A faster parameterized algorithm for temporal matching

A temporal graph is a sequence of graphs (called layers) over the same vertex set—describing a graph topology which is subject to discrete changes over time. A Δ-temporal matching M is a set of time edges (e,t) (an edge e paired up with a point in time t) such that for all distinct time edges (e,t),...

Full description

Saved in:
Bibliographic Details
Published inInformation processing letters Vol. 174; p. 106181
Main Author Zschoche, Philipp
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2022
Subjects
Online AccessGet full text
ISSN0020-0190
1872-6119
DOI10.1016/j.ipl.2021.106181

Cover

Abstract A temporal graph is a sequence of graphs (called layers) over the same vertex set—describing a graph topology which is subject to discrete changes over time. A Δ-temporal matching M is a set of time edges (e,t) (an edge e paired up with a point in time t) such that for all distinct time edges (e,t),(e′,t′)∈M we have that e and e′ do not share an endpoint, or the time-labels t and t′ are at least Δ time units apart. Mertzios et al. [STACS '20] provided a 2O(Δν)⋅|G|O(1)-time algorithm to compute the maximum size of a Δ-temporal matching in a temporal graph G, where |G| denotes the size of G, and ν is the Δ-vertex cover number of G. The Δ-vertex cover number is the minimum number ν such that the classical vertex cover number of the union of any Δ consecutive layers of the temporal graph is upper-bounded by ν. We show an improved algorithm to compute a Δ-temporal matching of maximum size with a running time of ΔO(ν)⋅|G| and hence provide an exponential speedup in terms of Δ. •An exponential speedup for Temporal Matching compared to the algorithm from Mertzios et al. [STACS '20].•Representing Δ-windows in a tree structure.
AbstractList A temporal graph is a sequence of graphs (called layers) over the same vertex set—describing a graph topology which is subject to discrete changes over time. A Δ-temporal matching M is a set of time edges (e,t) (an edge e paired up with a point in time t) such that for all distinct time edges (e,t),(e′,t′)∈M we have that e and e′ do not share an endpoint, or the time-labels t and t′ are at least Δ time units apart. Mertzios et al. [STACS '20] provided a 2O(Δν)⋅|G|O(1)-time algorithm to compute the maximum size of a Δ-temporal matching in a temporal graph G, where |G| denotes the size of G, and ν is the Δ-vertex cover number of G. The Δ-vertex cover number is the minimum number ν such that the classical vertex cover number of the union of any Δ consecutive layers of the temporal graph is upper-bounded by ν. We show an improved algorithm to compute a Δ-temporal matching of maximum size with a running time of ΔO(ν)⋅|G| and hence provide an exponential speedup in terms of Δ. •An exponential speedup for Temporal Matching compared to the algorithm from Mertzios et al. [STACS '20].•Representing Δ-windows in a tree structure.
ArticleNumber 106181
Author Zschoche, Philipp
Author_xml – sequence: 1
  givenname: Philipp
  surname: Zschoche
  fullname: Zschoche, Philipp
  email: zschoche@tu-berlin.de
  organization: Technische Universität Berlin, Faculty IV, Algorithmics and Computational Complexity, Berlin, Germany
BookMark eNp9z81qwzAMwHEzOljb7QF2ywukk5zEidmplH1BYZfejasorUsSB8cMtqdfSnfaoSdJh5_gvxCz3vcsxCPCCgHV02nlhnYlQeJ0K6zwRsyxKmWqEPVMzAEkpIAa7sRiHE8AoPKsnAu1Tho7Rg7JYIPteNrcD9eJbQ8-uHjsksaHJHI3-GDbpLORjq4_3IvbxrYjP_zNpdi9vuw27-n28-1js96mJHUZU9looFqhqjQx1lTIDLHKqdnzvihURZJVabUlTRpqIJalzi3nnGNBmcqWAi9vKfhxDNyYIbjOhm-DYM7d5mSmbnPuNpfuyZT_DLloo_N9DNa1V-XzRfJU9OU4mJEc98S1C0zR1N5d0b9FX3SL
CitedBy_id crossref_primary_10_1016_j_jcss_2023_04_005
crossref_primary_10_1007_s13278_024_01207_y
crossref_primary_10_1016_j_jcss_2023_01_004
Cites_doi 10.1016/j.dam.2021.03.014
10.1016/j.jcss.2019.07.006
10.1016/j.jcss.2019.08.002
10.1145/2886094
10.1109/TKDE.2016.2594065
10.1016/j.tcs.2021.04.002
10.1016/j.tcs.2019.03.031
10.1016/j.tcs.2019.03.026
10.1007/s00453-021-00831-w
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.ipl.2021.106181
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-6119
ExternalDocumentID 10_1016_j_ipl_2021_106181
S002001902100096X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFSI
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M26
M41
MO0
MS~
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SME
SPC
SPCBC
SSV
SSZ
T5K
TN5
UQL
WH7
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-2f90cd61689ce1dc5231184cfbeb5568c2e67a9ac9c90d0ce2794ae4e415c363
IEDL.DBID .~1
ISSN 0020-0190
IngestDate Thu Apr 24 22:57:12 EDT 2025
Wed Oct 01 05:12:05 EDT 2025
Fri Feb 23 02:47:42 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Temporal graphs
Parameterized algorithms
Δ-windows
Graph algorithms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-2f90cd61689ce1dc5231184cfbeb5568c2e67a9ac9c90d0ce2794ae4e415c363
ParticipantIDs crossref_primary_10_1016_j_ipl_2021_106181
crossref_citationtrail_10_1016_j_ipl_2021_106181
elsevier_sciencedirect_doi_10_1016_j_ipl_2021_106181
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationTitle Information processing letters
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Heeger, Himmel, Kammer, Niedermeier, Renken, Sajenko (br0120) 2021; 868
Gupta, Talwar, Wieder (br0110) 2014; vol. 8572
Kellerhals, Renken, Zschoche (br0140) 2021
Picavet, Nguyen, Bui-Xuan (br0180) 2021
Wu, Cheng, Ke, Huang, Huang, Wu (br0210) 2016; 28
Chimani, Troost, Wiedera (br0060) 2021
Karp (br0130) 1972
Casteigts, Himmel, Molter, Zschoche (br0050) 2021
Mertzios, Molter, Niedermeier, Zamaraev, Zschoche (br0160) 2020; vol. 154
Schrijver (br0190) 2003
Baste, Bui-Xuan (br0030) 2018
Baste, Bui-Xuan, Roux (br0040) 2020; 806
Bampis, Escoffier, Lampis, Paschos (br0020) 2018; vol. 101
Burkhard (br0170) 1985; vol. 109
Akrida, Mertzios, Spirakis, Zamaraev (br0010) 2020; 107
Zschoche, Fluschnik, Molter, Niedermeier (br0220) 2020; 107
Fluschnik, Molter, Niedermeier, Renken, Zschoche (br0090) 2020; 806
Fluschnik, Niedermeier, Rohm, Zschoche (br0080) 2019; vol. 148
Fomin, Lokshtanov, Panolan, Saurabh (br0100) 2016; 63
Downey, Fellows (br0070) 2013
Lovász, Plummer (br0150) 2009
van Bevern, Tsidulko, Zschoche (br0200) 2021; 298
Baste (10.1016/j.ipl.2021.106181_br0030) 2018
Downey (10.1016/j.ipl.2021.106181_br0070) 2013
Akrida (10.1016/j.ipl.2021.106181_br0010) 2020; 107
Wu (10.1016/j.ipl.2021.106181_br0210) 2016; 28
Lovász (10.1016/j.ipl.2021.106181_br0150) 2009
Fluschnik (10.1016/j.ipl.2021.106181_br0090) 2020; 806
Kellerhals (10.1016/j.ipl.2021.106181_br0140)
Casteigts (10.1016/j.ipl.2021.106181_br0050) 2021
Zschoche (10.1016/j.ipl.2021.106181_br0220) 2020; 107
Baste (10.1016/j.ipl.2021.106181_br0040) 2020; 806
Karp (10.1016/j.ipl.2021.106181_br0130) 1972
Fomin (10.1016/j.ipl.2021.106181_br0100) 2016; 63
Heeger (10.1016/j.ipl.2021.106181_br0120) 2021; 868
Mertzios (10.1016/j.ipl.2021.106181_br0160) 2020; vol. 154
Schrijver (10.1016/j.ipl.2021.106181_br0190) 2003
Bampis (10.1016/j.ipl.2021.106181_br0020) 2018; vol. 101
Burkhard (10.1016/j.ipl.2021.106181_br0170) 1985; vol. 109
van Bevern (10.1016/j.ipl.2021.106181_br0200) 2021; 298
Fluschnik (10.1016/j.ipl.2021.106181_br0080) 2019; vol. 148
Picavet (10.1016/j.ipl.2021.106181_br0180) 2021
Chimani (10.1016/j.ipl.2021.106181_br0060) 2021
Gupta (10.1016/j.ipl.2021.106181_br0110) 2014; vol. 8572
References_xml – volume: vol. 101
  start-page: 7:1
  year: 2018
  end-page: 7:13
  ident: br0020
  article-title: Multistage matchings
  publication-title: Proceedings of the 16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT '18)
– volume: vol. 154
  start-page: 27:1
  year: 2020
  end-page: 27:14
  ident: br0160
  article-title: Computing maximum matchings in temporal graphs
  publication-title: Proceedings of the 37th International Symposium on Theoretical Aspects of Computer Science (STACS '20)
– start-page: 558
  year: 2021
  end-page: 570
  ident: br0060
  article-title: Approximating multistage matching problems
  publication-title: Proceedings of the 32nd International Workshop on Combinatorial Algorithms (IWOCA '21)
– volume: vol. 148
  start-page: 14:1
  year: 2019
  end-page: 14:14
  ident: br0080
  article-title: Multistage vertex cover
  publication-title: Proceedings of the 14th International Symposium on Parameterized and Exact Computation (IPEC '19)
– volume: 298
  start-page: 110
  year: 2021
  end-page: 128
  ident: br0200
  article-title: Representative families for matroid intersections, with applications to location, packing, and covering problems
  publication-title: Discrete Appl. Math.
– volume: 107
  start-page: 72
  year: 2020
  end-page: 92
  ident: br0220
  article-title: The complexity of finding small separators in temporal graphs
  publication-title: J. Comput. Syst. Sci.
– volume: 28
  start-page: 2927
  year: 2016
  end-page: 2942
  ident: br0210
  article-title: Efficient algorithms for temporal path computation
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 107
  start-page: 108
  year: 2020
  end-page: 123
  ident: br0010
  article-title: Temporal vertex cover with a sliding time window
  publication-title: J. Comput. Syst. Sci.
– year: 2021
  ident: br0050
  article-title: Finding temporal paths under waiting time constraints
  publication-title: Algorithmica
– start-page: 394
  year: 2021
  end-page: 408
  ident: br0180
  article-title: Temporal matching on geometric graph data
  publication-title: Proceedings of the 12th International Conference in Algorithms and Complexity (CIAC '21), Vol. 12701
– volume: 806
  start-page: 184
  year: 2020
  end-page: 196
  ident: br0040
  article-title: Temporal matching
  publication-title: Theor. Comput. Sci.
– volume: vol. 109
  start-page: 239
  year: 1985
  end-page: 254
  ident: br0170
  article-title: How to find long paths efficiently
  publication-title: Analysis and Design of Algorithms for Combinatorial Problems
– volume: 868
  start-page: 46
  year: 2021
  end-page: 64
  ident: br0120
  article-title: Multistage graph problems on a global budget
  publication-title: Theor. Comput. Sci.
– year: 2013
  ident: br0070
  article-title: Fundamentals of Parameterized Complexity
– volume: vol. 8572
  start-page: 563
  year: 2014
  end-page: 575
  ident: br0110
  article-title: Changing bases: multistage optimization for matroids and matchings
  publication-title: Proceedings of the 41st International Colloquium on Automata, Languages, and Programming (ICALP '14)
– year: 2021
  ident: br0140
  article-title: Parameterized algorithms for diverse multistage problems
– year: 2009
  ident: br0150
  article-title: Matching Theory
– year: 2018
  ident: br0030
  article-title: Temporal matching in link stream: kernel and approximation
  publication-title: Proceedings of the 16th Cologne-Twente Workshop on Graphs and Combinatorial Optimization (CTW '18)
– volume: 806
  start-page: 197
  year: 2020
  end-page: 218
  ident: br0090
  article-title: Temporal graph classes: a view through temporal separators
  publication-title: Theor. Comput. Sci.
– start-page: 85
  year: 1972
  end-page: 103
  ident: br0130
  article-title: Reducibility among combinatorial problems
  publication-title: Complexity of Computer Computations
– year: 2003
  ident: br0190
  article-title: Combinatorial Optimization: Polyhedra and Efficiency
– volume: 63
  start-page: 29:1
  year: 2016
  end-page: 29:60
  ident: br0100
  article-title: Efficient computation of representative families with applications in parameterized and exact algorithms
  publication-title: J. ACM
– year: 2013
  ident: 10.1016/j.ipl.2021.106181_br0070
– volume: 298
  start-page: 110
  year: 2021
  ident: 10.1016/j.ipl.2021.106181_br0200
  article-title: Representative families for matroid intersections, with applications to location, packing, and covering problems
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2021.03.014
– start-page: 85
  year: 1972
  ident: 10.1016/j.ipl.2021.106181_br0130
  article-title: Reducibility among combinatorial problems
– volume: vol. 154
  start-page: 27:1
  year: 2020
  ident: 10.1016/j.ipl.2021.106181_br0160
  article-title: Computing maximum matchings in temporal graphs
– year: 2003
  ident: 10.1016/j.ipl.2021.106181_br0190
– volume: 107
  start-page: 72
  year: 2020
  ident: 10.1016/j.ipl.2021.106181_br0220
  article-title: The complexity of finding small separators in temporal graphs
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/j.jcss.2019.07.006
– volume: 107
  start-page: 108
  year: 2020
  ident: 10.1016/j.ipl.2021.106181_br0010
  article-title: Temporal vertex cover with a sliding time window
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/j.jcss.2019.08.002
– volume: 63
  start-page: 29:1
  issue: 4
  year: 2016
  ident: 10.1016/j.ipl.2021.106181_br0100
  article-title: Efficient computation of representative families with applications in parameterized and exact algorithms
  publication-title: J. ACM
  doi: 10.1145/2886094
– start-page: 558
  year: 2021
  ident: 10.1016/j.ipl.2021.106181_br0060
  article-title: Approximating multistage matching problems
– volume: 28
  start-page: 2927
  issue: 11
  year: 2016
  ident: 10.1016/j.ipl.2021.106181_br0210
  article-title: Efficient algorithms for temporal path computation
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2016.2594065
– volume: vol. 8572
  start-page: 563
  year: 2014
  ident: 10.1016/j.ipl.2021.106181_br0110
  article-title: Changing bases: multistage optimization for matroids and matchings
– year: 2009
  ident: 10.1016/j.ipl.2021.106181_br0150
– start-page: 394
  year: 2021
  ident: 10.1016/j.ipl.2021.106181_br0180
  article-title: Temporal matching on geometric graph data
– volume: vol. 148
  start-page: 14:1
  year: 2019
  ident: 10.1016/j.ipl.2021.106181_br0080
  article-title: Multistage vertex cover
– volume: 868
  start-page: 46
  year: 2021
  ident: 10.1016/j.ipl.2021.106181_br0120
  article-title: Multistage graph problems on a global budget
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2021.04.002
– volume: vol. 109
  start-page: 239
  year: 1985
  ident: 10.1016/j.ipl.2021.106181_br0170
  article-title: How to find long paths efficiently
– year: 2018
  ident: 10.1016/j.ipl.2021.106181_br0030
  article-title: Temporal matching in link stream: kernel and approximation
– volume: 806
  start-page: 197
  year: 2020
  ident: 10.1016/j.ipl.2021.106181_br0090
  article-title: Temporal graph classes: a view through temporal separators
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2019.03.031
– volume: 806
  start-page: 184
  year: 2020
  ident: 10.1016/j.ipl.2021.106181_br0040
  article-title: Temporal matching
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2019.03.026
– volume: vol. 101
  start-page: 7:1
  year: 2018
  ident: 10.1016/j.ipl.2021.106181_br0020
  article-title: Multistage matchings
– year: 2021
  ident: 10.1016/j.ipl.2021.106181_br0050
  article-title: Finding temporal paths under waiting time constraints
  publication-title: Algorithmica
  doi: 10.1007/s00453-021-00831-w
– ident: 10.1016/j.ipl.2021.106181_br0140
SSID ssj0006437
Score 2.332329
Snippet A temporal graph is a sequence of graphs (called layers) over the same vertex set—describing a graph topology which is subject to discrete changes over time. A...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106181
SubjectTerms Graph algorithms
Parameterized algorithms
Temporal graphs
Δ-windows
Title A faster parameterized algorithm for temporal matching
URI https://dx.doi.org/10.1016/j.ipl.2021.106181
Volume 174
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-6119
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006437
  issn: 0020-0190
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-6119
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006437
  issn: 0020-0190
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-6119
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006437
  issn: 0020-0190
  databaseCode: ACRLP
  dateStart: 19950113
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-6119
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006437
  issn: 0020-0190
  databaseCode: AIKHN
  dateStart: 19950113
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-6119
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006437
  issn: 0020-0190
  databaseCode: AKRWK
  dateStart: 19930125
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5VZWHhjSiPygMTUtrEcZN4rCqqAqJTkbpFztmBoL6EysLAb8eXOAUkYGCN4si62N_d6b77DuBSGp1bt45eZJHPE1zHnsSE-E9GotBChT71Dt-Po9GDuJ32pg0Y1L0wRKt02F9heonW7knXWbO7Kgrq8SU-kKSkhQLxKXWwi5imGHTeP2keVJiqaB60AbmpbJYcr2JF1QcedCgxSoKffdMXfzPcgx0XKLJ-tZd9aJjFAezWQxiYu5OHEPVZrkjtgJGK95zYLcWb0UzNHpc28X-aMxuWMqdANWM2QC3Zk0cwGV5PBiPPDUPwkMt47fFc-qijIEokmkCjTSBtbiAwz0xGKmLITRQrqVCi9LWPhtubpoww1kNjGIXH0FwsF-YEGA817-lYJYZKbkpZuItDkyWB_Vagc2yBX1shRScUTvMqZmnNCHtOreFSMlxaGa4FV5slq0ol46-XRW3a9NuvTi2K_77s9H_LzmCbU8dCSRs7h-b65dVc2DhinbXLg9KGrf7N3Wj8AS1rxhI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMsDCG1GeHpiQ0iaOm8RjVVEVaDsVqZvl2A4E9SVUFgZ-O77E4SEBA2uUi6yL_d2d7rvPAJfc6MyGdeVFFvk8RnXscZUg_8lwxTSToY-zw8NR1L9nt5P2pAbdahYGaZUO-0tML9DaPWk5b7aWeY4zvsgH4li0YCI-WYN11qYxVmDNt0-eB3amSp4HroB_tDYLkle-xPYDDZpYGSXBz8HpS8Dp7cCWyxRJp1zMLtTMfA-2q1sYiDuU-xB1SCZR7oCgjPcM6S35q9FETh8WtvJ_nBGblxInQTUlNkMt6JMHMO5dj7t9z92G4CnK45VHM-4rHQVRwpUJtLIVpC0OmMpSk6KMmKImiiWXiivua18Zao-aNMzYEK3CKDyE-nwxN0dAaKhpW8cyMdhzk9LiXRyaNAnstwKdqQb4lReEckrheGHFVFSUsCdhHSfQcaJ0XAOuPkyWpUzGXy-zyrXi278WFsZ_Nzv-n9kFbPTHw4EY3IzuTmCT4vhCwSE7hfrq-cWc2aRilZ4Xm-Yd_rTHpw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+faster+parameterized+algorithm+for+temporal+matching&rft.jtitle=Information+processing+letters&rft.au=Zschoche%2C+Philipp&rft.date=2022-03-01&rft.issn=0020-0190&rft.volume=174&rft.spage=106181&rft_id=info:doi/10.1016%2Fj.ipl.2021.106181&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ipl_2021_106181
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0190&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0190&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0190&client=summon