Improved algorithms for non-submodular function maximization problem

•We combine the distorted objective function, the threshold and the greedy algorithms.•This problem includes some previously studied problems as special cases, such as submodular+supermodular maximization, γ-weakly submodular function maximization.•The approximation ratio in Algorithm 1 is the minim...

Full description

Saved in:
Bibliographic Details
Published inTheoretical computer science Vol. 931; pp. 49 - 55
Main Authors Liu, Zhicheng, Jin, Jing, Chang, Hong, Du, Donglei, Zhang, Xiaoyan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 29.09.2022
Subjects
Online AccessGet full text
ISSN0304-3975
DOI10.1016/j.tcs.2022.07.029

Cover

Abstract •We combine the distorted objective function, the threshold and the greedy algorithms.•This problem includes some previously studied problems as special cases, such as submodular+supermodular maximization, γ-weakly submodular function maximization.•The approximation ratio in Algorithm 1 is the minimum of 1−kfe−1 and 1−(kg)2, improving the result obtained by Bai et al.•Algorithm 1 has an approximation ratio 1−(1−γ+γα)e−γ, improving the result obtained by Bian et al.•Set g(S)=0. Algorithm 2 has an approximation ratio γγ+1, improving the approximate ratio 1−12γ by Wang et al. The concept of submodularity finds wide applications in data science, artificial intelligence, and machine learning, providing a boost to the investigation of new ideas, innovative techniques, and creative algorithms to solve different submodular optimization problems arising from a diversity of applications. However pure submodular or supermodular problems only represent a small portion of the problems we are facing in real life applications. The main focus of this work is to consider a non-submodular function maximization problem subject to a cardinality constraint, where the objective function is the sum of a monotone γ-weakly submodular function and a supermodular function. This problem includes some previously studied problems as special cases, such as the submodular+supermodular maximization problem when γ=1, and the γ-weakly submodular function maximization problem when the supermodular function is void. We present greedy algorithms for this generalized problem under both offline and streaming models, improving existing results.
AbstractList •We combine the distorted objective function, the threshold and the greedy algorithms.•This problem includes some previously studied problems as special cases, such as submodular+supermodular maximization, γ-weakly submodular function maximization.•The approximation ratio in Algorithm 1 is the minimum of 1−kfe−1 and 1−(kg)2, improving the result obtained by Bai et al.•Algorithm 1 has an approximation ratio 1−(1−γ+γα)e−γ, improving the result obtained by Bian et al.•Set g(S)=0. Algorithm 2 has an approximation ratio γγ+1, improving the approximate ratio 1−12γ by Wang et al. The concept of submodularity finds wide applications in data science, artificial intelligence, and machine learning, providing a boost to the investigation of new ideas, innovative techniques, and creative algorithms to solve different submodular optimization problems arising from a diversity of applications. However pure submodular or supermodular problems only represent a small portion of the problems we are facing in real life applications. The main focus of this work is to consider a non-submodular function maximization problem subject to a cardinality constraint, where the objective function is the sum of a monotone γ-weakly submodular function and a supermodular function. This problem includes some previously studied problems as special cases, such as the submodular+supermodular maximization problem when γ=1, and the γ-weakly submodular function maximization problem when the supermodular function is void. We present greedy algorithms for this generalized problem under both offline and streaming models, improving existing results.
Author Liu, Zhicheng
Chang, Hong
Du, Donglei
Zhang, Xiaoyan
Jin, Jing
Author_xml – sequence: 1
  givenname: Zhicheng
  surname: Liu
  fullname: Liu, Zhicheng
  email: manlzhic@163.com
  organization: Beijing Institute for Scientific and Engineering Computing, Beijing University of Technology, Beijing, 100124, China
– sequence: 2
  givenname: Jing
  surname: Jin
  fullname: Jin, Jing
  email: jinjing19841@126.com
  organization: College of Taizhou, Nanjing Normal University, Tiazhou, 225300, China
– sequence: 3
  givenname: Hong
  surname: Chang
  fullname: Chang, Hong
  email: changh@njnu.edu.cn
  organization: School of Mathematical Science & Institute of Mathematics, Nanjing Normal University, Nanjing, 210023, China
– sequence: 4
  givenname: Donglei
  surname: Du
  fullname: Du, Donglei
  email: ddu@unb.ca
  organization: Faculty of Management, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
– sequence: 5
  givenname: Xiaoyan
  surname: Zhang
  fullname: Zhang, Xiaoyan
  email: zhangxiaoyan@njnu.edu.cn
  organization: School of Mathematical Science & Institute of Mathematics, Nanjing Normal University, Nanjing, 210023, China
BookMark eNp9kMtOwzAQRb0oEm3hA9jlBxL8qONYrFB5VarEBtaWHxNwlcSVnVbA1-O2rFh0NlezOFczZ4YmQxgAoRuCK4JJfbupRpsqiimtsKgwlRM0xQwvSiYFv0SzlDY4Dxf1FD2s-m0Me3CF7j5C9ONnn4o2xCJ3lmln-uB2nY5Fuxvs6MNQ9PrL9_5HH5eMmg76K3TR6i7B9V_O0fvT49vypVy_Pq-W9-vSUinGkhPtXNtwwqnUnAKlC9oIRq2zRkrNgEojDDMLzAAcbyyphbOtZA1wZ2jN5kicem0MKUVolfXj8ZIxat8pgtVBgNqoLEAdBCgsVBaQSfKP3Ebf6_h9lrk7MZBf2nuIKlkPgwXnI9hRueDP0L-fVXmo
CitedBy_id crossref_primary_10_26599_TST_2022_9010033
Cites_doi 10.1007/BF01588971
10.1007/s10878-020-00558-4
10.1016/0166-218X(84)90003-9
10.1007/s10898-019-00840-8
10.1016/j.tcs.2020.05.024
10.1007/s11590-016-1039-z
10.1109/ACCESS.2018.2809547
10.1016/j.disopt.2013.02.002
10.1016/j.tcs.2020.05.018
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.tcs.2022.07.029
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EndPage 55
ExternalDocumentID 10_1016_j_tcs_2022_07_029
S0304397522004510
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABAOU
ABBOA
ABDPE
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEXQZ
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSH
SSV
SSW
SSZ
T5K
TAE
TN5
WH7
WUQ
XJT
YNT
ZMT
ZY4
~G-
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c297t-51addf851529a52e22428732cdcb99a3e29b7b3b403eed58c167dcf938e5db263
IEDL.DBID .~1
ISSN 0304-3975
IngestDate Wed Oct 01 04:21:20 EDT 2025
Thu Apr 24 23:11:37 EDT 2025
Sun Apr 06 06:54:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Non-submodular function maximization
Greedy algorithm
Streaming model
Offline model
Cardinality constraint
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-51addf851529a52e22428732cdcb99a3e29b7b3b403eed58c167dcf938e5db263
PageCount 7
ParticipantIDs crossref_citationtrail_10_1016_j_tcs_2022_07_029
crossref_primary_10_1016_j_tcs_2022_07_029
elsevier_sciencedirect_doi_10_1016_j_tcs_2022_07_029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-29
PublicationDateYYYYMMDD 2022-09-29
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-29
  day: 29
PublicationDecade 2020
PublicationTitle Theoretical computer science
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Elenberg, Dimakis, Feldman, Karbasi (br0050) 2017
Gong, Nong, Sun, Fang, Du, Shao (br0070) 2021; 853
Wei, Iyer, Bilmes (br0150) 2015
Schulz, Uhan (br0130) 2013; 10
Krause, Guestrin (br0090) 2005; vol. 5
Krause, Golovin (br0080) 2014
Yu, Li, Liao, Cui (br0170) 2018; 6
Yang, Gu, Gao, Wu, Wang, Xu (br0160) 2021; 853
Nemhauser, Wolsey, Fisher (br0110) 1978; 14
Conforti, Cornuéjols (br0040) 1984; 7
Bian, Buhmann, Krause, Tschiatschek (br0030) 2017
Bai, Bilmes (br0020) 2018
Wang, Xu, Wang, Zhang (br0140) 2020; 76
Fisher, Nemhauser, Wolsey (br0060) 1978
Laitila, Moilanen (br0100) 2017; 11
Badanidiyuru, Mirzasoleiman, Karbasi, Krause (br0010) 2014
Nong, Fang, Gong, Du, Feng, Qu (br0120) 2020; 39
Badanidiyuru (10.1016/j.tcs.2022.07.029_br0010) 2014
Gong (10.1016/j.tcs.2022.07.029_br0070) 2021; 853
Bai (10.1016/j.tcs.2022.07.029_br0020) 2018
Krause (10.1016/j.tcs.2022.07.029_br0090) 2005; vol. 5
Wang (10.1016/j.tcs.2022.07.029_br0140) 2020; 76
Krause (10.1016/j.tcs.2022.07.029_br0080) 2014
Fisher (10.1016/j.tcs.2022.07.029_br0060) 1978
Laitila (10.1016/j.tcs.2022.07.029_br0100) 2017; 11
Yu (10.1016/j.tcs.2022.07.029_br0170) 2018; 6
Schulz (10.1016/j.tcs.2022.07.029_br0130) 2013; 10
Bian (10.1016/j.tcs.2022.07.029_br0030) 2017
Conforti (10.1016/j.tcs.2022.07.029_br0040) 1984; 7
Wei (10.1016/j.tcs.2022.07.029_br0150) 2015
Nong (10.1016/j.tcs.2022.07.029_br0120) 2020; 39
Yang (10.1016/j.tcs.2022.07.029_br0160) 2021; 853
Elenberg (10.1016/j.tcs.2022.07.029_br0050) 2017
Nemhauser (10.1016/j.tcs.2022.07.029_br0110) 1978; 14
References_xml – volume: 853
  start-page: 16
  year: 2021
  end-page: 24
  ident: br0070
  article-title: Maximize a monotone function with a generic submodularity ratio
  publication-title: Theor. Comput. Sci.
– start-page: 671
  year: 2014
  end-page: 680
  ident: br0010
  article-title: Streaming submodular maximization: massive data summarization on the fly
  publication-title: Proceedings of SIGKDD
– volume: 76
  start-page: 729
  year: 2020
  end-page: 743
  ident: br0140
  article-title: Non-submodular maximization on massive data streams
  publication-title: J. Glob. Optim.
– start-page: 1954
  year: 2015
  end-page: 1963
  ident: br0150
  article-title: Submodularity in data subset selection and active learning
  publication-title: Proceedings of ICML
– start-page: 304
  year: 2018
  end-page: 313
  ident: br0020
  article-title: Greed is still good: maximizing monotone submodular+supermodular (BP) functions
  publication-title: Proceedings of ICML
– start-page: 4044
  year: 2017
  end-page: 4054
  ident: br0050
  article-title: Streaming weak submodularity: interpreting neural networks on the fly
  publication-title: Proceedings of NIPS
– start-page: 73
  year: 1978
  end-page: 87
  ident: br0060
  article-title: An Analysis of Approximations for Maximizing Submodular Set Functions–ii. Polyhedral Combinatorics
– volume: 14
  start-page: 265
  year: 1978
  end-page: 294
  ident: br0110
  article-title: An analysis of approximations for maximizing submodular set functions–i
  publication-title: Math. Program.
– volume: 853
  start-page: 57
  year: 2021
  end-page: 64
  ident: br0160
  article-title: A constrained two-stage submodular maximization
  publication-title: Theor. Comput. Sci.
– volume: vol. 5
  year: 2005
  ident: br0090
  article-title: Near-optimal nonmyopic value of information in graphical models
  publication-title: UAI
– volume: 39
  start-page: 1208
  year: 2020
  end-page: 1220
  ident: br0120
  article-title: A 1/2-approximation algorithm for maximizing a non-monotone weak-submodular function on a bounded integer lattice
  publication-title: J. Comb. Optim.
– start-page: 498
  year: 2017
  end-page: 507
  ident: br0030
  article-title: Guarantees for greedy maximization of non-submodular functions with applications
  publication-title: Proceedings of ICML
– start-page: 71
  year: 2014
  end-page: 104
  ident: br0080
  article-title: Submodular function maximization
  publication-title: Tractability
– volume: 11
  start-page: 655
  year: 2017
  end-page: 665
  ident: br0100
  article-title: New performance guarantees for the greedy maximization of submodular set functions
  publication-title: Optim. Lett.
– volume: 10
  start-page: 163
  year: 2013
  end-page: 180
  ident: br0130
  article-title: Approximating the least core value and least core of cooperative games with supermodular costs
  publication-title: Discrete Optim.
– volume: 6
  start-page: 14367
  year: 2018
  end-page: 14378
  ident: br0170
  article-title: Fast budgeted influence maximization over multi-action event logs
  publication-title: IEEE Access
– volume: 7
  start-page: 251
  year: 1984
  end-page: 274
  ident: br0040
  article-title: Submodular set functions, matroids and the greedy algorithm: tight worst-case bounds and some generalizations of the Rado-Edmonds theorem
  publication-title: Discrete Appl. Math.
– start-page: 4044
  year: 2017
  ident: 10.1016/j.tcs.2022.07.029_br0050
  article-title: Streaming weak submodularity: interpreting neural networks on the fly
– volume: 14
  start-page: 265
  issue: 1
  year: 1978
  ident: 10.1016/j.tcs.2022.07.029_br0110
  article-title: An analysis of approximations for maximizing submodular set functions–i
  publication-title: Math. Program.
  doi: 10.1007/BF01588971
– volume: 39
  start-page: 1208
  issue: 4
  year: 2020
  ident: 10.1016/j.tcs.2022.07.029_br0120
  article-title: A 1/2-approximation algorithm for maximizing a non-monotone weak-submodular function on a bounded integer lattice
  publication-title: J. Comb. Optim.
  doi: 10.1007/s10878-020-00558-4
– start-page: 304
  year: 2018
  ident: 10.1016/j.tcs.2022.07.029_br0020
  article-title: Greed is still good: maximizing monotone submodular+supermodular (BP) functions
– volume: 7
  start-page: 251
  issue: 3
  year: 1984
  ident: 10.1016/j.tcs.2022.07.029_br0040
  article-title: Submodular set functions, matroids and the greedy algorithm: tight worst-case bounds and some generalizations of the Rado-Edmonds theorem
  publication-title: Discrete Appl. Math.
  doi: 10.1016/0166-218X(84)90003-9
– volume: vol. 5
  year: 2005
  ident: 10.1016/j.tcs.2022.07.029_br0090
  article-title: Near-optimal nonmyopic value of information in graphical models
– start-page: 73
  year: 1978
  ident: 10.1016/j.tcs.2022.07.029_br0060
– volume: 76
  start-page: 729
  issue: 4
  year: 2020
  ident: 10.1016/j.tcs.2022.07.029_br0140
  article-title: Non-submodular maximization on massive data streams
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-019-00840-8
– volume: 853
  start-page: 57
  year: 2021
  ident: 10.1016/j.tcs.2022.07.029_br0160
  article-title: A constrained two-stage submodular maximization
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2020.05.024
– start-page: 671
  year: 2014
  ident: 10.1016/j.tcs.2022.07.029_br0010
  article-title: Streaming submodular maximization: massive data summarization on the fly
– volume: 11
  start-page: 655
  year: 2017
  ident: 10.1016/j.tcs.2022.07.029_br0100
  article-title: New performance guarantees for the greedy maximization of submodular set functions
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-016-1039-z
– start-page: 498
  year: 2017
  ident: 10.1016/j.tcs.2022.07.029_br0030
  article-title: Guarantees for greedy maximization of non-submodular functions with applications
– start-page: 71
  year: 2014
  ident: 10.1016/j.tcs.2022.07.029_br0080
  article-title: Submodular function maximization
– volume: 6
  start-page: 14367
  year: 2018
  ident: 10.1016/j.tcs.2022.07.029_br0170
  article-title: Fast budgeted influence maximization over multi-action event logs
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2809547
– volume: 10
  start-page: 163
  issue: 2
  year: 2013
  ident: 10.1016/j.tcs.2022.07.029_br0130
  article-title: Approximating the least core value and least core of cooperative games with supermodular costs
  publication-title: Discrete Optim.
  doi: 10.1016/j.disopt.2013.02.002
– start-page: 1954
  year: 2015
  ident: 10.1016/j.tcs.2022.07.029_br0150
  article-title: Submodularity in data subset selection and active learning
– volume: 853
  start-page: 16
  year: 2021
  ident: 10.1016/j.tcs.2022.07.029_br0070
  article-title: Maximize a monotone function with a generic submodularity ratio
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2020.05.018
SSID ssj0000576
Score 2.3699915
Snippet •We combine the distorted objective function, the threshold and the greedy algorithms.•This problem includes some previously studied problems as special cases,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 49
SubjectTerms Cardinality constraint
Greedy algorithm
Non-submodular function maximization
Offline model
Streaming model
Title Improved algorithms for non-submodular function maximization problem
URI https://dx.doi.org/10.1016/j.tcs.2022.07.029
Volume 931
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0304-3975
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000576
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0304-3975
  databaseCode: ACRLP
  dateStart: 20211002
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000576
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  issn: 0304-3975
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000576
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  issn: 0304-3975
  databaseCode: AIKHN
  dateStart: 20210508
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000576
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0304-3975
  databaseCode: AKRWK
  dateStart: 19750601
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000576
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssDAo4Aoj8oDE1Jo6kcSj1WhKo9WCKjUzYodB4paWtEgMfHbOSdOAQkYmKJEtmR9ce6-y52_Q-jYj5KW4kngaYgnPBYq44k40l7qC8ugFUvzavf-IOgN2eWIjyqoU56FsWWVzvYXNj231u5J06HZnI_HzTub1ANvCgQiF0mxcbtV_4I9ffr-WeYBfKTIV9oMAIwuM5t5jVemrWI3Ibl-Z84yf_BNX_xNdxOtO6KI28VatlDFPNfQRtmEAbtvsobW-kvh1cU2Oit-EpgEx5OHGQT-j9MFBl6KIcr3FuD7ZomtO8XWndlXgqfx23jqzmJi111mBw275_ednucaJQDCIsw83gIrlQJ34kTEnBhwyxAIUaITrYSIqSFChYoq5lNwiTzSrSBMdCpoZHiiSEB3URWWYfYQphzYdix8bSBUMZSphCiIqSKmjGJAJevILyGS2qmI22YWE1mWiz1JQFVaVKUfSkC1jk6WU-aFhMZfg1mJu_y2DySY-N-n7f9v2gFatXe2_oOIQ1TNXl7NEZCMTDXyXdRAK-3O7fWNvV5c9QYf5XrSrw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4QOKgHH6gRn3vwZNJQtru0eyQoAXlchITbprtdFANCBBN_vrPtFjVRD17bTrKZbr_vm87sDMC1HyU1xZO6pzGe8FiojCfiSHsTX1gFrdgkrXbvD-rtEbsf83EBmvlZGFtW6bA_w_QUrd2VqvNmdTmdVh9sUg_ZFAVE2iQF4_YS44jJRSg1Ot324BOQeZilLG0SAA3y5GZa5rXWtmk3pWkLz1Ro_kBPXyintQ-7TiuSRracAyiYlzLs5XMYiPssy7DT3_ReXR3CbfafwCQknj0uMPZ_mq8ISlOCgb63QvpbJLb0lFhGs2-FzOP36dwdxyRuwMwRjFp3w2bbc7MS0MkiXHu8hkA1QfnEqYg5NcjMGAsFVCdaCREHhgoVqkAxP0BW5JGu1cNET0QQGZ4oWg-OoYjLMCdAAo6COxa-NhitmICphCoMqyKmjGKoJivg5y6S2jUSt_MsZjKvGHuW6FVpvSr9UKJXK3CzMVlmXTT-epjlfpfftoJElP_d7PR_Zlew1R72e7LXGXTPYNveseUgVJxDcf36Zi5Qc6zVpdtTH4Jc08U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+algorithms+for+non-submodular+function+maximization+problem&rft.jtitle=Theoretical+computer+science&rft.au=Liu%2C+Zhicheng&rft.au=Jin%2C+Jing&rft.au=Chang%2C+Hong&rft.au=Du%2C+Donglei&rft.date=2022-09-29&rft.issn=0304-3975&rft.volume=931&rft.spage=49&rft.epage=55&rft_id=info:doi/10.1016%2Fj.tcs.2022.07.029&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tcs_2022_07_029
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon