An evolutionary algorithm for automated machine learning focusing on classifier ensembles: An improved algorithm and extended results
A large number of classification algorithms have been proposed in the machine learning literature. These algorithms have different pros and cons, and no algorithm is the best for all datasets. Hence, a challenging problem consists of choosing the best classification algorithm with its best hyper-par...
Saved in:
| Published in | Theoretical computer science Vol. 805; pp. 1 - 18 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
18.01.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0304-3975 1879-2294 |
| DOI | 10.1016/j.tcs.2019.12.002 |
Cover
| Abstract | A large number of classification algorithms have been proposed in the machine learning literature. These algorithms have different pros and cons, and no algorithm is the best for all datasets. Hence, a challenging problem consists of choosing the best classification algorithm with its best hyper-parameter settings for a given input dataset. In the last few years, Automated Machine Learning (Auto-ML) has emerged as a promising approach for tackling this problem, by doing a heuristic search in a large space of candidate classification algorithms and their hyper-parameter settings. In this work we propose an improved version of our previous Evolutionary Algorithm (EA) – more precisely, an Estimation of Distribution Algorithm – for the Auto-ML task of automatically selecting the best classifier ensemble and its best hyper-parameter settings for an input dataset. The new version of this EA was compared against its previous version, as well as against a random forest algorithm (a strong ensemble algorithm) and a version of the well-known Auto-ML method Auto-WEKA adapted to search in the same space of classifier ensembles as the proposed EA. In general, in experiments with 21 datasets, the new EA version obtained the best results among all methods in terms of four popular predictive accuracy measures: error rate, precision, recall and F-measure. |
|---|---|
| AbstractList | A large number of classification algorithms have been proposed in the machine learning literature. These algorithms have different pros and cons, and no algorithm is the best for all datasets. Hence, a challenging problem consists of choosing the best classification algorithm with its best hyper-parameter settings for a given input dataset. In the last few years, Automated Machine Learning (Auto-ML) has emerged as a promising approach for tackling this problem, by doing a heuristic search in a large space of candidate classification algorithms and their hyper-parameter settings. In this work we propose an improved version of our previous Evolutionary Algorithm (EA) – more precisely, an Estimation of Distribution Algorithm – for the Auto-ML task of automatically selecting the best classifier ensemble and its best hyper-parameter settings for an input dataset. The new version of this EA was compared against its previous version, as well as against a random forest algorithm (a strong ensemble algorithm) and a version of the well-known Auto-ML method Auto-WEKA adapted to search in the same space of classifier ensembles as the proposed EA. In general, in experiments with 21 datasets, the new EA version obtained the best results among all methods in terms of four popular predictive accuracy measures: error rate, precision, recall and F-measure. |
| Author | Feitosa-Neto, Antonino Barreto, Cephas A.S. Ludermir, Teresa B. Xavier-Júnior, João C. Freitas, Alex A. |
| Author_xml | – sequence: 1 givenname: João C. surname: Xavier-Júnior fullname: Xavier-Júnior, João C. email: jcxavier@imd.ufrn.br organization: Digital Metropolis Institute - Federal University of Rio Grande do Norte, Natal, Brazil – sequence: 2 givenname: Alex A. surname: Freitas fullname: Freitas, Alex A. email: a.a.freitas@kent.ac.uk organization: School of Computing - University of Kent, Canterbury, United Kingdom – sequence: 3 givenname: Teresa B. surname: Ludermir fullname: Ludermir, Teresa B. email: tbl@cin.ufpe.br organization: Center for Information Technology - Federal University of Pernambuco, Recife, Brazil – sequence: 4 givenname: Antonino surname: Feitosa-Neto fullname: Feitosa-Neto, Antonino email: antonino_feitosa@yahoo.com organization: Department of Informatics and Applied Mathematics - Federal University of Rio Grande do Norte, Natal, Brazil – sequence: 5 givenname: Cephas A.S. surname: Barreto fullname: Barreto, Cephas A.S. email: cephasax@gmail.com organization: Department of Informatics and Applied Mathematics - Federal University of Rio Grande do Norte, Natal, Brazil |
| BookMark | eNp9kEtKBDEQhoMoOD4O4C4X6DZJpx_RlYgvGHCj61CdrtYM3cmQZAY9gPc2wwiCC2tTRRXfD_WdkEPnHRJywVnJGW8uV2UysRSMq5KLkjFxQBa8a1UhhJKHZMEqJotKtfUxOYlxxXLVbbMgXzeO4tZPm2S9g_BJYXrzwab3mY4-UNgkP0PCgc5g3q1DOiEEZ91bPptN3A3eUTNBjHa0GCi6iHM_YbyiOdrO6-C3Gf-NBTdQ_EjohrwOGDdTimfkaIQp4vlPPyWv93cvt4_F8vnh6fZmWRih2lTIXigjB1bJuoKmG1SlcBRVz2vgDcix7xoDlQLTY57qTkiuxqaRoASOHZfVKeH7XBN8jAFHvQ52zm9rzvTOo17p7FHvPGoudPaYmfYPY2yCna4UwE7_ktd7EvNL2yxHR2PRGRxsQJP04O0_9DfiP5NH |
| CitedBy_id | crossref_primary_10_1016_j_engfailanal_2020_104856 crossref_primary_10_1016_j_orp_2024_100308 crossref_primary_10_1016_j_eswa_2022_118295 crossref_primary_10_1007_s10489_022_03397_4 crossref_primary_10_1016_j_jpdc_2024_104964 crossref_primary_10_1145_3603620 |
| Cites_doi | 10.1016/j.asoc.2016.12.045 10.1007/s10994-017-5682-0 10.1017/S0269888913000313 10.1145/1656274.1656278 10.1007/s10462-009-9124-7 10.1002/widm.1249 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. |
| Copyright_xml | – notice: 2019 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.tcs.2019.12.002 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISSN | 1879-2294 |
| EndPage | 18 |
| ExternalDocumentID | 10_1016_j_tcs_2019_12_002 S0304397519307649 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABJNI ABMAC ABVKL ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF IHE IXB J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SES SPC SPCBC SSV SSW SSZ T5K TN5 WH7 YNT ZMT ~G- 29Q AAEDT AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AXJTR AZFZN CITATION EFKBS EJD FGOYB G-2 HZ~ R2- SEW TAE WUQ XJT ZY4 ~HD |
| ID | FETCH-LOGICAL-c297t-4b29c4d03453a68d939ef23b15a16a4fb86ca39acbe86c582419f664a92ef8143 |
| IEDL.DBID | .~1 |
| ISSN | 0304-3975 |
| IngestDate | Thu Oct 09 00:39:10 EDT 2025 Thu Apr 24 23:03:04 EDT 2025 Fri Feb 23 02:50:04 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Estimation of distribution algorithms Evolutionary algorithms Automated Machine Learning (Auto-ML) Classification |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c297t-4b29c4d03453a68d939ef23b15a16a4fb86ca39acbe86c582419f664a92ef8143 |
| PageCount | 18 |
| ParticipantIDs | crossref_primary_10_1016_j_tcs_2019_12_002 crossref_citationtrail_10_1016_j_tcs_2019_12_002 elsevier_sciencedirect_doi_10_1016_j_tcs_2019_12_002 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-18 |
| PublicationDateYYYYMMDD | 2020-01-18 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-18 day: 18 |
| PublicationDecade | 2020 |
| PublicationTitle | Theoretical computer science |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (br0050) 2009; 11 Olson, Urbanowicz, Andrews, Lavender, Kidd, Moore (br0240) 2016 Kotsiantis (br0300) 2014; 29 Yang, Dong, Zhang (br0170) 2009 A. Lacoste, H. Larochelle, F. Laviolette, M. Marchand, Sequential model-based ensemble optimization, Computing Research Repository (CoRR) (2014). Kordík, Černý, Frýda (br0190) 2018; 107 Fernández-Delgado, Cernadas, Barro, Amorim (br0090) 2014; 15 Saeys, Degroeve, Aeyels, Rouzé, Van de Peer (br0180) 2004; 5 Rokach (br0290) 2010; 33 Xavier-Júnior, Freitas, Feitosa-Neto, Ludermir (br0280) 2018 Thornton, Hutter, Hoos, Leyton-Brown (br0040) 2013 Lévesque, Gagné, Sabourin (br0220) 2016 Kuncheva (br0030) 2004 de Sá, Pinto, Oliveira, Pappa (br0260) 2017; vol. 10196 Freitas (br0120) 2002 Kotsiantis (br0200) 2007 Wistuba, Schilling, Schmidt-Thieme (br0210) 2017 Zangari, Santana, Mendibury, Pozo (br0160) April 2017; 53 Larrañaga, Lozano (br0070) 2002 de Sá, Pappa, Freitas (br0250) 2018 Zhou (br0010) 2012 Shelke, Jayaraman, Ghosh, Valadi (br0150) 2013 Feurer, Klein, Eggensperger, Springenberg, Blum, Hutter (br0060) 2015; 28 Brazdil, Giraud-Carrier, Soares, Vilalta (br0100) 2009 Baluja, Caruana (br0080) 1995 Sagi, Rokach (br0310) 2018; 8 Kuncheva (br0020) 2004; vol. 3077 Inza, Larrañaga, Sierra (br0140) 2002 Demsar (br0270) 2006; 7 Eiben, Smith (br0130) 2015 Kotthoff, Thornton, Hoos, Hutter, Leyton-Brown (br0110) 2017; 18 Hall (10.1016/j.tcs.2019.12.002_br0050) 2009; 11 Zhou (10.1016/j.tcs.2019.12.002_br0010) 2012 Fernández-Delgado (10.1016/j.tcs.2019.12.002_br0090) 2014; 15 Saeys (10.1016/j.tcs.2019.12.002_br0180) 2004; 5 Eiben (10.1016/j.tcs.2019.12.002_br0130) 2015 Shelke (10.1016/j.tcs.2019.12.002_br0150) 2013 Kotsiantis (10.1016/j.tcs.2019.12.002_br0200) 2007 de Sá (10.1016/j.tcs.2019.12.002_br0260) 2017; vol. 10196 Demsar (10.1016/j.tcs.2019.12.002_br0270) 2006; 7 Thornton (10.1016/j.tcs.2019.12.002_br0040) 2013 Xavier-Júnior (10.1016/j.tcs.2019.12.002_br0280) 2018 Rokach (10.1016/j.tcs.2019.12.002_br0290) 2010; 33 Larrañaga (10.1016/j.tcs.2019.12.002_br0070) 2002 Zangari (10.1016/j.tcs.2019.12.002_br0160) 2017; 53 10.1016/j.tcs.2019.12.002_br0230 Feurer (10.1016/j.tcs.2019.12.002_br0060) 2015; 28 Brazdil (10.1016/j.tcs.2019.12.002_br0100) 2009 Kordík (10.1016/j.tcs.2019.12.002_br0190) 2018; 107 de Sá (10.1016/j.tcs.2019.12.002_br0250) 2018 Inza (10.1016/j.tcs.2019.12.002_br0140) 2002 Yang (10.1016/j.tcs.2019.12.002_br0170) 2009 Wistuba (10.1016/j.tcs.2019.12.002_br0210) 2017 Lévesque (10.1016/j.tcs.2019.12.002_br0220) 2016 Kotsiantis (10.1016/j.tcs.2019.12.002_br0300) 2014; 29 Baluja (10.1016/j.tcs.2019.12.002_br0080) 1995 Olson (10.1016/j.tcs.2019.12.002_br0240) 2016 Kuncheva (10.1016/j.tcs.2019.12.002_br0020) 2004; vol. 3077 Kotthoff (10.1016/j.tcs.2019.12.002_br0110) 2017; 18 Freitas (10.1016/j.tcs.2019.12.002_br0120) 2002 Kuncheva (10.1016/j.tcs.2019.12.002_br0030) 2004 Sagi (10.1016/j.tcs.2019.12.002_br0310) 2018; 8 |
| References_xml | – start-page: 437 year: 2016 end-page: 446 ident: br0220 article-title: Bayesian hyper-parameter optimization for ensemble learning publication-title: Proc. 32nd Conference on Uncertainty in Artificial Intelligence (UAI) – reference: A. Lacoste, H. Larochelle, F. Laviolette, M. Marchand, Sequential model-based ensemble optimization, Computing Research Repository (CoRR) (2014). – year: 2018 ident: br0250 article-title: Automated selection and configuration of multi-label classification algorithms with grammar-based genetic programming publication-title: Proc. of the 15th International Conf. on Parallel Problem Solving from Nature (PPSN-2018), to be Held in Coimbra, Portugal, Sep. 2018 – start-page: 741 year: 2017 end-page: 749 ident: br0210 article-title: Automatic frankensteining: creating complex ensembles autonomously publication-title: Proc. SIAM Int. Conf. on Data Mining – volume: 15 start-page: 3133 year: 2014 end-page: 3181 ident: br0090 article-title: Do we need hundreds of classifiers to solve real world classification problems? publication-title: J. Mach. Learn. Res. – start-page: 38 year: 1995 end-page: 46 ident: br0080 article-title: Removing the genetics from the standard genetic algorithm publication-title: Proc. 12th Int. Conf. on Machine Learning – start-page: 908 year: 2009 end-page: 911 ident: br0170 article-title: Naive Bayes based on estimation of distribution algorithms for classification publication-title: International Conference on Information Science and Engineering – start-page: 847 year: 2013 end-page: 855 ident: br0040 article-title: Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms publication-title: Proc. 19th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining – volume: 29 start-page: 78 year: 2014 end-page: 100 ident: br0300 article-title: Bagging and boosting variants for handling classification problems: a survey publication-title: Knowl. Eng. Rev. – year: 2012 ident: br0010 article-title: Ensemble Methods: Foundations and Algorithms – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: br0270 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – volume: 33 start-page: 1 year: 2010 end-page: 39 ident: br0290 article-title: Ensemble-based classifiers publication-title: Artif. Intell. Rev. – year: 2015 ident: br0130 article-title: Introduction to Evolutionary Computing – start-page: 462 year: 2018 end-page: 467 ident: br0280 article-title: A novel evolutionary algorithm for automated machine learning focusing on classifier ensembles publication-title: 7th Brazilian Conference on Intelligent Systems (BRACIS 2018) – volume: 107 start-page: 177 year: 2018 end-page: 207 ident: br0190 article-title: Discovering predictive ensembles for transfer learning and meta-learning publication-title: Mach. Learn. – volume: 5 year: 2004 ident: br0180 article-title: Feature selection for splice site prediction: a new method using EDA-based feature ranking publication-title: BMC Bioinform. – volume: vol. 3077 start-page: 1 year: 2004 end-page: 15 ident: br0020 article-title: Classifier ensembles for changing environments publication-title: Multiple Classifier Systems – year: 2002 ident: br0120 article-title: Data Mining and Knowledge Discovery with Evolutionary Algorithms – start-page: 123 year: 2016 end-page: 137 ident: br0240 article-title: Automating biomedical data science through tree-based pipeline optimization publication-title: European Conference on the Applications of Evolutionary Computation – volume: 18 start-page: 826 year: 2017 end-page: 830 ident: br0110 article-title: Auto-WEKA 2.0: automatic model selection and hyperparameter optimization in WEKA publication-title: J. Mach. Learn. Res. – year: 2009 ident: br0100 article-title: Metalearning: Applications to Data Mining – volume: 28 start-page: 2962 year: 2015 end-page: 2970 ident: br0060 article-title: Efficient and robust automated machine learning publication-title: Adv. Neural Inf. Process. Syst. – start-page: 269 year: 2002 end-page: 293 ident: br0140 article-title: Feature subset selection by estimation of distribution algorithms publication-title: Estimation of Distribution Algorithms – start-page: 2384 year: 2013 end-page: 2389 ident: br0150 article-title: Hybrid feature selection and peptide binding affinity prediction using an EDA based algorithm publication-title: Proc. IEEE Congress on Evolutionary Computation (CEC) – volume: 53 start-page: 88 year: April 2017 end-page: 96 ident: br0160 article-title: Not all PBILs are the same: unveiling the different learning mechanisms of PBIL variants publication-title: Appl. Soft Comput. – volume: vol. 10196 start-page: 246 year: 2017 end-page: 261 ident: br0260 article-title: RECIPE: a grammar-based framework for automatically evolving classification pipelines publication-title: Proc. of the 20th European Conference on Genetic Programming (EuroGP'17) – year: 2004 ident: br0030 article-title: Combining Pattern Classifiers: Methods and Algorithms – start-page: 3 year: 2007 end-page: 24 ident: br0200 article-title: Supervised machine learning: a review of classification techniques publication-title: Emerging Artificial Intelligence Applications in Computer Engineering – volume: 8 year: 2018 ident: br0310 article-title: Ensemble learning: a survey publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov. – volume: 11 start-page: 10 year: 2009 end-page: 18 ident: br0050 article-title: The WEKA data mining software: an update publication-title: ACM SIGKDD Explor. Newsl. – year: 2002 ident: br0070 article-title: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation – volume: 53 start-page: 88 year: 2017 ident: 10.1016/j.tcs.2019.12.002_br0160 article-title: Not all PBILs are the same: unveiling the different learning mechanisms of PBIL variants publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.12.045 – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.tcs.2019.12.002_br0270 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – start-page: 123 year: 2016 ident: 10.1016/j.tcs.2019.12.002_br0240 article-title: Automating biomedical data science through tree-based pipeline optimization – volume: vol. 10196 start-page: 246 year: 2017 ident: 10.1016/j.tcs.2019.12.002_br0260 article-title: RECIPE: a grammar-based framework for automatically evolving classification pipelines – volume: 107 start-page: 177 issue: 1 year: 2018 ident: 10.1016/j.tcs.2019.12.002_br0190 article-title: Discovering predictive ensembles for transfer learning and meta-learning publication-title: Mach. Learn. doi: 10.1007/s10994-017-5682-0 – ident: 10.1016/j.tcs.2019.12.002_br0230 – start-page: 908 year: 2009 ident: 10.1016/j.tcs.2019.12.002_br0170 article-title: Naive Bayes based on estimation of distribution algorithms for classification – volume: 15 start-page: 3133 issue: 1 year: 2014 ident: 10.1016/j.tcs.2019.12.002_br0090 article-title: Do we need hundreds of classifiers to solve real world classification problems? publication-title: J. Mach. Learn. Res. – volume: 5 issue: 64 year: 2004 ident: 10.1016/j.tcs.2019.12.002_br0180 article-title: Feature selection for splice site prediction: a new method using EDA-based feature ranking publication-title: BMC Bioinform. – start-page: 437 year: 2016 ident: 10.1016/j.tcs.2019.12.002_br0220 article-title: Bayesian hyper-parameter optimization for ensemble learning – start-page: 38 year: 1995 ident: 10.1016/j.tcs.2019.12.002_br0080 article-title: Removing the genetics from the standard genetic algorithm – year: 2004 ident: 10.1016/j.tcs.2019.12.002_br0030 – year: 2009 ident: 10.1016/j.tcs.2019.12.002_br0100 – volume: 29 start-page: 78 issue: 1 year: 2014 ident: 10.1016/j.tcs.2019.12.002_br0300 article-title: Bagging and boosting variants for handling classification problems: a survey publication-title: Knowl. Eng. Rev. doi: 10.1017/S0269888913000313 – volume: 11 start-page: 10 issue: 1 year: 2009 ident: 10.1016/j.tcs.2019.12.002_br0050 article-title: The WEKA data mining software: an update publication-title: ACM SIGKDD Explor. Newsl. doi: 10.1145/1656274.1656278 – year: 2002 ident: 10.1016/j.tcs.2019.12.002_br0120 – start-page: 269 year: 2002 ident: 10.1016/j.tcs.2019.12.002_br0140 article-title: Feature subset selection by estimation of distribution algorithms – year: 2012 ident: 10.1016/j.tcs.2019.12.002_br0010 – year: 2002 ident: 10.1016/j.tcs.2019.12.002_br0070 – volume: 18 start-page: 826 issue: 1 year: 2017 ident: 10.1016/j.tcs.2019.12.002_br0110 article-title: Auto-WEKA 2.0: automatic model selection and hyperparameter optimization in WEKA publication-title: J. Mach. Learn. Res. – start-page: 462 year: 2018 ident: 10.1016/j.tcs.2019.12.002_br0280 article-title: A novel evolutionary algorithm for automated machine learning focusing on classifier ensembles – volume: vol. 3077 start-page: 1 year: 2004 ident: 10.1016/j.tcs.2019.12.002_br0020 article-title: Classifier ensembles for changing environments – year: 2015 ident: 10.1016/j.tcs.2019.12.002_br0130 – volume: 33 start-page: 1 issue: 1–2 year: 2010 ident: 10.1016/j.tcs.2019.12.002_br0290 article-title: Ensemble-based classifiers publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-009-9124-7 – volume: 8 issue: 4 year: 2018 ident: 10.1016/j.tcs.2019.12.002_br0310 article-title: Ensemble learning: a survey publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov. doi: 10.1002/widm.1249 – start-page: 847 year: 2013 ident: 10.1016/j.tcs.2019.12.002_br0040 article-title: Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms – volume: 28 start-page: 2962 year: 2015 ident: 10.1016/j.tcs.2019.12.002_br0060 article-title: Efficient and robust automated machine learning publication-title: Adv. Neural Inf. Process. Syst. – start-page: 2384 year: 2013 ident: 10.1016/j.tcs.2019.12.002_br0150 article-title: Hybrid feature selection and peptide binding affinity prediction using an EDA based algorithm – start-page: 3 year: 2007 ident: 10.1016/j.tcs.2019.12.002_br0200 article-title: Supervised machine learning: a review of classification techniques – start-page: 741 year: 2017 ident: 10.1016/j.tcs.2019.12.002_br0210 article-title: Automatic frankensteining: creating complex ensembles autonomously – year: 2018 ident: 10.1016/j.tcs.2019.12.002_br0250 article-title: Automated selection and configuration of multi-label classification algorithms with grammar-based genetic programming |
| SSID | ssj0000576 |
| Score | 2.3335376 |
| Snippet | A large number of classification algorithms have been proposed in the machine learning literature. These algorithms have different pros and cons, and no... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Automated Machine Learning (Auto-ML) Classification Estimation of distribution algorithms Evolutionary algorithms |
| Title | An evolutionary algorithm for automated machine learning focusing on classifier ensembles: An improved algorithm and extended results |
| URI | https://dx.doi.org/10.1016/j.tcs.2019.12.002 |
| Volume | 805 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2294 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000576 issn: 0304-3975 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Free Content customDbUrl: eissn: 1879-2294 dateEnd: 20211102 omitProxy: true ssIdentifier: ssj0000576 issn: 0304-3975 databaseCode: IXB dateStart: 19750601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2294 dateEnd: 20211012 omitProxy: true ssIdentifier: ssj0000576 issn: 0304-3975 databaseCode: ACRLP dateStart: 19950109 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-2294 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000576 issn: 0304-3975 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-2294 dateEnd: 20211012 omitProxy: true ssIdentifier: ssj0000576 issn: 0304-3975 databaseCode: AIKHN dateStart: 19950109 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2294 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000576 issn: 0304-3975 databaseCode: AKRWK dateStart: 19750601 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLDDwRpRH5YEJKTRxnIfZSgUqIFgAqVtkO-dS1KaIpkgsbPxvzqnDQwgGtjx8luWzfd89fEfIgYlCYEkSeKkB4XHFAbdUYjyIVcrzSCW-sheFr67j7h2_6EW9OdKp78LYsEp39s_O9Oq0dl9abjZbj4NB68Y69VCaWgiCyji3l_g4T2wVg6PXzzAPxCMzf6X1AGDr2rNZxXiV2mbsDkRlEXSWlR-y6Yu8OVslyw4o0vZsLGtkDop1slIXYaBuT66TpauPxKuTDfLWLig8u-Ukn16oHPbHqP_fjyiiUyqn5RibQk5HVRAlUFc1oo-_tY2B79NxQbWF1AODo6Ko5cJIDWFyTLHrQWWCQPLPbmWR09qSTlF3nw7LySa5Ozu97XQ9V2nB00wkJfKICc1zP-RRKOM0F6EAw0IVRDKIJTcqjbUMhdQK8ClKUewLE8dcCgYmRci1ReaLcQHbhArf6EAapiQwngumUAdTeSKNjU9JE2gQv57jTLs05LYaxjCr480eMmRLZtmSBSxDtjTI4QfJ4ywHx1-Nec247NtCylBG_E628z-yXbLIrALuB16Q7pH58mkK-4hSStWslmGTLLTPL7vX-HbeO3kHTcHrzQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQwcFTaA3BoS6GiPIoPnJDCJo7zMLeqarV9bC-0Um-W7Yy3qXaz1W4WiQu3_jfjrNOCEBy4RcmMY3nGnqdnAD66LEVeFElUOpSRMAJpSxUuwtyUospMERt_UXh0kQ-vxOl1dr0Gh_1dGJ9WGc7-1ZnendbhzSCs5uCurgdffVCPpKlXQcgYF_IJbIiM_ktM_fnHY54HKSSrgKUPARB4H9rskrxa60t2J7JzCQbXyh_C6ReBc7wNm0FTZAerybyANWx2YKvvwsDCptyB56OHyquLl3B_0DD8FvhJz78zPRnP5nV7M2WknjK9bGcEihWbdlmUyELbiDF9tj4JfsxmDbNep64dzYqRmYtTM8HFF0ZD150PgtAfh9VNxXpXOiPjfTlpF6_g6vjo8nAYhVYLkeWyaIlIXFpRxanIUp2XlUwlOp6aJNNJroUzZW51KrU1SE9ZSXJfujwXWnJ0Jelcu7DezBp8DUzGzibacaORi0pyQ0aYqQrtfIJKWeAexP0aKxvqkPt2GBPVJ5zdKiKL8mRRCVdElj349IBytyrC8S9g0RNO_cZJioTE39He_B_aB3g6vBydq_OTi7O38Ix7azxOoqR8B-vtfInvSWVpzX7Hkj8BQ5_sXg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+evolutionary+algorithm+for+automated+machine+learning+focusing+on+classifier+ensembles%3A+An+improved+algorithm+and+extended+results&rft.jtitle=Theoretical+computer+science&rft.au=Xavier-J%C3%BAnior%2C+Jo%C3%A3o+C.&rft.au=Freitas%2C+Alex+A.&rft.au=Ludermir%2C+Teresa+B.&rft.au=Feitosa-Neto%2C+Antonino&rft.date=2020-01-18&rft.issn=0304-3975&rft.volume=805&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1016%2Fj.tcs.2019.12.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tcs_2019_12_002 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon |