pyDSM: GPU-accelerated rheology predictions for entangled polymers in Python

Prior studies have extensively shown that the discrete slip-link model (DSM) accurately predicts the linear and nonlinear rheology of various entangled polymer systems. The only publicly available implementation of the DSM algorithm is written in the CUDA C++ programming language. In this work we di...

Full description

Saved in:
Bibliographic Details
Published inComputer physics communications Vol. 290; p. 108786
Main Authors Ethier, Jeffrey G., Córdoba, Andrés, Schieber, Jay D.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2023
Subjects
Online AccessGet full text
ISSN0010-4655
1879-2944
DOI10.1016/j.cpc.2023.108786

Cover

Abstract Prior studies have extensively shown that the discrete slip-link model (DSM) accurately predicts the linear and nonlinear rheology of various entangled polymer systems. The only publicly available implementation of the DSM algorithm is written in the CUDA C++ programming language. In this work we discuss the implementation of the fixed slip-link model and the clustered fixed slip-link model in Python. Our work shows that Python can also utilize GPUs for fast quantitative rheological predictions. Our simulation code, named pyDSM, allows an easy-to-read and beginner-friendly approach for users wanting to utilize the efficiency of GPU computing while also enabling an open-source Python package that can easily couple or interact with other simulation or data analysis software. We demonstrate pyDSM's versatility by implementing MUnCH, a recently published algorithm that allows estimation of the statistical uncertainty in the autocorrelations for any time series data, properly accounting for the correlation in the data. An on-the-fly version of MUnCH is applied to calculate the uncertainty in the relaxation modulus and the chain center-of-mass mean squared displacement. Moreover, the uncertainty quantification in the relaxation modulus allows propagation of error through a multi-mode Maxwell fit to determine the uncertainty in the dynamic modulus. Lastly, as an example of a novel application of the pyDSM code we calculate the re-entanglement dynamics after cessation of flow which are fundamental to the weld quality in fused-filament 3D printing. Program Title: pyDSM – Discrete Slip-link Model (DSM) in Python for Fast Quantitative Rheology Predictions of Entangled Polymers CPC Library link to program files:https://doi.org/10.17632/v828b9cjp9.1 Developer's repository link:https://github.com/jgethier/pyDSM Licensing provisions: GPLv3 Programming language: Python Nature of problem: Predicting stress relaxation in entangled polymer systems is crucial for understanding the macroscopic properties of the material. Many existing models do not capture the physics of polymer entanglements in linear, star-branched, and other entangled polymeric systems. The discrete slip-link model has been shown to predict quantitatively the rheological behavior of polymers, but only one version of the model is publicly available using CUDA C++ programming. Solution method: We implement a less-detailed version of the discrete-slip link model to predict the linear and nonlinear rheology of entangled polymers in Python. Uncertainty in the predictions is implemented with the MUnCH algorithm. We implement GPU-based calculations for fast and accurate predictions of the linear and nonlinear rheology behavior, as well as re-entanglement dynamics after cessation of flow.
AbstractList Prior studies have extensively shown that the discrete slip-link model (DSM) accurately predicts the linear and nonlinear rheology of various entangled polymer systems. The only publicly available implementation of the DSM algorithm is written in the CUDA C++ programming language. In this work we discuss the implementation of the fixed slip-link model and the clustered fixed slip-link model in Python. Our work shows that Python can also utilize GPUs for fast quantitative rheological predictions. Our simulation code, named pyDSM, allows an easy-to-read and beginner-friendly approach for users wanting to utilize the efficiency of GPU computing while also enabling an open-source Python package that can easily couple or interact with other simulation or data analysis software. We demonstrate pyDSM's versatility by implementing MUnCH, a recently published algorithm that allows estimation of the statistical uncertainty in the autocorrelations for any time series data, properly accounting for the correlation in the data. An on-the-fly version of MUnCH is applied to calculate the uncertainty in the relaxation modulus and the chain center-of-mass mean squared displacement. Moreover, the uncertainty quantification in the relaxation modulus allows propagation of error through a multi-mode Maxwell fit to determine the uncertainty in the dynamic modulus. Lastly, as an example of a novel application of the pyDSM code we calculate the re-entanglement dynamics after cessation of flow which are fundamental to the weld quality in fused-filament 3D printing. Program Title: pyDSM – Discrete Slip-link Model (DSM) in Python for Fast Quantitative Rheology Predictions of Entangled Polymers CPC Library link to program files:https://doi.org/10.17632/v828b9cjp9.1 Developer's repository link:https://github.com/jgethier/pyDSM Licensing provisions: GPLv3 Programming language: Python Nature of problem: Predicting stress relaxation in entangled polymer systems is crucial for understanding the macroscopic properties of the material. Many existing models do not capture the physics of polymer entanglements in linear, star-branched, and other entangled polymeric systems. The discrete slip-link model has been shown to predict quantitatively the rheological behavior of polymers, but only one version of the model is publicly available using CUDA C++ programming. Solution method: We implement a less-detailed version of the discrete-slip link model to predict the linear and nonlinear rheology of entangled polymers in Python. Uncertainty in the predictions is implemented with the MUnCH algorithm. We implement GPU-based calculations for fast and accurate predictions of the linear and nonlinear rheology behavior, as well as re-entanglement dynamics after cessation of flow.
ArticleNumber 108786
Author Córdoba, Andrés
Schieber, Jay D.
Ethier, Jeffrey G.
Author_xml – sequence: 1
  givenname: Jeffrey G.
  orcidid: 0000-0001-7987-4058
  surname: Ethier
  fullname: Ethier, Jeffrey G.
  email: jgethier@gmail.com
  organization: Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, 45433, USA
– sequence: 2
  givenname: Andrés
  surname: Córdoba
  fullname: Córdoba, Andrés
  email: andcorduri@gmail.com
  organization: Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL, 60637, USA
– sequence: 3
  givenname: Jay D.
  surname: Schieber
  fullname: Schieber, Jay D.
  organization: Center for Molecular Study of Condensed Soft Matter, Department of Chemical and Biological Engineering, Department of Physics, and Department of Applied Mathematics, Illinois Institute of Technology, 3440 S. Dearborn Street, Chicago, IL, 60616, USA
BookMark eNp9kM1KAzEURoNUsK0-gLt5ganJzGSm0ZVUrULFgnYd8nOnTZkmQxKEefum1JWLri4XvnP57pmgkXUWELoneEYwqR_2M9WrWYGLMu3zZl5foTGZNywvWFWN0BhjgvOqpvQGTULYY4ybhpVjtOqHl-_Px2y53uRCKejAiwg68ztwndsOWe9BGxWNsyFrnc_ARmG3XYr0rhsO4ENmbLYe4s7ZW3Tdii7A3d-cos3b68_iPV99LT8Wz6tcFayJeYFJQ0gtZc0YbamsKMgyFQQGuNKaykKJirVaY6JTqpKgNJRUaqmorou2nKLmfFd5F4KHlisTxalj9MJ0nGB-ksL3PEnhJyn8LCWR5B_Ze3MQfrjIPJ0ZSC_9GvA8KANWJS8eVOTamQv0EQsOfXM
CitedBy_id crossref_primary_10_1021_acsmacrolett_4c00809
crossref_primary_10_1122_8_0000809
Cites_doi 10.1016/j.cpc.2022.108567
10.1063/1.4730170
10.1039/C5ME00009B
10.1122/1.5124383
10.1039/F29787401802
10.1146/annurev-chembioeng-060713-040252
10.1122/8.0000040
10.1063/1.1553764
10.3390/polym5020643
10.1007/s00397-015-0836-0
10.1515/JNETDY.2003.010
10.1039/F29787401818
10.1122/1.4788909
10.1122/1.1530155
10.1122/1.4976839
10.1088/1367-2630/16/1/015027
10.1122/1.4869252
10.1021/acs.macromol.6b00409
10.1007/s00397-011-0568-8
10.1122/1.2790460
10.1122/8.0000422
10.1002/aic.14370
10.1039/c2sm26788h
10.1039/F29787401789
10.1122/1.5033858
10.1021/ma202658h
10.1021/acs.macromol.5b02641
10.1021/ma0519056
10.1021/ma502525x
10.1063/1.3314727
10.1063/1.457480
10.3390/polym10080908
10.1007/s00397-018-1079-7
10.1021/acs.macromol.9b01161
10.1122/1.4997740
10.1103/PhysRevLett.100.188302
10.1122/8.0000110
10.1021/acs.macromol.1c00156
10.1021/ma900533s
10.1103/PhysRevE.103.022501
10.1039/F29797500038
10.1021/ma902823k
10.1007/s00397-021-01312-1
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cpc.2023.108786
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2944
ExternalDocumentID 10_1016_j_cpc_2023_108786
S0010465523001315
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABNEU
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADECG
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LZ4
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCB
SDF
SDG
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSE
SSK
SSQ
SSV
SSZ
T5K
TN5
UPT
VH1
WUQ
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-2017116bb6995f5b45eb3001e9e04dd5b2ca49fdd01d6bb4becde35bdbc5d62f3
IEDL.DBID .~1
ISSN 0010-4655
IngestDate Thu Apr 24 23:08:23 EDT 2025
Wed Oct 01 05:27:44 EDT 2025
Fri Feb 23 02:37:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Polymer entanglements
Stress relaxation
Rheology
Slip-link model
3D printing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-2017116bb6995f5b45eb3001e9e04dd5b2ca49fdd01d6bb4becde35bdbc5d62f3
ORCID 0000-0001-7987-4058
ParticipantIDs crossref_citationtrail_10_1016_j_cpc_2023_108786
crossref_primary_10_1016_j_cpc_2023_108786
elsevier_sciencedirect_doi_10_1016_j_cpc_2023_108786
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2023
2023-09-00
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: September 2023
PublicationDecade 2020
PublicationTitle Computer physics communications
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References McIlroy, Olmsted (br0440) 2017; 61
Khaliullin, Schieber (br0070) 2009; 42
Dolata, Olmsted (br0450) 2022
Khaliullin, Schieber (br0250) 2010; 43
Katzarova, Andreev, Sliozberg, Mrozek, Lenhart, Andzelm, Schieber (br0260) 2014; 60
Steenbakkers, Tzoumanekas, Li, Liu, Kröger, Schieber (br0090) 2014; 16
Katzarova, Yang, Andreev, Córdoba, Schieber (br0130) 2015; 54
Schieber (br0170) 2003; 118
O'Connor, Hopkins, Robbins (br0460) 2019; 52
Andreev, Schieber (br0360) 2015; 48
Doi, Edwards (br0020) 1978; 74
Khaliullin, Schieber (br0160) 2008; 100
Boudaghi, Nafar Seddashti, Edwards, Khomami (br0470) 2022; 66
Schieber, Andreev (br0110) 2014; 5
Andreev, Khaliullin, Steenbakkers, Schieber (br0310) 2013; 57
Kröger, Dietz, Hoy, Luap (br0420) 2023; 283
Schieber, Indei, Steenbakkers (br0140) 2013; 5
Ramírez, Sukumaran, Vorselaars, Likhtman (br0390) 2010; 133
Doi, Edwards (br0040) 1979; 75
Shivokhin, Narita, Talini, Habicht, Seiffert, Indei, Schieber (br0280) 2017; 61
Schieber (br0200) 2003; 28
Doi, Edwards (br0010) 1978; 74
Costanzo, Huang, Ianniruberto, Marrucci, Hassager, Vlassopoulos (br0410) 2016; 49
Schieber, Nair, Kitkrailard (br0320) 2007; 51
Steenbakkers, Schieber (br0190) 2012; 137
Córdoba, Schieber (br0430) 2022
Steenbakkers, Andreev, Schieber (br0100) 2021; 103
Córdoba, Schieber (br0370) 2022; 61
Andreev, Rutledge (br0340) 2020; 64
Jensen, Khaliullin, Schieber (br0270) 2012; 51
Desai, Kang, Katzarova, Hall, Huang, Lee, Shivokhin, Chang, Venerus, Mays (br0050) 2016; 49
Schieber, Horio (br0150) 2010; 132
Becerra, Córdoba, Katzarova, Andreev, Venerus, Schieber (br0120) 2020; 64
Pilyugina, Andreev, Schieber (br0290) 2012; 45
Taletskiy, Tervoort, Schieber (br0220) 2018; 62
Andreev, Feng, Yang, Schieber (br0080) 2014; 58
Feng, Andreev, Pilyugina, Schieber (br0330) 2016; 1
Nair, Schieber (br0210) 2006; 39
Katzarova, Kashyap, Schieber, Venerus (br0240) 2018; 57
Lam, Pitrou, Seibert (br0400) 2015
Doi, Edwards (br0030) 1978; 74
Flyvbjerg, Petersen (br0380) 1989; 91
Andreev, Nicholson, Kotula, Moore, Den Doelder, Rutledge (br0350) 2020; 64
Schieber, Neergaard, Gupta (br0180) 2003; 47
Becerra, Córdoba, Schieber (br0300) 2021; 54
Schieber, Córdoba (br0060) 2021; 33
Schieber, Venerus, Gupta (br0480) 2012; 8
Valadez-Pérez, Taletskiy, Schieber, Shivokhin (br0230) 2018; 10
Doi (10.1016/j.cpc.2023.108786_br0020) 1978; 74
Schieber (10.1016/j.cpc.2023.108786_br0480) 2012; 8
Costanzo (10.1016/j.cpc.2023.108786_br0410) 2016; 49
Katzarova (10.1016/j.cpc.2023.108786_br0130) 2015; 54
Katzarova (10.1016/j.cpc.2023.108786_br0260) 2014; 60
Schieber (10.1016/j.cpc.2023.108786_br0200) 2003; 28
Doi (10.1016/j.cpc.2023.108786_br0030) 1978; 74
Katzarova (10.1016/j.cpc.2023.108786_br0240) 2018; 57
Andreev (10.1016/j.cpc.2023.108786_br0350) 2020; 64
Schieber (10.1016/j.cpc.2023.108786_br0060) 2021; 33
Taletskiy (10.1016/j.cpc.2023.108786_br0220) 2018; 62
Ramírez (10.1016/j.cpc.2023.108786_br0390) 2010; 133
Becerra (10.1016/j.cpc.2023.108786_br0300) 2021; 54
Khaliullin (10.1016/j.cpc.2023.108786_br0160) 2008; 100
Andreev (10.1016/j.cpc.2023.108786_br0360) 2015; 48
Schieber (10.1016/j.cpc.2023.108786_br0150) 2010; 132
Jensen (10.1016/j.cpc.2023.108786_br0270) 2012; 51
Pilyugina (10.1016/j.cpc.2023.108786_br0290) 2012; 45
Dolata (10.1016/j.cpc.2023.108786_br0450)
O'Connor (10.1016/j.cpc.2023.108786_br0460) 2019; 52
Schieber (10.1016/j.cpc.2023.108786_br0140) 2013; 5
Kröger (10.1016/j.cpc.2023.108786_br0420) 2023; 283
Boudaghi (10.1016/j.cpc.2023.108786_br0470) 2022; 66
Córdoba (10.1016/j.cpc.2023.108786_br0430)
Andreev (10.1016/j.cpc.2023.108786_br0080) 2014; 58
Schieber (10.1016/j.cpc.2023.108786_br0180) 2003; 47
Schieber (10.1016/j.cpc.2023.108786_br0110) 2014; 5
Becerra (10.1016/j.cpc.2023.108786_br0120) 2020; 64
Feng (10.1016/j.cpc.2023.108786_br0330) 2016; 1
Valadez-Pérez (10.1016/j.cpc.2023.108786_br0230) 2018; 10
Doi (10.1016/j.cpc.2023.108786_br0010) 1978; 74
Schieber (10.1016/j.cpc.2023.108786_br0320) 2007; 51
Andreev (10.1016/j.cpc.2023.108786_br0310) 2013; 57
Doi (10.1016/j.cpc.2023.108786_br0040) 1979; 75
Steenbakkers (10.1016/j.cpc.2023.108786_br0190) 2012; 137
Khaliullin (10.1016/j.cpc.2023.108786_br0250) 2010; 43
Steenbakkers (10.1016/j.cpc.2023.108786_br0090) 2014; 16
Desai (10.1016/j.cpc.2023.108786_br0050) 2016; 49
Steenbakkers (10.1016/j.cpc.2023.108786_br0100) 2021; 103
McIlroy (10.1016/j.cpc.2023.108786_br0440) 2017; 61
Nair (10.1016/j.cpc.2023.108786_br0210) 2006; 39
Andreev (10.1016/j.cpc.2023.108786_br0340) 2020; 64
Córdoba (10.1016/j.cpc.2023.108786_br0370) 2022; 61
Flyvbjerg (10.1016/j.cpc.2023.108786_br0380) 1989; 91
Lam (10.1016/j.cpc.2023.108786_br0400) 2015
Schieber (10.1016/j.cpc.2023.108786_br0170) 2003; 118
Khaliullin (10.1016/j.cpc.2023.108786_br0070) 2009; 42
Shivokhin (10.1016/j.cpc.2023.108786_br0280) 2017; 61
References_xml – volume: 39
  start-page: 3386
  year: 2006
  ident: br0210
  publication-title: Macromolecules
– volume: 48
  start-page: 1606
  year: 2015
  ident: br0360
  publication-title: Macromolecules
– volume: 283
  year: 2023
  ident: br0420
  publication-title: Comput. Phys. Commun.
– volume: 51
  start-page: 21
  year: 2012
  ident: br0270
  publication-title: Rheol. Acta
– volume: 74
  start-page: 1802
  year: 1978
  ident: br0020
  publication-title: J. Chem. Soc., Faraday Trans. II, Mol. Chem. Phys.
– volume: 64
  start-page: 1379
  year: 2020
  ident: br0350
  publication-title: J. Rheol.
– volume: 75
  start-page: 38
  year: 1979
  ident: br0040
  publication-title: J. Chem. Soc., Faraday Trans. II, Mol. Chem. Phys.
– volume: 91
  start-page: 461
  year: 1989
  ident: br0380
  publication-title: J. Chem. Phys.
– volume: 74
  start-page: 1789
  year: 1978
  ident: br0010
  publication-title: J. Chem. Soc., Faraday Trans. II, Mol. Chem. Phys.
– volume: 5
  start-page: 643
  year: 2013
  ident: br0140
  publication-title: Polymers
– year: 2022
  ident: br0450
– volume: 47
  start-page: 213
  year: 2003
  ident: br0180
  publication-title: J. Rheol.
– volume: 57
  start-page: 535
  year: 2013
  ident: br0310
  publication-title: J. Rheol.
– volume: 118
  start-page: 5162
  year: 2003
  ident: br0170
  publication-title: J. Chem. Phys.
– volume: 54
  start-page: 169
  year: 2015
  ident: br0130
  publication-title: Rheol. Acta
– volume: 132
  year: 2010
  ident: br0150
  publication-title: J. Chem. Phys.
– volume: 1
  start-page: 99
  year: 2016
  ident: br0330
  publication-title: Mol. Syst. Des. Eng.
– year: 2022
  ident: br0430
– volume: 58
  start-page: 723
  year: 2014
  ident: br0080
  publication-title: J. Rheol.
– volume: 54
  start-page: 8033
  year: 2021
  ident: br0300
  publication-title: Macromolecules
– start-page: 1
  year: 2015
  end-page: 6
  ident: br0400
  publication-title: Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC
– volume: 8
  year: 2012
  ident: br0480
  publication-title: Soft Matter
– volume: 52
  start-page: 8540
  year: 2019
  ident: br0460
  publication-title: Macromolecules
– volume: 61
  start-page: 1231
  year: 2017
  ident: br0280
  publication-title: J. Rheol.
– volume: 49
  start-page: 3925
  year: 2016
  ident: br0410
  publication-title: Macromolecules
– volume: 103
  year: 2021
  ident: br0100
  publication-title: Phys. Rev. E
– volume: 10
  start-page: 908
  year: 2018
  ident: br0230
  publication-title: Polymers
– volume: 42
  start-page: 7504
  year: 2009
  ident: br0070
  publication-title: Macromolecules
– volume: 57
  start-page: 327
  year: 2018
  ident: br0240
  publication-title: Rheol. Acta
– volume: 100
  year: 2008
  ident: br0160
  publication-title: Phys. Rev. Lett.
– volume: 137
  year: 2012
  ident: br0190
  publication-title: J. Chem. Phys.
– volume: 62
  start-page: 1331
  year: 2018
  ident: br0220
  publication-title: J. Rheol.
– volume: 33
  year: 2021
  ident: br0060
  publication-title: Phys. Fluids
– volume: 64
  start-page: 1035
  year: 2020
  ident: br0120
  publication-title: J. Rheol.
– volume: 74
  start-page: 1818
  year: 1978
  ident: br0030
  publication-title: J. Chem. Soc., Faraday Trans. II, Mol. Chem. Phys.
– volume: 16
  year: 2014
  ident: br0090
  publication-title: New J. Phys.
– volume: 61
  start-page: 379
  year: 2017
  ident: br0440
  publication-title: J. Rheol.
– volume: 60
  start-page: 1372
  year: 2014
  ident: br0260
  publication-title: AIChE J.
– volume: 66
  start-page: 551
  year: 2022
  ident: br0470
  publication-title: J. Rheol.
– volume: 133
  year: 2010
  ident: br0390
  publication-title: J. Chem. Phys.
– volume: 49
  start-page: 4964
  year: 2016
  ident: br0050
  publication-title: Macromolecules
– volume: 51
  start-page: 1111
  year: 2007
  ident: br0320
  publication-title: J. Rheol.
– volume: 5
  start-page: 367
  year: 2014
  ident: br0110
  publication-title: Annu. Rev. Chem. Biomol. Eng.
– volume: 64
  start-page: 213
  year: 2020
  ident: br0340
  publication-title: J. Rheol.
– volume: 61
  start-page: 49
  year: 2022
  ident: br0370
  publication-title: Rheol. Acta
– volume: 28
  start-page: 179
  year: 2003
  ident: br0200
  publication-title: J. Non-Equilib. Thermodyn.
– volume: 45
  start-page: 5728
  year: 2012
  ident: br0290
  publication-title: Macromolecules
– volume: 43
  start-page: 6202
  year: 2010
  ident: br0250
  publication-title: Macromolecules
– volume: 33
  year: 2021
  ident: 10.1016/j.cpc.2023.108786_br0060
  publication-title: Phys. Fluids
– volume: 283
  year: 2023
  ident: 10.1016/j.cpc.2023.108786_br0420
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2022.108567
– volume: 137
  year: 2012
  ident: 10.1016/j.cpc.2023.108786_br0190
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4730170
– volume: 1
  start-page: 99
  year: 2016
  ident: 10.1016/j.cpc.2023.108786_br0330
  publication-title: Mol. Syst. Des. Eng.
  doi: 10.1039/C5ME00009B
– volume: 64
  start-page: 213
  year: 2020
  ident: 10.1016/j.cpc.2023.108786_br0340
  publication-title: J. Rheol.
  doi: 10.1122/1.5124383
– volume: 74
  start-page: 1802
  year: 1978
  ident: 10.1016/j.cpc.2023.108786_br0020
  publication-title: J. Chem. Soc., Faraday Trans. II, Mol. Chem. Phys.
  doi: 10.1039/F29787401802
– volume: 5
  start-page: 367
  year: 2014
  ident: 10.1016/j.cpc.2023.108786_br0110
  publication-title: Annu. Rev. Chem. Biomol. Eng.
  doi: 10.1146/annurev-chembioeng-060713-040252
– volume: 64
  start-page: 1035
  year: 2020
  ident: 10.1016/j.cpc.2023.108786_br0120
  publication-title: J. Rheol.
  doi: 10.1122/8.0000040
– volume: 118
  start-page: 5162
  year: 2003
  ident: 10.1016/j.cpc.2023.108786_br0170
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1553764
– volume: 5
  start-page: 643
  year: 2013
  ident: 10.1016/j.cpc.2023.108786_br0140
  publication-title: Polymers
  doi: 10.3390/polym5020643
– volume: 54
  start-page: 169
  year: 2015
  ident: 10.1016/j.cpc.2023.108786_br0130
  publication-title: Rheol. Acta
  doi: 10.1007/s00397-015-0836-0
– volume: 28
  start-page: 179
  year: 2003
  ident: 10.1016/j.cpc.2023.108786_br0200
  publication-title: J. Non-Equilib. Thermodyn.
  doi: 10.1515/JNETDY.2003.010
– volume: 74
  start-page: 1818
  year: 1978
  ident: 10.1016/j.cpc.2023.108786_br0030
  publication-title: J. Chem. Soc., Faraday Trans. II, Mol. Chem. Phys.
  doi: 10.1039/F29787401818
– volume: 57
  start-page: 535
  year: 2013
  ident: 10.1016/j.cpc.2023.108786_br0310
  publication-title: J. Rheol.
  doi: 10.1122/1.4788909
– volume: 47
  start-page: 213
  year: 2003
  ident: 10.1016/j.cpc.2023.108786_br0180
  publication-title: J. Rheol.
  doi: 10.1122/1.1530155
– volume: 61
  start-page: 379
  year: 2017
  ident: 10.1016/j.cpc.2023.108786_br0440
  publication-title: J. Rheol.
  doi: 10.1122/1.4976839
– volume: 16
  year: 2014
  ident: 10.1016/j.cpc.2023.108786_br0090
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/16/1/015027
– volume: 58
  start-page: 723
  year: 2014
  ident: 10.1016/j.cpc.2023.108786_br0080
  publication-title: J. Rheol.
  doi: 10.1122/1.4869252
– volume: 49
  start-page: 3925
  year: 2016
  ident: 10.1016/j.cpc.2023.108786_br0410
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.6b00409
– volume: 51
  start-page: 21
  year: 2012
  ident: 10.1016/j.cpc.2023.108786_br0270
  publication-title: Rheol. Acta
  doi: 10.1007/s00397-011-0568-8
– volume: 51
  start-page: 1111
  year: 2007
  ident: 10.1016/j.cpc.2023.108786_br0320
  publication-title: J. Rheol.
  doi: 10.1122/1.2790460
– volume: 66
  start-page: 551
  year: 2022
  ident: 10.1016/j.cpc.2023.108786_br0470
  publication-title: J. Rheol.
  doi: 10.1122/8.0000422
– volume: 60
  start-page: 1372
  year: 2014
  ident: 10.1016/j.cpc.2023.108786_br0260
  publication-title: AIChE J.
  doi: 10.1002/aic.14370
– volume: 8
  year: 2012
  ident: 10.1016/j.cpc.2023.108786_br0480
  publication-title: Soft Matter
  doi: 10.1039/c2sm26788h
– volume: 74
  start-page: 1789
  year: 1978
  ident: 10.1016/j.cpc.2023.108786_br0010
  publication-title: J. Chem. Soc., Faraday Trans. II, Mol. Chem. Phys.
  doi: 10.1039/F29787401789
– volume: 62
  start-page: 1331
  year: 2018
  ident: 10.1016/j.cpc.2023.108786_br0220
  publication-title: J. Rheol.
  doi: 10.1122/1.5033858
– volume: 45
  start-page: 5728
  year: 2012
  ident: 10.1016/j.cpc.2023.108786_br0290
  publication-title: Macromolecules
  doi: 10.1021/ma202658h
– volume: 133
  year: 2010
  ident: 10.1016/j.cpc.2023.108786_br0390
  publication-title: J. Chem. Phys.
– start-page: 1
  year: 2015
  ident: 10.1016/j.cpc.2023.108786_br0400
– volume: 49
  start-page: 4964
  year: 2016
  ident: 10.1016/j.cpc.2023.108786_br0050
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.5b02641
– volume: 39
  start-page: 3386
  year: 2006
  ident: 10.1016/j.cpc.2023.108786_br0210
  publication-title: Macromolecules
  doi: 10.1021/ma0519056
– volume: 48
  start-page: 1606
  year: 2015
  ident: 10.1016/j.cpc.2023.108786_br0360
  publication-title: Macromolecules
  doi: 10.1021/ma502525x
– ident: 10.1016/j.cpc.2023.108786_br0450
– volume: 132
  year: 2010
  ident: 10.1016/j.cpc.2023.108786_br0150
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3314727
– volume: 91
  start-page: 461
  year: 1989
  ident: 10.1016/j.cpc.2023.108786_br0380
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.457480
– ident: 10.1016/j.cpc.2023.108786_br0430
– volume: 10
  start-page: 908
  year: 2018
  ident: 10.1016/j.cpc.2023.108786_br0230
  publication-title: Polymers
  doi: 10.3390/polym10080908
– volume: 57
  start-page: 327
  year: 2018
  ident: 10.1016/j.cpc.2023.108786_br0240
  publication-title: Rheol. Acta
  doi: 10.1007/s00397-018-1079-7
– volume: 52
  start-page: 8540
  year: 2019
  ident: 10.1016/j.cpc.2023.108786_br0460
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.9b01161
– volume: 61
  start-page: 1231
  year: 2017
  ident: 10.1016/j.cpc.2023.108786_br0280
  publication-title: J. Rheol.
  doi: 10.1122/1.4997740
– volume: 100
  year: 2008
  ident: 10.1016/j.cpc.2023.108786_br0160
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.188302
– volume: 64
  start-page: 1379
  year: 2020
  ident: 10.1016/j.cpc.2023.108786_br0350
  publication-title: J. Rheol.
  doi: 10.1122/8.0000110
– volume: 54
  start-page: 8033
  year: 2021
  ident: 10.1016/j.cpc.2023.108786_br0300
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.1c00156
– volume: 42
  start-page: 7504
  year: 2009
  ident: 10.1016/j.cpc.2023.108786_br0070
  publication-title: Macromolecules
  doi: 10.1021/ma900533s
– volume: 103
  year: 2021
  ident: 10.1016/j.cpc.2023.108786_br0100
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.103.022501
– volume: 75
  start-page: 38
  year: 1979
  ident: 10.1016/j.cpc.2023.108786_br0040
  publication-title: J. Chem. Soc., Faraday Trans. II, Mol. Chem. Phys.
  doi: 10.1039/F29797500038
– volume: 43
  start-page: 6202
  year: 2010
  ident: 10.1016/j.cpc.2023.108786_br0250
  publication-title: Macromolecules
  doi: 10.1021/ma902823k
– volume: 61
  start-page: 49
  year: 2022
  ident: 10.1016/j.cpc.2023.108786_br0370
  publication-title: Rheol. Acta
  doi: 10.1007/s00397-021-01312-1
SSID ssj0007793
Score 2.4323895
Snippet Prior studies have extensively shown that the discrete slip-link model (DSM) accurately predicts the linear and nonlinear rheology of various entangled polymer...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108786
SubjectTerms 3D printing
Polymer entanglements
Rheology
Slip-link model
Stress relaxation
Title pyDSM: GPU-accelerated rheology predictions for entangled polymers in Python
URI https://dx.doi.org/10.1016/j.cpc.2023.108786
Volume 290
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007793
  issn: 0010-4655
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect [Accès UNIL ; CHUV ; HEP Vaud ; Sites BCUL]
  customDbUrl:
  eissn: 1879-2944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007793
  issn: 0010-4655
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-2944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007793
  issn: 0010-4655
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-2944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007793
  issn: 0010-4655
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007793
  issn: 0010-4655
  databaseCode: AKRWK
  dateStart: 19690701
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfAiPrE-yh48CbFJuo_GW6nWam0parG3kJ1NtFLSUOshF3-7O3n4APXgKSTMQDI7O7vZ-eYbQo4dCEFz0BYAluTIgJs5l9HdKScKPEcJgcXJg6Hojdn1hE8qpFPWwiCssoj9eUzPonXxpFFYs5FMp1jji_lJjseaSBqDheaMSexicPr2CfOQsiDeNfEGpcvMZobxggRZDN0mIu0kllP_tDZ9WW-6G2S92CjSdv4um6QSxltkNQNswss2uUnS87vBGb0cja0AwCweyPmg6eIpa9Wb0mSBKZjMq6jZmFLEiMePMyOSzGcpnlbTaUxHKXIH7JBx9-K-07OKzggWuJ5cGtd2pOMIpYTn8Ygrxs0_sfnE0AttpjVXLgTMi7S2HW2kmBkoHTa50gq4Fm7U3CXVeB6He4Q64KkgagkbdIs1A6WAyUgAtARnWtq8RuzSJj4UtOHYvWLml_iwZ9-Y0Ucz-rkZa-TkQyXJOTP-Emalof1vA--bmP672v7_1A7IGt7lILFDUl0uXsMjs6tYqnrmNnWy0r7q94Z47d8-9N8BsYnNyQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7GEIIL4inGMwdOSGN95LFyQ4MxYJsmsUm7VY3TwtDUVWMceuG3E_fBQwIOXFtHap3EduLPnwk5tSEEzUHXAbAkRwbc7LmM7k7ZUeDZSggsTu71RWfE7sZ8XCGtshYGYZWF7c9tematiyeNQpuNZDLBGl_MT3K81kTSGL5Elhl3JJ7Azt8-cR5SFsy7xuCgeJnazEBekCCNoeMi1E5iPfVPzumLw2lvkPUiUqSX-cdskkoYb5GVDLEJL9ukm6RXD70LejMY1QMA4z2Q9EHT-VPWqzelyRxzMNmyoiYypQgSjx-nRiSZTVO8rqaTmA5SJA_YIaP29bDVqRetEergeHJh1rYtbVsoJTyPR1wxbg7F5hdDL7SY1lw5EDAv0tqytZFiZqZ06HKlFXAtnMjdJdV4Fod7hNrgqSBqCgt0k7mBUsBkJACagjMtLV4jVqkTHwrecGxfMfVLgNizb9Tooxr9XI01cvYxJMlJM_4SZqWi_W8z7xuj_vuw_f8NOyGrnWGv63dv-_cHZA3f5IixQ1JdzF_DIxNiLNRxtoTeATdxzbs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=pyDSM%3A+GPU-accelerated+rheology+predictions+for+entangled+polymers+in+Python&rft.jtitle=Computer+physics+communications&rft.au=Ethier%2C+Jeffrey+G.&rft.au=C%C3%B3rdoba%2C+Andr%C3%A9s&rft.au=Schieber%2C+Jay+D.&rft.date=2023-09-01&rft.issn=0010-4655&rft.volume=290&rft.spage=108786&rft_id=info:doi/10.1016%2Fj.cpc.2023.108786&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cpc_2023_108786
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon