Improved algorithms for non-submodular function maximization problem
•We combine the distorted objective function, the threshold and the greedy algorithms.•This problem includes some previously studied problems as special cases, such as submodular+supermodular maximization, γ-weakly submodular function maximization.•The approximation ratio in Algorithm 1 is the minim...
Saved in:
Published in | Theoretical computer science Vol. 931; pp. 49 - 55 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
29.09.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-3975 |
DOI | 10.1016/j.tcs.2022.07.029 |
Cover
Abstract | •We combine the distorted objective function, the threshold and the greedy algorithms.•This problem includes some previously studied problems as special cases, such as submodular+supermodular maximization, γ-weakly submodular function maximization.•The approximation ratio in Algorithm 1 is the minimum of 1−kfe−1 and 1−(kg)2, improving the result obtained by Bai et al.•Algorithm 1 has an approximation ratio 1−(1−γ+γα)e−γ, improving the result obtained by Bian et al.•Set g(S)=0. Algorithm 2 has an approximation ratio γγ+1, improving the approximate ratio 1−12γ by Wang et al.
The concept of submodularity finds wide applications in data science, artificial intelligence, and machine learning, providing a boost to the investigation of new ideas, innovative techniques, and creative algorithms to solve different submodular optimization problems arising from a diversity of applications. However pure submodular or supermodular problems only represent a small portion of the problems we are facing in real life applications. The main focus of this work is to consider a non-submodular function maximization problem subject to a cardinality constraint, where the objective function is the sum of a monotone γ-weakly submodular function and a supermodular function. This problem includes some previously studied problems as special cases, such as the submodular+supermodular maximization problem when γ=1, and the γ-weakly submodular function maximization problem when the supermodular function is void. We present greedy algorithms for this generalized problem under both offline and streaming models, improving existing results. |
---|---|
AbstractList | •We combine the distorted objective function, the threshold and the greedy algorithms.•This problem includes some previously studied problems as special cases, such as submodular+supermodular maximization, γ-weakly submodular function maximization.•The approximation ratio in Algorithm 1 is the minimum of 1−kfe−1 and 1−(kg)2, improving the result obtained by Bai et al.•Algorithm 1 has an approximation ratio 1−(1−γ+γα)e−γ, improving the result obtained by Bian et al.•Set g(S)=0. Algorithm 2 has an approximation ratio γγ+1, improving the approximate ratio 1−12γ by Wang et al.
The concept of submodularity finds wide applications in data science, artificial intelligence, and machine learning, providing a boost to the investigation of new ideas, innovative techniques, and creative algorithms to solve different submodular optimization problems arising from a diversity of applications. However pure submodular or supermodular problems only represent a small portion of the problems we are facing in real life applications. The main focus of this work is to consider a non-submodular function maximization problem subject to a cardinality constraint, where the objective function is the sum of a monotone γ-weakly submodular function and a supermodular function. This problem includes some previously studied problems as special cases, such as the submodular+supermodular maximization problem when γ=1, and the γ-weakly submodular function maximization problem when the supermodular function is void. We present greedy algorithms for this generalized problem under both offline and streaming models, improving existing results. |
Author | Liu, Zhicheng Chang, Hong Du, Donglei Zhang, Xiaoyan Jin, Jing |
Author_xml | – sequence: 1 givenname: Zhicheng surname: Liu fullname: Liu, Zhicheng email: manlzhic@163.com organization: Beijing Institute for Scientific and Engineering Computing, Beijing University of Technology, Beijing, 100124, China – sequence: 2 givenname: Jing surname: Jin fullname: Jin, Jing email: jinjing19841@126.com organization: College of Taizhou, Nanjing Normal University, Tiazhou, 225300, China – sequence: 3 givenname: Hong surname: Chang fullname: Chang, Hong email: changh@njnu.edu.cn organization: School of Mathematical Science & Institute of Mathematics, Nanjing Normal University, Nanjing, 210023, China – sequence: 4 givenname: Donglei surname: Du fullname: Du, Donglei email: ddu@unb.ca organization: Faculty of Management, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada – sequence: 5 givenname: Xiaoyan surname: Zhang fullname: Zhang, Xiaoyan email: zhangxiaoyan@njnu.edu.cn organization: School of Mathematical Science & Institute of Mathematics, Nanjing Normal University, Nanjing, 210023, China |
BookMark | eNp9kMtOwzAQRb0oEm3hA9jlBxL8qONYrFB5VarEBtaWHxNwlcSVnVbA1-O2rFh0NlezOFczZ4YmQxgAoRuCK4JJfbupRpsqiimtsKgwlRM0xQwvSiYFv0SzlDY4Dxf1FD2s-m0Me3CF7j5C9ONnn4o2xCJ3lmln-uB2nY5Fuxvs6MNQ9PrL9_5HH5eMmg76K3TR6i7B9V_O0fvT49vypVy_Pq-W9-vSUinGkhPtXNtwwqnUnAKlC9oIRq2zRkrNgEojDDMLzAAcbyyphbOtZA1wZ2jN5kicem0MKUVolfXj8ZIxat8pgtVBgNqoLEAdBCgsVBaQSfKP3Ebf6_h9lrk7MZBf2nuIKlkPgwXnI9hRueDP0L-fVXmo |
CitedBy_id | crossref_primary_10_26599_TST_2022_9010033 |
Cites_doi | 10.1007/BF01588971 10.1007/s10878-020-00558-4 10.1016/0166-218X(84)90003-9 10.1007/s10898-019-00840-8 10.1016/j.tcs.2020.05.024 10.1007/s11590-016-1039-z 10.1109/ACCESS.2018.2809547 10.1016/j.disopt.2013.02.002 10.1016/j.tcs.2020.05.018 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.tcs.2022.07.029 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Computer Science |
EndPage | 55 |
ExternalDocumentID | 10_1016_j_tcs_2022_07_029 S0304397522004510 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN ABAOU ABBOA ABDPE ABEFU ABFNM ABJNI ABMAC ABTAH ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AENEX AEXQZ AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HVGLF HZ~ IHE IXB J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SES SEW SPC SPCBC SSH SSV SSW SSZ T5K TAE TN5 WH7 WUQ XJT YNT ZMT ZY4 ~G- AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD |
ID | FETCH-LOGICAL-c297t-51addf851529a52e22428732cdcb99a3e29b7b3b403eed58c167dcf938e5db263 |
IEDL.DBID | .~1 |
ISSN | 0304-3975 |
IngestDate | Wed Oct 01 04:21:20 EDT 2025 Thu Apr 24 23:11:37 EDT 2025 Sun Apr 06 06:54:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Non-submodular function maximization Greedy algorithm Streaming model Offline model Cardinality constraint |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-51addf851529a52e22428732cdcb99a3e29b7b3b403eed58c167dcf938e5db263 |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_1016_j_tcs_2022_07_029 crossref_primary_10_1016_j_tcs_2022_07_029 elsevier_sciencedirect_doi_10_1016_j_tcs_2022_07_029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-29 |
PublicationDateYYYYMMDD | 2022-09-29 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-29 day: 29 |
PublicationDecade | 2020 |
PublicationTitle | Theoretical computer science |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Elenberg, Dimakis, Feldman, Karbasi (br0050) 2017 Gong, Nong, Sun, Fang, Du, Shao (br0070) 2021; 853 Wei, Iyer, Bilmes (br0150) 2015 Schulz, Uhan (br0130) 2013; 10 Krause, Guestrin (br0090) 2005; vol. 5 Krause, Golovin (br0080) 2014 Yu, Li, Liao, Cui (br0170) 2018; 6 Yang, Gu, Gao, Wu, Wang, Xu (br0160) 2021; 853 Nemhauser, Wolsey, Fisher (br0110) 1978; 14 Conforti, Cornuéjols (br0040) 1984; 7 Bian, Buhmann, Krause, Tschiatschek (br0030) 2017 Bai, Bilmes (br0020) 2018 Wang, Xu, Wang, Zhang (br0140) 2020; 76 Fisher, Nemhauser, Wolsey (br0060) 1978 Laitila, Moilanen (br0100) 2017; 11 Badanidiyuru, Mirzasoleiman, Karbasi, Krause (br0010) 2014 Nong, Fang, Gong, Du, Feng, Qu (br0120) 2020; 39 Badanidiyuru (10.1016/j.tcs.2022.07.029_br0010) 2014 Gong (10.1016/j.tcs.2022.07.029_br0070) 2021; 853 Bai (10.1016/j.tcs.2022.07.029_br0020) 2018 Krause (10.1016/j.tcs.2022.07.029_br0090) 2005; vol. 5 Wang (10.1016/j.tcs.2022.07.029_br0140) 2020; 76 Krause (10.1016/j.tcs.2022.07.029_br0080) 2014 Fisher (10.1016/j.tcs.2022.07.029_br0060) 1978 Laitila (10.1016/j.tcs.2022.07.029_br0100) 2017; 11 Yu (10.1016/j.tcs.2022.07.029_br0170) 2018; 6 Schulz (10.1016/j.tcs.2022.07.029_br0130) 2013; 10 Bian (10.1016/j.tcs.2022.07.029_br0030) 2017 Conforti (10.1016/j.tcs.2022.07.029_br0040) 1984; 7 Wei (10.1016/j.tcs.2022.07.029_br0150) 2015 Nong (10.1016/j.tcs.2022.07.029_br0120) 2020; 39 Yang (10.1016/j.tcs.2022.07.029_br0160) 2021; 853 Elenberg (10.1016/j.tcs.2022.07.029_br0050) 2017 Nemhauser (10.1016/j.tcs.2022.07.029_br0110) 1978; 14 |
References_xml | – volume: 853 start-page: 16 year: 2021 end-page: 24 ident: br0070 article-title: Maximize a monotone function with a generic submodularity ratio publication-title: Theor. Comput. Sci. – start-page: 671 year: 2014 end-page: 680 ident: br0010 article-title: Streaming submodular maximization: massive data summarization on the fly publication-title: Proceedings of SIGKDD – volume: 76 start-page: 729 year: 2020 end-page: 743 ident: br0140 article-title: Non-submodular maximization on massive data streams publication-title: J. Glob. Optim. – start-page: 1954 year: 2015 end-page: 1963 ident: br0150 article-title: Submodularity in data subset selection and active learning publication-title: Proceedings of ICML – start-page: 304 year: 2018 end-page: 313 ident: br0020 article-title: Greed is still good: maximizing monotone submodular+supermodular (BP) functions publication-title: Proceedings of ICML – start-page: 4044 year: 2017 end-page: 4054 ident: br0050 article-title: Streaming weak submodularity: interpreting neural networks on the fly publication-title: Proceedings of NIPS – start-page: 73 year: 1978 end-page: 87 ident: br0060 article-title: An Analysis of Approximations for Maximizing Submodular Set Functions–ii. Polyhedral Combinatorics – volume: 14 start-page: 265 year: 1978 end-page: 294 ident: br0110 article-title: An analysis of approximations for maximizing submodular set functions–i publication-title: Math. Program. – volume: 853 start-page: 57 year: 2021 end-page: 64 ident: br0160 article-title: A constrained two-stage submodular maximization publication-title: Theor. Comput. Sci. – volume: vol. 5 year: 2005 ident: br0090 article-title: Near-optimal nonmyopic value of information in graphical models publication-title: UAI – volume: 39 start-page: 1208 year: 2020 end-page: 1220 ident: br0120 article-title: A 1/2-approximation algorithm for maximizing a non-monotone weak-submodular function on a bounded integer lattice publication-title: J. Comb. Optim. – start-page: 498 year: 2017 end-page: 507 ident: br0030 article-title: Guarantees for greedy maximization of non-submodular functions with applications publication-title: Proceedings of ICML – start-page: 71 year: 2014 end-page: 104 ident: br0080 article-title: Submodular function maximization publication-title: Tractability – volume: 11 start-page: 655 year: 2017 end-page: 665 ident: br0100 article-title: New performance guarantees for the greedy maximization of submodular set functions publication-title: Optim. Lett. – volume: 10 start-page: 163 year: 2013 end-page: 180 ident: br0130 article-title: Approximating the least core value and least core of cooperative games with supermodular costs publication-title: Discrete Optim. – volume: 6 start-page: 14367 year: 2018 end-page: 14378 ident: br0170 article-title: Fast budgeted influence maximization over multi-action event logs publication-title: IEEE Access – volume: 7 start-page: 251 year: 1984 end-page: 274 ident: br0040 article-title: Submodular set functions, matroids and the greedy algorithm: tight worst-case bounds and some generalizations of the Rado-Edmonds theorem publication-title: Discrete Appl. Math. – start-page: 4044 year: 2017 ident: 10.1016/j.tcs.2022.07.029_br0050 article-title: Streaming weak submodularity: interpreting neural networks on the fly – volume: 14 start-page: 265 issue: 1 year: 1978 ident: 10.1016/j.tcs.2022.07.029_br0110 article-title: An analysis of approximations for maximizing submodular set functions–i publication-title: Math. Program. doi: 10.1007/BF01588971 – volume: 39 start-page: 1208 issue: 4 year: 2020 ident: 10.1016/j.tcs.2022.07.029_br0120 article-title: A 1/2-approximation algorithm for maximizing a non-monotone weak-submodular function on a bounded integer lattice publication-title: J. Comb. Optim. doi: 10.1007/s10878-020-00558-4 – start-page: 304 year: 2018 ident: 10.1016/j.tcs.2022.07.029_br0020 article-title: Greed is still good: maximizing monotone submodular+supermodular (BP) functions – volume: 7 start-page: 251 issue: 3 year: 1984 ident: 10.1016/j.tcs.2022.07.029_br0040 article-title: Submodular set functions, matroids and the greedy algorithm: tight worst-case bounds and some generalizations of the Rado-Edmonds theorem publication-title: Discrete Appl. Math. doi: 10.1016/0166-218X(84)90003-9 – volume: vol. 5 year: 2005 ident: 10.1016/j.tcs.2022.07.029_br0090 article-title: Near-optimal nonmyopic value of information in graphical models – start-page: 73 year: 1978 ident: 10.1016/j.tcs.2022.07.029_br0060 – volume: 76 start-page: 729 issue: 4 year: 2020 ident: 10.1016/j.tcs.2022.07.029_br0140 article-title: Non-submodular maximization on massive data streams publication-title: J. Glob. Optim. doi: 10.1007/s10898-019-00840-8 – volume: 853 start-page: 57 year: 2021 ident: 10.1016/j.tcs.2022.07.029_br0160 article-title: A constrained two-stage submodular maximization publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2020.05.024 – start-page: 671 year: 2014 ident: 10.1016/j.tcs.2022.07.029_br0010 article-title: Streaming submodular maximization: massive data summarization on the fly – volume: 11 start-page: 655 year: 2017 ident: 10.1016/j.tcs.2022.07.029_br0100 article-title: New performance guarantees for the greedy maximization of submodular set functions publication-title: Optim. Lett. doi: 10.1007/s11590-016-1039-z – start-page: 498 year: 2017 ident: 10.1016/j.tcs.2022.07.029_br0030 article-title: Guarantees for greedy maximization of non-submodular functions with applications – start-page: 71 year: 2014 ident: 10.1016/j.tcs.2022.07.029_br0080 article-title: Submodular function maximization – volume: 6 start-page: 14367 year: 2018 ident: 10.1016/j.tcs.2022.07.029_br0170 article-title: Fast budgeted influence maximization over multi-action event logs publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2809547 – volume: 10 start-page: 163 issue: 2 year: 2013 ident: 10.1016/j.tcs.2022.07.029_br0130 article-title: Approximating the least core value and least core of cooperative games with supermodular costs publication-title: Discrete Optim. doi: 10.1016/j.disopt.2013.02.002 – start-page: 1954 year: 2015 ident: 10.1016/j.tcs.2022.07.029_br0150 article-title: Submodularity in data subset selection and active learning – volume: 853 start-page: 16 year: 2021 ident: 10.1016/j.tcs.2022.07.029_br0070 article-title: Maximize a monotone function with a generic submodularity ratio publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2020.05.018 |
SSID | ssj0000576 |
Score | 2.3699915 |
Snippet | •We combine the distorted objective function, the threshold and the greedy algorithms.•This problem includes some previously studied problems as special cases,... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 49 |
SubjectTerms | Cardinality constraint Greedy algorithm Non-submodular function maximization Offline model Streaming model |
Title | Improved algorithms for non-submodular function maximization problem |
URI | https://dx.doi.org/10.1016/j.tcs.2022.07.029 |
Volume | 931 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0304-3975 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000576 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0304-3975 databaseCode: ACRLP dateStart: 20211002 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000576 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection issn: 0304-3975 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000576 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals issn: 0304-3975 databaseCode: AIKHN dateStart: 20210508 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000576 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0304-3975 databaseCode: AKRWK dateStart: 19750601 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000576 providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssDAo4Aoj8oDE1Jo6kcSj1WhKo9WCKjUzYodB4paWtEgMfHbOSdOAQkYmKJEtmR9ce6-y52_Q-jYj5KW4kngaYgnPBYq44k40l7qC8ugFUvzavf-IOgN2eWIjyqoU56FsWWVzvYXNj231u5J06HZnI_HzTub1ANvCgQiF0mxcbtV_4I9ffr-WeYBfKTIV9oMAIwuM5t5jVemrWI3Ibl-Z84yf_BNX_xNdxOtO6KI28VatlDFPNfQRtmEAbtvsobW-kvh1cU2Oit-EpgEx5OHGQT-j9MFBl6KIcr3FuD7ZomtO8XWndlXgqfx23jqzmJi111mBw275_ednucaJQDCIsw83gIrlQJ34kTEnBhwyxAIUaITrYSIqSFChYoq5lNwiTzSrSBMdCpoZHiiSEB3URWWYfYQphzYdix8bSBUMZSphCiIqSKmjGJAJevILyGS2qmI22YWE1mWiz1JQFVaVKUfSkC1jk6WU-aFhMZfg1mJu_y2DySY-N-n7f9v2gFatXe2_oOIQ1TNXl7NEZCMTDXyXdRAK-3O7fWNvV5c9QYf5XrSrw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4QOKgHH6gRn3vwZNJQtru0eyQoAXlchITbprtdFANCBBN_vrPtFjVRD17bTrKZbr_vm87sDMC1HyU1xZO6pzGe8FiojCfiSHsTX1gFrdgkrXbvD-rtEbsf83EBmvlZGFtW6bA_w_QUrd2VqvNmdTmdVh9sUg_ZFAVE2iQF4_YS44jJRSg1Ot324BOQeZilLG0SAA3y5GZa5rXWtmk3pWkLz1Ro_kBPXyintQ-7TiuSRracAyiYlzLs5XMYiPssy7DT3_ReXR3CbfafwCQknj0uMPZ_mq8ISlOCgb63QvpbJLb0lFhGs2-FzOP36dwdxyRuwMwRjFp3w2bbc7MS0MkiXHu8hkA1QfnEqYg5NcjMGAsFVCdaCREHhgoVqkAxP0BW5JGu1cNET0QQGZ4oWg-OoYjLMCdAAo6COxa-NhitmICphCoMqyKmjGKoJivg5y6S2jUSt_MsZjKvGHuW6FVpvSr9UKJXK3CzMVlmXTT-epjlfpfftoJElP_d7PR_Zlew1R72e7LXGXTPYNveseUgVJxDcf36Zi5Qc6zVpdtTH4Jc08U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+algorithms+for+non-submodular+function+maximization+problem&rft.jtitle=Theoretical+computer+science&rft.au=Liu%2C+Zhicheng&rft.au=Jin%2C+Jing&rft.au=Chang%2C+Hong&rft.au=Du%2C+Donglei&rft.date=2022-09-29&rft.issn=0304-3975&rft.volume=931&rft.spage=49&rft.epage=55&rft_id=info:doi/10.1016%2Fj.tcs.2022.07.029&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tcs_2022_07_029 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon |