Partially decoupled polarization demultiplexing and phase noise equalizer for Alamouti code-based simplified coherent systems

Alamouti space-time block code (STBC) combined with a simple heterodyne coherent receiver can realize polarization-insensitive phase-diversity detection to reduce the cost. In the receiver, a joint equalizer has been used for STBC’s polarization demultiplexing and phase tracking. However, the joint...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 31; no. 22; p. 35810
Main Authors Jin, Taowei, Ling, Hong, Zhang, Jing, Qiu, Kun
Format Journal Article
LanguageEnglish
Published 23.10.2023
Online AccessGet full text
ISSN1094-4087
1094-4087
DOI10.1364/OE.501713

Cover

Abstract Alamouti space-time block code (STBC) combined with a simple heterodyne coherent receiver can realize polarization-insensitive phase-diversity detection to reduce the cost. In the receiver, a joint equalizer has been used for STBC’s polarization demultiplexing and phase tracking. However, the joint equalizer requires two different step size parameters to update the tap weight coefficients for polarization demultiplexing and the phase noise estimation. This leads to the search process being complex so requiring more iterations for convergence. In this paper, we propose a partially decoupled equalizer that consists of a polarization and phase decoupled equalizer (PPDE) and a pilot-aided blind phase search (P-BPS) algorithm to accelerate the convergence and improve the phase noise tolerance. By theoretically calculating the phase noise, the PPDE can achieve polarization demultiplexing with only one single step size parameter, thus suppressing the searching space and greatly reducing the iterations required for convergence. In the carrier phase recovery stage, the P-BPS algorithm can effectively improve the phase noise tolerance and solve the cyclic slip problem of BPS. We conduct numerical simulations and an experiment to transmit a quadrature phase-shift keying (QPSK) signal. The results demonstrate that the number of iterations required for PPDE convergence is only half of that of the joint equalizer while maintaining polarization-insensitive characteristics in large phase noise. Meanwhile, the achievable linewidth tolerance of P-BPS is increased by three times compared with DD-LMS.
AbstractList Alamouti space-time block code (STBC) combined with a simple heterodyne coherent receiver can realize polarization-insensitive phase-diversity detection to reduce the cost. In the receiver, a joint equalizer has been used for STBC's polarization demultiplexing and phase tracking. However, the joint equalizer requires two different step size parameters to update the tap weight coefficients for polarization demultiplexing and the phase noise estimation. This leads to the search process being complex so requiring more iterations for convergence. In this paper, we propose a partially decoupled equalizer that consists of a polarization and phase decoupled equalizer (PPDE) and a pilot-aided blind phase search (P-BPS) algorithm to accelerate the convergence and improve the phase noise tolerance. By theoretically calculating the phase noise, the PPDE can achieve polarization demultiplexing with only one single step size parameter, thus suppressing the searching space and greatly reducing the iterations required for convergence. In the carrier phase recovery stage, the P-BPS algorithm can effectively improve the phase noise tolerance and solve the cyclic slip problem of BPS. We conduct numerical simulations and an experiment to transmit a quadrature phase-shift keying (QPSK) signal. The results demonstrate that the number of iterations required for PPDE convergence is only half of that of the joint equalizer while maintaining polarization-insensitive characteristics in large phase noise. Meanwhile, the achievable linewidth tolerance of P-BPS is increased by three times compared with DD-LMS.Alamouti space-time block code (STBC) combined with a simple heterodyne coherent receiver can realize polarization-insensitive phase-diversity detection to reduce the cost. In the receiver, a joint equalizer has been used for STBC's polarization demultiplexing and phase tracking. However, the joint equalizer requires two different step size parameters to update the tap weight coefficients for polarization demultiplexing and the phase noise estimation. This leads to the search process being complex so requiring more iterations for convergence. In this paper, we propose a partially decoupled equalizer that consists of a polarization and phase decoupled equalizer (PPDE) and a pilot-aided blind phase search (P-BPS) algorithm to accelerate the convergence and improve the phase noise tolerance. By theoretically calculating the phase noise, the PPDE can achieve polarization demultiplexing with only one single step size parameter, thus suppressing the searching space and greatly reducing the iterations required for convergence. In the carrier phase recovery stage, the P-BPS algorithm can effectively improve the phase noise tolerance and solve the cyclic slip problem of BPS. We conduct numerical simulations and an experiment to transmit a quadrature phase-shift keying (QPSK) signal. The results demonstrate that the number of iterations required for PPDE convergence is only half of that of the joint equalizer while maintaining polarization-insensitive characteristics in large phase noise. Meanwhile, the achievable linewidth tolerance of P-BPS is increased by three times compared with DD-LMS.
Alamouti space-time block code (STBC) combined with a simple heterodyne coherent receiver can realize polarization-insensitive phase-diversity detection to reduce the cost. In the receiver, a joint equalizer has been used for STBC’s polarization demultiplexing and phase tracking. However, the joint equalizer requires two different step size parameters to update the tap weight coefficients for polarization demultiplexing and the phase noise estimation. This leads to the search process being complex so requiring more iterations for convergence. In this paper, we propose a partially decoupled equalizer that consists of a polarization and phase decoupled equalizer (PPDE) and a pilot-aided blind phase search (P-BPS) algorithm to accelerate the convergence and improve the phase noise tolerance. By theoretically calculating the phase noise, the PPDE can achieve polarization demultiplexing with only one single step size parameter, thus suppressing the searching space and greatly reducing the iterations required for convergence. In the carrier phase recovery stage, the P-BPS algorithm can effectively improve the phase noise tolerance and solve the cyclic slip problem of BPS. We conduct numerical simulations and an experiment to transmit a quadrature phase-shift keying (QPSK) signal. The results demonstrate that the number of iterations required for PPDE convergence is only half of that of the joint equalizer while maintaining polarization-insensitive characteristics in large phase noise. Meanwhile, the achievable linewidth tolerance of P-BPS is increased by three times compared with DD-LMS.
Author Zhang, Jing
Qiu, Kun
Jin, Taowei
Ling, Hong
Author_xml – sequence: 1
  givenname: Taowei
  surname: Jin
  fullname: Jin, Taowei
– sequence: 2
  givenname: Hong
  surname: Ling
  fullname: Ling, Hong
– sequence: 3
  givenname: Jing
  orcidid: 0000-0001-8135-8124
  surname: Zhang
  fullname: Zhang, Jing
– sequence: 4
  givenname: Kun
  surname: Qiu
  fullname: Qiu, Kun
BookMark eNptkM1OAyEUhYmpiW114Ruw1MW0MDAFlk1TfxKTutD1BBmwGGaYApPYJr67aF0Y4-aem3u-cxdnAkad7zQAlxjNMFnQ-WY9qxBmmJyAMUaCFhRxNvq1n4FJjG8IYcoEG4OPRxmSlc7tYaOVH3qnG9h7J4M9yGR9l8_t4JLNxrvtXqHssr-VUcPO2zz1bpDOHnSAxge4dLL1Q7JQ-UYXLxlrYLRt76yxeVV-q4PuEoz7mHQbz8GpkS7qix-dgueb9dPqrnjY3N6vlg-FKgVLBVWECVRJYhjjlGblhHDDOdZ8gQQxRGWfE0mpKSmiaFEJIpSRigpEKkKm4Or4tw9-N-iY6tZGpZ2TnfZDrEsuqnKBSyYyOj-iKvgYgza1sum7iRSkdTVG9VfR9WZdH4vOies_iT7YVob9P-wnl-mBSg
CitedBy_id crossref_primary_10_1109_JLT_2024_3383882
Cites_doi 10.1364/OE.16.000753
10.1109/JLT.2022.3144983
10.1364/JOCN.12.00A162
10.1109/JLT.2022.3202570
10.3788/COL202220.020603
10.1364/JOCN.12.000A95
10.1364/OE.20.001164
10.1364/JON.7.000234
10.1109/LPT.2022.3168294
10.1364/OE.24.024083
10.1364/OE.26.021170
10.1109/JLT.2021.3127347
10.1109/49.730453
10.1364/OL.37.004050
10.1364/OE.472470
10.23919/JCC.2022.12.001
10.1109/JLT.2015.2507869
10.1109/JLT.2022.3192904
10.1109/LPT.2023.3238666
10.1364/OE.16.000804
10.1038/s41467-017-00875-z
10.1109/JPHOT.2017.2788191
10.1109/JPHOT.2022.3173652
10.1515/JOC.1985.6.1.18
ContentType Journal Article
DBID AAYXX
CITATION
7X8
DOI 10.1364/OE.501713
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1094-4087
ExternalDocumentID 10_1364_OE_501713
GroupedDBID ---
123
29N
2WC
8SL
AAFWJ
AAWJZ
AAYXX
ACGFO
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
CITATION
CS3
DIK
DSZJF
DU5
E3Z
EBS
F5P
GROUPED_DOAJ
GX1
KQ8
M~E
OFLFD
OK1
OPJBK
OPLUZ
OVT
P2P
RNS
ROL
ROS
TR2
TR6
XSB
7X8
ID FETCH-LOGICAL-c297t-4c37905a3f77844a3f8338f881e86093f3c79083a44f2404065939cfac4903533
ISSN 1094-4087
IngestDate Thu Jul 10 20:38:03 EDT 2025
Tue Jul 01 04:01:48 EDT 2025
Thu Apr 24 22:53:52 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-4c37905a3f77844a3f8338f881e86093f3c79083a44f2404065939cfac4903533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8135-8124
OpenAccessLink https://doi.org/10.1364/oe.501713
PQID 2895261279
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2895261279
crossref_citationtrail_10_1364_OE_501713
crossref_primary_10_1364_OE_501713
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-23
20231023
PublicationDateYYYYMMDD 2023-10-23
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-23
  day: 23
PublicationDecade 2020
PublicationTitle Optics express
PublicationYear 2023
References Zhang (oe-31-22-35810-R4) 2022; 19
Wang (oe-31-22-35810-R12) 2022; 40
Alamouti (oe-31-22-35810-R23) 1998; 16
Le (oe-31-22-35810-R10) 2022; 40
Erkln (oe-31-22-35810-R5) 2020; 12
Ezra (oe-31-22-35810-R13) 2008; 16
Sato (oe-31-22-35810-R26) 2022; 14
Hu (oe-31-22-35810-R28) 2022; 20
Qi (oe-31-22-35810-R7) 2022; 40
Zhang (oe-31-22-35810-R17) 2012; 37
Hraghi (oe-31-22-35810-R21) 2022; 30
Li (oe-31-22-35810-R20) 2022; 34
Cui (oe-31-22-35810-R27) 2018; 26
Shieh (oe-31-22-35810-R16) 2008; 7
Faruk (oe-31-22-35810-R19) 2018; 10
Xie (oe-31-22-35810-R11) 2012; 20
Faruk (oe-31-22-35810-R18) 2016; 24
Savory (oe-31-22-35810-R25) 2008; 16
Ji (oe-31-22-35810-R8) 2022; 40
Kazovsky (oe-31-22-35810-R14) 1985; 6
Erkılınç (oe-31-22-35810-R1) 2017; 8
Erkılınc (oe-31-22-35810-R15) 2016; 34
van Veen (oe-31-22-35810-R2) 2020; 12
Kovacs (oe-31-22-35810-R22) 2023; 35
References_xml – volume: 16
  start-page: 753
  year: 2008
  ident: oe-31-22-35810-R13
  publication-title: Opt. Express
  doi: 10.1364/OE.16.000753
– volume: 40
  start-page: 2773
  year: 2022
  ident: oe-31-22-35810-R8
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2022.3144983
– volume: 12
  start-page: A162
  year: 2020
  ident: oe-31-22-35810-R5
  publication-title: J. Opt. Commun. Netw.
  doi: 10.1364/JOCN.12.00A162
– volume: 40
  start-page: 7297
  year: 2022
  ident: oe-31-22-35810-R7
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2022.3202570
– volume: 20
  start-page: 020603
  year: 2022
  ident: oe-31-22-35810-R28
  publication-title: Chin. Opt. Lett.
  doi: 10.3788/COL202220.020603
– volume: 12
  start-page: A95
  year: 2020
  ident: oe-31-22-35810-R2
  publication-title: J. Opt. Commun. Netw.
  doi: 10.1364/JOCN.12.000A95
– volume: 20
  start-page: 1164
  year: 2012
  ident: oe-31-22-35810-R11
  publication-title: Opt. Express
  doi: 10.1364/OE.20.001164
– volume: 7
  start-page: 234
  year: 2008
  ident: oe-31-22-35810-R16
  publication-title: J. Opt. Netw.
  doi: 10.1364/JON.7.000234
– volume: 34
  start-page: 838
  year: 2022
  ident: oe-31-22-35810-R20
  publication-title: IEEE Photonics. Technol. Lett.
  doi: 10.1109/LPT.2022.3168294
– volume: 24
  start-page: 24083
  year: 2016
  ident: oe-31-22-35810-R18
  publication-title: Opt. Express
  doi: 10.1364/OE.24.024083
– volume: 26
  start-page: 21170
  year: 2018
  ident: oe-31-22-35810-R27
  publication-title: Opt. Express
  doi: 10.1364/OE.26.021170
– volume: 40
  start-page: 1382
  year: 2022
  ident: oe-31-22-35810-R10
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2021.3127347
– volume: 16
  start-page: 1451
  year: 1998
  ident: oe-31-22-35810-R23
  publication-title: IEEE J. Select. Areas Commun.
  doi: 10.1109/49.730453
– volume: 37
  start-page: 4050
  year: 2012
  ident: oe-31-22-35810-R17
  publication-title: Opt. Lett.
  doi: 10.1364/OL.37.004050
– volume: 30
  start-page: 46782
  year: 2022
  ident: oe-31-22-35810-R21
  publication-title: Opt. Express
  doi: 10.1364/OE.472470
– volume: 19
  start-page: 1
  year: 2022
  ident: oe-31-22-35810-R4
  publication-title: China Commun.
  doi: 10.23919/JCC.2022.12.001
– volume: 34
  start-page: 2034
  year: 2016
  ident: oe-31-22-35810-R15
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2015.2507869
– volume: 40
  start-page: 6179
  year: 2022
  ident: oe-31-22-35810-R12
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2022.3192904
– volume: 35
  start-page: 257
  year: 2023
  ident: oe-31-22-35810-R22
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2023.3238666
– volume: 16
  start-page: 804
  year: 2008
  ident: oe-31-22-35810-R25
  publication-title: Opt. Express
  doi: 10.1364/OE.16.000804
– volume: 8
  start-page: 1043
  year: 2017
  ident: oe-31-22-35810-R1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00875-z
– volume: 10
  start-page: 1
  year: 2018
  ident: oe-31-22-35810-R19
  publication-title: IEEE Photonics J.
  doi: 10.1109/JPHOT.2017.2788191
– volume: 14
  start-page: 1
  year: 2022
  ident: oe-31-22-35810-R26
  publication-title: IEEE Photonics J.
  doi: 10.1109/JPHOT.2022.3173652
– volume: 6
  start-page: 18
  year: 1985
  ident: oe-31-22-35810-R14
  publication-title: J. Opt. Commun.
  doi: 10.1515/JOC.1985.6.1.18
SSID ssj0014797
Score 2.446865
Snippet Alamouti space-time block code (STBC) combined with a simple heterodyne coherent receiver can realize polarization-insensitive phase-diversity detection to...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 35810
Title Partially decoupled polarization demultiplexing and phase noise equalizer for Alamouti code-based simplified coherent systems
URI https://www.proquest.com/docview/2895261279
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZx2AvY1fWdSvq2MMguHMsRZIfy3AJpW02cCBPM4oiU0OwTRPTC3S_fUeyfAnkoeuLE46FMDof5yKd8wmhb9oPJJdMeyyUHBIUPfIE1dwLF-PRQgQKnK7ZGri4ZJMZPZuP54PBn17VUrVZHKv7nX0lT9EqyECvpkv2PzTbTgoC-A_6hSdoGJ6P0vEvI5Or1d1wCVlkVa4geixNruqaK0HcFAzeNs2I5RX4rWFeZPDUtqXyXl_bYsMTAEcBXzs0be6ecW_L4TozFeepiVNVcaUtldO6R3Luwtppadme9W3ZVnSYqpyanyCWxY3O2sofd4nKpHA-s79rfZZ1wt9ZZa1Qlfd3JgJb41Y3DztjCqkjqN85VL1D5iyw8wM10uo2ZWdPDTubv9PSE0ZBPdPoeGwYf0jnzpoj_Mtpcjo7P0_iaB4_Q88Dzpi54eLib9SeMlFeX77TfJNjnoKpf7QTb8cr2-7axiDxa_TKJQ_4pEbCGzTQ-Vv0whbxqvU79NDiAbd4wH084G08YMADtnjAFg-4xQMGPOAGD7jDA-7wgBs8YIeH92h2GsU_J567XsNTQcg3HlXEsLNJknIuKIVfQYhIhRhpwfyQpETBe0EkpSnEfdScwJNQpVLR0CeQJnxAe3mR648IL1VAFATaTIN5XxIqISw1GwEcltJPBd9H35tFTJTjnjdXoKwSe6DKaDKNknq999HXdmhZE67sGnTUaCIBc2jOuGSui2qdBCIcG1Y8Hn56xJgD9LID7me0t7mu9BcIMjeLQ7s5c2jx8g9D2YK1
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partially+decoupled+polarization+demultiplexing+and+phase+noise+equalizer+for+Alamouti+code-based+simplified+coherent+systems&rft.jtitle=Optics+express&rft.au=Jin%2C+Taowei&rft.au=Ling%2C+Hong&rft.au=Zhang%2C+Jing&rft.au=Qiu%2C+Kun&rft.date=2023-10-23&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=31&rft.issue=22&rft.spage=35810&rft_id=info:doi/10.1364%2FOE.501713&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon