Variable-order fractional discrete-time recurrent neural networks

Discrete fractional calculus is suggested to describe neural networks with memory effects. Fractional discrete-time recurrent neural network is proposed on an isolated time scale. Stability results are investigated via Banach fixed point technique. The attractive solution space is constructed and st...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and applied mathematics Vol. 370; p. 112633
Main Authors Huang, Lan-Lan, Park, Ju H., Wu, Guo-Cheng, Mo, Zhi-Wen
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.05.2020
Subjects
Online AccessGet full text
ISSN0377-0427
1879-1778
DOI10.1016/j.cam.2019.112633

Cover

Abstract Discrete fractional calculus is suggested to describe neural networks with memory effects. Fractional discrete-time recurrent neural network is proposed on an isolated time scale. Stability results are investigated via Banach fixed point technique. The attractive solution space is constructed and stability conditions are provided. Furthermore, short memory and variable-order fractional neural networks are given according to the stability conditions. Two and three dimensional numerical examples are used to demonstrate the theoretical results. •Variable-order fractional discrete-time neural network is proposed.•Stability conditions are provided by fixed point theorems.•Numerical examples are given to illustrate the theoretical results.
AbstractList Discrete fractional calculus is suggested to describe neural networks with memory effects. Fractional discrete-time recurrent neural network is proposed on an isolated time scale. Stability results are investigated via Banach fixed point technique. The attractive solution space is constructed and stability conditions are provided. Furthermore, short memory and variable-order fractional neural networks are given according to the stability conditions. Two and three dimensional numerical examples are used to demonstrate the theoretical results. •Variable-order fractional discrete-time neural network is proposed.•Stability conditions are provided by fixed point theorems.•Numerical examples are given to illustrate the theoretical results.
ArticleNumber 112633
Author Mo, Zhi-Wen
Huang, Lan-Lan
Wu, Guo-Cheng
Park, Ju H.
Author_xml – sequence: 1
  givenname: Lan-Lan
  surname: Huang
  fullname: Huang, Lan-Lan
  email: mathlan@126.com
  organization: School of Mathematical Science, Sichuan Normal University, Chengdu 610066, Sichuan Province, PR China
– sequence: 2
  givenname: Ju H.
  surname: Park
  fullname: Park, Ju H.
  email: jessie@ynu.ac.kr
  organization: Department of Electrical Engineering, Yeungnam University, 280 Daehak–Ro, Kyongsan 38541, Republic of Korea
– sequence: 3
  givenname: Guo-Cheng
  orcidid: 0000-0002-1946-6770
  surname: Wu
  fullname: Wu, Guo-Cheng
  email: wuguocheng@gmail.com
  organization: Data Recovery Key Laboratory of Sichuan Province, College of Mathematics and Information Science, Neijiang Normal University, Neijiang 641100, PR China
– sequence: 4
  givenname: Zhi-Wen
  surname: Mo
  fullname: Mo, Zhi-Wen
  organization: School of Mathematical Science, Sichuan Normal University, Chengdu 610066, Sichuan Province, PR China
BookMark eNp9kMFKw0AQhhepYFt9AG95gcSZZJNN8FSKWqHgRb0um90JbE0Tmd0qvr0p9eShc5nD8A3__y3EbBgHEuIWIUPA6m6XWbPPcsAmQ8yrorgQc6xVk6JS9UzMoVAqBZmrK7EIYQcAVYNyLlbvhr1pe0pHdsRJx8ZGPw6mT5wPlilSGv2eEiZ7YKYhJgMdeDoPFL9H_gjX4rIzfaCbv70Ub48Pr-tNun15el6vtqnNGxVTtGCpkFULFqCWuZHToFMGpCqNI1u2pWxV5YysCsK6cw6b2jZll1MNqimWQp3-Wh5DYOq09dEcs0Y2vtcI-mhC7_RkQh9N6JOJicR_5Cf7veGfs8z9iaGp0pcn1sF6Giw5P5mI2o3-DP0LDbh40A
CitedBy_id crossref_primary_10_1016_j_chaos_2021_111277
crossref_primary_10_1016_j_neucom_2021_08_123
crossref_primary_10_1140_epjp_s13360_022_03197_2
crossref_primary_10_1016_j_amc_2021_126045
crossref_primary_10_1016_j_jfranklin_2022_04_036
crossref_primary_10_1063_5_0043555
crossref_primary_10_1515_ijnsns_2021_0005
crossref_primary_10_1016_j_physd_2024_134279
crossref_primary_10_1007_s13540_022_00051_1
crossref_primary_10_1002_mma_9228
crossref_primary_10_1007_s13540_024_00350_9
crossref_primary_10_1007_s13540_024_00295_z
crossref_primary_10_1140_epjs_s11734_022_00442_8
crossref_primary_10_1016_j_amc_2024_128872
crossref_primary_10_1142_S0218348X21400387
crossref_primary_10_1007_s41478_023_00631_1
crossref_primary_10_1016_j_aej_2023_05_078
crossref_primary_10_1016_j_cjph_2024_03_042
crossref_primary_10_1142_S0218348X21400302
crossref_primary_10_1515_phys_2023_0135
crossref_primary_10_1016_j_engappai_2021_104594
crossref_primary_10_1002_asjc_3564
crossref_primary_10_1007_s11071_024_09916_x
crossref_primary_10_1140_epjp_s13360_022_02472_6
crossref_primary_10_1155_2020_3902931
crossref_primary_10_1016_j_amc_2020_125753
crossref_primary_10_3390_math11204332
crossref_primary_10_1007_s00202_021_01438_8
crossref_primary_10_1016_j_amc_2022_127417
crossref_primary_10_3390_fractalfract7060436
crossref_primary_10_1016_j_amc_2020_125759
crossref_primary_10_1016_j_jfranklin_2021_02_003
crossref_primary_10_1016_j_fss_2023_02_016
crossref_primary_10_1016_j_fss_2025_109336
crossref_primary_10_1063_5_0098375
crossref_primary_10_1016_j_ijleo_2020_164507
crossref_primary_10_1515_jncds_2023_0113
crossref_primary_10_3390_e22050566
crossref_primary_10_1142_S0218348X21020035
crossref_primary_10_1016_j_amc_2021_126459
crossref_primary_10_1016_j_aej_2021_04_094
crossref_primary_10_1016_j_amc_2023_127986
crossref_primary_10_1016_j_neunet_2023_08_041
crossref_primary_10_1016_j_chaos_2021_111536
crossref_primary_10_1142_S0218127424500858
crossref_primary_10_3390_axioms13080570
crossref_primary_10_1142_S0218348X21400375
crossref_primary_10_1140_epjs_s11734_022_00465_1
crossref_primary_10_3846_mma_2025_20017
crossref_primary_10_1016_j_chaos_2020_110430
crossref_primary_10_1016_j_cjph_2024_03_024
crossref_primary_10_1155_2022_8249215
crossref_primary_10_3390_fractalfract7050349
crossref_primary_10_1016_j_amc_2020_125188
crossref_primary_10_3390_fractalfract7010082
crossref_primary_10_3390_fractalfract8010069
crossref_primary_10_1140_epjs_s11734_024_01442_6
crossref_primary_10_3390_fractalfract9010055
crossref_primary_10_1016_j_amc_2022_127450
crossref_primary_10_1007_s00009_021_01964_6
crossref_primary_10_1140_epjs_s11734_022_00451_7
crossref_primary_10_1140_epjs_s11734_021_00320_9
crossref_primary_10_1155_2021_4562392
crossref_primary_10_1109_TNNLS_2023_3241070
crossref_primary_10_2989_16073606_2025_2457686
crossref_primary_10_3934_mbe_2021093
crossref_primary_10_1002_mma_8342
crossref_primary_10_1140_epjp_s13360_022_02921_2
crossref_primary_10_1016_j_cam_2023_115091
crossref_primary_10_3934_math_2021331
crossref_primary_10_1007_s11071_021_06451_x
crossref_primary_10_1155_2020_8845867
crossref_primary_10_1016_j_neucom_2023_126961
crossref_primary_10_1007_s11071_021_07028_4
crossref_primary_10_3390_fractalfract6020119
crossref_primary_10_1007_s10489_025_06281_z
crossref_primary_10_1140_epjp_s13360_022_03154_z
crossref_primary_10_3390_fractalfract7080616
crossref_primary_10_1142_S0218348X21400351
crossref_primary_10_1063_5_0030973
crossref_primary_10_1088_1674_1056_ad1a93
crossref_primary_10_1038_s41598_023_45227_8
crossref_primary_10_1016_j_heliyon_2024_e40659
crossref_primary_10_1016_j_amc_2023_128095
crossref_primary_10_1515_fca_2021_0083
crossref_primary_10_1007_s12559_020_09782_w
crossref_primary_10_1007_s12190_024_02012_8
crossref_primary_10_1007_s00521_022_07414_y
crossref_primary_10_1016_j_amc_2020_125278
crossref_primary_10_1016_j_cjph_2024_02_012
crossref_primary_10_1007_s11071_023_08311_2
crossref_primary_10_1016_j_amc_2020_125718
crossref_primary_10_1155_2024_6680399
crossref_primary_10_1515_phys_2024_0066
crossref_primary_10_1016_j_matcom_2024_07_017
crossref_primary_10_1080_17455030_2023_2187241
crossref_primary_10_1016_j_amc_2023_127959
crossref_primary_10_1016_j_matcom_2022_07_019
crossref_primary_10_1007_s13370_022_01020_w
crossref_primary_10_1016_j_rinp_2023_107023
crossref_primary_10_1631_FITEE_1900709
crossref_primary_10_1016_j_amc_2022_127353
crossref_primary_10_1016_j_amc_2024_128888
crossref_primary_10_1007_s40096_021_00442_0
crossref_primary_10_1142_S0218348X22400266
crossref_primary_10_1016_j_amc_2024_129176
crossref_primary_10_1016_j_amc_2021_126538
crossref_primary_10_1016_j_neucom_2022_09_035
crossref_primary_10_3934_era_2022155
crossref_primary_10_1016_j_aej_2022_03_062
crossref_primary_10_1016_j_amc_2021_126378
crossref_primary_10_1016_j_cam_2022_114939
crossref_primary_10_1140_epjs_s11734_022_00449_1
crossref_primary_10_1142_S021812742550049X
crossref_primary_10_1142_S0218348X21400296
crossref_primary_10_1016_j_ins_2023_03_028
crossref_primary_10_1007_s11071_020_05572_z
crossref_primary_10_1016_j_amc_2023_128111
crossref_primary_10_1016_j_amc_2023_128110
crossref_primary_10_1155_2021_5526082
crossref_primary_10_1016_j_cjph_2024_07_043
crossref_primary_10_3390_fractalfract6070388
crossref_primary_10_1155_2021_8734535
crossref_primary_10_3390_fractalfract7020118
crossref_primary_10_1007_s11071_022_08141_8
crossref_primary_10_1016_j_amc_2020_125498
crossref_primary_10_1016_j_physa_2020_124993
crossref_primary_10_1007_s11071_022_08086_y
crossref_primary_10_1016_j_aej_2023_06_017
Cites_doi 10.1016/j.neunet.2013.11.016
10.2478/s13540-013-0039-2
10.1016/j.neucom.2012.01.011
10.1109/TNNLS.2015.2506738
10.1007/s11071-014-1375-4
10.1109/MCAS.2010.938637
10.1090/S0002-9939-08-09626-3
10.1016/j.camwa.2011.03.036
10.1007/s11071-018-4419-3
10.1016/j.sigpro.2010.05.001
10.1515/fca-2015-0040
10.1063/1.5096645
10.1016/j.jmaa.2010.02.009
10.1016/S0362-546X(01)00111-0
10.1016/j.neucom.2012.11.034
10.1109/94.326654
10.1016/j.neunet.2012.02.030
10.1016/j.nahs.2014.10.001
10.1016/j.camwa.2011.04.019
10.1007/s11071-013-1065-7
10.1515/fca-2019-0084
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cam.2019.112633
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1879-1778
ExternalDocumentID 10_1016_j_cam_2019_112633
S0377042719306387
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABAOU
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSW
T5K
TN5
UPT
XPP
YQT
ZMT
~02
~G-
29K
5VS
AAFWJ
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AEXQZ
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
D-I
EFKBS
EJD
FGOYB
G-2
HZ~
NHB
R2-
SEW
SSZ
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c297t-1c0ce346b0c00842a44441d7a0475adec5b54b76da463e18fdd198c95f2e80793
IEDL.DBID .~1
ISSN 0377-0427
IngestDate Thu Apr 24 22:59:00 EDT 2025
Thu Oct 09 00:39:10 EDT 2025
Fri Feb 23 02:48:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Short memory
Recurrent neural networks
Fractional discrete-time systems
Variable-order modeling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-1c0ce346b0c00842a44441d7a0475adec5b54b76da463e18fdd198c95f2e80793
ORCID 0000-0002-1946-6770
ParticipantIDs crossref_citationtrail_10_1016_j_cam_2019_112633
crossref_primary_10_1016_j_cam_2019_112633
elsevier_sciencedirect_doi_10_1016_j_cam_2019_112633
PublicationCentury 2000
PublicationDate 2020-05-15
PublicationDateYYYYMMDD 2020-05-15
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Podlubny (b12) 1999
Burton, Furumochi (b28) 2002; 11
Stamova (b7) 2014; 77
Holm (b22) 2011; 62
Cermak, Gyori, Nechvatal (b25) 2015; 18
Wu, Zeng (b9) 2017; 28
Anastassiou (b14) 2011
Burton, Furumochi (b29) 2002; 49
Yu (b32) 2013
Atici, Sengul (b21) 2010; 369
Chen, Zeng, Jiang (b6) 2014; 51
Huang, Zhao, Wang, Li (b3) 2012; 94
Abdeljawad (b13) 2011; 62
Bao, Cao, Kurths (b10) 2018; 94
Li, Gao, Cao (b11) 2019; 340
Wu, Deng, Baleanu, Zeng (b19) 2019; 29
Chen (b30) 2011; 39
Elwakil (b2) 2010; 10
Bastos, Ferreira, Torres (b16) 2011; 91
Chen, Chai, Wu, Ma, Zhai (b5) 2013; 111
Wu, Abdeljawad, Liu, Baleanu, Wu (b27) 2019; 24
Wu, Baleanu (b18) 2014; 75
Kaslik, Sivasundaram (b4) 2012; 32
Zhang, Yu, Wang (b8) 2015; 16
Westerlund, Ekstam (b1) 1994; 1
Atici, Eloe (b15) 2007; 137
Goodrich, Peterson (b17) 2015
Li, Jiang (b23) 2014; 2014
Sengul (b20) 2010
Burton, Zhang (b31) 2013; 14
Baleanu, Wu (b26) 2019
Abu-Saris, Al-Mdallal (b24) 2013; 16
Bao (10.1016/j.cam.2019.112633_b10) 2018; 94
Westerlund (10.1016/j.cam.2019.112633_b1) 1994; 1
Cermak (10.1016/j.cam.2019.112633_b25) 2015; 18
Burton (10.1016/j.cam.2019.112633_b28) 2002; 11
Elwakil (10.1016/j.cam.2019.112633_b2) 2010; 10
Burton (10.1016/j.cam.2019.112633_b29) 2002; 49
Chen (10.1016/j.cam.2019.112633_b30) 2011; 39
Wu (10.1016/j.cam.2019.112633_b9) 2017; 28
Huang (10.1016/j.cam.2019.112633_b3) 2012; 94
Chen (10.1016/j.cam.2019.112633_b5) 2013; 111
Abu-Saris (10.1016/j.cam.2019.112633_b24) 2013; 16
Wu (10.1016/j.cam.2019.112633_b18) 2014; 75
Burton (10.1016/j.cam.2019.112633_b31) 2013; 14
Anastassiou (10.1016/j.cam.2019.112633_b14) 2011
Yu (10.1016/j.cam.2019.112633_b32) 2013
Stamova (10.1016/j.cam.2019.112633_b7) 2014; 77
Atici (10.1016/j.cam.2019.112633_b15) 2007; 137
Atici (10.1016/j.cam.2019.112633_b21) 2010; 369
Wu (10.1016/j.cam.2019.112633_b27) 2019; 24
Holm (10.1016/j.cam.2019.112633_b22) 2011; 62
Goodrich (10.1016/j.cam.2019.112633_b17) 2015
Podlubny (10.1016/j.cam.2019.112633_b12) 1999
Li (10.1016/j.cam.2019.112633_b11) 2019; 340
Kaslik (10.1016/j.cam.2019.112633_b4) 2012; 32
Li (10.1016/j.cam.2019.112633_b23) 2014; 2014
Zhang (10.1016/j.cam.2019.112633_b8) 2015; 16
Wu (10.1016/j.cam.2019.112633_b19) 2019; 29
Chen (10.1016/j.cam.2019.112633_b6) 2014; 51
Abdeljawad (10.1016/j.cam.2019.112633_b13) 2011; 62
Bastos (10.1016/j.cam.2019.112633_b16) 2011; 91
Baleanu (10.1016/j.cam.2019.112633_b26) 2019
Sengul (10.1016/j.cam.2019.112633_b20) 2010
References_xml – volume: 369
  start-page: 1
  year: 2010
  end-page: 9
  ident: b21
  article-title: Modeling with fractional difference equations
  publication-title: J. Math. Anal. Appl.
– volume: 51
  start-page: 1
  year: 2014
  end-page: 8
  ident: b6
  article-title: Global Mittag–Leffler stability and synchronization of memristor–based fractional–order neural networks
  publication-title: Neural Netw.
– year: 2019
  ident: b26
  article-title: Some further results of the Laplace transform for variable–order fractional difference equations
  publication-title: Fract. Calc. Appl. Anal.
– volume: 28
  start-page: 206
  year: 2017
  end-page: 217
  ident: b9
  article-title: Global Mittag–Leffler stabilization of fractional–order memristive neural networks
  publication-title: IEEE Trans. Neural Netw. Learn.
– start-page: 575
  year: 2011
  end-page: 585
  ident: b14
  article-title: About discrete fractional calculus with inequalities
  publication-title: Intelligent Mathematics: Computational Analysis
– volume: 77
  start-page: 1251
  year: 2014
  end-page: 1260
  ident: b7
  article-title: Global Mittag–Leffler stability and synchronization of impulsive fractional–order neural networks with time–varying delays
  publication-title: Nonlinear Dynam.
– volume: 137
  start-page: 981
  year: 2007
  end-page: 989
  ident: b15
  article-title: Initial value problems in discrete fractional calculus
  publication-title: Proc. Amer. Math. Soc.
– volume: 29
  start-page: 11
  year: 2019
  ident: b19
  article-title: New variable-order fractional chaotic systems for fast image encryption
  publication-title: Chaos
– volume: 340
  start-page: 221
  year: 2019
  end-page: 233
  ident: b11
  article-title: Non–fragile state estimation for delayed fractional–order memristive neural networks
  publication-title: Appl. Math. Comput.
– volume: 2014
  start-page: 6
  year: 2014
  ident: b23
  article-title: Solving fractional difference equations using the Laplace transform method
  publication-title: Abstr. Appl. Anal.
– year: 2015
  ident: b17
  article-title: Discrete Fractional Calculus
– volume: 39
  start-page: 18
  year: 2011
  ident: b30
  article-title: Fixed points and asymptotic stability of nonlinear fractional difference equations
  publication-title: Electron. J. Qual. Theory Differ. Equ.
– volume: 11
  start-page: 499
  year: 2002
  end-page: 519
  ident: b28
  article-title: Asymptotic behavior of solutions of functional differential equations by fixed point theorems
  publication-title: Dyn. Syst. Appl.
– volume: 49
  start-page: 445
  year: 2002
  end-page: 454
  ident: b29
  article-title: Krasnoselskii’s fixed point theorem and stability
  publication-title: Nonlinear Anal. Theory Methods Appl.
– volume: 16
  start-page: 613
  year: 2013
  end-page: 629
  ident: b24
  article-title: On the asymptotic stability of linear system of fractional-order difference equations
  publication-title: Fract. Calc. Appl. Anal.
– volume: 94
  start-page: 1215
  year: 2018
  end-page: 1225
  ident: b10
  article-title: State estimation of fractional-order delayed memristive neural networks
  publication-title: Nonlinear Dynam.
– volume: 75
  start-page: 283
  year: 2014
  end-page: 287
  ident: b18
  article-title: Discrete fractional logistic map and its chaos
  publication-title: Nonlinear Dynam.
– volume: 1
  start-page: 826
  year: 1994
  end-page: 839
  ident: b1
  article-title: Capacitor theory
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 32
  start-page: 245
  year: 2012
  end-page: 256
  ident: b4
  article-title: Nonlinear dynamics and chaos in fractional-order neural networks
  publication-title: Neural Netw.
– volume: 91
  start-page: 513
  year: 2011
  end-page: 524
  ident: b16
  article-title: Discrete–time fractional variational problems
  publication-title: Signal Process.
– volume: 14
  start-page: 313
  year: 2013
  end-page: 325
  ident: b31
  article-title: Fixed points and fractional differetial equations: examples
  publication-title: Fixed Point Theory
– year: 1999
  ident: b12
  article-title: Fractional Differential Equations
– volume: 62
  start-page: 1602
  year: 2011
  end-page: 1611
  ident: b13
  article-title: On Riemann and Caputo fractional differences
  publication-title: Comput. Math. Appl.
– volume: 18
  start-page: 651
  year: 2015
  end-page: 672
  ident: b25
  article-title: On explicit stability conditions for a linear fractional difference system
  publication-title: Fract. Calc. Appl. Anal.
– volume: 111
  start-page: 190
  year: 2013
  end-page: 194
  ident: b5
  article-title: Dynamic analysis of a class of fractional-order neural networks with delay
  publication-title: Neurocomputing
– volume: 16
  start-page: 104
  year: 2015
  end-page: 121
  ident: b8
  article-title: Mittag–Leffler stability of fractional–order Hopfield neural networks
  publication-title: Nonlinear Anal. Hybrid
– volume: 94
  start-page: 13
  year: 2012
  end-page: 21
  ident: b3
  article-title: Chaos and hyperchaos in fractional-order cellular neural networks
  publication-title: Neurocomputing
– volume: 10
  start-page: 40
  year: 2010
  end-page: 50
  ident: b2
  article-title: Fractional-order circuits and systems: An emerging interdisciplinary research area
  publication-title: IEEE Circ. Syst. Mag.
– volume: 24
  start-page: 919
  year: 2019
  end-page: 936
  ident: b27
  article-title: Mittag–Leffler stability analysis of fractional discrete–time neural networks via fixed point technique
  publication-title: Nonlinear Anal. Model. Control
– year: 2010
  ident: b20
  article-title: Discrete Fractional Calculus and its Applications to Tumor Growth
– volume: 62
  start-page: 1591
  year: 2011
  end-page: 1601
  ident: b22
  article-title: The Laplace transform in discrete fractional calculus
  publication-title: Comput. Math. Appl.
– year: 2013
  ident: b32
  article-title: Asymptotic Stability of Delay Differential Equations
– volume: 51
  start-page: 1
  year: 2014
  ident: 10.1016/j.cam.2019.112633_b6
  article-title: Global Mittag–Leffler stability and synchronization of memristor–based fractional–order neural networks
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2013.11.016
– volume: 16
  start-page: 613
  year: 2013
  ident: 10.1016/j.cam.2019.112633_b24
  article-title: On the asymptotic stability of linear system of fractional-order difference equations
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.2478/s13540-013-0039-2
– volume: 94
  start-page: 13
  year: 2012
  ident: 10.1016/j.cam.2019.112633_b3
  article-title: Chaos and hyperchaos in fractional-order cellular neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.01.011
– year: 2010
  ident: 10.1016/j.cam.2019.112633_b20
– volume: 28
  start-page: 206
  year: 2017
  ident: 10.1016/j.cam.2019.112633_b9
  article-title: Global Mittag–Leffler stabilization of fractional–order memristive neural networks
  publication-title: IEEE Trans. Neural Netw. Learn.
  doi: 10.1109/TNNLS.2015.2506738
– volume: 77
  start-page: 1251
  year: 2014
  ident: 10.1016/j.cam.2019.112633_b7
  article-title: Global Mittag–Leffler stability and synchronization of impulsive fractional–order neural networks with time–varying delays
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-014-1375-4
– volume: 10
  start-page: 40
  year: 2010
  ident: 10.1016/j.cam.2019.112633_b2
  article-title: Fractional-order circuits and systems: An emerging interdisciplinary research area
  publication-title: IEEE Circ. Syst. Mag.
  doi: 10.1109/MCAS.2010.938637
– volume: 137
  start-page: 981
  year: 2007
  ident: 10.1016/j.cam.2019.112633_b15
  article-title: Initial value problems in discrete fractional calculus
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/S0002-9939-08-09626-3
– year: 1999
  ident: 10.1016/j.cam.2019.112633_b12
– volume: 62
  start-page: 1602
  year: 2011
  ident: 10.1016/j.cam.2019.112633_b13
  article-title: On Riemann and Caputo fractional differences
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2011.03.036
– start-page: 575
  year: 2011
  ident: 10.1016/j.cam.2019.112633_b14
  article-title: About discrete fractional calculus with inequalities
– volume: 2014
  start-page: 6
  year: 2014
  ident: 10.1016/j.cam.2019.112633_b23
  article-title: Solving fractional difference equations using the Laplace transform method
  publication-title: Abstr. Appl. Anal.
– year: 2013
  ident: 10.1016/j.cam.2019.112633_b32
– volume: 14
  start-page: 313
  year: 2013
  ident: 10.1016/j.cam.2019.112633_b31
  article-title: Fixed points and fractional differetial equations: examples
  publication-title: Fixed Point Theory
– volume: 94
  start-page: 1215
  year: 2018
  ident: 10.1016/j.cam.2019.112633_b10
  article-title: State estimation of fractional-order delayed memristive neural networks
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-018-4419-3
– volume: 91
  start-page: 513
  year: 2011
  ident: 10.1016/j.cam.2019.112633_b16
  article-title: Discrete–time fractional variational problems
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2010.05.001
– volume: 18
  start-page: 651
  year: 2015
  ident: 10.1016/j.cam.2019.112633_b25
  article-title: On explicit stability conditions for a linear fractional difference system
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.1515/fca-2015-0040
– volume: 29
  start-page: 11
  year: 2019
  ident: 10.1016/j.cam.2019.112633_b19
  article-title: New variable-order fractional chaotic systems for fast image encryption
  publication-title: Chaos
  doi: 10.1063/1.5096645
– volume: 39
  start-page: 18
  year: 2011
  ident: 10.1016/j.cam.2019.112633_b30
  article-title: Fixed points and asymptotic stability of nonlinear fractional difference equations
  publication-title: Electron. J. Qual. Theory Differ. Equ.
– volume: 369
  start-page: 1
  year: 2010
  ident: 10.1016/j.cam.2019.112633_b21
  article-title: Modeling with fractional difference equations
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2010.02.009
– volume: 49
  start-page: 445
  year: 2002
  ident: 10.1016/j.cam.2019.112633_b29
  article-title: Krasnoselskii’s fixed point theorem and stability
  publication-title: Nonlinear Anal. Theory Methods Appl.
  doi: 10.1016/S0362-546X(01)00111-0
– volume: 24
  start-page: 919
  year: 2019
  ident: 10.1016/j.cam.2019.112633_b27
  article-title: Mittag–Leffler stability analysis of fractional discrete–time neural networks via fixed point technique
  publication-title: Nonlinear Anal. Model. Control
– volume: 111
  start-page: 190
  year: 2013
  ident: 10.1016/j.cam.2019.112633_b5
  article-title: Dynamic analysis of a class of fractional-order neural networks with delay
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.11.034
– volume: 11
  start-page: 499
  year: 2002
  ident: 10.1016/j.cam.2019.112633_b28
  article-title: Asymptotic behavior of solutions of functional differential equations by fixed point theorems
  publication-title: Dyn. Syst. Appl.
– volume: 340
  start-page: 221
  year: 2019
  ident: 10.1016/j.cam.2019.112633_b11
  article-title: Non–fragile state estimation for delayed fractional–order memristive neural networks
  publication-title: Appl. Math. Comput.
– volume: 1
  start-page: 826
  year: 1994
  ident: 10.1016/j.cam.2019.112633_b1
  article-title: Capacitor theory
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/94.326654
– volume: 32
  start-page: 245
  year: 2012
  ident: 10.1016/j.cam.2019.112633_b4
  article-title: Nonlinear dynamics and chaos in fractional-order neural networks
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2012.02.030
– volume: 16
  start-page: 104
  year: 2015
  ident: 10.1016/j.cam.2019.112633_b8
  article-title: Mittag–Leffler stability of fractional–order Hopfield neural networks
  publication-title: Nonlinear Anal. Hybrid
  doi: 10.1016/j.nahs.2014.10.001
– year: 2015
  ident: 10.1016/j.cam.2019.112633_b17
– volume: 62
  start-page: 1591
  year: 2011
  ident: 10.1016/j.cam.2019.112633_b22
  article-title: The Laplace transform in discrete fractional calculus
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2011.04.019
– volume: 75
  start-page: 283
  year: 2014
  ident: 10.1016/j.cam.2019.112633_b18
  article-title: Discrete fractional logistic map and its chaos
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-013-1065-7
– year: 2019
  ident: 10.1016/j.cam.2019.112633_b26
  article-title: Some further results of the Laplace transform for variable–order fractional difference equations
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.1515/fca-2019-0084
SSID ssj0006914
Score 2.6204386
Snippet Discrete fractional calculus is suggested to describe neural networks with memory effects. Fractional discrete-time recurrent neural network is proposed on an...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 112633
SubjectTerms Fractional discrete-time systems
Recurrent neural networks
Short memory
Variable-order modeling
Title Variable-order fractional discrete-time recurrent neural networks
URI https://dx.doi.org/10.1016/j.cam.2019.112633
Volume 370
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 20211015
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: AIKHN
  dateStart: 19950220
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 20211015
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: ACRLP
  dateStart: 19950220
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 20211102
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: IXB
  dateStart: 19750301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-1778
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: AKRWK
  dateStart: 19750301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lBw8CWuT7Cs51mJpLfagVnsL-0igIrWk9epvdyaPqqAezCWwuwNhEmZnst_3DSHnwnBU4vKpkJpTbqyhEWNQtWoXOis0qtYh2mIsBxN-MxXTBunVXBiEVVaxv4zpRbSuRjqVNzuL2axz7zOlsFMEpCC47yKjnHOFXQwu3z9hHjIu9b1hMcXV9clmgfGyGsnoQVwQaRj7eW_6st_0d8h2lSh63fJZdkkjne-Rrdu1yupyn3QfodBF6hMtBDS9LC9ZCmCGZNsc8mGKveO9HH-qowyTh_KVMD0vwd_LAzLpXz_0BrRqiUBtGKsVDaxvU8al8S0q4YeawxU4pX2uhHapFUZwo6TTXLI0iDLngjiyscjCNEItvEPSnL_O0yPiBQpB_JDNmSzikdBxqGMO9YnMJHMw1SJ-7YzEVnrh2LbiJamBYc8J-C9B_yWl_1rkYm2yKMUy_lrMaw8n3954AsH8d7Pj_5mdkM0QK2XUXRWnpLnK39IzSCdWpl18L22y0R2OBmO8j-6eRjA6nF59ADUlyWw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPagH8Yn1mYMnYW2SfSXHUixV215spbdls5tARWJp69Xf7k4ePkA9mGN2BsJsmJ1Jvu8bgEueMFTi8gkXmhGWmIRElLquVdvQGq5RtQ7RFiPRn7C7KZ82oFtzYRBWWeX-MqcX2bq6066i2Z7PZu0Hn0qJkyJcCYLnrlyDdcZDiR3Y9dsnzkPEpcC3syZoXv_aLEBeRiMbPYgLJg2lPx9OXw6c3g5sV5Wi1ykfZhcaab4HW8MPmdXlPnQeXaeL3CdSKGh62aKkKTg3ZNsuXEFMcHi8t8Cv6qjD5KF-pVvOS_T38gAmvZtxt0-qmQjEhLFckcD4JqVMJL5BKfxQM3cFVmqfSa5tanjCWSKF1UzQNIgya4M4MjHPwjRCMbxDaOYveXoEXiARxe_KuSSLWMR1HOqYuQZFZIJat9QCvw6GMpVgOM6teFY1MuxJufgpjJ8q49eCqw-XeamW8ZcxqyOsvm25ctn8d7fj_7ldwEZ_PByowe3o_gQ2Q2ybUYSVn0JztXhNz1xtsUrOi3fnHRkOyFo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variable-order+fractional+discrete-time+recurrent+neural+networks&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Huang%2C+Lan-Lan&rft.au=Park%2C+Ju+H.&rft.au=Wu%2C+Guo-Cheng&rft.au=Mo%2C+Zhi-Wen&rft.date=2020-05-15&rft.pub=Elsevier+B.V&rft.issn=0377-0427&rft.eissn=1879-1778&rft.volume=370&rft_id=info:doi/10.1016%2Fj.cam.2019.112633&rft.externalDocID=S0377042719306387
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon