Fusing Local and Global Features for High-Resolution Scene Classification
In this paper, a fused global saliency-based multiscale multiresolution multistructure local binary pattern (salM 3 LBP) feature and local codebookless model (CLM) feature is proposed for high-resolution image scene classification. First, two different but complementary types of descriptors (pixel i...
Saved in:
| Published in | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 10; no. 6; pp. 2889 - 2901 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.06.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1939-1404 2151-1535 |
| DOI | 10.1109/JSTARS.2017.2683799 |
Cover
| Abstract | In this paper, a fused global saliency-based multiscale multiresolution multistructure local binary pattern (salM 3 LBP) feature and local codebookless model (CLM) feature is proposed for high-resolution image scene classification. First, two different but complementary types of descriptors (pixel intensities and differences) are developed to extract global features, characterizing the dominant spatial features in multiple scale, multiple resolution, and multiple structure manner. The micro/macrostructure information and rotation invariance are guaranteed in the global feature extraction process. For dense local feature extraction, CLM is utilized to model local enrichment scale invariant feature transform descriptor and dimension reduction is conducted via joint low-rank learning with support vector machine. Finally, a fused feature representation between salM 3 LBP and CLM as the scene descriptor to train a kernel-based extreme learning machine for scene classification is presented. The proposed approach is extensively evaluated on three challenging benchmark scene datasets (the 21-class land-use scene, 19-class satellite scene, and a newly available 30-class aerial scene), and the experimental results show that the proposed approach leads to superior classification performance compared with the state-of-the-art classification methods. |
|---|---|
| AbstractList | In this paper, a fused global saliency-based multiscale multiresolution multistructure local binary pattern (salM 3LBP) feature and local codebookless model (CLM) feature is proposed for high-resolution image scene classification. First, two different but complementary types of descriptors (pixel intensities and differences) are developed to extract global features, characterizing the dominant spatial features in multiple scale, multiple resolution, and multiple structure manner. The micro/macrostructure information and rotation invariance are guaranteed in the global feature extraction process. For dense local feature extraction, CLM is utilized to model local enrichment scale invariant feature transform descriptor and dimension reduction is conducted via joint low-rank learning with support vector machine. Finally, a fused feature representation between salM3LBP and CLM as the scene descriptor to train a kernel-based extreme learning machine for scene classification is presented. The proposed approach is extensively evaluated on three challenging benchmark scene datasets (the 21-class land-use scene, 19-class satellite scene, and a newly available 30-class aerial scene), and the experimental results show that the proposed approach leads to superior classification performance compared with the state-of-the-art classification methods. In this paper, a fused global saliency-based multiscale multiresolution multistructure local binary pattern (salM 3 LBP) feature and local codebookless model (CLM) feature is proposed for high-resolution image scene classification. First, two different but complementary types of descriptors (pixel intensities and differences) are developed to extract global features, characterizing the dominant spatial features in multiple scale, multiple resolution, and multiple structure manner. The micro/macrostructure information and rotation invariance are guaranteed in the global feature extraction process. For dense local feature extraction, CLM is utilized to model local enrichment scale invariant feature transform descriptor and dimension reduction is conducted via joint low-rank learning with support vector machine. Finally, a fused feature representation between salM 3 LBP and CLM as the scene descriptor to train a kernel-based extreme learning machine for scene classification is presented. The proposed approach is extensively evaluated on three challenging benchmark scene datasets (the 21-class land-use scene, 19-class satellite scene, and a newly available 30-class aerial scene), and the experimental results show that the proposed approach leads to superior classification performance compared with the state-of-the-art classification methods. |
| Author | Bian, Xiaoyong Chen, Chen Tian, Long Du, Qian |
| Author_xml | – sequence: 1 givenname: Xiaoyong surname: Bian fullname: Bian, Xiaoyong email: xyongwh12@gmail.com organization: School of Computer Science, Wuhan University of Science and Technology, Wuhan, China – sequence: 2 givenname: Chen surname: Chen fullname: Chen, Chen email: chenchen870713@gmail.com organization: Center for Research in Computer Vision, University of Central Florida, Orlando, FL, USA – sequence: 3 givenname: Long surname: Tian fullname: Tian, Long email: lt766@sstate.edu organization: Department of Electrical and Computer Engineering, Mississippi State University, Starkville, MS, USA – sequence: 4 givenname: Qian surname: Du fullname: Du, Qian email: du@ece.msstate.edu organization: Department of Electrical and Computer Engineering, Mississippi State University, Starkville, MS, USA |
| BookMark | eNqFkDtPwzAUhS1UJNrCL-gSiTnF1484HquKPlAlpLbMkRPbxVWIi50M_HtSWjGwMN2HzrlH9xuhQeMbg9AE8BQAy6eX3X623U0JBjElWU6FlDdoSIBDCpzyARqCpDIFhtkdGsV4xDgjQtIhWi-66JpDsvGVqhPV6GRZ-7JvF0a1XTAxsT4kK3d4T7cm-rprnW-SXWUak8xrFaOzrlLn5T26taqO5uFax-ht8byfr9LN63I9n23SikjRphw0GG5ZqVWlc8JlzkjZD4wwyHSpS8mwtbm2lpeQy0qXXGAhhDUUZwYsHaPHy91T8J-diW1x9F1o-sgCJMEsE5iQXkUvqir4GIOxxSm4DxW-CsDFmVlxYVacmRVXZr1L_nFVrv35rg3K1f94JxevM8b8pgkJQASh35YXfPE |
| CODEN | IJSTHZ |
| CitedBy_id | crossref_primary_10_3390_rs12071092 crossref_primary_10_1109_TGRS_2023_3295797 crossref_primary_10_1016_j_infrared_2018_06_030 crossref_primary_10_1109_TPAMI_2020_3048268 crossref_primary_10_3390_s20071999 crossref_primary_10_1109_TBDATA_2019_2916880 crossref_primary_10_3390_rs14235913 crossref_primary_10_1155_2018_8639367 crossref_primary_10_1038_s41598_024_73252_8 crossref_primary_10_1109_LGRS_2018_2883310 crossref_primary_10_1364_OE_395866 crossref_primary_10_1016_j_jksuci_2022_07_005 crossref_primary_10_1109_LGRS_2017_2786241 crossref_primary_10_1016_j_ins_2018_07_074 crossref_primary_10_1109_LGRS_2024_3522464 crossref_primary_10_3390_rs13224537 crossref_primary_10_1109_TGRS_2019_2917161 crossref_primary_10_1109_JSTARS_2020_3021045 crossref_primary_10_1109_TGRS_2019_2931801 crossref_primary_10_1109_JSTARS_2020_3030257 crossref_primary_10_1109_JSTARS_2021_3107543 crossref_primary_10_1109_TGRS_2020_3044655 crossref_primary_10_4236_jcc_2018_611018 crossref_primary_10_1109_TFUZZ_2022_3214241 crossref_primary_10_1016_j_bspc_2024_106978 crossref_primary_10_1109_ACCESS_2024_3466220 crossref_primary_10_1109_JSTARS_2024_3353796 crossref_primary_10_1117_1_JRS_18_014525 crossref_primary_10_14358_PERS_21_00062R2 crossref_primary_10_1007_s00371_018_1503_0 crossref_primary_10_1016_j_infrared_2018_02_006 crossref_primary_10_1007_s12046_020_01423_0 crossref_primary_10_1016_j_patcog_2024_110752 crossref_primary_10_1080_01431161_2019_1667551 crossref_primary_10_1016_j_neucom_2021_08_022 crossref_primary_10_3390_rs12162603 crossref_primary_10_1080_19475683_2023_2165544 crossref_primary_10_1117_1_JRS_13_016520 crossref_primary_10_1109_LGRS_2018_2880136 crossref_primary_10_3390_s24103211 crossref_primary_10_1109_ACCESS_2019_2918732 crossref_primary_10_1007_s12524_021_01310_z crossref_primary_10_1088_1755_1315_1138_1_012017 crossref_primary_10_1109_JSTARS_2020_3011333 crossref_primary_10_1109_TBDATA_2022_3196314 crossref_primary_10_1109_TGRS_2023_3297560 crossref_primary_10_1109_TNNLS_2020_3042276 crossref_primary_10_1016_j_cja_2023_12_012 crossref_primary_10_1016_j_ecoinf_2021_101452 crossref_primary_10_1109_JSTARS_2022_3141826 crossref_primary_10_3390_app10175792 crossref_primary_10_1080_09500340_2019_1601273 crossref_primary_10_1109_ACCESS_2025_3543459 crossref_primary_10_3390_rs15133408 crossref_primary_10_1016_j_isprsjprs_2018_01_003 crossref_primary_10_3788_LOP212616 crossref_primary_10_1109_LGRS_2020_3040359 crossref_primary_10_1109_TGRS_2023_3333401 crossref_primary_10_3390_rs11050494 crossref_primary_10_1109_TGRS_2018_2845668 crossref_primary_10_1109_TGRS_2017_2778300 crossref_primary_10_1038_s41598_025_92629_x crossref_primary_10_1109_TNNLS_2021_3106391 crossref_primary_10_1007_s42044_022_00133_6 crossref_primary_10_32604_cmc_2021_017481 crossref_primary_10_1016_j_inffus_2022_12_025 crossref_primary_10_1109_ACCESS_2022_3147543 crossref_primary_10_1109_ACCESS_2024_3520253 crossref_primary_10_1109_ACCESS_2020_2976484 crossref_primary_10_1109_JSTARS_2021_3135566 crossref_primary_10_1007_s11063_019_10119_4 crossref_primary_10_1016_j_asoc_2020_106310 crossref_primary_10_1109_TGRS_2022_3169835 crossref_primary_10_1016_j_ins_2020_06_011 crossref_primary_10_1080_01431161_2018_1500726 crossref_primary_10_1016_j_ijleo_2022_170408 crossref_primary_10_1109_TGRS_2018_2873966 crossref_primary_10_3390_rs16214084 crossref_primary_10_1109_TGRS_2017_2783902 crossref_primary_10_1109_JSTARS_2020_3006241 crossref_primary_10_1109_JSTARS_2021_3056883 crossref_primary_10_1109_LGRS_2017_2779469 crossref_primary_10_1109_JSTARS_2020_3009352 crossref_primary_10_1109_TGRS_2020_2987060 crossref_primary_10_1016_j_infrared_2018_07_035 crossref_primary_10_1088_1742_6596_1168_4_042003 crossref_primary_10_1109_LGRS_2019_2960026 crossref_primary_10_3390_rs10050734 crossref_primary_10_1145_3583682 crossref_primary_10_1109_JSTARS_2018_2871046 crossref_primary_10_1109_TMI_2021_3065753 crossref_primary_10_3390_rs10071158 crossref_primary_10_1109_TGRS_2018_2864987 crossref_primary_10_1109_LGRS_2020_3016769 crossref_primary_10_1109_TGRS_2024_3424489 crossref_primary_10_1117_1_JRS_12_015023 crossref_primary_10_1007_s11227_019_03106_y crossref_primary_10_1109_JSTARS_2024_3350129 crossref_primary_10_3390_app10186151 crossref_primary_10_1109_JSTARS_2021_3117857 crossref_primary_10_1109_ACCESS_2021_3093308 crossref_primary_10_1109_LGRS_2022_3228287 crossref_primary_10_1049_ipr2_12139 crossref_primary_10_1049_iet_cvi_2018_5069 crossref_primary_10_3390_s20143906 crossref_primary_10_3390_rs16050738 crossref_primary_10_1049_iet_ipr_2018_5458 crossref_primary_10_1109_LGRS_2018_2864216 crossref_primary_10_1016_j_ijleo_2020_165356 crossref_primary_10_1109_TFUZZ_2023_3276263 crossref_primary_10_1109_TNNLS_2021_3071369 crossref_primary_10_3390_rs11091079 crossref_primary_10_1109_LGRS_2018_2859024 crossref_primary_10_3390_app12126000 crossref_primary_10_1109_TGRS_2022_3190934 crossref_primary_10_3390_rs11171996 crossref_primary_10_1007_s11760_020_01801_5 crossref_primary_10_1109_TGRS_2025_3532612 crossref_primary_10_1109_TGRS_2018_2848473 crossref_primary_10_1109_ACCESS_2021_3051085 crossref_primary_10_1016_j_inffus_2021_11_014 crossref_primary_10_1109_TGRS_2022_3192321 crossref_primary_10_1109_JSTARS_2021_3109661 crossref_primary_10_1016_j_ins_2019_07_077 crossref_primary_10_3390_rs11141687 crossref_primary_10_1109_LGRS_2017_2731997 crossref_primary_10_1109_ACCESS_2021_3052977 crossref_primary_10_1007_s11554_018_0780_1 crossref_primary_10_3390_s21165575 crossref_primary_10_1051_e3sconf_202342007022 crossref_primary_10_1109_TGRS_2020_2979011 crossref_primary_10_3390_rs13030433 crossref_primary_10_1109_ACCESS_2020_3038989 crossref_primary_10_3390_s20041188 crossref_primary_10_1080_10095020_2021_2021786 |
| Cites_doi | 10.1109/TIP.2010.2044957 10.1109/TPAMI.2014.2361137 10.1145/1290082.1290111 10.1109/TGRS.2016.2601622 10.1007/s11760-015-0804-2 10.1109/CBMI.2014.6849835 10.1016/j.patcog.2016.03.004 10.1109/LGRS.2012.2216499 10.1109/JSTARS.2014.2339842 10.1109/TPAMI.2011.235 10.1016/j.isprsjprs.2016.03.014 10.1109/TGRS.2015.2488681 10.1109/TCYB.2014.2362959 10.1109/TSMCB.2011.2168604 10.1007/BF01085007 10.1109/ISSPIT.2011.6151558 10.1016/j.imavis.2012.01.001 10.1016/j.ins.2016.02.021 10.1109/TGRS.2015.2393857 10.1109/TGRS.2014.2374218 10.1016/j.isprsjprs.2013.12.011 10.1109/CVPR.2006.68 10.1109/MGRS.2016.2540798 10.1109/CVPR.2015.7298594 10.1109/ICCV.2011.6126403 10.1109/TGRS.2017.2685945 10.1109/IGARSS.2016.7730338 10.1109/MSP.2013.2279179 10.1109/TGRS.2014.2351395 10.1109/TPAMI.2002.1017623 10.1109/JSTARS.2012.2228254 10.1023/B:VISI.0000029664.99615.94 10.1109/TGRS.2016.2523563 10.1007/978-3-642-20267-4_6 10.3390/rs5116026 10.1145/2647868.2654889 10.1145/1869790.1869829 10.1016/j.patcog.2016.07.001 10.1016/j.patcog.2012.07.017 10.1109/CVPRW.2015.7301382 10.3390/rs71114680 10.3390/rs8060483 10.1023/A:1011139631724 10.1109/TGRS.2013.2241444 10.1080/01431161.2011.608740 10.1109/TGRS.2014.2357078 10.1364/OL.37.001580 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/JSTARS.2017.2683799 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 2151-1535 |
| EndPage | 2901 |
| ExternalDocumentID | 10_1109_JSTARS_2017_2683799 7911272 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61625305; 61471275; 61501337; 61273225; 61273303; 61572381 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M RIG |
| ID | FETCH-LOGICAL-c297t-51d1e5f4bdacd8259842bbda42416dbdb940ff8dff5b189cdb570777fe306e1f3 |
| IEDL.DBID | RIE |
| ISSN | 1939-1404 |
| IngestDate | Fri Jul 25 10:46:23 EDT 2025 Thu Apr 24 22:54:14 EDT 2025 Wed Oct 01 03:51:14 EDT 2025 Wed Aug 27 02:50:28 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c297t-51d1e5f4bdacd8259842bbda42416dbdb940ff8dff5b189cdb570777fe306e1f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1920467022 |
| PQPubID | 75722 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_1920467022 ieee_primary_7911272 crossref_primary_10_1109_JSTARS_2017_2683799 crossref_citationtrail_10_1109_JSTARS_2017_2683799 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-06-01 |
| PublicationDateYYYYMMDD | 2017-06-01 |
| PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
| PublicationTitleAbbrev | JSTARS |
| PublicationYear | 2017 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref11 ref10 shao (ref50) 0 ref17 ref16 ref19 ref18 guo (ref14) 2010; 19 ref51 hu (ref33) 2015; 7 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref30 castelluccio (ref31) 2015 ref32 ref2 ref1 ref39 ref38 sermanet (ref29) 0 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 perronnin (ref24) 0 |
| References_xml | – volume: 19 start-page: 1657 year: 2010 ident: ref14 article-title: A completed modeling of local binary pattern operator for texture classification publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2010.2044957 – ident: ref41 doi: 10.1109/TPAMI.2014.2361137 – ident: ref17 doi: 10.1145/1290082.1290111 – ident: ref38 doi: 10.1109/TGRS.2016.2601622 – ident: ref15 doi: 10.1007/s11760-015-0804-2 – ident: ref23 doi: 10.1109/CBMI.2014.6849835 – ident: ref42 doi: 10.1016/j.patcog.2016.03.004 – ident: ref11 doi: 10.1109/LGRS.2012.2216499 – ident: ref21 doi: 10.1109/JSTARS.2014.2339842 – ident: ref34 doi: 10.1109/TPAMI.2011.235 – ident: ref39 doi: 10.1016/j.isprsjprs.2016.03.014 – start-page: 324 year: 0 ident: ref50 article-title: A hierarchical scheme of multiple feature fusion for high-resolution satellite scene categorization publication-title: Proc Int Conf Comput Vis Syst – ident: ref27 doi: 10.1109/TGRS.2015.2488681 – ident: ref36 doi: 10.1109/TCYB.2014.2362959 – ident: ref45 doi: 10.1109/TSMCB.2011.2168604 – ident: ref43 doi: 10.1007/BF01085007 – ident: ref8 doi: 10.1109/ISSPIT.2011.6151558 – ident: ref47 doi: 10.1016/j.imavis.2012.01.001 – ident: ref44 doi: 10.1016/j.ins.2016.02.021 – ident: ref22 doi: 10.1109/TGRS.2015.2393857 – ident: ref37 doi: 10.1109/TGRS.2014.2374218 – ident: ref40 doi: 10.1016/j.isprsjprs.2013.12.011 – ident: ref18 doi: 10.1109/CVPR.2006.68 – ident: ref4 doi: 10.1109/MGRS.2016.2540798 – ident: ref32 doi: 10.1109/CVPR.2015.7298594 – ident: ref19 doi: 10.1109/ICCV.2011.6126403 – ident: ref49 doi: 10.1109/TGRS.2017.2685945 – ident: ref16 doi: 10.1109/IGARSS.2016.7730338 – start-page: 143 year: 0 ident: ref24 article-title: Improving the fisher kernel for large-scale image classification publication-title: Proc Eur Conf Comput Vis – ident: ref5 doi: 10.1109/MSP.2013.2279179 – ident: ref51 doi: 10.1109/TGRS.2014.2351395 – ident: ref13 doi: 10.1109/TPAMI.2002.1017623 – ident: ref12 doi: 10.1109/JSTARS.2012.2228254 – ident: ref6 doi: 10.1023/B:VISI.0000029664.99615.94 – ident: ref35 doi: 10.1109/TGRS.2016.2523563 – ident: ref9 doi: 10.1007/978-3-642-20267-4_6 – ident: ref2 doi: 10.3390/rs5116026 – ident: ref30 doi: 10.1145/2647868.2654889 – ident: ref1 doi: 10.1145/1869790.1869829 – year: 2015 ident: ref31 article-title: Land use classification in remote sensing images by convolutional neural networks – ident: ref28 doi: 10.1016/j.patcog.2016.07.001 – year: 0 ident: ref29 article-title: Overfeat: Integrated recognition, localization and detection using convolutional networks publication-title: Proc Int Conf Learn Represent – ident: ref20 doi: 10.1016/j.patcog.2012.07.017 – ident: ref26 doi: 10.1109/CVPRW.2015.7301382 – volume: 7 start-page: 14680 year: 2015 ident: ref33 article-title: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery publication-title: Remote Sens doi: 10.3390/rs71114680 – ident: ref48 doi: 10.3390/rs8060483 – ident: ref10 doi: 10.1023/A:1011139631724 – ident: ref3 doi: 10.1109/TGRS.2013.2241444 – ident: ref7 doi: 10.1080/01431161.2011.608740 – ident: ref25 doi: 10.1109/TGRS.2014.2357078 – ident: ref46 doi: 10.1364/OL.37.001580 |
| SSID | ssj0062793 |
| Score | 2.5288994 |
| Snippet | In this paper, a fused global saliency-based multiscale multiresolution multistructure local binary pattern (salM 3 LBP) feature and local codebookless model... In this paper, a fused global saliency-based multiscale multiresolution multistructure local binary pattern (salM 3LBP) feature and local codebookless model... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2889 |
| SubjectTerms | Benchmark testing Classification Codebookless model (CLM) Feature extraction feature representation High resolution Histograms image descriptors Image resolution Land use Learning algorithms Macrostructure Remote sensing Resolution Rotation rotation invariance saliency detection Satellites scene classification Spatial resolution Visualization |
| Title | Fusing Local and Global Features for High-Resolution Scene Classification |
| URI | https://ieeexplore.ieee.org/document/7911272 https://www.proquest.com/docview/1920467022 |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: RIE dateStart: 20080101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA7rguDFt7i-yMHjpqbZNGmOIq4PXA8-wFtpXh6UXdHuQX-9k6S7gop4ayEpYWYy8006-QahQ6HFQHOlia0LTbinA1Ib70jhVO6pqUUi0xldi_N7fvlQPHRQf34XxjkXi89cFh7jv3w7MdNwVHYkYWcyCQ53QZYi3dWaeV3BZCTYBTyiSKCMaRmGcqqOwMSPb25DGZfMmICMLBK9fkWh2Fblhy-OAWa4gkazpaW6kqds2ujMfHxjbfzv2lfRcos08XEyjTXUceN1tHgWO_m-b6CLYSh5f8RXIZjhemxxov_HARROIQnHAGdxKAMh4Yg_GSi-NeAbceykGWqMolo30f3w9O7knLR9FYhhSjakyG3uCs-1rY2FDFGVnGl44RDNhdVWK069L633hc5LZawuJJVSegf5hcv9YAt1x5Ox20ZYelobXTKrAFcx7hXnWnimqXNaltT0EJvJuTIt6XjoffFcxeSDqioppwrKqVrl9FB_PuklcW78PXwjiHs-tJV0D-3NFFq1-_KtAjxLITQAcNn5fdYuWgrfTsVge6jbvE7dPsCORh9Ee_sEJ1jT6w |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4hUAUXaHmoaWnrA8c4eB17vT4iRBraJAceErfV-sUBlFSQHOiv79jeBAkqxG1XsrXWzHjmG-_4G4Cj0pR9I7ShrpGGisD6tLHBU-l1EZhtykymM56Uw2vx60berEF3dRfGe5-Kz3wvPqZ_-W5mF_Go7FjhzuQKHe6GFELIfFtr6XdLrhLFLiISTSNpTMsxVDB9jEZ-cnEZC7lUj5eYkyWq1-c4lBqrvPLGKcQMdmC8XFyuLLnrLeamZ_--4G187-o_wnaLNclJNo5PsOanu_DhZ-rl-7QH54NY9H5LRjGckWbqSG4AQCIsXGAaThDQklgIQuMhfzZRcmnRO5LUSzNWGSXF7sP14OzqdEjbzgrUcq3mVBau8DII4xrrMEfUleAGXwTG89IZZ7RgIVQuBGmKSltnpGJKqeAxw_BF6B_A-nQ29Z-BqMAaayruNCIrLoIWwpSBG-a9URWzHeBLOde2pR2P3S_u65R-MF1n5dRROXWrnA50V5P-ZNaNt4fvRXGvhraS7sDhUqF1uzMfa0S0DIMDQpcv_5_1AzaHV-NRPTqf_P4KW_E7uTTsENbnDwv_DUHI3HxPtvcPaujXOA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fusing+Local+and+Global+Features+for+High-Resolution+Scene+Classification&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Bian%2C+Xiaoyong&rft.au=Chen%2C+Chen&rft.au=Long%2C+Tian&rft.au=Du%2C+Qian&rft.date=2017-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=10&rft.issue=6&rft.spage=2889&rft_id=info:doi/10.1109%2FJSTARS.2017.2683799&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |