pyDSM: GPU-accelerated rheology predictions for entangled polymers in Python
Prior studies have extensively shown that the discrete slip-link model (DSM) accurately predicts the linear and nonlinear rheology of various entangled polymer systems. The only publicly available implementation of the DSM algorithm is written in the CUDA C++ programming language. In this work we di...
Saved in:
| Published in | Computer physics communications Vol. 290; p. 108786 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.09.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0010-4655 1879-2944 |
| DOI | 10.1016/j.cpc.2023.108786 |
Cover
| Abstract | Prior studies have extensively shown that the discrete slip-link model (DSM) accurately predicts the linear and nonlinear rheology of various entangled polymer systems. The only publicly available implementation of the DSM algorithm is written in the CUDA C++ programming language. In this work we discuss the implementation of the fixed slip-link model and the clustered fixed slip-link model in Python. Our work shows that Python can also utilize GPUs for fast quantitative rheological predictions. Our simulation code, named pyDSM, allows an easy-to-read and beginner-friendly approach for users wanting to utilize the efficiency of GPU computing while also enabling an open-source Python package that can easily couple or interact with other simulation or data analysis software. We demonstrate pyDSM's versatility by implementing MUnCH, a recently published algorithm that allows estimation of the statistical uncertainty in the autocorrelations for any time series data, properly accounting for the correlation in the data. An on-the-fly version of MUnCH is applied to calculate the uncertainty in the relaxation modulus and the chain center-of-mass mean squared displacement. Moreover, the uncertainty quantification in the relaxation modulus allows propagation of error through a multi-mode Maxwell fit to determine the uncertainty in the dynamic modulus. Lastly, as an example of a novel application of the pyDSM code we calculate the re-entanglement dynamics after cessation of flow which are fundamental to the weld quality in fused-filament 3D printing.
Program Title: pyDSM – Discrete Slip-link Model (DSM) in Python for Fast Quantitative Rheology Predictions of Entangled Polymers
CPC Library link to program files:https://doi.org/10.17632/v828b9cjp9.1
Developer's repository link:https://github.com/jgethier/pyDSM
Licensing provisions: GPLv3
Programming language: Python
Nature of problem: Predicting stress relaxation in entangled polymer systems is crucial for understanding the macroscopic properties of the material. Many existing models do not capture the physics of polymer entanglements in linear, star-branched, and other entangled polymeric systems. The discrete slip-link model has been shown to predict quantitatively the rheological behavior of polymers, but only one version of the model is publicly available using CUDA C++ programming.
Solution method: We implement a less-detailed version of the discrete-slip link model to predict the linear and nonlinear rheology of entangled polymers in Python. Uncertainty in the predictions is implemented with the MUnCH algorithm. We implement GPU-based calculations for fast and accurate predictions of the linear and nonlinear rheology behavior, as well as re-entanglement dynamics after cessation of flow. |
|---|---|
| AbstractList | Prior studies have extensively shown that the discrete slip-link model (DSM) accurately predicts the linear and nonlinear rheology of various entangled polymer systems. The only publicly available implementation of the DSM algorithm is written in the CUDA C++ programming language. In this work we discuss the implementation of the fixed slip-link model and the clustered fixed slip-link model in Python. Our work shows that Python can also utilize GPUs for fast quantitative rheological predictions. Our simulation code, named pyDSM, allows an easy-to-read and beginner-friendly approach for users wanting to utilize the efficiency of GPU computing while also enabling an open-source Python package that can easily couple or interact with other simulation or data analysis software. We demonstrate pyDSM's versatility by implementing MUnCH, a recently published algorithm that allows estimation of the statistical uncertainty in the autocorrelations for any time series data, properly accounting for the correlation in the data. An on-the-fly version of MUnCH is applied to calculate the uncertainty in the relaxation modulus and the chain center-of-mass mean squared displacement. Moreover, the uncertainty quantification in the relaxation modulus allows propagation of error through a multi-mode Maxwell fit to determine the uncertainty in the dynamic modulus. Lastly, as an example of a novel application of the pyDSM code we calculate the re-entanglement dynamics after cessation of flow which are fundamental to the weld quality in fused-filament 3D printing.
Program Title: pyDSM – Discrete Slip-link Model (DSM) in Python for Fast Quantitative Rheology Predictions of Entangled Polymers
CPC Library link to program files:https://doi.org/10.17632/v828b9cjp9.1
Developer's repository link:https://github.com/jgethier/pyDSM
Licensing provisions: GPLv3
Programming language: Python
Nature of problem: Predicting stress relaxation in entangled polymer systems is crucial for understanding the macroscopic properties of the material. Many existing models do not capture the physics of polymer entanglements in linear, star-branched, and other entangled polymeric systems. The discrete slip-link model has been shown to predict quantitatively the rheological behavior of polymers, but only one version of the model is publicly available using CUDA C++ programming.
Solution method: We implement a less-detailed version of the discrete-slip link model to predict the linear and nonlinear rheology of entangled polymers in Python. Uncertainty in the predictions is implemented with the MUnCH algorithm. We implement GPU-based calculations for fast and accurate predictions of the linear and nonlinear rheology behavior, as well as re-entanglement dynamics after cessation of flow. |
| ArticleNumber | 108786 |
| Author | Córdoba, Andrés Schieber, Jay D. Ethier, Jeffrey G. |
| Author_xml | – sequence: 1 givenname: Jeffrey G. orcidid: 0000-0001-7987-4058 surname: Ethier fullname: Ethier, Jeffrey G. email: jgethier@gmail.com organization: Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, 45433, USA – sequence: 2 givenname: Andrés surname: Córdoba fullname: Córdoba, Andrés email: andcorduri@gmail.com organization: Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL, 60637, USA – sequence: 3 givenname: Jay D. surname: Schieber fullname: Schieber, Jay D. organization: Center for Molecular Study of Condensed Soft Matter, Department of Chemical and Biological Engineering, Department of Physics, and Department of Applied Mathematics, Illinois Institute of Technology, 3440 S. Dearborn Street, Chicago, IL, 60616, USA |
| BookMark | eNp9kM1KAzEURoNUsK0-gLt5ganJzGSm0ZVUrULFgnYd8nOnTZkmQxKEefum1JWLri4XvnP57pmgkXUWELoneEYwqR_2M9WrWYGLMu3zZl5foTGZNywvWFWN0BhjgvOqpvQGTULYY4ybhpVjtOqHl-_Px2y53uRCKejAiwg68ztwndsOWe9BGxWNsyFrnc_ARmG3XYr0rhsO4ENmbLYe4s7ZW3Tdii7A3d-cos3b68_iPV99LT8Wz6tcFayJeYFJQ0gtZc0YbamsKMgyFQQGuNKaykKJirVaY6JTqpKgNJRUaqmorou2nKLmfFd5F4KHlisTxalj9MJ0nGB-ksL3PEnhJyn8LCWR5B_Ze3MQfrjIPJ0ZSC_9GvA8KANWJS8eVOTamQv0EQsOfXM |
| CitedBy_id | crossref_primary_10_1021_acsmacrolett_4c00809 crossref_primary_10_1122_8_0000809 |
| Cites_doi | 10.1016/j.cpc.2022.108567 10.1063/1.4730170 10.1039/C5ME00009B 10.1122/1.5124383 10.1039/F29787401802 10.1146/annurev-chembioeng-060713-040252 10.1122/8.0000040 10.1063/1.1553764 10.3390/polym5020643 10.1007/s00397-015-0836-0 10.1515/JNETDY.2003.010 10.1039/F29787401818 10.1122/1.4788909 10.1122/1.1530155 10.1122/1.4976839 10.1088/1367-2630/16/1/015027 10.1122/1.4869252 10.1021/acs.macromol.6b00409 10.1007/s00397-011-0568-8 10.1122/1.2790460 10.1122/8.0000422 10.1002/aic.14370 10.1039/c2sm26788h 10.1039/F29787401789 10.1122/1.5033858 10.1021/ma202658h 10.1021/acs.macromol.5b02641 10.1021/ma0519056 10.1021/ma502525x 10.1063/1.3314727 10.1063/1.457480 10.3390/polym10080908 10.1007/s00397-018-1079-7 10.1021/acs.macromol.9b01161 10.1122/1.4997740 10.1103/PhysRevLett.100.188302 10.1122/8.0000110 10.1021/acs.macromol.1c00156 10.1021/ma900533s 10.1103/PhysRevE.103.022501 10.1039/F29797500038 10.1021/ma902823k 10.1007/s00397-021-01312-1 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. |
| Copyright_xml | – notice: 2023 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cpc.2023.108786 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1879-2944 |
| ExternalDocumentID | 10_1016_j_cpc_2023_108786 S0010465523001315 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO AAYFN ABBOA ABFNM ABMAC ABNEU ABQEM ABQYD ABXDB ABYKQ ACDAQ ACFVG ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADECG ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HME HMV HVGLF HZ~ IHE IMUCA J1W KOM LG9 LZ4 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCB SDF SDG SES SEW SHN SPC SPCBC SPD SPG SSE SSK SSQ SSV SSZ T5K TN5 UPT VH1 WUQ ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c297t-2017116bb6995f5b45eb3001e9e04dd5b2ca49fdd01d6bb4becde35bdbc5d62f3 |
| IEDL.DBID | .~1 |
| ISSN | 0010-4655 |
| IngestDate | Thu Apr 24 23:08:23 EDT 2025 Wed Oct 01 05:27:44 EDT 2025 Fri Feb 23 02:37:26 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Polymer entanglements Stress relaxation Rheology Slip-link model 3D printing |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c297t-2017116bb6995f5b45eb3001e9e04dd5b2ca49fdd01d6bb4becde35bdbc5d62f3 |
| ORCID | 0000-0001-7987-4058 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_cpc_2023_108786 crossref_primary_10_1016_j_cpc_2023_108786 elsevier_sciencedirect_doi_10_1016_j_cpc_2023_108786 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | September 2023 2023-09-00 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: September 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Computer physics communications |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | McIlroy, Olmsted (br0440) 2017; 61 Khaliullin, Schieber (br0070) 2009; 42 Dolata, Olmsted (br0450) 2022 Khaliullin, Schieber (br0250) 2010; 43 Katzarova, Andreev, Sliozberg, Mrozek, Lenhart, Andzelm, Schieber (br0260) 2014; 60 Steenbakkers, Tzoumanekas, Li, Liu, Kröger, Schieber (br0090) 2014; 16 Katzarova, Yang, Andreev, Córdoba, Schieber (br0130) 2015; 54 Schieber (br0170) 2003; 118 O'Connor, Hopkins, Robbins (br0460) 2019; 52 Andreev, Schieber (br0360) 2015; 48 Doi, Edwards (br0020) 1978; 74 Khaliullin, Schieber (br0160) 2008; 100 Boudaghi, Nafar Seddashti, Edwards, Khomami (br0470) 2022; 66 Schieber, Andreev (br0110) 2014; 5 Andreev, Khaliullin, Steenbakkers, Schieber (br0310) 2013; 57 Kröger, Dietz, Hoy, Luap (br0420) 2023; 283 Schieber, Indei, Steenbakkers (br0140) 2013; 5 Ramírez, Sukumaran, Vorselaars, Likhtman (br0390) 2010; 133 Doi, Edwards (br0040) 1979; 75 Shivokhin, Narita, Talini, Habicht, Seiffert, Indei, Schieber (br0280) 2017; 61 Schieber (br0200) 2003; 28 Doi, Edwards (br0010) 1978; 74 Costanzo, Huang, Ianniruberto, Marrucci, Hassager, Vlassopoulos (br0410) 2016; 49 Schieber, Nair, Kitkrailard (br0320) 2007; 51 Steenbakkers, Schieber (br0190) 2012; 137 Córdoba, Schieber (br0430) 2022 Steenbakkers, Andreev, Schieber (br0100) 2021; 103 Córdoba, Schieber (br0370) 2022; 61 Andreev, Rutledge (br0340) 2020; 64 Jensen, Khaliullin, Schieber (br0270) 2012; 51 Desai, Kang, Katzarova, Hall, Huang, Lee, Shivokhin, Chang, Venerus, Mays (br0050) 2016; 49 Schieber, Horio (br0150) 2010; 132 Becerra, Córdoba, Katzarova, Andreev, Venerus, Schieber (br0120) 2020; 64 Pilyugina, Andreev, Schieber (br0290) 2012; 45 Taletskiy, Tervoort, Schieber (br0220) 2018; 62 Andreev, Feng, Yang, Schieber (br0080) 2014; 58 Feng, Andreev, Pilyugina, Schieber (br0330) 2016; 1 Nair, Schieber (br0210) 2006; 39 Katzarova, Kashyap, Schieber, Venerus (br0240) 2018; 57 Lam, Pitrou, Seibert (br0400) 2015 Doi, Edwards (br0030) 1978; 74 Flyvbjerg, Petersen (br0380) 1989; 91 Andreev, Nicholson, Kotula, Moore, Den Doelder, Rutledge (br0350) 2020; 64 Schieber, Neergaard, Gupta (br0180) 2003; 47 Becerra, Córdoba, Schieber (br0300) 2021; 54 Schieber, Córdoba (br0060) 2021; 33 Schieber, Venerus, Gupta (br0480) 2012; 8 Valadez-Pérez, Taletskiy, Schieber, Shivokhin (br0230) 2018; 10 Doi (10.1016/j.cpc.2023.108786_br0020) 1978; 74 Schieber (10.1016/j.cpc.2023.108786_br0480) 2012; 8 Costanzo (10.1016/j.cpc.2023.108786_br0410) 2016; 49 Katzarova (10.1016/j.cpc.2023.108786_br0130) 2015; 54 Katzarova (10.1016/j.cpc.2023.108786_br0260) 2014; 60 Schieber (10.1016/j.cpc.2023.108786_br0200) 2003; 28 Doi (10.1016/j.cpc.2023.108786_br0030) 1978; 74 Katzarova (10.1016/j.cpc.2023.108786_br0240) 2018; 57 Andreev (10.1016/j.cpc.2023.108786_br0350) 2020; 64 Schieber (10.1016/j.cpc.2023.108786_br0060) 2021; 33 Taletskiy (10.1016/j.cpc.2023.108786_br0220) 2018; 62 Ramírez (10.1016/j.cpc.2023.108786_br0390) 2010; 133 Becerra (10.1016/j.cpc.2023.108786_br0300) 2021; 54 Khaliullin (10.1016/j.cpc.2023.108786_br0160) 2008; 100 Andreev (10.1016/j.cpc.2023.108786_br0360) 2015; 48 Schieber (10.1016/j.cpc.2023.108786_br0150) 2010; 132 Jensen (10.1016/j.cpc.2023.108786_br0270) 2012; 51 Pilyugina (10.1016/j.cpc.2023.108786_br0290) 2012; 45 Dolata (10.1016/j.cpc.2023.108786_br0450) O'Connor (10.1016/j.cpc.2023.108786_br0460) 2019; 52 Schieber (10.1016/j.cpc.2023.108786_br0140) 2013; 5 Kröger (10.1016/j.cpc.2023.108786_br0420) 2023; 283 Boudaghi (10.1016/j.cpc.2023.108786_br0470) 2022; 66 Córdoba (10.1016/j.cpc.2023.108786_br0430) Andreev (10.1016/j.cpc.2023.108786_br0080) 2014; 58 Schieber (10.1016/j.cpc.2023.108786_br0180) 2003; 47 Schieber (10.1016/j.cpc.2023.108786_br0110) 2014; 5 Becerra (10.1016/j.cpc.2023.108786_br0120) 2020; 64 Feng (10.1016/j.cpc.2023.108786_br0330) 2016; 1 Valadez-Pérez (10.1016/j.cpc.2023.108786_br0230) 2018; 10 Doi (10.1016/j.cpc.2023.108786_br0010) 1978; 74 Schieber (10.1016/j.cpc.2023.108786_br0320) 2007; 51 Andreev (10.1016/j.cpc.2023.108786_br0310) 2013; 57 Doi (10.1016/j.cpc.2023.108786_br0040) 1979; 75 Steenbakkers (10.1016/j.cpc.2023.108786_br0190) 2012; 137 Khaliullin (10.1016/j.cpc.2023.108786_br0250) 2010; 43 Steenbakkers (10.1016/j.cpc.2023.108786_br0090) 2014; 16 Desai (10.1016/j.cpc.2023.108786_br0050) 2016; 49 Steenbakkers (10.1016/j.cpc.2023.108786_br0100) 2021; 103 McIlroy (10.1016/j.cpc.2023.108786_br0440) 2017; 61 Nair (10.1016/j.cpc.2023.108786_br0210) 2006; 39 Andreev (10.1016/j.cpc.2023.108786_br0340) 2020; 64 Córdoba (10.1016/j.cpc.2023.108786_br0370) 2022; 61 Flyvbjerg (10.1016/j.cpc.2023.108786_br0380) 1989; 91 Lam (10.1016/j.cpc.2023.108786_br0400) 2015 Schieber (10.1016/j.cpc.2023.108786_br0170) 2003; 118 Khaliullin (10.1016/j.cpc.2023.108786_br0070) 2009; 42 Shivokhin (10.1016/j.cpc.2023.108786_br0280) 2017; 61 |
| References_xml | – volume: 39 start-page: 3386 year: 2006 ident: br0210 publication-title: Macromolecules – volume: 48 start-page: 1606 year: 2015 ident: br0360 publication-title: Macromolecules – volume: 283 year: 2023 ident: br0420 publication-title: Comput. Phys. Commun. – volume: 51 start-page: 21 year: 2012 ident: br0270 publication-title: Rheol. Acta – volume: 74 start-page: 1802 year: 1978 ident: br0020 publication-title: J. Chem. Soc., Faraday Trans. II, Mol. Chem. Phys. – volume: 64 start-page: 1379 year: 2020 ident: br0350 publication-title: J. Rheol. – volume: 75 start-page: 38 year: 1979 ident: br0040 publication-title: J. Chem. Soc., Faraday Trans. II, Mol. Chem. Phys. – volume: 91 start-page: 461 year: 1989 ident: br0380 publication-title: J. Chem. Phys. – volume: 74 start-page: 1789 year: 1978 ident: br0010 publication-title: J. Chem. Soc., Faraday Trans. II, Mol. Chem. Phys. – volume: 5 start-page: 643 year: 2013 ident: br0140 publication-title: Polymers – year: 2022 ident: br0450 – volume: 47 start-page: 213 year: 2003 ident: br0180 publication-title: J. Rheol. – volume: 57 start-page: 535 year: 2013 ident: br0310 publication-title: J. Rheol. – volume: 118 start-page: 5162 year: 2003 ident: br0170 publication-title: J. Chem. Phys. – volume: 54 start-page: 169 year: 2015 ident: br0130 publication-title: Rheol. Acta – volume: 132 year: 2010 ident: br0150 publication-title: J. Chem. Phys. – volume: 1 start-page: 99 year: 2016 ident: br0330 publication-title: Mol. Syst. Des. Eng. – year: 2022 ident: br0430 – volume: 58 start-page: 723 year: 2014 ident: br0080 publication-title: J. Rheol. – volume: 54 start-page: 8033 year: 2021 ident: br0300 publication-title: Macromolecules – start-page: 1 year: 2015 end-page: 6 ident: br0400 publication-title: Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC – volume: 8 year: 2012 ident: br0480 publication-title: Soft Matter – volume: 52 start-page: 8540 year: 2019 ident: br0460 publication-title: Macromolecules – volume: 61 start-page: 1231 year: 2017 ident: br0280 publication-title: J. Rheol. – volume: 49 start-page: 3925 year: 2016 ident: br0410 publication-title: Macromolecules – volume: 103 year: 2021 ident: br0100 publication-title: Phys. Rev. E – volume: 10 start-page: 908 year: 2018 ident: br0230 publication-title: Polymers – volume: 42 start-page: 7504 year: 2009 ident: br0070 publication-title: Macromolecules – volume: 57 start-page: 327 year: 2018 ident: br0240 publication-title: Rheol. Acta – volume: 100 year: 2008 ident: br0160 publication-title: Phys. Rev. Lett. – volume: 137 year: 2012 ident: br0190 publication-title: J. Chem. Phys. – volume: 62 start-page: 1331 year: 2018 ident: br0220 publication-title: J. Rheol. – volume: 33 year: 2021 ident: br0060 publication-title: Phys. Fluids – volume: 64 start-page: 1035 year: 2020 ident: br0120 publication-title: J. Rheol. – volume: 74 start-page: 1818 year: 1978 ident: br0030 publication-title: J. Chem. Soc., Faraday Trans. II, Mol. Chem. Phys. – volume: 16 year: 2014 ident: br0090 publication-title: New J. Phys. – volume: 61 start-page: 379 year: 2017 ident: br0440 publication-title: J. Rheol. – volume: 60 start-page: 1372 year: 2014 ident: br0260 publication-title: AIChE J. – volume: 66 start-page: 551 year: 2022 ident: br0470 publication-title: J. Rheol. – volume: 133 year: 2010 ident: br0390 publication-title: J. Chem. Phys. – volume: 49 start-page: 4964 year: 2016 ident: br0050 publication-title: Macromolecules – volume: 51 start-page: 1111 year: 2007 ident: br0320 publication-title: J. Rheol. – volume: 5 start-page: 367 year: 2014 ident: br0110 publication-title: Annu. Rev. Chem. Biomol. Eng. – volume: 64 start-page: 213 year: 2020 ident: br0340 publication-title: J. Rheol. – volume: 61 start-page: 49 year: 2022 ident: br0370 publication-title: Rheol. Acta – volume: 28 start-page: 179 year: 2003 ident: br0200 publication-title: J. Non-Equilib. Thermodyn. – volume: 45 start-page: 5728 year: 2012 ident: br0290 publication-title: Macromolecules – volume: 43 start-page: 6202 year: 2010 ident: br0250 publication-title: Macromolecules – volume: 33 year: 2021 ident: 10.1016/j.cpc.2023.108786_br0060 publication-title: Phys. Fluids – volume: 283 year: 2023 ident: 10.1016/j.cpc.2023.108786_br0420 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2022.108567 – volume: 137 year: 2012 ident: 10.1016/j.cpc.2023.108786_br0190 publication-title: J. Chem. Phys. doi: 10.1063/1.4730170 – volume: 1 start-page: 99 year: 2016 ident: 10.1016/j.cpc.2023.108786_br0330 publication-title: Mol. Syst. Des. Eng. doi: 10.1039/C5ME00009B – volume: 64 start-page: 213 year: 2020 ident: 10.1016/j.cpc.2023.108786_br0340 publication-title: J. Rheol. doi: 10.1122/1.5124383 – volume: 74 start-page: 1802 year: 1978 ident: 10.1016/j.cpc.2023.108786_br0020 publication-title: J. Chem. Soc., Faraday Trans. II, Mol. Chem. Phys. doi: 10.1039/F29787401802 – volume: 5 start-page: 367 year: 2014 ident: 10.1016/j.cpc.2023.108786_br0110 publication-title: Annu. Rev. Chem. Biomol. Eng. doi: 10.1146/annurev-chembioeng-060713-040252 – volume: 64 start-page: 1035 year: 2020 ident: 10.1016/j.cpc.2023.108786_br0120 publication-title: J. Rheol. doi: 10.1122/8.0000040 – volume: 118 start-page: 5162 year: 2003 ident: 10.1016/j.cpc.2023.108786_br0170 publication-title: J. Chem. Phys. doi: 10.1063/1.1553764 – volume: 5 start-page: 643 year: 2013 ident: 10.1016/j.cpc.2023.108786_br0140 publication-title: Polymers doi: 10.3390/polym5020643 – volume: 54 start-page: 169 year: 2015 ident: 10.1016/j.cpc.2023.108786_br0130 publication-title: Rheol. Acta doi: 10.1007/s00397-015-0836-0 – volume: 28 start-page: 179 year: 2003 ident: 10.1016/j.cpc.2023.108786_br0200 publication-title: J. Non-Equilib. Thermodyn. doi: 10.1515/JNETDY.2003.010 – volume: 74 start-page: 1818 year: 1978 ident: 10.1016/j.cpc.2023.108786_br0030 publication-title: J. Chem. Soc., Faraday Trans. II, Mol. Chem. Phys. doi: 10.1039/F29787401818 – volume: 57 start-page: 535 year: 2013 ident: 10.1016/j.cpc.2023.108786_br0310 publication-title: J. Rheol. doi: 10.1122/1.4788909 – volume: 47 start-page: 213 year: 2003 ident: 10.1016/j.cpc.2023.108786_br0180 publication-title: J. Rheol. doi: 10.1122/1.1530155 – volume: 61 start-page: 379 year: 2017 ident: 10.1016/j.cpc.2023.108786_br0440 publication-title: J. Rheol. doi: 10.1122/1.4976839 – volume: 16 year: 2014 ident: 10.1016/j.cpc.2023.108786_br0090 publication-title: New J. Phys. doi: 10.1088/1367-2630/16/1/015027 – volume: 58 start-page: 723 year: 2014 ident: 10.1016/j.cpc.2023.108786_br0080 publication-title: J. Rheol. doi: 10.1122/1.4869252 – volume: 49 start-page: 3925 year: 2016 ident: 10.1016/j.cpc.2023.108786_br0410 publication-title: Macromolecules doi: 10.1021/acs.macromol.6b00409 – volume: 51 start-page: 21 year: 2012 ident: 10.1016/j.cpc.2023.108786_br0270 publication-title: Rheol. Acta doi: 10.1007/s00397-011-0568-8 – volume: 51 start-page: 1111 year: 2007 ident: 10.1016/j.cpc.2023.108786_br0320 publication-title: J. Rheol. doi: 10.1122/1.2790460 – volume: 66 start-page: 551 year: 2022 ident: 10.1016/j.cpc.2023.108786_br0470 publication-title: J. Rheol. doi: 10.1122/8.0000422 – volume: 60 start-page: 1372 year: 2014 ident: 10.1016/j.cpc.2023.108786_br0260 publication-title: AIChE J. doi: 10.1002/aic.14370 – volume: 8 year: 2012 ident: 10.1016/j.cpc.2023.108786_br0480 publication-title: Soft Matter doi: 10.1039/c2sm26788h – volume: 74 start-page: 1789 year: 1978 ident: 10.1016/j.cpc.2023.108786_br0010 publication-title: J. Chem. Soc., Faraday Trans. II, Mol. Chem. Phys. doi: 10.1039/F29787401789 – volume: 62 start-page: 1331 year: 2018 ident: 10.1016/j.cpc.2023.108786_br0220 publication-title: J. Rheol. doi: 10.1122/1.5033858 – volume: 45 start-page: 5728 year: 2012 ident: 10.1016/j.cpc.2023.108786_br0290 publication-title: Macromolecules doi: 10.1021/ma202658h – volume: 133 year: 2010 ident: 10.1016/j.cpc.2023.108786_br0390 publication-title: J. Chem. Phys. – start-page: 1 year: 2015 ident: 10.1016/j.cpc.2023.108786_br0400 – volume: 49 start-page: 4964 year: 2016 ident: 10.1016/j.cpc.2023.108786_br0050 publication-title: Macromolecules doi: 10.1021/acs.macromol.5b02641 – volume: 39 start-page: 3386 year: 2006 ident: 10.1016/j.cpc.2023.108786_br0210 publication-title: Macromolecules doi: 10.1021/ma0519056 – volume: 48 start-page: 1606 year: 2015 ident: 10.1016/j.cpc.2023.108786_br0360 publication-title: Macromolecules doi: 10.1021/ma502525x – ident: 10.1016/j.cpc.2023.108786_br0450 – volume: 132 year: 2010 ident: 10.1016/j.cpc.2023.108786_br0150 publication-title: J. Chem. Phys. doi: 10.1063/1.3314727 – volume: 91 start-page: 461 year: 1989 ident: 10.1016/j.cpc.2023.108786_br0380 publication-title: J. Chem. Phys. doi: 10.1063/1.457480 – ident: 10.1016/j.cpc.2023.108786_br0430 – volume: 10 start-page: 908 year: 2018 ident: 10.1016/j.cpc.2023.108786_br0230 publication-title: Polymers doi: 10.3390/polym10080908 – volume: 57 start-page: 327 year: 2018 ident: 10.1016/j.cpc.2023.108786_br0240 publication-title: Rheol. Acta doi: 10.1007/s00397-018-1079-7 – volume: 52 start-page: 8540 year: 2019 ident: 10.1016/j.cpc.2023.108786_br0460 publication-title: Macromolecules doi: 10.1021/acs.macromol.9b01161 – volume: 61 start-page: 1231 year: 2017 ident: 10.1016/j.cpc.2023.108786_br0280 publication-title: J. Rheol. doi: 10.1122/1.4997740 – volume: 100 year: 2008 ident: 10.1016/j.cpc.2023.108786_br0160 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.188302 – volume: 64 start-page: 1379 year: 2020 ident: 10.1016/j.cpc.2023.108786_br0350 publication-title: J. Rheol. doi: 10.1122/8.0000110 – volume: 54 start-page: 8033 year: 2021 ident: 10.1016/j.cpc.2023.108786_br0300 publication-title: Macromolecules doi: 10.1021/acs.macromol.1c00156 – volume: 42 start-page: 7504 year: 2009 ident: 10.1016/j.cpc.2023.108786_br0070 publication-title: Macromolecules doi: 10.1021/ma900533s – volume: 103 year: 2021 ident: 10.1016/j.cpc.2023.108786_br0100 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.103.022501 – volume: 75 start-page: 38 year: 1979 ident: 10.1016/j.cpc.2023.108786_br0040 publication-title: J. Chem. Soc., Faraday Trans. II, Mol. Chem. Phys. doi: 10.1039/F29797500038 – volume: 43 start-page: 6202 year: 2010 ident: 10.1016/j.cpc.2023.108786_br0250 publication-title: Macromolecules doi: 10.1021/ma902823k – volume: 61 start-page: 49 year: 2022 ident: 10.1016/j.cpc.2023.108786_br0370 publication-title: Rheol. Acta doi: 10.1007/s00397-021-01312-1 |
| SSID | ssj0007793 |
| Score | 2.4323895 |
| Snippet | Prior studies have extensively shown that the discrete slip-link model (DSM) accurately predicts the linear and nonlinear rheology of various entangled polymer... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 108786 |
| SubjectTerms | 3D printing Polymer entanglements Rheology Slip-link model Stress relaxation |
| Title | pyDSM: GPU-accelerated rheology predictions for entangled polymers in Python |
| URI | https://dx.doi.org/10.1016/j.cpc.2023.108786 |
| Volume | 290 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007793 issn: 0010-4655 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect [Accès UNIL ; CHUV ; HEP Vaud ; Sites BCUL] customDbUrl: eissn: 1879-2944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007793 issn: 0010-4655 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-2944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007793 issn: 0010-4655 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-2944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007793 issn: 0010-4655 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007793 issn: 0010-4655 databaseCode: AKRWK dateStart: 19690701 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfAiPrE-yh48CbFJuo_GW6nWam0parG3kJ1NtFLSUOshF3-7O3n4APXgKSTMQDI7O7vZ-eYbQo4dCEFz0BYAluTIgJs5l9HdKScKPEcJgcXJg6Hojdn1hE8qpFPWwiCssoj9eUzPonXxpFFYs5FMp1jji_lJjseaSBqDheaMSexicPr2CfOQsiDeNfEGpcvMZobxggRZDN0mIu0kllP_tDZ9WW-6G2S92CjSdv4um6QSxltkNQNswss2uUnS87vBGb0cja0AwCweyPmg6eIpa9Wb0mSBKZjMq6jZmFLEiMePMyOSzGcpnlbTaUxHKXIH7JBx9-K-07OKzggWuJ5cGtd2pOMIpYTn8Ygrxs0_sfnE0AttpjVXLgTMi7S2HW2kmBkoHTa50gq4Fm7U3CXVeB6He4Q64KkgagkbdIs1A6WAyUgAtARnWtq8RuzSJj4UtOHYvWLml_iwZ9-Y0Ucz-rkZa-TkQyXJOTP-Emalof1vA--bmP672v7_1A7IGt7lILFDUl0uXsMjs6tYqnrmNnWy0r7q94Z47d8-9N8BsYnNyQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7GEIIL4inGMwdOSGN95LFyQ4MxYJsmsUm7VY3TwtDUVWMceuG3E_fBQwIOXFtHap3EduLPnwk5tSEEzUHXAbAkRwbc7LmM7k7ZUeDZSggsTu71RWfE7sZ8XCGtshYGYZWF7c9tematiyeNQpuNZDLBGl_MT3K81kTSGL5Elhl3JJ7Azt8-cR5SFsy7xuCgeJnazEBekCCNoeMi1E5iPfVPzumLw2lvkPUiUqSX-cdskkoYb5GVDLEJL9ukm6RXD70LejMY1QMA4z2Q9EHT-VPWqzelyRxzMNmyoiYypQgSjx-nRiSZTVO8rqaTmA5SJA_YIaP29bDVqRetEergeHJh1rYtbVsoJTyPR1wxbg7F5hdDL7SY1lw5EDAv0tqytZFiZqZ06HKlFXAtnMjdJdV4Fod7hNrgqSBqCgt0k7mBUsBkJACagjMtLV4jVqkTHwrecGxfMfVLgNizb9Tooxr9XI01cvYxJMlJM_4SZqWi_W8z7xuj_vuw_f8NOyGrnWGv63dv-_cHZA3f5IixQ1JdzF_DIxNiLNRxtoTeATdxzbs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=pyDSM%3A+GPU-accelerated+rheology+predictions+for+entangled+polymers+in+Python&rft.jtitle=Computer+physics+communications&rft.au=Ethier%2C+Jeffrey+G.&rft.au=C%C3%B3rdoba%2C+Andr%C3%A9s&rft.au=Schieber%2C+Jay+D.&rft.date=2023-09-01&rft.issn=0010-4655&rft.volume=290&rft.spage=108786&rft_id=info:doi/10.1016%2Fj.cpc.2023.108786&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cpc_2023_108786 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon |