An evolutionary algorithm for automated machine learning focusing on classifier ensembles: An improved algorithm and extended results

A large number of classification algorithms have been proposed in the machine learning literature. These algorithms have different pros and cons, and no algorithm is the best for all datasets. Hence, a challenging problem consists of choosing the best classification algorithm with its best hyper-par...

Full description

Saved in:
Bibliographic Details
Published inTheoretical computer science Vol. 805; pp. 1 - 18
Main Authors Xavier-Júnior, João C., Freitas, Alex A., Ludermir, Teresa B., Feitosa-Neto, Antonino, Barreto, Cephas A.S.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 18.01.2020
Subjects
Online AccessGet full text
ISSN0304-3975
1879-2294
DOI10.1016/j.tcs.2019.12.002

Cover

Abstract A large number of classification algorithms have been proposed in the machine learning literature. These algorithms have different pros and cons, and no algorithm is the best for all datasets. Hence, a challenging problem consists of choosing the best classification algorithm with its best hyper-parameter settings for a given input dataset. In the last few years, Automated Machine Learning (Auto-ML) has emerged as a promising approach for tackling this problem, by doing a heuristic search in a large space of candidate classification algorithms and their hyper-parameter settings. In this work we propose an improved version of our previous Evolutionary Algorithm (EA) – more precisely, an Estimation of Distribution Algorithm – for the Auto-ML task of automatically selecting the best classifier ensemble and its best hyper-parameter settings for an input dataset. The new version of this EA was compared against its previous version, as well as against a random forest algorithm (a strong ensemble algorithm) and a version of the well-known Auto-ML method Auto-WEKA adapted to search in the same space of classifier ensembles as the proposed EA. In general, in experiments with 21 datasets, the new EA version obtained the best results among all methods in terms of four popular predictive accuracy measures: error rate, precision, recall and F-measure.
AbstractList A large number of classification algorithms have been proposed in the machine learning literature. These algorithms have different pros and cons, and no algorithm is the best for all datasets. Hence, a challenging problem consists of choosing the best classification algorithm with its best hyper-parameter settings for a given input dataset. In the last few years, Automated Machine Learning (Auto-ML) has emerged as a promising approach for tackling this problem, by doing a heuristic search in a large space of candidate classification algorithms and their hyper-parameter settings. In this work we propose an improved version of our previous Evolutionary Algorithm (EA) – more precisely, an Estimation of Distribution Algorithm – for the Auto-ML task of automatically selecting the best classifier ensemble and its best hyper-parameter settings for an input dataset. The new version of this EA was compared against its previous version, as well as against a random forest algorithm (a strong ensemble algorithm) and a version of the well-known Auto-ML method Auto-WEKA adapted to search in the same space of classifier ensembles as the proposed EA. In general, in experiments with 21 datasets, the new EA version obtained the best results among all methods in terms of four popular predictive accuracy measures: error rate, precision, recall and F-measure.
Author Feitosa-Neto, Antonino
Barreto, Cephas A.S.
Ludermir, Teresa B.
Xavier-Júnior, João C.
Freitas, Alex A.
Author_xml – sequence: 1
  givenname: João C.
  surname: Xavier-Júnior
  fullname: Xavier-Júnior, João C.
  email: jcxavier@imd.ufrn.br
  organization: Digital Metropolis Institute - Federal University of Rio Grande do Norte, Natal, Brazil
– sequence: 2
  givenname: Alex A.
  surname: Freitas
  fullname: Freitas, Alex A.
  email: a.a.freitas@kent.ac.uk
  organization: School of Computing - University of Kent, Canterbury, United Kingdom
– sequence: 3
  givenname: Teresa B.
  surname: Ludermir
  fullname: Ludermir, Teresa B.
  email: tbl@cin.ufpe.br
  organization: Center for Information Technology - Federal University of Pernambuco, Recife, Brazil
– sequence: 4
  givenname: Antonino
  surname: Feitosa-Neto
  fullname: Feitosa-Neto, Antonino
  email: antonino_feitosa@yahoo.com
  organization: Department of Informatics and Applied Mathematics - Federal University of Rio Grande do Norte, Natal, Brazil
– sequence: 5
  givenname: Cephas A.S.
  surname: Barreto
  fullname: Barreto, Cephas A.S.
  email: cephasax@gmail.com
  organization: Department of Informatics and Applied Mathematics - Federal University of Rio Grande do Norte, Natal, Brazil
BookMark eNp9kEtKBDEQhoMoOD4O4C4X6DZJpx_RlYgvGHCj61CdrtYM3cmQZAY9gPc2wwiCC2tTRRXfD_WdkEPnHRJywVnJGW8uV2UysRSMq5KLkjFxQBa8a1UhhJKHZMEqJotKtfUxOYlxxXLVbbMgXzeO4tZPm2S9g_BJYXrzwab3mY4-UNgkP0PCgc5g3q1DOiEEZ91bPptN3A3eUTNBjHa0GCi6iHM_YbyiOdrO6-C3Gf-NBTdQ_EjohrwOGDdTimfkaIQp4vlPPyWv93cvt4_F8vnh6fZmWRih2lTIXigjB1bJuoKmG1SlcBRVz2vgDcix7xoDlQLTY57qTkiuxqaRoASOHZfVKeH7XBN8jAFHvQ52zm9rzvTOo17p7FHvPGoudPaYmfYPY2yCna4UwE7_ktd7EvNL2yxHR2PRGRxsQJP04O0_9DfiP5NH
CitedBy_id crossref_primary_10_1016_j_engfailanal_2020_104856
crossref_primary_10_1016_j_orp_2024_100308
crossref_primary_10_1016_j_eswa_2022_118295
crossref_primary_10_1007_s10489_022_03397_4
crossref_primary_10_1016_j_jpdc_2024_104964
crossref_primary_10_1145_3603620
Cites_doi 10.1016/j.asoc.2016.12.045
10.1007/s10994-017-5682-0
10.1017/S0269888913000313
10.1145/1656274.1656278
10.1007/s10462-009-9124-7
10.1002/widm.1249
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.tcs.2019.12.002
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1879-2294
EndPage 18
ExternalDocumentID 10_1016_j_tcs_2019_12_002
S0304397519307649
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABJNI
ABMAC
ABVKL
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSV
SSW
SSZ
T5K
TN5
WH7
YNT
ZMT
~G-
29Q
AAEDT
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
CITATION
EFKBS
EJD
FGOYB
G-2
HZ~
R2-
SEW
TAE
WUQ
XJT
ZY4
~HD
ID FETCH-LOGICAL-c297t-4b29c4d03453a68d939ef23b15a16a4fb86ca39acbe86c582419f664a92ef8143
IEDL.DBID .~1
ISSN 0304-3975
IngestDate Thu Oct 09 00:39:10 EDT 2025
Thu Apr 24 23:03:04 EDT 2025
Fri Feb 23 02:50:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Estimation of distribution algorithms
Evolutionary algorithms
Automated Machine Learning (Auto-ML)
Classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-4b29c4d03453a68d939ef23b15a16a4fb86ca39acbe86c582419f664a92ef8143
PageCount 18
ParticipantIDs crossref_primary_10_1016_j_tcs_2019_12_002
crossref_citationtrail_10_1016_j_tcs_2019_12_002
elsevier_sciencedirect_doi_10_1016_j_tcs_2019_12_002
PublicationCentury 2000
PublicationDate 2020-01-18
PublicationDateYYYYMMDD 2020-01-18
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-18
  day: 18
PublicationDecade 2020
PublicationTitle Theoretical computer science
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (br0050) 2009; 11
Olson, Urbanowicz, Andrews, Lavender, Kidd, Moore (br0240) 2016
Kotsiantis (br0300) 2014; 29
Yang, Dong, Zhang (br0170) 2009
A. Lacoste, H. Larochelle, F. Laviolette, M. Marchand, Sequential model-based ensemble optimization, Computing Research Repository (CoRR) (2014).
Kordík, Černý, Frýda (br0190) 2018; 107
Fernández-Delgado, Cernadas, Barro, Amorim (br0090) 2014; 15
Saeys, Degroeve, Aeyels, Rouzé, Van de Peer (br0180) 2004; 5
Rokach (br0290) 2010; 33
Xavier-Júnior, Freitas, Feitosa-Neto, Ludermir (br0280) 2018
Thornton, Hutter, Hoos, Leyton-Brown (br0040) 2013
Lévesque, Gagné, Sabourin (br0220) 2016
Kuncheva (br0030) 2004
de Sá, Pinto, Oliveira, Pappa (br0260) 2017; vol. 10196
Freitas (br0120) 2002
Kotsiantis (br0200) 2007
Wistuba, Schilling, Schmidt-Thieme (br0210) 2017
Zangari, Santana, Mendibury, Pozo (br0160) April 2017; 53
Larrañaga, Lozano (br0070) 2002
de Sá, Pappa, Freitas (br0250) 2018
Zhou (br0010) 2012
Shelke, Jayaraman, Ghosh, Valadi (br0150) 2013
Feurer, Klein, Eggensperger, Springenberg, Blum, Hutter (br0060) 2015; 28
Brazdil, Giraud-Carrier, Soares, Vilalta (br0100) 2009
Baluja, Caruana (br0080) 1995
Sagi, Rokach (br0310) 2018; 8
Kuncheva (br0020) 2004; vol. 3077
Inza, Larrañaga, Sierra (br0140) 2002
Demsar (br0270) 2006; 7
Eiben, Smith (br0130) 2015
Kotthoff, Thornton, Hoos, Hutter, Leyton-Brown (br0110) 2017; 18
Hall (10.1016/j.tcs.2019.12.002_br0050) 2009; 11
Zhou (10.1016/j.tcs.2019.12.002_br0010) 2012
Fernández-Delgado (10.1016/j.tcs.2019.12.002_br0090) 2014; 15
Saeys (10.1016/j.tcs.2019.12.002_br0180) 2004; 5
Eiben (10.1016/j.tcs.2019.12.002_br0130) 2015
Shelke (10.1016/j.tcs.2019.12.002_br0150) 2013
Kotsiantis (10.1016/j.tcs.2019.12.002_br0200) 2007
de Sá (10.1016/j.tcs.2019.12.002_br0260) 2017; vol. 10196
Demsar (10.1016/j.tcs.2019.12.002_br0270) 2006; 7
Thornton (10.1016/j.tcs.2019.12.002_br0040) 2013
Xavier-Júnior (10.1016/j.tcs.2019.12.002_br0280) 2018
Rokach (10.1016/j.tcs.2019.12.002_br0290) 2010; 33
Larrañaga (10.1016/j.tcs.2019.12.002_br0070) 2002
Zangari (10.1016/j.tcs.2019.12.002_br0160) 2017; 53
10.1016/j.tcs.2019.12.002_br0230
Feurer (10.1016/j.tcs.2019.12.002_br0060) 2015; 28
Brazdil (10.1016/j.tcs.2019.12.002_br0100) 2009
Kordík (10.1016/j.tcs.2019.12.002_br0190) 2018; 107
de Sá (10.1016/j.tcs.2019.12.002_br0250) 2018
Inza (10.1016/j.tcs.2019.12.002_br0140) 2002
Yang (10.1016/j.tcs.2019.12.002_br0170) 2009
Wistuba (10.1016/j.tcs.2019.12.002_br0210) 2017
Lévesque (10.1016/j.tcs.2019.12.002_br0220) 2016
Kotsiantis (10.1016/j.tcs.2019.12.002_br0300) 2014; 29
Baluja (10.1016/j.tcs.2019.12.002_br0080) 1995
Olson (10.1016/j.tcs.2019.12.002_br0240) 2016
Kuncheva (10.1016/j.tcs.2019.12.002_br0020) 2004; vol. 3077
Kotthoff (10.1016/j.tcs.2019.12.002_br0110) 2017; 18
Freitas (10.1016/j.tcs.2019.12.002_br0120) 2002
Kuncheva (10.1016/j.tcs.2019.12.002_br0030) 2004
Sagi (10.1016/j.tcs.2019.12.002_br0310) 2018; 8
References_xml – start-page: 437
  year: 2016
  end-page: 446
  ident: br0220
  article-title: Bayesian hyper-parameter optimization for ensemble learning
  publication-title: Proc. 32nd Conference on Uncertainty in Artificial Intelligence (UAI)
– reference: A. Lacoste, H. Larochelle, F. Laviolette, M. Marchand, Sequential model-based ensemble optimization, Computing Research Repository (CoRR) (2014).
– year: 2018
  ident: br0250
  article-title: Automated selection and configuration of multi-label classification algorithms with grammar-based genetic programming
  publication-title: Proc. of the 15th International Conf. on Parallel Problem Solving from Nature (PPSN-2018), to be Held in Coimbra, Portugal, Sep. 2018
– start-page: 741
  year: 2017
  end-page: 749
  ident: br0210
  article-title: Automatic frankensteining: creating complex ensembles autonomously
  publication-title: Proc. SIAM Int. Conf. on Data Mining
– volume: 15
  start-page: 3133
  year: 2014
  end-page: 3181
  ident: br0090
  article-title: Do we need hundreds of classifiers to solve real world classification problems?
  publication-title: J. Mach. Learn. Res.
– start-page: 38
  year: 1995
  end-page: 46
  ident: br0080
  article-title: Removing the genetics from the standard genetic algorithm
  publication-title: Proc. 12th Int. Conf. on Machine Learning
– start-page: 908
  year: 2009
  end-page: 911
  ident: br0170
  article-title: Naive Bayes based on estimation of distribution algorithms for classification
  publication-title: International Conference on Information Science and Engineering
– start-page: 847
  year: 2013
  end-page: 855
  ident: br0040
  article-title: Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms
  publication-title: Proc. 19th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining
– volume: 29
  start-page: 78
  year: 2014
  end-page: 100
  ident: br0300
  article-title: Bagging and boosting variants for handling classification problems: a survey
  publication-title: Knowl. Eng. Rev.
– year: 2012
  ident: br0010
  article-title: Ensemble Methods: Foundations and Algorithms
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: br0270
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– volume: 33
  start-page: 1
  year: 2010
  end-page: 39
  ident: br0290
  article-title: Ensemble-based classifiers
  publication-title: Artif. Intell. Rev.
– year: 2015
  ident: br0130
  article-title: Introduction to Evolutionary Computing
– start-page: 462
  year: 2018
  end-page: 467
  ident: br0280
  article-title: A novel evolutionary algorithm for automated machine learning focusing on classifier ensembles
  publication-title: 7th Brazilian Conference on Intelligent Systems (BRACIS 2018)
– volume: 107
  start-page: 177
  year: 2018
  end-page: 207
  ident: br0190
  article-title: Discovering predictive ensembles for transfer learning and meta-learning
  publication-title: Mach. Learn.
– volume: 5
  year: 2004
  ident: br0180
  article-title: Feature selection for splice site prediction: a new method using EDA-based feature ranking
  publication-title: BMC Bioinform.
– volume: vol. 3077
  start-page: 1
  year: 2004
  end-page: 15
  ident: br0020
  article-title: Classifier ensembles for changing environments
  publication-title: Multiple Classifier Systems
– year: 2002
  ident: br0120
  article-title: Data Mining and Knowledge Discovery with Evolutionary Algorithms
– start-page: 123
  year: 2016
  end-page: 137
  ident: br0240
  article-title: Automating biomedical data science through tree-based pipeline optimization
  publication-title: European Conference on the Applications of Evolutionary Computation
– volume: 18
  start-page: 826
  year: 2017
  end-page: 830
  ident: br0110
  article-title: Auto-WEKA 2.0: automatic model selection and hyperparameter optimization in WEKA
  publication-title: J. Mach. Learn. Res.
– year: 2009
  ident: br0100
  article-title: Metalearning: Applications to Data Mining
– volume: 28
  start-page: 2962
  year: 2015
  end-page: 2970
  ident: br0060
  article-title: Efficient and robust automated machine learning
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 269
  year: 2002
  end-page: 293
  ident: br0140
  article-title: Feature subset selection by estimation of distribution algorithms
  publication-title: Estimation of Distribution Algorithms
– start-page: 2384
  year: 2013
  end-page: 2389
  ident: br0150
  article-title: Hybrid feature selection and peptide binding affinity prediction using an EDA based algorithm
  publication-title: Proc. IEEE Congress on Evolutionary Computation (CEC)
– volume: 53
  start-page: 88
  year: April 2017
  end-page: 96
  ident: br0160
  article-title: Not all PBILs are the same: unveiling the different learning mechanisms of PBIL variants
  publication-title: Appl. Soft Comput.
– volume: vol. 10196
  start-page: 246
  year: 2017
  end-page: 261
  ident: br0260
  article-title: RECIPE: a grammar-based framework for automatically evolving classification pipelines
  publication-title: Proc. of the 20th European Conference on Genetic Programming (EuroGP'17)
– year: 2004
  ident: br0030
  article-title: Combining Pattern Classifiers: Methods and Algorithms
– start-page: 3
  year: 2007
  end-page: 24
  ident: br0200
  article-title: Supervised machine learning: a review of classification techniques
  publication-title: Emerging Artificial Intelligence Applications in Computer Engineering
– volume: 8
  year: 2018
  ident: br0310
  article-title: Ensemble learning: a survey
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
– volume: 11
  start-page: 10
  year: 2009
  end-page: 18
  ident: br0050
  article-title: The WEKA data mining software: an update
  publication-title: ACM SIGKDD Explor. Newsl.
– year: 2002
  ident: br0070
  article-title: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation
– volume: 53
  start-page: 88
  year: 2017
  ident: 10.1016/j.tcs.2019.12.002_br0160
  article-title: Not all PBILs are the same: unveiling the different learning mechanisms of PBIL variants
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.12.045
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.tcs.2019.12.002_br0270
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– start-page: 123
  year: 2016
  ident: 10.1016/j.tcs.2019.12.002_br0240
  article-title: Automating biomedical data science through tree-based pipeline optimization
– volume: vol. 10196
  start-page: 246
  year: 2017
  ident: 10.1016/j.tcs.2019.12.002_br0260
  article-title: RECIPE: a grammar-based framework for automatically evolving classification pipelines
– volume: 107
  start-page: 177
  issue: 1
  year: 2018
  ident: 10.1016/j.tcs.2019.12.002_br0190
  article-title: Discovering predictive ensembles for transfer learning and meta-learning
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-017-5682-0
– ident: 10.1016/j.tcs.2019.12.002_br0230
– start-page: 908
  year: 2009
  ident: 10.1016/j.tcs.2019.12.002_br0170
  article-title: Naive Bayes based on estimation of distribution algorithms for classification
– volume: 15
  start-page: 3133
  issue: 1
  year: 2014
  ident: 10.1016/j.tcs.2019.12.002_br0090
  article-title: Do we need hundreds of classifiers to solve real world classification problems?
  publication-title: J. Mach. Learn. Res.
– volume: 5
  issue: 64
  year: 2004
  ident: 10.1016/j.tcs.2019.12.002_br0180
  article-title: Feature selection for splice site prediction: a new method using EDA-based feature ranking
  publication-title: BMC Bioinform.
– start-page: 437
  year: 2016
  ident: 10.1016/j.tcs.2019.12.002_br0220
  article-title: Bayesian hyper-parameter optimization for ensemble learning
– start-page: 38
  year: 1995
  ident: 10.1016/j.tcs.2019.12.002_br0080
  article-title: Removing the genetics from the standard genetic algorithm
– year: 2004
  ident: 10.1016/j.tcs.2019.12.002_br0030
– year: 2009
  ident: 10.1016/j.tcs.2019.12.002_br0100
– volume: 29
  start-page: 78
  issue: 1
  year: 2014
  ident: 10.1016/j.tcs.2019.12.002_br0300
  article-title: Bagging and boosting variants for handling classification problems: a survey
  publication-title: Knowl. Eng. Rev.
  doi: 10.1017/S0269888913000313
– volume: 11
  start-page: 10
  issue: 1
  year: 2009
  ident: 10.1016/j.tcs.2019.12.002_br0050
  article-title: The WEKA data mining software: an update
  publication-title: ACM SIGKDD Explor. Newsl.
  doi: 10.1145/1656274.1656278
– year: 2002
  ident: 10.1016/j.tcs.2019.12.002_br0120
– start-page: 269
  year: 2002
  ident: 10.1016/j.tcs.2019.12.002_br0140
  article-title: Feature subset selection by estimation of distribution algorithms
– year: 2012
  ident: 10.1016/j.tcs.2019.12.002_br0010
– year: 2002
  ident: 10.1016/j.tcs.2019.12.002_br0070
– volume: 18
  start-page: 826
  issue: 1
  year: 2017
  ident: 10.1016/j.tcs.2019.12.002_br0110
  article-title: Auto-WEKA 2.0: automatic model selection and hyperparameter optimization in WEKA
  publication-title: J. Mach. Learn. Res.
– start-page: 462
  year: 2018
  ident: 10.1016/j.tcs.2019.12.002_br0280
  article-title: A novel evolutionary algorithm for automated machine learning focusing on classifier ensembles
– volume: vol. 3077
  start-page: 1
  year: 2004
  ident: 10.1016/j.tcs.2019.12.002_br0020
  article-title: Classifier ensembles for changing environments
– year: 2015
  ident: 10.1016/j.tcs.2019.12.002_br0130
– volume: 33
  start-page: 1
  issue: 1–2
  year: 2010
  ident: 10.1016/j.tcs.2019.12.002_br0290
  article-title: Ensemble-based classifiers
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-009-9124-7
– volume: 8
  issue: 4
  year: 2018
  ident: 10.1016/j.tcs.2019.12.002_br0310
  article-title: Ensemble learning: a survey
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1249
– start-page: 847
  year: 2013
  ident: 10.1016/j.tcs.2019.12.002_br0040
  article-title: Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms
– volume: 28
  start-page: 2962
  year: 2015
  ident: 10.1016/j.tcs.2019.12.002_br0060
  article-title: Efficient and robust automated machine learning
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 2384
  year: 2013
  ident: 10.1016/j.tcs.2019.12.002_br0150
  article-title: Hybrid feature selection and peptide binding affinity prediction using an EDA based algorithm
– start-page: 3
  year: 2007
  ident: 10.1016/j.tcs.2019.12.002_br0200
  article-title: Supervised machine learning: a review of classification techniques
– start-page: 741
  year: 2017
  ident: 10.1016/j.tcs.2019.12.002_br0210
  article-title: Automatic frankensteining: creating complex ensembles autonomously
– year: 2018
  ident: 10.1016/j.tcs.2019.12.002_br0250
  article-title: Automated selection and configuration of multi-label classification algorithms with grammar-based genetic programming
SSID ssj0000576
Score 2.3335376
Snippet A large number of classification algorithms have been proposed in the machine learning literature. These algorithms have different pros and cons, and no...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Automated Machine Learning (Auto-ML)
Classification
Estimation of distribution algorithms
Evolutionary algorithms
Title An evolutionary algorithm for automated machine learning focusing on classifier ensembles: An improved algorithm and extended results
URI https://dx.doi.org/10.1016/j.tcs.2019.12.002
Volume 805
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Free Content
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 20211102
  omitProxy: true
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: IXB
  dateStart: 19750601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 20211012
  omitProxy: true
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: ACRLP
  dateStart: 19950109
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 20211012
  omitProxy: true
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: AIKHN
  dateStart: 19950109
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2294
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: AKRWK
  dateStart: 19750601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLDDwRpRH5YEJKTRxnIfZSgUqIFgAqVtkO-dS1KaIpkgsbPxvzqnDQwgGtjx8luWzfd89fEfIgYlCYEkSeKkB4XHFAbdUYjyIVcrzSCW-sheFr67j7h2_6EW9OdKp78LYsEp39s_O9Oq0dl9abjZbj4NB68Y69VCaWgiCyji3l_g4T2wVg6PXzzAPxCMzf6X1AGDr2rNZxXiV2mbsDkRlEXSWlR-y6Yu8OVslyw4o0vZsLGtkDop1slIXYaBuT66TpauPxKuTDfLWLig8u-Ukn16oHPbHqP_fjyiiUyqn5RibQk5HVRAlUFc1oo-_tY2B79NxQbWF1AODo6Ko5cJIDWFyTLHrQWWCQPLPbmWR09qSTlF3nw7LySa5Ozu97XQ9V2nB00wkJfKICc1zP-RRKOM0F6EAw0IVRDKIJTcqjbUMhdQK8ClKUewLE8dcCgYmRci1ReaLcQHbhArf6EAapiQwngumUAdTeSKNjU9JE2gQv57jTLs05LYaxjCr480eMmRLZtmSBSxDtjTI4QfJ4ywHx1-Nec247NtCylBG_E628z-yXbLIrALuB16Q7pH58mkK-4hSStWslmGTLLTPL7vX-HbeO3kHTcHrzQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQwcFTaA3BoS6GiPIoPnJDCJo7zMLeqarV9bC-0Um-W7Yy3qXaz1W4WiQu3_jfjrNOCEBy4RcmMY3nGnqdnAD66LEVeFElUOpSRMAJpSxUuwtyUospMERt_UXh0kQ-vxOl1dr0Gh_1dGJ9WGc7-1ZnendbhzSCs5uCurgdffVCPpKlXQcgYF_IJbIiM_ktM_fnHY54HKSSrgKUPARB4H9rskrxa60t2J7JzCQbXyh_C6ReBc7wNm0FTZAerybyANWx2YKvvwsDCptyB56OHyquLl3B_0DD8FvhJz78zPRnP5nV7M2WknjK9bGcEihWbdlmUyELbiDF9tj4JfsxmDbNep64dzYqRmYtTM8HFF0ZD150PgtAfh9VNxXpXOiPjfTlpF6_g6vjo8nAYhVYLkeWyaIlIXFpRxanIUp2XlUwlOp6aJNNJroUzZW51KrU1SE9ZSXJfujwXWnJ0Jelcu7DezBp8DUzGzibacaORi0pyQ0aYqQrtfIJKWeAexP0aKxvqkPt2GBPVJ5zdKiKL8mRRCVdElj349IBytyrC8S9g0RNO_cZJioTE39He_B_aB3g6vBydq_OTi7O38Ix7azxOoqR8B-vtfInvSWVpzX7Hkj8BQ5_sXg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+evolutionary+algorithm+for+automated+machine+learning+focusing+on+classifier+ensembles%3A+An+improved+algorithm+and+extended+results&rft.jtitle=Theoretical+computer+science&rft.au=Xavier-J%C3%BAnior%2C+Jo%C3%A3o+C.&rft.au=Freitas%2C+Alex+A.&rft.au=Ludermir%2C+Teresa+B.&rft.au=Feitosa-Neto%2C+Antonino&rft.date=2020-01-18&rft.issn=0304-3975&rft.volume=805&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1016%2Fj.tcs.2019.12.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tcs_2019_12_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon