Variable-order fractional discrete-time recurrent neural networks
Discrete fractional calculus is suggested to describe neural networks with memory effects. Fractional discrete-time recurrent neural network is proposed on an isolated time scale. Stability results are investigated via Banach fixed point technique. The attractive solution space is constructed and st...
        Saved in:
      
    
          | Published in | Journal of computational and applied mathematics Vol. 370; p. 112633 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        15.05.2020
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0377-0427 1879-1778  | 
| DOI | 10.1016/j.cam.2019.112633 | 
Cover
| Abstract | Discrete fractional calculus is suggested to describe neural networks with memory effects. Fractional discrete-time recurrent neural network is proposed on an isolated time scale. Stability results are investigated via Banach fixed point technique. The attractive solution space is constructed and stability conditions are provided. Furthermore, short memory and variable-order fractional neural networks are given according to the stability conditions. Two and three dimensional numerical examples are used to demonstrate the theoretical results.
•Variable-order fractional discrete-time neural network is proposed.•Stability conditions are provided by fixed point theorems.•Numerical examples are given to illustrate the theoretical results. | 
    
|---|---|
| AbstractList | Discrete fractional calculus is suggested to describe neural networks with memory effects. Fractional discrete-time recurrent neural network is proposed on an isolated time scale. Stability results are investigated via Banach fixed point technique. The attractive solution space is constructed and stability conditions are provided. Furthermore, short memory and variable-order fractional neural networks are given according to the stability conditions. Two and three dimensional numerical examples are used to demonstrate the theoretical results.
•Variable-order fractional discrete-time neural network is proposed.•Stability conditions are provided by fixed point theorems.•Numerical examples are given to illustrate the theoretical results. | 
    
| ArticleNumber | 112633 | 
    
| Author | Mo, Zhi-Wen Huang, Lan-Lan Wu, Guo-Cheng Park, Ju H.  | 
    
| Author_xml | – sequence: 1 givenname: Lan-Lan surname: Huang fullname: Huang, Lan-Lan email: mathlan@126.com organization: School of Mathematical Science, Sichuan Normal University, Chengdu 610066, Sichuan Province, PR China – sequence: 2 givenname: Ju H. surname: Park fullname: Park, Ju H. email: jessie@ynu.ac.kr organization: Department of Electrical Engineering, Yeungnam University, 280 Daehak–Ro, Kyongsan 38541, Republic of Korea – sequence: 3 givenname: Guo-Cheng orcidid: 0000-0002-1946-6770 surname: Wu fullname: Wu, Guo-Cheng email: wuguocheng@gmail.com organization: Data Recovery Key Laboratory of Sichuan Province, College of Mathematics and Information Science, Neijiang Normal University, Neijiang 641100, PR China – sequence: 4 givenname: Zhi-Wen surname: Mo fullname: Mo, Zhi-Wen organization: School of Mathematical Science, Sichuan Normal University, Chengdu 610066, Sichuan Province, PR China  | 
    
| BookMark | eNp9kMFKw0AQhhepYFt9AG95gcSZZJNN8FSKWqHgRb0um90JbE0Tmd0qvr0p9eShc5nD8A3__y3EbBgHEuIWIUPA6m6XWbPPcsAmQ8yrorgQc6xVk6JS9UzMoVAqBZmrK7EIYQcAVYNyLlbvhr1pe0pHdsRJx8ZGPw6mT5wPlilSGv2eEiZ7YKYhJgMdeDoPFL9H_gjX4rIzfaCbv70Ub48Pr-tNun15el6vtqnNGxVTtGCpkFULFqCWuZHToFMGpCqNI1u2pWxV5YysCsK6cw6b2jZll1MNqimWQp3-Wh5DYOq09dEcs0Y2vtcI-mhC7_RkQh9N6JOJicR_5Cf7veGfs8z9iaGp0pcn1sF6Giw5P5mI2o3-DP0LDbh40A | 
    
| CitedBy_id | crossref_primary_10_1016_j_chaos_2021_111277 crossref_primary_10_1016_j_neucom_2021_08_123 crossref_primary_10_1140_epjp_s13360_022_03197_2 crossref_primary_10_1016_j_amc_2021_126045 crossref_primary_10_1016_j_jfranklin_2022_04_036 crossref_primary_10_1063_5_0043555 crossref_primary_10_1515_ijnsns_2021_0005 crossref_primary_10_1016_j_physd_2024_134279 crossref_primary_10_1007_s13540_022_00051_1 crossref_primary_10_1002_mma_9228 crossref_primary_10_1007_s13540_024_00350_9 crossref_primary_10_1007_s13540_024_00295_z crossref_primary_10_1140_epjs_s11734_022_00442_8 crossref_primary_10_1016_j_amc_2024_128872 crossref_primary_10_1142_S0218348X21400387 crossref_primary_10_1007_s41478_023_00631_1 crossref_primary_10_1016_j_aej_2023_05_078 crossref_primary_10_1016_j_cjph_2024_03_042 crossref_primary_10_1142_S0218348X21400302 crossref_primary_10_1515_phys_2023_0135 crossref_primary_10_1016_j_engappai_2021_104594 crossref_primary_10_1002_asjc_3564 crossref_primary_10_1007_s11071_024_09916_x crossref_primary_10_1140_epjp_s13360_022_02472_6 crossref_primary_10_1155_2020_3902931 crossref_primary_10_1016_j_amc_2020_125753 crossref_primary_10_3390_math11204332 crossref_primary_10_1007_s00202_021_01438_8 crossref_primary_10_1016_j_amc_2022_127417 crossref_primary_10_3390_fractalfract7060436 crossref_primary_10_1016_j_amc_2020_125759 crossref_primary_10_1016_j_jfranklin_2021_02_003 crossref_primary_10_1016_j_fss_2023_02_016 crossref_primary_10_1016_j_fss_2025_109336 crossref_primary_10_1063_5_0098375 crossref_primary_10_1016_j_ijleo_2020_164507 crossref_primary_10_1515_jncds_2023_0113 crossref_primary_10_3390_e22050566 crossref_primary_10_1142_S0218348X21020035 crossref_primary_10_1016_j_amc_2021_126459 crossref_primary_10_1016_j_aej_2021_04_094 crossref_primary_10_1016_j_amc_2023_127986 crossref_primary_10_1016_j_neunet_2023_08_041 crossref_primary_10_1016_j_chaos_2021_111536 crossref_primary_10_1142_S0218127424500858 crossref_primary_10_3390_axioms13080570 crossref_primary_10_1142_S0218348X21400375 crossref_primary_10_1140_epjs_s11734_022_00465_1 crossref_primary_10_3846_mma_2025_20017 crossref_primary_10_1016_j_chaos_2020_110430 crossref_primary_10_1016_j_cjph_2024_03_024 crossref_primary_10_1155_2022_8249215 crossref_primary_10_3390_fractalfract7050349 crossref_primary_10_1016_j_amc_2020_125188 crossref_primary_10_3390_fractalfract7010082 crossref_primary_10_3390_fractalfract8010069 crossref_primary_10_1140_epjs_s11734_024_01442_6 crossref_primary_10_3390_fractalfract9010055 crossref_primary_10_1016_j_amc_2022_127450 crossref_primary_10_1007_s00009_021_01964_6 crossref_primary_10_1140_epjs_s11734_022_00451_7 crossref_primary_10_1140_epjs_s11734_021_00320_9 crossref_primary_10_1155_2021_4562392 crossref_primary_10_1109_TNNLS_2023_3241070 crossref_primary_10_2989_16073606_2025_2457686 crossref_primary_10_3934_mbe_2021093 crossref_primary_10_1002_mma_8342 crossref_primary_10_1140_epjp_s13360_022_02921_2 crossref_primary_10_1016_j_cam_2023_115091 crossref_primary_10_3934_math_2021331 crossref_primary_10_1007_s11071_021_06451_x crossref_primary_10_1155_2020_8845867 crossref_primary_10_1016_j_neucom_2023_126961 crossref_primary_10_1007_s11071_021_07028_4 crossref_primary_10_3390_fractalfract6020119 crossref_primary_10_1007_s10489_025_06281_z crossref_primary_10_1140_epjp_s13360_022_03154_z crossref_primary_10_3390_fractalfract7080616 crossref_primary_10_1142_S0218348X21400351 crossref_primary_10_1063_5_0030973 crossref_primary_10_1088_1674_1056_ad1a93 crossref_primary_10_1038_s41598_023_45227_8 crossref_primary_10_1016_j_heliyon_2024_e40659 crossref_primary_10_1016_j_amc_2023_128095 crossref_primary_10_1515_fca_2021_0083 crossref_primary_10_1007_s12559_020_09782_w crossref_primary_10_1007_s12190_024_02012_8 crossref_primary_10_1007_s00521_022_07414_y crossref_primary_10_1016_j_amc_2020_125278 crossref_primary_10_1016_j_cjph_2024_02_012 crossref_primary_10_1007_s11071_023_08311_2 crossref_primary_10_1016_j_amc_2020_125718 crossref_primary_10_1155_2024_6680399 crossref_primary_10_1515_phys_2024_0066 crossref_primary_10_1016_j_matcom_2024_07_017 crossref_primary_10_1080_17455030_2023_2187241 crossref_primary_10_1016_j_amc_2023_127959 crossref_primary_10_1016_j_matcom_2022_07_019 crossref_primary_10_1007_s13370_022_01020_w crossref_primary_10_1016_j_rinp_2023_107023 crossref_primary_10_1631_FITEE_1900709 crossref_primary_10_1016_j_amc_2022_127353 crossref_primary_10_1016_j_amc_2024_128888 crossref_primary_10_1007_s40096_021_00442_0 crossref_primary_10_1142_S0218348X22400266 crossref_primary_10_1016_j_amc_2024_129176 crossref_primary_10_1016_j_amc_2021_126538 crossref_primary_10_1016_j_neucom_2022_09_035 crossref_primary_10_3934_era_2022155 crossref_primary_10_1016_j_aej_2022_03_062 crossref_primary_10_1016_j_amc_2021_126378 crossref_primary_10_1016_j_cam_2022_114939 crossref_primary_10_1140_epjs_s11734_022_00449_1 crossref_primary_10_1142_S021812742550049X crossref_primary_10_1142_S0218348X21400296 crossref_primary_10_1016_j_ins_2023_03_028 crossref_primary_10_1007_s11071_020_05572_z crossref_primary_10_1016_j_amc_2023_128111 crossref_primary_10_1016_j_amc_2023_128110 crossref_primary_10_1155_2021_5526082 crossref_primary_10_1016_j_cjph_2024_07_043 crossref_primary_10_3390_fractalfract6070388 crossref_primary_10_1155_2021_8734535 crossref_primary_10_3390_fractalfract7020118 crossref_primary_10_1007_s11071_022_08141_8 crossref_primary_10_1016_j_amc_2020_125498 crossref_primary_10_1016_j_physa_2020_124993 crossref_primary_10_1007_s11071_022_08086_y crossref_primary_10_1016_j_aej_2023_06_017  | 
    
| Cites_doi | 10.1016/j.neunet.2013.11.016 10.2478/s13540-013-0039-2 10.1016/j.neucom.2012.01.011 10.1109/TNNLS.2015.2506738 10.1007/s11071-014-1375-4 10.1109/MCAS.2010.938637 10.1090/S0002-9939-08-09626-3 10.1016/j.camwa.2011.03.036 10.1007/s11071-018-4419-3 10.1016/j.sigpro.2010.05.001 10.1515/fca-2015-0040 10.1063/1.5096645 10.1016/j.jmaa.2010.02.009 10.1016/S0362-546X(01)00111-0 10.1016/j.neucom.2012.11.034 10.1109/94.326654 10.1016/j.neunet.2012.02.030 10.1016/j.nahs.2014.10.001 10.1016/j.camwa.2011.04.019 10.1007/s11071-013-1065-7 10.1515/fca-2019-0084  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2019 Elsevier B.V. | 
    
| Copyright_xml | – notice: 2019 Elsevier B.V. | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.cam.2019.112633 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Mathematics | 
    
| EISSN | 1879-1778 | 
    
| ExternalDocumentID | 10_1016_j_cam_2019_112633 S0377042719306387  | 
    
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABAOU ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE IXB J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSW T5K TN5 UPT XPP YQT ZMT ~02 ~G- 29K 5VS AAFWJ AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AEXQZ AFJKZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION D-I EFKBS EJD FGOYB G-2 HZ~ NHB R2- SEW SSZ WUQ ZY4 ~HD  | 
    
| ID | FETCH-LOGICAL-c297t-1c0ce346b0c00842a44441d7a0475adec5b54b76da463e18fdd198c95f2e80793 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0377-0427 | 
    
| IngestDate | Thu Apr 24 22:59:00 EDT 2025 Thu Oct 09 00:39:10 EDT 2025 Fri Feb 23 02:48:36 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Short memory Recurrent neural networks Fractional discrete-time systems Variable-order modeling  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c297t-1c0ce346b0c00842a44441d7a0475adec5b54b76da463e18fdd198c95f2e80793 | 
    
| ORCID | 0000-0002-1946-6770 | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_cam_2019_112633 crossref_primary_10_1016_j_cam_2019_112633 elsevier_sciencedirect_doi_10_1016_j_cam_2019_112633  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2020-05-15 | 
    
| PublicationDateYYYYMMDD | 2020-05-15 | 
    
| PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-15 day: 15  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Journal of computational and applied mathematics | 
    
| PublicationYear | 2020 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Podlubny (b12) 1999 Burton, Furumochi (b28) 2002; 11 Stamova (b7) 2014; 77 Holm (b22) 2011; 62 Cermak, Gyori, Nechvatal (b25) 2015; 18 Wu, Zeng (b9) 2017; 28 Anastassiou (b14) 2011 Burton, Furumochi (b29) 2002; 49 Yu (b32) 2013 Atici, Sengul (b21) 2010; 369 Chen, Zeng, Jiang (b6) 2014; 51 Huang, Zhao, Wang, Li (b3) 2012; 94 Abdeljawad (b13) 2011; 62 Bao, Cao, Kurths (b10) 2018; 94 Li, Gao, Cao (b11) 2019; 340 Wu, Deng, Baleanu, Zeng (b19) 2019; 29 Chen (b30) 2011; 39 Elwakil (b2) 2010; 10 Bastos, Ferreira, Torres (b16) 2011; 91 Chen, Chai, Wu, Ma, Zhai (b5) 2013; 111 Wu, Abdeljawad, Liu, Baleanu, Wu (b27) 2019; 24 Wu, Baleanu (b18) 2014; 75 Kaslik, Sivasundaram (b4) 2012; 32 Zhang, Yu, Wang (b8) 2015; 16 Westerlund, Ekstam (b1) 1994; 1 Atici, Eloe (b15) 2007; 137 Goodrich, Peterson (b17) 2015 Li, Jiang (b23) 2014; 2014 Sengul (b20) 2010 Burton, Zhang (b31) 2013; 14 Baleanu, Wu (b26) 2019 Abu-Saris, Al-Mdallal (b24) 2013; 16 Bao (10.1016/j.cam.2019.112633_b10) 2018; 94 Westerlund (10.1016/j.cam.2019.112633_b1) 1994; 1 Cermak (10.1016/j.cam.2019.112633_b25) 2015; 18 Burton (10.1016/j.cam.2019.112633_b28) 2002; 11 Elwakil (10.1016/j.cam.2019.112633_b2) 2010; 10 Burton (10.1016/j.cam.2019.112633_b29) 2002; 49 Chen (10.1016/j.cam.2019.112633_b30) 2011; 39 Wu (10.1016/j.cam.2019.112633_b9) 2017; 28 Huang (10.1016/j.cam.2019.112633_b3) 2012; 94 Chen (10.1016/j.cam.2019.112633_b5) 2013; 111 Abu-Saris (10.1016/j.cam.2019.112633_b24) 2013; 16 Wu (10.1016/j.cam.2019.112633_b18) 2014; 75 Burton (10.1016/j.cam.2019.112633_b31) 2013; 14 Anastassiou (10.1016/j.cam.2019.112633_b14) 2011 Yu (10.1016/j.cam.2019.112633_b32) 2013 Stamova (10.1016/j.cam.2019.112633_b7) 2014; 77 Atici (10.1016/j.cam.2019.112633_b15) 2007; 137 Atici (10.1016/j.cam.2019.112633_b21) 2010; 369 Wu (10.1016/j.cam.2019.112633_b27) 2019; 24 Holm (10.1016/j.cam.2019.112633_b22) 2011; 62 Goodrich (10.1016/j.cam.2019.112633_b17) 2015 Podlubny (10.1016/j.cam.2019.112633_b12) 1999 Li (10.1016/j.cam.2019.112633_b11) 2019; 340 Kaslik (10.1016/j.cam.2019.112633_b4) 2012; 32 Li (10.1016/j.cam.2019.112633_b23) 2014; 2014 Zhang (10.1016/j.cam.2019.112633_b8) 2015; 16 Wu (10.1016/j.cam.2019.112633_b19) 2019; 29 Chen (10.1016/j.cam.2019.112633_b6) 2014; 51 Abdeljawad (10.1016/j.cam.2019.112633_b13) 2011; 62 Bastos (10.1016/j.cam.2019.112633_b16) 2011; 91 Baleanu (10.1016/j.cam.2019.112633_b26) 2019 Sengul (10.1016/j.cam.2019.112633_b20) 2010  | 
    
| References_xml | – volume: 369 start-page: 1 year: 2010 end-page: 9 ident: b21 article-title: Modeling with fractional difference equations publication-title: J. Math. Anal. Appl. – volume: 51 start-page: 1 year: 2014 end-page: 8 ident: b6 article-title: Global Mittag–Leffler stability and synchronization of memristor–based fractional–order neural networks publication-title: Neural Netw. – year: 2019 ident: b26 article-title: Some further results of the Laplace transform for variable–order fractional difference equations publication-title: Fract. Calc. Appl. Anal. – volume: 28 start-page: 206 year: 2017 end-page: 217 ident: b9 article-title: Global Mittag–Leffler stabilization of fractional–order memristive neural networks publication-title: IEEE Trans. Neural Netw. Learn. – start-page: 575 year: 2011 end-page: 585 ident: b14 article-title: About discrete fractional calculus with inequalities publication-title: Intelligent Mathematics: Computational Analysis – volume: 77 start-page: 1251 year: 2014 end-page: 1260 ident: b7 article-title: Global Mittag–Leffler stability and synchronization of impulsive fractional–order neural networks with time–varying delays publication-title: Nonlinear Dynam. – volume: 137 start-page: 981 year: 2007 end-page: 989 ident: b15 article-title: Initial value problems in discrete fractional calculus publication-title: Proc. Amer. Math. Soc. – volume: 29 start-page: 11 year: 2019 ident: b19 article-title: New variable-order fractional chaotic systems for fast image encryption publication-title: Chaos – volume: 340 start-page: 221 year: 2019 end-page: 233 ident: b11 article-title: Non–fragile state estimation for delayed fractional–order memristive neural networks publication-title: Appl. Math. Comput. – volume: 2014 start-page: 6 year: 2014 ident: b23 article-title: Solving fractional difference equations using the Laplace transform method publication-title: Abstr. Appl. Anal. – year: 2015 ident: b17 article-title: Discrete Fractional Calculus – volume: 39 start-page: 18 year: 2011 ident: b30 article-title: Fixed points and asymptotic stability of nonlinear fractional difference equations publication-title: Electron. J. Qual. Theory Differ. Equ. – volume: 11 start-page: 499 year: 2002 end-page: 519 ident: b28 article-title: Asymptotic behavior of solutions of functional differential equations by fixed point theorems publication-title: Dyn. Syst. Appl. – volume: 49 start-page: 445 year: 2002 end-page: 454 ident: b29 article-title: Krasnoselskii’s fixed point theorem and stability publication-title: Nonlinear Anal. Theory Methods Appl. – volume: 16 start-page: 613 year: 2013 end-page: 629 ident: b24 article-title: On the asymptotic stability of linear system of fractional-order difference equations publication-title: Fract. Calc. Appl. Anal. – volume: 94 start-page: 1215 year: 2018 end-page: 1225 ident: b10 article-title: State estimation of fractional-order delayed memristive neural networks publication-title: Nonlinear Dynam. – volume: 75 start-page: 283 year: 2014 end-page: 287 ident: b18 article-title: Discrete fractional logistic map and its chaos publication-title: Nonlinear Dynam. – volume: 1 start-page: 826 year: 1994 end-page: 839 ident: b1 article-title: Capacitor theory publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 32 start-page: 245 year: 2012 end-page: 256 ident: b4 article-title: Nonlinear dynamics and chaos in fractional-order neural networks publication-title: Neural Netw. – volume: 91 start-page: 513 year: 2011 end-page: 524 ident: b16 article-title: Discrete–time fractional variational problems publication-title: Signal Process. – volume: 14 start-page: 313 year: 2013 end-page: 325 ident: b31 article-title: Fixed points and fractional differetial equations: examples publication-title: Fixed Point Theory – year: 1999 ident: b12 article-title: Fractional Differential Equations – volume: 62 start-page: 1602 year: 2011 end-page: 1611 ident: b13 article-title: On Riemann and Caputo fractional differences publication-title: Comput. Math. Appl. – volume: 18 start-page: 651 year: 2015 end-page: 672 ident: b25 article-title: On explicit stability conditions for a linear fractional difference system publication-title: Fract. Calc. Appl. Anal. – volume: 111 start-page: 190 year: 2013 end-page: 194 ident: b5 article-title: Dynamic analysis of a class of fractional-order neural networks with delay publication-title: Neurocomputing – volume: 16 start-page: 104 year: 2015 end-page: 121 ident: b8 article-title: Mittag–Leffler stability of fractional–order Hopfield neural networks publication-title: Nonlinear Anal. Hybrid – volume: 94 start-page: 13 year: 2012 end-page: 21 ident: b3 article-title: Chaos and hyperchaos in fractional-order cellular neural networks publication-title: Neurocomputing – volume: 10 start-page: 40 year: 2010 end-page: 50 ident: b2 article-title: Fractional-order circuits and systems: An emerging interdisciplinary research area publication-title: IEEE Circ. Syst. Mag. – volume: 24 start-page: 919 year: 2019 end-page: 936 ident: b27 article-title: Mittag–Leffler stability analysis of fractional discrete–time neural networks via fixed point technique publication-title: Nonlinear Anal. Model. Control – year: 2010 ident: b20 article-title: Discrete Fractional Calculus and its Applications to Tumor Growth – volume: 62 start-page: 1591 year: 2011 end-page: 1601 ident: b22 article-title: The Laplace transform in discrete fractional calculus publication-title: Comput. Math. Appl. – year: 2013 ident: b32 article-title: Asymptotic Stability of Delay Differential Equations – volume: 51 start-page: 1 year: 2014 ident: 10.1016/j.cam.2019.112633_b6 article-title: Global Mittag–Leffler stability and synchronization of memristor–based fractional–order neural networks publication-title: Neural Netw. doi: 10.1016/j.neunet.2013.11.016 – volume: 16 start-page: 613 year: 2013 ident: 10.1016/j.cam.2019.112633_b24 article-title: On the asymptotic stability of linear system of fractional-order difference equations publication-title: Fract. Calc. Appl. Anal. doi: 10.2478/s13540-013-0039-2 – volume: 94 start-page: 13 year: 2012 ident: 10.1016/j.cam.2019.112633_b3 article-title: Chaos and hyperchaos in fractional-order cellular neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.01.011 – year: 2010 ident: 10.1016/j.cam.2019.112633_b20 – volume: 28 start-page: 206 year: 2017 ident: 10.1016/j.cam.2019.112633_b9 article-title: Global Mittag–Leffler stabilization of fractional–order memristive neural networks publication-title: IEEE Trans. Neural Netw. Learn. doi: 10.1109/TNNLS.2015.2506738 – volume: 77 start-page: 1251 year: 2014 ident: 10.1016/j.cam.2019.112633_b7 article-title: Global Mittag–Leffler stability and synchronization of impulsive fractional–order neural networks with time–varying delays publication-title: Nonlinear Dynam. doi: 10.1007/s11071-014-1375-4 – volume: 10 start-page: 40 year: 2010 ident: 10.1016/j.cam.2019.112633_b2 article-title: Fractional-order circuits and systems: An emerging interdisciplinary research area publication-title: IEEE Circ. Syst. Mag. doi: 10.1109/MCAS.2010.938637 – volume: 137 start-page: 981 year: 2007 ident: 10.1016/j.cam.2019.112633_b15 article-title: Initial value problems in discrete fractional calculus publication-title: Proc. Amer. Math. Soc. doi: 10.1090/S0002-9939-08-09626-3 – year: 1999 ident: 10.1016/j.cam.2019.112633_b12 – volume: 62 start-page: 1602 year: 2011 ident: 10.1016/j.cam.2019.112633_b13 article-title: On Riemann and Caputo fractional differences publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2011.03.036 – start-page: 575 year: 2011 ident: 10.1016/j.cam.2019.112633_b14 article-title: About discrete fractional calculus with inequalities – volume: 2014 start-page: 6 year: 2014 ident: 10.1016/j.cam.2019.112633_b23 article-title: Solving fractional difference equations using the Laplace transform method publication-title: Abstr. Appl. Anal. – year: 2013 ident: 10.1016/j.cam.2019.112633_b32 – volume: 14 start-page: 313 year: 2013 ident: 10.1016/j.cam.2019.112633_b31 article-title: Fixed points and fractional differetial equations: examples publication-title: Fixed Point Theory – volume: 94 start-page: 1215 year: 2018 ident: 10.1016/j.cam.2019.112633_b10 article-title: State estimation of fractional-order delayed memristive neural networks publication-title: Nonlinear Dynam. doi: 10.1007/s11071-018-4419-3 – volume: 91 start-page: 513 year: 2011 ident: 10.1016/j.cam.2019.112633_b16 article-title: Discrete–time fractional variational problems publication-title: Signal Process. doi: 10.1016/j.sigpro.2010.05.001 – volume: 18 start-page: 651 year: 2015 ident: 10.1016/j.cam.2019.112633_b25 article-title: On explicit stability conditions for a linear fractional difference system publication-title: Fract. Calc. Appl. Anal. doi: 10.1515/fca-2015-0040 – volume: 29 start-page: 11 year: 2019 ident: 10.1016/j.cam.2019.112633_b19 article-title: New variable-order fractional chaotic systems for fast image encryption publication-title: Chaos doi: 10.1063/1.5096645 – volume: 39 start-page: 18 year: 2011 ident: 10.1016/j.cam.2019.112633_b30 article-title: Fixed points and asymptotic stability of nonlinear fractional difference equations publication-title: Electron. J. Qual. Theory Differ. Equ. – volume: 369 start-page: 1 year: 2010 ident: 10.1016/j.cam.2019.112633_b21 article-title: Modeling with fractional difference equations publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2010.02.009 – volume: 49 start-page: 445 year: 2002 ident: 10.1016/j.cam.2019.112633_b29 article-title: Krasnoselskii’s fixed point theorem and stability publication-title: Nonlinear Anal. Theory Methods Appl. doi: 10.1016/S0362-546X(01)00111-0 – volume: 24 start-page: 919 year: 2019 ident: 10.1016/j.cam.2019.112633_b27 article-title: Mittag–Leffler stability analysis of fractional discrete–time neural networks via fixed point technique publication-title: Nonlinear Anal. Model. Control – volume: 111 start-page: 190 year: 2013 ident: 10.1016/j.cam.2019.112633_b5 article-title: Dynamic analysis of a class of fractional-order neural networks with delay publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.11.034 – volume: 11 start-page: 499 year: 2002 ident: 10.1016/j.cam.2019.112633_b28 article-title: Asymptotic behavior of solutions of functional differential equations by fixed point theorems publication-title: Dyn. Syst. Appl. – volume: 340 start-page: 221 year: 2019 ident: 10.1016/j.cam.2019.112633_b11 article-title: Non–fragile state estimation for delayed fractional–order memristive neural networks publication-title: Appl. Math. Comput. – volume: 1 start-page: 826 year: 1994 ident: 10.1016/j.cam.2019.112633_b1 article-title: Capacitor theory publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/94.326654 – volume: 32 start-page: 245 year: 2012 ident: 10.1016/j.cam.2019.112633_b4 article-title: Nonlinear dynamics and chaos in fractional-order neural networks publication-title: Neural Netw. doi: 10.1016/j.neunet.2012.02.030 – volume: 16 start-page: 104 year: 2015 ident: 10.1016/j.cam.2019.112633_b8 article-title: Mittag–Leffler stability of fractional–order Hopfield neural networks publication-title: Nonlinear Anal. Hybrid doi: 10.1016/j.nahs.2014.10.001 – year: 2015 ident: 10.1016/j.cam.2019.112633_b17 – volume: 62 start-page: 1591 year: 2011 ident: 10.1016/j.cam.2019.112633_b22 article-title: The Laplace transform in discrete fractional calculus publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2011.04.019 – volume: 75 start-page: 283 year: 2014 ident: 10.1016/j.cam.2019.112633_b18 article-title: Discrete fractional logistic map and its chaos publication-title: Nonlinear Dynam. doi: 10.1007/s11071-013-1065-7 – year: 2019 ident: 10.1016/j.cam.2019.112633_b26 article-title: Some further results of the Laplace transform for variable–order fractional difference equations publication-title: Fract. Calc. Appl. Anal. doi: 10.1515/fca-2019-0084  | 
    
| SSID | ssj0006914 | 
    
| Score | 2.6204386 | 
    
| Snippet | Discrete fractional calculus is suggested to describe neural networks with memory effects. Fractional discrete-time recurrent neural network is proposed on an... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 112633 | 
    
| SubjectTerms | Fractional discrete-time systems Recurrent neural networks Short memory Variable-order modeling  | 
    
| Title | Variable-order fractional discrete-time recurrent neural networks | 
    
| URI | https://dx.doi.org/10.1016/j.cam.2019.112633 | 
    
| Volume | 370 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-1778 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006914 issn: 0377-0427 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-1778 dateEnd: 20211015 omitProxy: true ssIdentifier: ssj0006914 issn: 0377-0427 databaseCode: AIKHN dateStart: 19950220 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-1778 dateEnd: 20211015 omitProxy: true ssIdentifier: ssj0006914 issn: 0377-0427 databaseCode: ACRLP dateStart: 19950220 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1879-1778 dateEnd: 20211102 omitProxy: true ssIdentifier: ssj0006914 issn: 0377-0427 databaseCode: IXB dateStart: 19750301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-1778 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006914 issn: 0377-0427 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-1778 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006914 issn: 0377-0427 databaseCode: AKRWK dateStart: 19750301 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lBw8CWuT7Cs51mJpLfagVnsL-0igIrWk9epvdyaPqqAezCWwuwNhEmZnst_3DSHnwnBU4vKpkJpTbqyhEWNQtWoXOis0qtYh2mIsBxN-MxXTBunVXBiEVVaxv4zpRbSuRjqVNzuL2axz7zOlsFMEpCC47yKjnHOFXQwu3z9hHjIu9b1hMcXV9clmgfGyGsnoQVwQaRj7eW_6st_0d8h2lSh63fJZdkkjne-Rrdu1yupyn3QfodBF6hMtBDS9LC9ZCmCGZNsc8mGKveO9HH-qowyTh_KVMD0vwd_LAzLpXz_0BrRqiUBtGKsVDaxvU8al8S0q4YeawxU4pX2uhHapFUZwo6TTXLI0iDLngjiyscjCNEItvEPSnL_O0yPiBQpB_JDNmSzikdBxqGMO9YnMJHMw1SJ-7YzEVnrh2LbiJamBYc8J-C9B_yWl_1rkYm2yKMUy_lrMaw8n3954AsH8d7Pj_5mdkM0QK2XUXRWnpLnK39IzSCdWpl18L22y0R2OBmO8j-6eRjA6nF59ADUlyWw | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPagH8Yn1mYMnYW2SfSXHUixV215spbdls5tARWJp69Xf7k4ePkA9mGN2BsJsmJ1Jvu8bgEueMFTi8gkXmhGWmIRElLquVdvQGq5RtQ7RFiPRn7C7KZ82oFtzYRBWWeX-MqcX2bq6066i2Z7PZu0Hn0qJkyJcCYLnrlyDdcZDiR3Y9dsnzkPEpcC3syZoXv_aLEBeRiMbPYgLJg2lPx9OXw6c3g5sV5Wi1ykfZhcaab4HW8MPmdXlPnQeXaeL3CdSKGh62aKkKTg3ZNsuXEFMcHi8t8Cv6qjD5KF-pVvOS_T38gAmvZtxt0-qmQjEhLFckcD4JqVMJL5BKfxQM3cFVmqfSa5tanjCWSKF1UzQNIgya4M4MjHPwjRCMbxDaOYveXoEXiARxe_KuSSLWMR1HOqYuQZFZIJat9QCvw6GMpVgOM6teFY1MuxJufgpjJ8q49eCqw-XeamW8ZcxqyOsvm25ctn8d7fj_7ldwEZ_PByowe3o_gQ2Q2ybUYSVn0JztXhNz1xtsUrOi3fnHRkOyFo | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variable-order+fractional+discrete-time+recurrent+neural+networks&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Huang%2C+Lan-Lan&rft.au=Park%2C+Ju+H.&rft.au=Wu%2C+Guo-Cheng&rft.au=Mo%2C+Zhi-Wen&rft.date=2020-05-15&rft.pub=Elsevier+B.V&rft.issn=0377-0427&rft.eissn=1879-1778&rft.volume=370&rft_id=info:doi/10.1016%2Fj.cam.2019.112633&rft.externalDocID=S0377042719306387 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon |