Towards more efficient local search algorithms for constrained clustering

•The constrained clustering problem is studied.•An efficient local search algorithm is proposed.•A node filtering strategy is introduced for improving efficiency.•The proposed algorithm is more effective than state-of-the-art heuristics. Constrained clustering extends clustering by integrating user...

Full description

Saved in:
Bibliographic Details
Published inInformation sciences Vol. 621; pp. 287 - 307
Main Authors Gao, Jian, Tao, Xiaoxia, Cai, Shaowei
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.04.2023
Subjects
Online AccessGet full text
ISSN0020-0255
1872-6291
DOI10.1016/j.ins.2022.11.107

Cover

Abstract •The constrained clustering problem is studied.•An efficient local search algorithm is proposed.•A node filtering strategy is introduced for improving efficiency.•The proposed algorithm is more effective than state-of-the-art heuristics. Constrained clustering extends clustering by integrating user constraints, and aims to determine an optimal assignment under the constraints. In this paper, we propose a local search algorithm called FastCCP to solve the constrained clustering problem. In the algorithm, instances connected by must-link constraints are first merged into nodes, and then, a local search method is performed to handle the cannot-link constraints while minimizing the Within-Cluster Sum of Squares (WCSS). Several strategies are proposed to enhance the solution diversity and achieve a trade-off between constraint satisfaction and WCSS minimization during the search. Furthermore, a node-filtering strategy is proposed to improve the efficiency of the algorithm. Experiments are performed on benchmark datasets to evaluate our algorithm. The comparative results indicate that our algorithm outperforms state-of-the-art algorithms in terms of both the solution quality and CPU runtime.
AbstractList •The constrained clustering problem is studied.•An efficient local search algorithm is proposed.•A node filtering strategy is introduced for improving efficiency.•The proposed algorithm is more effective than state-of-the-art heuristics. Constrained clustering extends clustering by integrating user constraints, and aims to determine an optimal assignment under the constraints. In this paper, we propose a local search algorithm called FastCCP to solve the constrained clustering problem. In the algorithm, instances connected by must-link constraints are first merged into nodes, and then, a local search method is performed to handle the cannot-link constraints while minimizing the Within-Cluster Sum of Squares (WCSS). Several strategies are proposed to enhance the solution diversity and achieve a trade-off between constraint satisfaction and WCSS minimization during the search. Furthermore, a node-filtering strategy is proposed to improve the efficiency of the algorithm. Experiments are performed on benchmark datasets to evaluate our algorithm. The comparative results indicate that our algorithm outperforms state-of-the-art algorithms in terms of both the solution quality and CPU runtime.
Author Tao, Xiaoxia
Gao, Jian
Cai, Shaowei
Author_xml – sequence: 1
  givenname: Jian
  surname: Gao
  fullname: Gao, Jian
  organization: College of Information Science and Technology, Northeast Normal University, Changchun, China
– sequence: 2
  givenname: Xiaoxia
  surname: Tao
  fullname: Tao, Xiaoxia
  organization: School of Information Science and Technology, Dalian University of Science and Technology, Dalian, China
– sequence: 3
  givenname: Shaowei
  surname: Cai
  fullname: Cai, Shaowei
  email: caisw@ios.ac.cn
  organization: State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
BookMark eNp9kM1KAzEUhYNUsK0-gLu8wIxJppPM4EqKP4WCm7oO8eamTZkmkkTFt3dKXbno6sKB71zONyOTEAMScstZzRmXd_vah1wLJkTN-RipCzLlnRKVFD2fkCljglVMtO0VmeW8Z4wtlJRTstrEb5NspoeYkKJzHjyGQocIZqAZTYIdNcM2Jl92h0xdTBRiyCUZH9BSGD5zweTD9ppcOjNkvPm7c_L29LhZvlTr1-fV8mFdgehVqRoDwoF0ALZT478e-960C4eSdWiFadzCmq7vhVTKSMddZ1pwksG77RvreDMn_NQLKeac0OmP5A8m_WjO9NGF3uvRhT660JyPkRoZ9Y8BX0zxMRx3DGfJ-xOJ46Qvj0nnoyBA6xNC0Tb6M_Qv_aF-PQ
CitedBy_id crossref_primary_10_1016_j_inffus_2023_102064
crossref_primary_10_1109_TKDE_2024_3486530
crossref_primary_10_1016_j_inffus_2023_102188
crossref_primary_10_1016_j_engappai_2024_108079
crossref_primary_10_1016_j_ins_2023_119751
crossref_primary_10_3390_biomimetics8030278
crossref_primary_10_1109_ACCESS_2024_3423807
crossref_primary_10_1007_s10462_024_11103_8
crossref_primary_10_1016_j_jretconser_2024_104078
crossref_primary_10_3390_photonics11050442
crossref_primary_10_1016_j_frl_2024_105723
Cites_doi 10.1016/j.cie.2018.07.031
10.1016/j.ins.2021.04.014
10.1016/j.cor.2021.105299
10.1016/j.ins.2021.03.009
10.1007/s10462-020-09918-2
10.1007/978-3-319-07046-9_31
10.1137/1.9781611972757.13
10.1007/978-3-642-16184-1_12
10.1016/j.ins.2020.07.018
10.1007/978-3-540-45231-7_27
10.1016/j.ins.2021.11.008
10.1016/j.ins.2020.06.056
10.24963/ijcai.2018/187
10.1007/978-3-319-66709-6_9
10.1007/s10618-020-00734-4
10.2991/ijcis.10.1.82
10.1016/j.asoc.2017.01.023
10.1007/BF01908075
10.1137/1.9781611974348.33
10.1109/TKDE.2014.2356471
10.1080/01621459.1971.10482356
10.1109/TSMC.2019.2956527
10.1007/s11704-019-9059-3
10.1016/j.cor.2020.104979
10.1145/513400.513402
10.1016/j.artint.2015.05.006
10.1016/j.engappai.2016.08.004
10.1016/j.ins.2022.09.044
10.23919/Eusipco47968.2020.9287331
10.24963/ijcai.2020/437
10.1145/3011077.3011114
10.1007/s40815-019-00683-1
10.1016/j.artint.2015.07.001
10.1016/j.mbs.2013.07.011
10.1016/j.asoc.2021.107435
10.1007/s10878-015-9964-9
10.1007/978-3-540-74958-5_67
10.1016/j.csda.2010.09.021
10.1007/978-3-319-23219-5_39
10.1016/j.artint.2016.07.006
10.1007/978-3-030-61527-7_4
10.1016/j.ins.2022.01.032
10.1016/j.ins.2022.07.106
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright_xml – notice: 2022 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2022.11.107
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 307
ExternalDocumentID 10_1016_j_ins_2022_11_107
S0020025522014128
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-3ac2fc6fccd87eff9e99a54fe608ed2a3f4da8992677a6f1f8a5cf60cbd93df13
IEDL.DBID .~1
ISSN 0020-0255
IngestDate Thu Apr 24 22:53:07 EDT 2025
Wed Oct 01 05:17:51 EDT 2025
Fri Feb 23 02:38:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Local search
Constraint optimization problem
Search strategy
Constrained clustering
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-3ac2fc6fccd87eff9e99a54fe608ed2a3f4da8992677a6f1f8a5cf60cbd93df13
PageCount 21
ParticipantIDs crossref_primary_10_1016_j_ins_2022_11_107
crossref_citationtrail_10_1016_j_ins_2022_11_107
elsevier_sciencedirect_doi_10_1016_j_ins_2022_11_107
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Zhou, Hao, Goëffon (b0245) 2016; 32
Dao, T., Duong, K., Vrain, C., 2015. Constrained minimum sum of squares clustering by constraint programming. In: 21st International Conference on Principles and Practice of Constraint Programming, CP 2015. pp. 557–573.
Li, Xia, Shan, Liu (b0150) 2015; 27
Mei, Lv, Cao, Gong (b0160) 2019; 21
Nghiem, N., Vrain, C., Dao, T., Davidson, I., 2020. Constrained clustering via post-processing. In: 23rd International Conference on Discovery Science, DS 2020. pp. 53–67.
Law, M.H.C., Topchy, A.P., Jain, A.K., 2004. Clustering with soft and group constraints. In: Fred, A.L.N., Caelli, T., Duin, R.P.W., Campilho, A.C., de Ridder, D. (Eds.), Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR International Workshops, SSPR 2004 and SPR 2004, Lisbon, Portugal, August 18–20, 2004 Proceedings. Vol. 3138 of Lecture Notes in Computer Science. Springer, pp. 662–670.
Traganitis, P.A., Giannakis, G.B., 2020. Constrained clustering using gaussian processes. In: 28th European Signal Processing Conference, EUSIPCO 2020, Amsterdam, Netherlands, January 18–21, 2021. IEEE, pp. 1457–1461. https://doi.org/10.23919/Eusipco47968.2020.9287331.
Antoine, Quost, Masson, Denoeux (b0010) 2012; 56
Hiep, T.K., Duc, N.M., Trung, B.Q., 2016. Local search approach for the pairwise constrained clustering problem. In: Thang, H.Q., Hung, N.M. (Eds.), Proceedings of the Seventh Symposium on Information and Communication Technology, SoICT 2016, Ho Chi Minh City, Vietnam, December 8–9, 2016. ACM, pp. 115–122. doi: 10.1145/3011077.3011114.
Dao, Kuo, Ravi, Vrain, Davidson (b0060) 2018; 2018
Zhou, Hao, Wu (b0240) 2021; 569
Tian, Ouyang, Sun, Zhou, Zhang (b0200) 2022; 609
Lai, Hao (b0130) 2016; 56
Yang, Y., Deng, S., Lu, J., Li, Y., Gong, Z., U, L.H., Hao, Z., 2021. Graphlshc: Towards large scale spectral hypergraph clustering. Inf. Sci. 544, 117–134. https://doi.org/10.1016/j.ins.2020.07.018.
Gao, Yu, Zhang (b0100) 2022; 584
Rand (b0190) 1971; 66
González-Almagro, Luengo, Cano, García (b0110) 2021; 108
Festa (b0085) 2013; 245
de Oliveira, Chaves, Lorena (b0075) 2017; 54
Nie, F., Zhang, H., Wang, R., Li, X., 2020. Semi-supervised clustering via pairwise constrained optimal graph. In: Bessiere, C. (Ed.), Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020. pp. 3160–3166.
Cai, Luo, Lin, Su (b0030) 2016; 240
Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S., 2001. Constrained k-means clustering with background knowledge. In: Proceedings of the Eighteenth International Conference on Machine Learning (ICML 2001). Morgan Kaufmann, pp. 577–584.
Chaves, Gonçalves, Lorena (b0035) 2018; 124
Zhang, Zhan, Basu, Davidson (b0230) 2021; 35
Even, Even (b0080) 2012
Pelleg, D., Baras, D., 2007. K -means with large and noisy constraint sets. In: Machine Learning: ECML 2007, 18th European Conference on Machine Learning, Proceedings. pp. 674–682.
Ganji, M., Bailey, J., Stuckey, P.J., 2016. Lagrangian constrained clustering. In: Proceedings of the 2016 SIAM International Conference on Data Mining. pp. 288–296.
Triguero, González, Moyano, García, Alcalá-Fdez, Luengo, Fernández, del Jesus, Sánchez, Herrera (b0215) 2017; 10
Davidson, I., Ravi, S.S., 2005. Clustering with constraints: Feasibility issues and the k-means algorithm. In: Proceedings of the 2005 SIAM International Conference on Data Mining. pp. 138–149.
Hubert, Arabie (b0120) 1985; 10
Zhou, Benlic, Wu (b0235) 2020; 541
Chen, Zhou, Pei, Yu, Chen, Liu, Du, Xiong (b0040) 2021; 51
Anaraki, Haeri (b0005) 2022; 613
Fu, Xu, Wu, Liu, Chen, He (b0090) 2021; 566
Liu, Guo, Zeng (b0155) 2022; 591
González-Almagro, Luengo, Cano, García (b0105) 2020; 121
Merz, P., 2003. An iterated local search approach for minimum sum-of-squares clustering. In: Berthold, M.R., Lenz, H., Bradley, E., Kruse, R., Borgelt, C. (Eds.), Advances in Intelligent Data Analysis V, 5th International Symposium on Intelligent Data Analysis, IDA 2003, Berlin, Germany, August 28–30, 2003, Proceedings. vol. 2810 of Lecture Notes in Computer Science. Springer, pp. 286–296. doi: 10.1007/978-3-540-45231-7_27.
Mueller, M., Kramer, S., 2010. Integer linear programming models for constrained clustering. In: Discovery Science - 13th International Conference, DS 2010, Canberra, Australia, October 6–8, 2010. Proceedings. pp. 159–173.
Davidson, Ravi, Shamis (b0070) 2010; 2010
Bhattacharjee, Mitra (b0025) 2021; 15
Rokach (b0195) 2010
Berg, Järvisalo (b0020) 2017; 244
Dao, Duong, Vrain (b0055) 2017; 244
Tran, Babaki, Daele, Leyman, Causmaecker (b0210) 2021; 132
Lei, Z., Cai, S., 2018. Solving (weighted) partial MaxSAT by dynamic local search for SAT. In: Lang, J. (Ed.), Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018. pp. 1346–1352.
Levinkov, E., Kirillov, A., Andres, B., 2017. A comparative study of local search algorithms for correlation clustering. In: Roth, V., Vetter, T. (Eds.), Pattern Recognition – 39th German Conference, GCPR 2017, Basel, Switzerland, September 12–15, 2017, Proceedings. vol. 10496 of Lecture Notes in Computer Science. Springer, pp. 103–114. doi: 10.1007/978-3-319-66709-6_9.
Dafir, Lamari, Slaoui (b0045) 2021; 54
Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y., 2002. A local search approximation algorithm for k-means clustering. In: Hurtado, F., Sacristán, V., Bajaj, C., Suri, S. (Eds.), Proceedings of the 18th Annual Symposium on Computational Geometry, Barcelona, Spain, June 5–7, 2002. ACM, pp. 10–18. doi: 10.1145/513400.513402.
Babaki, B., Guns, T., Nijssen, S., 2014. Constrained clustering using column generation. In: 11th International Conference on Integration of AI and OR Techniques in Constraint Programming, CPAIOR 2014. pp. 438–454.
Tran (10.1016/j.ins.2022.11.107_b0210) 2021; 132
10.1016/j.ins.2022.11.107_b0115
Cai (10.1016/j.ins.2022.11.107_b0030) 2016; 240
Anaraki (10.1016/j.ins.2022.11.107_b0005) 2022; 613
Fu (10.1016/j.ins.2022.11.107_b0090) 2021; 566
Festa (10.1016/j.ins.2022.11.107_b0085) 2013; 245
Triguero (10.1016/j.ins.2022.11.107_b0215) 2017; 10
Zhou (10.1016/j.ins.2022.11.107_b0235) 2020; 541
Gao (10.1016/j.ins.2022.11.107_b0100) 2022; 584
Li (10.1016/j.ins.2022.11.107_b0150) 2015; 27
Chen (10.1016/j.ins.2022.11.107_b0040) 2021; 51
González-Almagro (10.1016/j.ins.2022.11.107_b0110) 2021; 108
10.1016/j.ins.2022.11.107_b0165
Dafir (10.1016/j.ins.2022.11.107_b0045) 2021; 54
10.1016/j.ins.2022.11.107_b0125
Zhou (10.1016/j.ins.2022.11.107_b0240) 2021; 569
Antoine (10.1016/j.ins.2022.11.107_b0010) 2012; 56
Even (10.1016/j.ins.2022.11.107_b0080) 2012
10.1016/j.ins.2022.11.107_b0205
Dao (10.1016/j.ins.2022.11.107_b0055) 2017; 244
Berg (10.1016/j.ins.2022.11.107_b0020) 2017; 244
Mei (10.1016/j.ins.2022.11.107_b0160) 2019; 21
Hubert (10.1016/j.ins.2022.11.107_b0120) 1985; 10
10.1016/j.ins.2022.11.107_b0170
Bhattacharjee (10.1016/j.ins.2022.11.107_b0025) 2021; 15
10.1016/j.ins.2022.11.107_b0095
10.1016/j.ins.2022.11.107_b0050
Davidson (10.1016/j.ins.2022.11.107_b0070) 2010; 2010
10.1016/j.ins.2022.11.107_b0175
10.1016/j.ins.2022.11.107_b0015
10.1016/j.ins.2022.11.107_b0135
Dao (10.1016/j.ins.2022.11.107_b0060) 2018; 2018
Zhang (10.1016/j.ins.2022.11.107_b0230) 2021; 35
González-Almagro (10.1016/j.ins.2022.11.107_b0105) 2020; 121
Zhou (10.1016/j.ins.2022.11.107_b0245) 2016; 32
Rokach (10.1016/j.ins.2022.11.107_b0195) 2010
de Oliveira (10.1016/j.ins.2022.11.107_b0075) 2017; 54
10.1016/j.ins.2022.11.107_b0180
10.1016/j.ins.2022.11.107_b0185
10.1016/j.ins.2022.11.107_b0140
10.1016/j.ins.2022.11.107_b0220
Chaves (10.1016/j.ins.2022.11.107_b0035) 2018; 124
10.1016/j.ins.2022.11.107_b0065
10.1016/j.ins.2022.11.107_b0145
10.1016/j.ins.2022.11.107_b0225
Tian (10.1016/j.ins.2022.11.107_b0200) 2022; 609
Lai (10.1016/j.ins.2022.11.107_b0130) 2016; 56
Rand (10.1016/j.ins.2022.11.107_b0190) 1971; 66
Liu (10.1016/j.ins.2022.11.107_b0155) 2022; 591
References_xml – reference: Babaki, B., Guns, T., Nijssen, S., 2014. Constrained clustering using column generation. In: 11th International Conference on Integration of AI and OR Techniques in Constraint Programming, CPAIOR 2014. pp. 438–454.
– reference: Hiep, T.K., Duc, N.M., Trung, B.Q., 2016. Local search approach for the pairwise constrained clustering problem. In: Thang, H.Q., Hung, N.M. (Eds.), Proceedings of the Seventh Symposium on Information and Communication Technology, SoICT 2016, Ho Chi Minh City, Vietnam, December 8–9, 2016. ACM, pp. 115–122. doi: 10.1145/3011077.3011114.
– volume: 54
  start-page: 256
  year: 2017
  end-page: 266
  ident: b0075
  article-title: A comparison of two hybrid methods for constrained clustering problems
  publication-title: Appl. Soft Comput.
– reference: Levinkov, E., Kirillov, A., Andres, B., 2017. A comparative study of local search algorithms for correlation clustering. In: Roth, V., Vetter, T. (Eds.), Pattern Recognition – 39th German Conference, GCPR 2017, Basel, Switzerland, September 12–15, 2017, Proceedings. vol. 10496 of Lecture Notes in Computer Science. Springer, pp. 103–114. doi: 10.1007/978-3-319-66709-6_9.
– reference: Nghiem, N., Vrain, C., Dao, T., Davidson, I., 2020. Constrained clustering via post-processing. In: 23rd International Conference on Discovery Science, DS 2020. pp. 53–67.
– reference: Nie, F., Zhang, H., Wang, R., Li, X., 2020. Semi-supervised clustering via pairwise constrained optimal graph. In: Bessiere, C. (Ed.), Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020. pp. 3160–3166.
– reference: Dao, T., Duong, K., Vrain, C., 2015. Constrained minimum sum of squares clustering by constraint programming. In: 21st International Conference on Principles and Practice of Constraint Programming, CP 2015. pp. 557–573.
– volume: 240
  start-page: 1
  year: 2016
  end-page: 18
  ident: b0030
  article-title: New local search methods for partial MaxSAT
  publication-title: Artif. Intell.
– volume: 244
  start-page: 70
  year: 2017
  end-page: 94
  ident: b0055
  article-title: Constrained clustering by constraint programming
  publication-title: Artif. Intell.
– reference: Law, M.H.C., Topchy, A.P., Jain, A.K., 2004. Clustering with soft and group constraints. In: Fred, A.L.N., Caelli, T., Duin, R.P.W., Campilho, A.C., de Ridder, D. (Eds.), Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR International Workshops, SSPR 2004 and SPR 2004, Lisbon, Portugal, August 18–20, 2004 Proceedings. Vol. 3138 of Lecture Notes in Computer Science. Springer, pp. 662–670.
– volume: 15
  year: 2021
  ident: b0025
  article-title: A survey of density based clustering algorithms
  publication-title: Front. Comput. Sci.
– reference: Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y., 2002. A local search approximation algorithm for k-means clustering. In: Hurtado, F., Sacristán, V., Bajaj, C., Suri, S. (Eds.), Proceedings of the 18th Annual Symposium on Computational Geometry, Barcelona, Spain, June 5–7, 2002. ACM, pp. 10–18. doi: 10.1145/513400.513402.
– volume: 566
  start-page: 118
  year: 2021
  end-page: 139
  ident: b0090
  article-title: Emphasis on the flipping variable: Towards effective local search for hard random satisfiability
  publication-title: Inf. Sci.
– reference: Ganji, M., Bailey, J., Stuckey, P.J., 2016. Lagrangian constrained clustering. In: Proceedings of the 2016 SIAM International Conference on Data Mining. pp. 288–296.
– volume: 121
  year: 2020
  ident: b0105
  article-title: DILS: constrained clustering through dual iterative local search
  publication-title: Comput. Oper. Res.
– volume: 10
  start-page: 1238
  year: 2017
  end-page: 1249
  ident: b0215
  article-title: KEEL 3.0: An open source software for multi-stage analysis in data mining
  publication-title: Int. J. Comput. Intell. Syst.
– reference: Yang, Y., Deng, S., Lu, J., Li, Y., Gong, Z., U, L.H., Hao, Z., 2021. Graphlshc: Towards large scale spectral hypergraph clustering. Inf. Sci. 544, 117–134. https://doi.org/10.1016/j.ins.2020.07.018.
– reference: Traganitis, P.A., Giannakis, G.B., 2020. Constrained clustering using gaussian processes. In: 28th European Signal Processing Conference, EUSIPCO 2020, Amsterdam, Netherlands, January 18–21, 2021. IEEE, pp. 1457–1461. https://doi.org/10.23919/Eusipco47968.2020.9287331.
– volume: 2018
  start-page: 1263
  year: 2018
  end-page: 1269
  ident: b0060
  article-title: Descriptive clustering: ILP and CP formulations with applications
  publication-title: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI
– reference: Merz, P., 2003. An iterated local search approach for minimum sum-of-squares clustering. In: Berthold, M.R., Lenz, H., Bradley, E., Kruse, R., Borgelt, C. (Eds.), Advances in Intelligent Data Analysis V, 5th International Symposium on Intelligent Data Analysis, IDA 2003, Berlin, Germany, August 28–30, 2003, Proceedings. vol. 2810 of Lecture Notes in Computer Science. Springer, pp. 286–296. doi: 10.1007/978-3-540-45231-7_27.
– volume: 609
  start-page: 153
  year: 2022
  end-page: 171
  ident: b0200
  article-title: Two efficient local search algorithms for the vertex bisection minimization problem
  publication-title: Inf. Sci.
– volume: 569
  start-page: 184
  year: 2021
  end-page: 204
  ident: b0240
  article-title: Responsive threshold search based memetic algorithm for balanced minimum sum-of-squares clustering
  publication-title: Inf. Sci.
– volume: 124
  start-page: 331
  year: 2018
  end-page: 346
  ident: b0035
  article-title: Adaptive biased random-key genetic algorithm with local search for the capacitated centered clustering problem
  publication-title: Comput. Ind. Eng.
– reference: Mueller, M., Kramer, S., 2010. Integer linear programming models for constrained clustering. In: Discovery Science - 13th International Conference, DS 2010, Canberra, Australia, October 6–8, 2010. Proceedings. pp. 159–173.
– volume: 541
  start-page: 271
  year: 2020
  end-page: 296
  ident: b0235
  article-title: A memetic algorithm based on reformulation local search for minimum sum-of-squares clustering in networks
  publication-title: Inf. Sci.
– volume: 21
  start-page: 1938
  year: 2019
  end-page: 1949
  ident: b0160
  article-title: Pairwise constrained fuzzy clustering: Relation, comparison and parallelization
  publication-title: Int. J. Fuzzy Syst.
– volume: 584
  start-page: 618
  year: 2022
  end-page: 632
  ident: b0100
  article-title: Graph clustering using triangle-aware measures in large networks
  publication-title: Inf. Sci.
– volume: 132
  year: 2021
  ident: b0210
  article-title: Local search for constrained graph clustering in biological networks
  publication-title: Comput. Oper. Res.
– reference: Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S., 2001. Constrained k-means clustering with background knowledge. In: Proceedings of the Eighteenth International Conference on Machine Learning (ICML 2001). Morgan Kaufmann, pp. 577–584.
– start-page: 269
  year: 2010
  end-page: 298
  ident: b0195
  article-title: A survey of clustering algorithms
  publication-title: Data Mining and Knowledge Discovery Handbook
– volume: 56
  start-page: 894
  year: 2012
  end-page: 914
  ident: b0010
  article-title: CECM: constrained evidential c-means algorithm
  publication-title: Comput. Stat. Data Anal.
– volume: 32
  start-page: 469
  year: 2016
  end-page: 491
  ident: b0245
  article-title: A three-phased local search approach for the clique partitioning problem
  publication-title: J. Comb. Optim.
– volume: 35
  start-page: 593
  year: 2021
  end-page: 620
  ident: b0230
  article-title: A framework for deep constrained clustering
  publication-title: Data Min. Knowl. Discov.
– volume: 51
  start-page: 3939
  year: 2021
  end-page: 3953
  ident: b0040
  article-title: KNN-BLOCK DBSCAN: fast clustering for large-scale data
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 66
  start-page: 846
  year: 1971
  end-page: 850
  ident: b0190
  article-title: Objective criteria for the evaluation of clustering methods
  publication-title: J. Am. Stat. Assoc.
– volume: 56
  start-page: 102
  year: 2016
  end-page: 120
  ident: b0130
  article-title: Iterated variable neighborhood search for the capacitated clustering problem
  publication-title: Eng. Appl. Artif. Intell.
– volume: 54
  start-page: 2411
  year: 2021
  end-page: 2443
  ident: b0045
  article-title: A survey on parallel clustering algorithms for big data
  publication-title: Artif. Intell. Rev.
– volume: 10
  start-page: 193
  year: 1985
  end-page: 218
  ident: b0120
  article-title: Comparing partitions
  publication-title: J. Classif.
– volume: 244
  start-page: 110
  year: 2017
  end-page: 142
  ident: b0020
  article-title: Cost-optimal constrained correlation clustering via weighted partial maximum satisfiability
  publication-title: Artif. Intell.
– volume: 108
  year: 2021
  ident: b0110
  article-title: Enhancing instance-level constrained clustering through differential evolution
  publication-title: Appl. Soft Comput.
– volume: 2010
  start-page: 94
  year: 2010
  end-page: 105
  ident: b0070
  article-title: A SAT-based framework for efficient constrained clustering
  publication-title: Proceedings of the SIAM International Conference on Data Mining, SDM
– volume: 613
  start-page: 786
  year: 2022
  end-page: 805
  ident: b0005
  article-title: Soft and hard hybrid balanced clustering with innovative qualitative balancing approach
  publication-title: Inf. Sci.
– volume: 591
  start-page: 319
  year: 2022
  end-page: 343
  ident: b0155
  article-title: MEACCP: A membrane evolutionary algorithm for capacitated clustering problem
  publication-title: Inf. Sci.
– reference: Lei, Z., Cai, S., 2018. Solving (weighted) partial MaxSAT by dynamic local search for SAT. In: Lang, J. (Ed.), Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018. pp. 1346–1352.
– volume: 27
  start-page: 589
  year: 2015
  end-page: 593
  ident: b0150
  article-title: Scalable constrained spectral clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: Davidson, I., Ravi, S.S., 2005. Clustering with constraints: Feasibility issues and the k-means algorithm. In: Proceedings of the 2005 SIAM International Conference on Data Mining. pp. 138–149.
– volume: 245
  start-page: 76
  year: 2013
  end-page: 85
  ident: b0085
  article-title: A biased random-key genetic algorithm for data clustering
  publication-title: Math. Biosci.
– year: 2012
  ident: b0080
  article-title: Graph Algorithms
– reference: Pelleg, D., Baras, D., 2007. K -means with large and noisy constraint sets. In: Machine Learning: ECML 2007, 18th European Conference on Machine Learning, Proceedings. pp. 674–682.
– volume: 124
  start-page: 331
  year: 2018
  ident: 10.1016/j.ins.2022.11.107_b0035
  article-title: Adaptive biased random-key genetic algorithm with local search for the capacitated centered clustering problem
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2018.07.031
– volume: 569
  start-page: 184
  year: 2021
  ident: 10.1016/j.ins.2022.11.107_b0240
  article-title: Responsive threshold search based memetic algorithm for balanced minimum sum-of-squares clustering
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.04.014
– volume: 132
  year: 2021
  ident: 10.1016/j.ins.2022.11.107_b0210
  article-title: Local search for constrained graph clustering in biological networks
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2021.105299
– volume: 566
  start-page: 118
  year: 2021
  ident: 10.1016/j.ins.2022.11.107_b0090
  article-title: Emphasis on the flipping variable: Towards effective local search for hard random satisfiability
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.03.009
– volume: 54
  start-page: 2411
  issue: 4
  year: 2021
  ident: 10.1016/j.ins.2022.11.107_b0045
  article-title: A survey on parallel clustering algorithms for big data
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09918-2
– ident: 10.1016/j.ins.2022.11.107_b0015
  doi: 10.1007/978-3-319-07046-9_31
– ident: 10.1016/j.ins.2022.11.107_b0065
  doi: 10.1137/1.9781611972757.13
– ident: 10.1016/j.ins.2022.11.107_b0220
– ident: 10.1016/j.ins.2022.11.107_b0170
  doi: 10.1007/978-3-642-16184-1_12
– ident: 10.1016/j.ins.2022.11.107_b0225
  doi: 10.1016/j.ins.2020.07.018
– ident: 10.1016/j.ins.2022.11.107_b0165
  doi: 10.1007/978-3-540-45231-7_27
– volume: 584
  start-page: 618
  year: 2022
  ident: 10.1016/j.ins.2022.11.107_b0100
  article-title: Graph clustering using triangle-aware measures in large networks
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.11.008
– start-page: 269
  year: 2010
  ident: 10.1016/j.ins.2022.11.107_b0195
  article-title: A survey of clustering algorithms
– volume: 541
  start-page: 271
  year: 2020
  ident: 10.1016/j.ins.2022.11.107_b0235
  article-title: A memetic algorithm based on reformulation local search for minimum sum-of-squares clustering in networks
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.06.056
– volume: 2018
  start-page: 1263
  year: 2018
  ident: 10.1016/j.ins.2022.11.107_b0060
  article-title: Descriptive clustering: ILP and CP formulations with applications
  publication-title: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI
– ident: 10.1016/j.ins.2022.11.107_b0140
  doi: 10.24963/ijcai.2018/187
– ident: 10.1016/j.ins.2022.11.107_b0145
  doi: 10.1007/978-3-319-66709-6_9
– volume: 35
  start-page: 593
  issue: 2
  year: 2021
  ident: 10.1016/j.ins.2022.11.107_b0230
  article-title: A framework for deep constrained clustering
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-020-00734-4
– volume: 10
  start-page: 1238
  issue: 1
  year: 2017
  ident: 10.1016/j.ins.2022.11.107_b0215
  article-title: KEEL 3.0: An open source software for multi-stage analysis in data mining
  publication-title: Int. J. Comput. Intell. Syst.
  doi: 10.2991/ijcis.10.1.82
– volume: 54
  start-page: 256
  year: 2017
  ident: 10.1016/j.ins.2022.11.107_b0075
  article-title: A comparison of two hybrid methods for constrained clustering problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.01.023
– volume: 10
  start-page: 193
  issue: 1
  year: 1985
  ident: 10.1016/j.ins.2022.11.107_b0120
  article-title: Comparing partitions
  publication-title: J. Classif.
  doi: 10.1007/BF01908075
– ident: 10.1016/j.ins.2022.11.107_b0095
  doi: 10.1137/1.9781611974348.33
– volume: 27
  start-page: 589
  issue: 2
  year: 2015
  ident: 10.1016/j.ins.2022.11.107_b0150
  article-title: Scalable constrained spectral clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2014.2356471
– volume: 66
  start-page: 846
  issue: 336
  year: 1971
  ident: 10.1016/j.ins.2022.11.107_b0190
  article-title: Objective criteria for the evaluation of clustering methods
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1971.10482356
– volume: 51
  start-page: 3939
  issue: 6
  year: 2021
  ident: 10.1016/j.ins.2022.11.107_b0040
  article-title: KNN-BLOCK DBSCAN: fast clustering for large-scale data
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2019.2956527
– volume: 15
  issue: 1
  year: 2021
  ident: 10.1016/j.ins.2022.11.107_b0025
  article-title: A survey of density based clustering algorithms
  publication-title: Front. Comput. Sci.
  doi: 10.1007/s11704-019-9059-3
– volume: 121
  year: 2020
  ident: 10.1016/j.ins.2022.11.107_b0105
  article-title: DILS: constrained clustering through dual iterative local search
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2020.104979
– ident: 10.1016/j.ins.2022.11.107_b0125
  doi: 10.1145/513400.513402
– volume: 244
  start-page: 70
  year: 2017
  ident: 10.1016/j.ins.2022.11.107_b0055
  article-title: Constrained clustering by constraint programming
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2015.05.006
– volume: 56
  start-page: 102
  year: 2016
  ident: 10.1016/j.ins.2022.11.107_b0130
  article-title: Iterated variable neighborhood search for the capacitated clustering problem
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2016.08.004
– volume: 613
  start-page: 786
  year: 2022
  ident: 10.1016/j.ins.2022.11.107_b0005
  article-title: Soft and hard hybrid balanced clustering with innovative qualitative balancing approach
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.09.044
– ident: 10.1016/j.ins.2022.11.107_b0205
  doi: 10.23919/Eusipco47968.2020.9287331
– ident: 10.1016/j.ins.2022.11.107_b0180
  doi: 10.24963/ijcai.2020/437
– year: 2012
  ident: 10.1016/j.ins.2022.11.107_b0080
– ident: 10.1016/j.ins.2022.11.107_b0115
  doi: 10.1145/3011077.3011114
– volume: 21
  start-page: 1938
  issue: 6
  year: 2019
  ident: 10.1016/j.ins.2022.11.107_b0160
  article-title: Pairwise constrained fuzzy clustering: Relation, comparison and parallelization
  publication-title: Int. J. Fuzzy Syst.
  doi: 10.1007/s40815-019-00683-1
– volume: 244
  start-page: 110
  year: 2017
  ident: 10.1016/j.ins.2022.11.107_b0020
  article-title: Cost-optimal constrained correlation clustering via weighted partial maximum satisfiability
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2015.07.001
– volume: 245
  start-page: 76
  issue: 1
  year: 2013
  ident: 10.1016/j.ins.2022.11.107_b0085
  article-title: A biased random-key genetic algorithm for data clustering
  publication-title: Math. Biosci.
  doi: 10.1016/j.mbs.2013.07.011
– volume: 2010
  start-page: 94
  year: 2010
  ident: 10.1016/j.ins.2022.11.107_b0070
  article-title: A SAT-based framework for efficient constrained clustering
  publication-title: Proceedings of the SIAM International Conference on Data Mining, SDM
– volume: 108
  year: 2021
  ident: 10.1016/j.ins.2022.11.107_b0110
  article-title: Enhancing instance-level constrained clustering through differential evolution
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107435
– volume: 32
  start-page: 469
  issue: 2
  year: 2016
  ident: 10.1016/j.ins.2022.11.107_b0245
  article-title: A three-phased local search approach for the clique partitioning problem
  publication-title: J. Comb. Optim.
  doi: 10.1007/s10878-015-9964-9
– ident: 10.1016/j.ins.2022.11.107_b0185
  doi: 10.1007/978-3-540-74958-5_67
– volume: 56
  start-page: 894
  issue: 4
  year: 2012
  ident: 10.1016/j.ins.2022.11.107_b0010
  article-title: CECM: constrained evidential c-means algorithm
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2010.09.021
– ident: 10.1016/j.ins.2022.11.107_b0050
  doi: 10.1007/978-3-319-23219-5_39
– volume: 240
  start-page: 1
  year: 2016
  ident: 10.1016/j.ins.2022.11.107_b0030
  article-title: New local search methods for partial MaxSAT
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2016.07.006
– ident: 10.1016/j.ins.2022.11.107_b0175
  doi: 10.1007/978-3-030-61527-7_4
– ident: 10.1016/j.ins.2022.11.107_b0135
– volume: 591
  start-page: 319
  year: 2022
  ident: 10.1016/j.ins.2022.11.107_b0155
  article-title: MEACCP: A membrane evolutionary algorithm for capacitated clustering problem
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.01.032
– volume: 609
  start-page: 153
  year: 2022
  ident: 10.1016/j.ins.2022.11.107_b0200
  article-title: Two efficient local search algorithms for the vertex bisection minimization problem
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.07.106
SSID ssj0004766
Score 2.4696097
Snippet •The constrained clustering problem is studied.•An efficient local search algorithm is proposed.•A node filtering strategy is introduced for improving...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 287
SubjectTerms Constrained clustering
Constraint optimization problem
Local search
Search strategy
Title Towards more efficient local search algorithms for constrained clustering
URI https://dx.doi.org/10.1016/j.ins.2022.11.107
Volume 621
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - NZ
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AKRWK
  dateStart: 19681201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IXvRgFDWiQnowHkwmW9et25EQCWjkBAm3peuHzuAgMK7-7fZtnWKiHrw2fV3z1vfR9Pd-D6HrlHPPTWXgqIj6DiVEOKnLoWuqVkDYRriAF92nSTia0Yd5MG-gQV0LA7BK6_srn156azvSs9rsrbIManxJmRETAmBFAgW_lDLoYnD3_gXzoKx6r4RrEsyuXzZLjFeWA2M3IcZxmCH2c2zaiTfDI3RoE0Xcr_ZyjBoqb6GDHfrAFurYogN8g21VEWgZW3M9QeNpiYndYADTYlWSRZgYg8v4haszjvniebnOipe3DTZLYAH5IrSNUBKLxRZoFMy3TtFseD8djBzbOsERJGaF43NBtAi1EDJiZv1YxTEPqNG_GylJuK-p5OaqRULGeKg9HfFA6NAVqYx9qT3_DDXzZa7OEeahSKkrvdDlxsAljbkMJPN97qXG-uOojdxaaYmwvOKwz0VSA8heE6PnBPRs7htmiLXR7afIqiLV-Gsyrf9E8u1kJMbp_y528T-xS7QPDeUrbM4VahbrreqYtKNIu-W56qK9_vhxNPkAhcLYjg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYABQQHxKnhADEihiePEyYgqqhZopyKxRY7tQFBJKwgrvx1f4kCRgIHV8ktn-x7yd98BnKZCeG6qAkdHzHcYpdJJXYFVUzONhG1USPzRHY3DwR27vg_ul6DX5MIgrNLq_lqnV9ratnStNLvzPMccX1p5xJQiWJFGy7DCAsoxArt4_8J5MF5_WGKchN2br80K5JUXSNlNqdEcpon_bJwWDE5_Ezasp0gu681swZIu2rC-wB_Yho7NOiBnxKYVoZiJfa_bMJxUoNhXgmhaoiu2CGNkSGXASH3JiZg-zF7y8vH5lZgpiESHEetGaEXk9A15FMxaO3DXv5r0Bo6tneBIGvPS8YWkmQwzKVXEzfyxjmMRMHMAbqQVFX7GlDCxFg05F2HmZZEIZBa6MlWxrzLP34VWMSv0HhARypS5ygtdYV64YrFQgeK-L7zUPP842ge3EVoiLbE47nOaNAiyp8TIOUE5m4DDNPF9OP8cMq9ZNf7qzJqTSL5djcRo_d-HHfxv2AmsDiaj2-R2OL45hDWsLl8DdY6gVb686Y7xQcr0uLpjH6uU2iM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+more+efficient+local+search+algorithms+for+constrained+clustering&rft.jtitle=Information+sciences&rft.au=Gao%2C+Jian&rft.au=Tao%2C+Xiaoxia&rft.au=Cai%2C+Shaowei&rft.date=2023-04-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=621&rft.spage=287&rft.epage=307&rft_id=info:doi/10.1016%2Fj.ins.2022.11.107&rft.externalDocID=S0020025522014128
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon