14
  article-title: A completed modeling of local binary pattern operator for texture classification
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2010.2044957
– ident: ref41
  doi: 10.1109/TPAMI.2014.2361137
– ident: ref17
  doi: 10.1145/1290082.1290111
– ident: ref38
  doi: 10.1109/TGRS.2016.2601622
– ident: ref15
  doi: 10.1007/s11760-015-0804-2
– ident: ref23
  doi: 10.1109/CBMI.2014.6849835
– ident: ref42
  doi: 10.1016/j.patcog.2016.03.004
– ident: ref11
  doi: 10.1109/LGRS.2012.2216499
– ident: ref21
  doi: 10.1109/JSTARS.2014.2339842
– ident: ref34
  doi: 10.1109/TPAMI.2011.235
– ident: ref39
  doi: 10.1016/j.isprsjprs.2016.03.014
– start-page: 324
  year: 0
  ident: ref50
  article-title: A hierarchical scheme of multiple feature fusion for high-resolution satellite scene categorization
  publication-title: Proc Int Conf Comput Vis Syst
– ident: ref27
  doi: 10.1109/TGRS.2015.2488681
– ident: ref36
  doi: 10.1109/TCYB.2014.2362959
– ident: ref45
  doi: 10.1109/TSMCB.2011.2168604
– ident: ref43
  doi: 10.1007/BF01085007
– ident: ref8
  doi: 10.1109/ISSPIT.2011.6151558
– ident: ref47
  doi: 10.1016/j.imavis.2012.01.001
– ident: ref44
  doi: 10.1016/j.ins.2016.02.021
– ident: ref22
  doi: 10.1109/TGRS.2015.2393857
– ident: ref37
  doi: 10.1109/TGRS.2014.2374218
– ident: ref40
  doi: 10.1016/j.isprsjprs.2013.12.011
– ident: ref18
  doi: 10.1109/CVPR.2006.68
– ident: ref4
  doi: 10.1109/MGRS.2016.2540798
– ident: ref32
  doi: 10.1109/CVPR.2015.7298594
– ident: ref19
  doi: 10.1109/ICCV.2011.6126403
– ident: ref49
  doi: 10.1109/TGRS.2017.2685945
– ident: ref16
  doi: 10.1109/IGARSS.2016.7730338
– start-page: 143
  year: 0
  ident: ref24
  article-title: Improving the fisher kernel for large-scale image classification
  publication-title: Proc Eur Conf Comput Vis
– ident: ref5
  doi: 10.1109/MSP.2013.2279179
– ident: ref51
  doi: 10.1109/TGRS.2014.2351395
– ident: ref13
  doi: 10.1109/TPAMI.2002.1017623
– ident: ref12
  doi: 10.1109/JSTARS.2012.2228254
– ident: ref6
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: ref35
  doi: 10.1109/TGRS.2016.2523563
– ident: ref9
  doi: 10.1007/978-3-642-20267-4_6
– ident: ref2
  doi: 10.3390/rs5116026
– ident: ref30
  doi: 10.1145/2647868.2654889
– ident: ref1
  doi: 10.1145/1869790.1869829
– year: 2015
  ident: ref31
  article-title: Land use classification in remote sensing images by convolutional neural networks
– ident: ref28
  doi: 10.1016/j.patcog.2016.07.001
– year: 0
  ident: ref29
  article-title: Overfeat: Integrated recognition, localization and detection using convolutional networks
  publication-title: Proc Int Conf Learn Represent
– ident: ref20
  doi: 10.1016/j.patcog.2012.07.017
– ident: ref26
  doi: 10.1109/CVPRW.2015.7301382
– volume: 7
  start-page: 14680
  year: 2015
  ident: ref33
  article-title: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
  publication-title: Remote Sens
  doi: 10.3390/rs71114680
– ident: ref48
  doi: 10.3390/rs8060483
– ident: ref10
  doi: 10.1023/A:1011139631724
– ident: ref3
  doi: 10.1109/TGRS.2013.2241444
– ident: ref7
  doi: 10.1080/01431161.2011.608740
– ident: ref25
  doi: 10.1109/TGRS.2014.2357078
– ident: ref46
  doi: 10.1364/OL.37.001580
SSID ssj0062793
Score 2.5288994
Snippet In this paper, a fused global saliency-based multiscale multiresolution multistructure local binary pattern (salM 3 LBP) feature and local codebookless model...
In this paper, a fused global saliency-based multiscale multiresolution multistructure local binary pattern (salM 3LBP) feature and local codebookless model...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2889
SubjectTerms Benchmark testing
Classification
Codebookless model (CLM)
Feature extraction
feature representation
High resolution
Histograms
image descriptors
Image resolution
Land use
Learning algorithms
Macrostructure
Remote sensing
Resolution
Rotation
rotation invariance
saliency detection
Satellites
scene classification
Spatial resolution
Visualization
Title Fusing Local and Global Features for High-Resolution Scene Classification
URI https://ieeexplore.ieee.org/document/7911272
https://www.proquest.com/docview/1920467022
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA7rguDFt7i-yMHjpqbZNGmOIq4PXA8-wFtpXh6UXdHuQX-9k6S7gop4ayEpYWYy8006-QahQ6HFQHOlia0LTbinA1Ib70jhVO6pqUUi0xldi_N7fvlQPHRQf34XxjkXi89cFh7jv3w7MdNwVHYkYWcyCQ53QZYi3dWaeV3BZCTYBTyiSKCMaRmGcqqOwMSPb25DGZfMmICMLBK9fkWh2Fblhy-OAWa4gkazpaW6kqds2ujMfHxjbfzv2lfRcos08XEyjTXUceN1tHgWO_m-b6CLYSh5f8RXIZjhemxxov_HARROIQnHAGdxKAMh4Yg_GSi-NeAbceykGWqMolo30f3w9O7knLR9FYhhSjakyG3uCs-1rY2FDFGVnGl44RDNhdVWK069L633hc5LZawuJJVSegf5hcv9YAt1x5Ox20ZYelobXTKrAFcx7hXnWnimqXNaltT0EJvJuTIt6XjoffFcxeSDqioppwrKqVrl9FB_PuklcW78PXwjiHs-tJV0D-3NFFq1-_KtAjxLITQAcNn5fdYuWgrfTsVge6jbvE7dPsCORh9Ee_sEJ1jT6w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4hUAUXaHmoaWnrA8c4eB17vT4iRBraJAceErfV-sUBlFSQHOiv79jeBAkqxG1XsrXWzHjmG-_4G4Cj0pR9I7ShrpGGisD6tLHBU-l1EZhtykymM56Uw2vx60berEF3dRfGe5-Kz3wvPqZ_-W5mF_Go7FjhzuQKHe6GFELIfFtr6XdLrhLFLiISTSNpTMsxVDB9jEZ-cnEZC7lUj5eYkyWq1-c4lBqrvPLGKcQMdmC8XFyuLLnrLeamZ_--4G187-o_wnaLNclJNo5PsOanu_DhZ-rl-7QH54NY9H5LRjGckWbqSG4AQCIsXGAaThDQklgIQuMhfzZRcmnRO5LUSzNWGSXF7sP14OzqdEjbzgrUcq3mVBau8DII4xrrMEfUleAGXwTG89IZZ7RgIVQuBGmKSltnpGJKqeAxw_BF6B_A-nQ29Z-BqMAaayruNCIrLoIWwpSBG-a9URWzHeBLOde2pR2P3S_u65R-MF1n5dRROXWrnA50V5P-ZNaNt4fvRXGvhraS7sDhUqF1uzMfa0S0DIMDQpcv_5_1AzaHV-NRPTqf_P4KW_E7uTTsENbnDwv_DUHI3HxPtvcPaujXOA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fusing+Local+and+Global+Features+for+High-Resolution+Scene+Classification&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Bian%2C+Xiaoyong&rft.au=Chen%2C+Chen&rft.au=Long%2C+Tian&rft.au=Du%2C+Qian&rft.date=2017-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=10&rft.issue=6&rft.spage=2889&rft_id=info:doi/10.1109%2FJSTARS.2017.2683799&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon