Sulfonated poly (ether ether ketone)/MOF hybrid polymer electrolyte membrane with ultra‐low methanol permeability for enhanced direct methanol fuel cell performance
A novel hybrid polymer electrolyte membrane (PEM) was developed for direct methanol fuel cell (DMFC) applications by incorporating sulfonated poly (ether ether ketone) (SPEEK) with a chromium‐based metal–organic framework (MOF), namely, BUT‐8(Cr). The incorporation of BUT‐8(Cr) significantly improve...
Saved in:
Published in | Journal of applied polymer science Vol. 141; no. 32 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
20.08.2024
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0021-8995 1097-4628 |
DOI | 10.1002/app.55749 |
Cover
Abstract | A novel hybrid polymer electrolyte membrane (PEM) was developed for direct methanol fuel cell (DMFC) applications by incorporating sulfonated poly (ether ether ketone) (SPEEK) with a chromium‐based metal–organic framework (MOF), namely, BUT‐8(Cr). The incorporation of BUT‐8(Cr) significantly improved the dispersion of the MOF within the SPEEK matrix, leading to alterations in surface morphology and the creation of hydrophilic channels, as confirmed by SEM. Furthermore, the presence of an excess of sulfonic groups and the flexible structure of the MOF enhanced the physicochemical properties of the membrane, such as water uptake, proton conductivity and ion exchange capacity. Importantly, well‐defined rigid coordination structure of MOF effectively blocks methanol migration, resulting in a notably low methanol permeability value of 1.6 × 10−7 cm2 s−1, compared to Nafion 117 (20 × 10−7cm2s−1). For practical DMFC operation, the hybrid membrane (~0.75 wt.% MOF) exhibited a maximum power density of 88.6mWcm−2 with current density of 434.04 mAcm−2, outperforming Nafion 117 (73.4mWcm−2 and 380 mAcm−2 respectively) at same conditions. Our results suggest that the prepared SPEEK‐0.75 hybrid membrane holds a great promise as a PEM material for DMFC applications.
SPEEK/BUT‐8 Cr hybrid membranes have high ion selectivity and superior DMFC performance. |
---|---|
AbstractList | A novel hybrid polymer electrolyte membrane (PEM) was developed for direct methanol fuel cell (DMFC) applications by incorporating sulfonated poly (ether ether ketone) (SPEEK) with a chromium‐based metal–organic framework (MOF), namely, BUT‐8(Cr). The incorporation of BUT‐8(Cr) significantly improved the dispersion of the MOF within the SPEEK matrix, leading to alterations in surface morphology and the creation of hydrophilic channels, as confirmed by SEM. Furthermore, the presence of an excess of sulfonic groups and the flexible structure of the MOF enhanced the physicochemical properties of the membrane, such as water uptake, proton conductivity and ion exchange capacity. Importantly, well‐defined rigid coordination structure of MOF effectively blocks methanol migration, resulting in a notably low methanol permeability value of 1.6 × 10
−7
cm
2
s
−1
, compared to Nafion 117 (20 × 10
−7
cm
2
s
−1
). For practical DMFC operation, the hybrid membrane (~0.75 wt.% MOF) exhibited a maximum power density of 88.6mWcm
−2
with current density of 434.04 mAcm
−2
, outperforming Nafion 117 (73.4mWcm
−2
and 380 mAcm
−2
respectively) at same conditions. Our results suggest that the prepared SPEEK‐0.75 hybrid membrane holds a great promise as a PEM material for DMFC applications. A novel hybrid polymer electrolyte membrane (PEM) was developed for direct methanol fuel cell (DMFC) applications by incorporating sulfonated poly (ether ether ketone) (SPEEK) with a chromium‐based metal–organic framework (MOF), namely, BUT‐8(Cr). The incorporation of BUT‐8(Cr) significantly improved the dispersion of the MOF within the SPEEK matrix, leading to alterations in surface morphology and the creation of hydrophilic channels, as confirmed by SEM. Furthermore, the presence of an excess of sulfonic groups and the flexible structure of the MOF enhanced the physicochemical properties of the membrane, such as water uptake, proton conductivity and ion exchange capacity. Importantly, well‐defined rigid coordination structure of MOF effectively blocks methanol migration, resulting in a notably low methanol permeability value of 1.6 × 10−7 cm2 s−1, compared to Nafion 117 (20 × 10−7cm2s−1). For practical DMFC operation, the hybrid membrane (~0.75 wt.% MOF) exhibited a maximum power density of 88.6mWcm−2 with current density of 434.04 mAcm−2, outperforming Nafion 117 (73.4mWcm−2 and 380 mAcm−2 respectively) at same conditions. Our results suggest that the prepared SPEEK‐0.75 hybrid membrane holds a great promise as a PEM material for DMFC applications. SPEEK/BUT‐8 Cr hybrid membranes have high ion selectivity and superior DMFC performance. A novel hybrid polymer electrolyte membrane (PEM) was developed for direct methanol fuel cell (DMFC) applications by incorporating sulfonated poly (ether ether ketone) (SPEEK) with a chromium‐based metal–organic framework (MOF), namely, BUT‐8(Cr). The incorporation of BUT‐8(Cr) significantly improved the dispersion of the MOF within the SPEEK matrix, leading to alterations in surface morphology and the creation of hydrophilic channels, as confirmed by SEM. Furthermore, the presence of an excess of sulfonic groups and the flexible structure of the MOF enhanced the physicochemical properties of the membrane, such as water uptake, proton conductivity and ion exchange capacity. Importantly, well‐defined rigid coordination structure of MOF effectively blocks methanol migration, resulting in a notably low methanol permeability value of 1.6 × 10−7 cm2 s−1, compared to Nafion 117 (20 × 10−7cm2s−1). For practical DMFC operation, the hybrid membrane (~0.75 wt.% MOF) exhibited a maximum power density of 88.6mWcm−2 with current density of 434.04 mAcm−2, outperforming Nafion 117 (73.4mWcm−2 and 380 mAcm−2 respectively) at same conditions. Our results suggest that the prepared SPEEK‐0.75 hybrid membrane holds a great promise as a PEM material for DMFC applications. |
Author | Divya, Kumar Xu, Qian Liu, Huiyuan Zhang, Weiqi Su, Huaneng |
Author_xml | – sequence: 1 givenname: Kumar surname: Divya fullname: Divya, Kumar organization: Jiangsu University – sequence: 2 givenname: Huiyuan surname: Liu fullname: Liu, Huiyuan organization: Jiangsu University – sequence: 3 givenname: Weiqi surname: Zhang fullname: Zhang, Weiqi organization: Jiangsu University – sequence: 4 givenname: Qian surname: Xu fullname: Xu, Qian organization: Jiangsu University – sequence: 5 givenname: Huaneng orcidid: 0000-0002-5293-1945 surname: Su fullname: Su, Huaneng email: suhuaneng@ujs.edu.cn, suhuaneng@foxmail.com organization: Jiangsu University |
BookMark | eNp1kU1KBDEQhYMoOP4svEHAjS7aSdK_WYo4KigK6rrJZKqZaLrTptMMvfMInsKDeRJrbEEQ3SSk3vdeUakdstm4Bgg54OyEMyamqm1P0jRP5AaZcCbzKMlEsUkmqPGokDLdJjtd98QY5ynLJuT9vreVa1SABW2dHegRhCV4Op7PEDD-eHpzO6PLYe7NCNVrwIIOHh8BaA313KsG6MqEJe1t8Orj9c26FSphqRpnaQu-BjU31oSBVg79DQoauy6Mx6QfsurBUg32y4Nkvcb2yFalbAf73_cueZydP5xdRte3F1dnp9eRFjKXUcZx9hiEkhkv4jSGeA5a8kzkaSZS0JDkPCmwXOmKJ0JIVjCxUELEXMKC5fEuORxzW-9eeuhC-eR632DLMkYWP5GJAqnpSGnvus5DVWoTVDCuwcmNLTkr18socRnl1zLQcfzL0XpTKz_8yX6nr4yF4X-wPL27Gx2fcyye9g |
CitedBy_id | crossref_primary_10_1016_j_memsci_2024_123510 crossref_primary_10_1016_j_gee_2025_03_003 crossref_primary_10_1039_D4YA00446A crossref_primary_10_1016_j_memsci_2024_123193 crossref_primary_10_1080_25740881_2024_2441941 crossref_primary_10_1016_j_apsusc_2024_161544 crossref_primary_10_1002_app_56931 crossref_primary_10_1016_j_colsurfa_2025_136394 |
Cites_doi | 10.1002/app.54606 10.1002/er.4981 10.1039/C8TA08013E 10.1016/j.jmrt.2020.05.015 10.1061/(ASCE)EY.1943-7897.0000871 10.1039/C5CS00837A 10.1002/pen.24453 10.1126/science.1137975 10.1016/j.jiec.2022.11.066 10.1016/j.jiec.2022.09.006 10.1007/s10562-016-1826-2 10.1016/j.mtener.2020.100427 10.1016/j.ijhydene.2021.03.033 10.1007/s10562-019-02904-6 10.1039/C4RA12651C 10.1007/s13369-011-0085-1 10.1016/j.applthermaleng.2024.122559 10.1016/j.enconman.2022.116179 10.1002/app.53737 10.1039/D1TA03690D 10.1016/j.memsci.2021.119926 10.1039/C8NJ03459A 10.1038/s41560-017-0018-7 10.1002/app.55156 10.1002/ange.201411703 10.1016/j.ijhydene.2013.02.036 10.1039/D3MA00123G 10.1021/acsomega.2c00263 10.1021/ic901145d 10.1016/j.memsci.2019.117277 10.1039/D2TA03166C 10.1016/j.ijhydene.2011.08.044 10.1016/j.ijhydene.2011.02.115 10.1002/app.54560 10.1016/j.jiec.2021.12.014 10.1016/j.mtbio.2023.100754 10.1016/j.memsci.2021.119906 10.1021/ma00050a017 10.3389/fchem.2020.00694 10.1007/s10965-022-03280-3 10.3390/polym11071177 10.1002/adma.201705155 10.3390/membranes3030182 10.1021/acsami.9b09183 10.1016/j.memsci.2005.03.036 10.1016/j.apcatb.2015.10.005 10.1016/j.carbpol.2018.12.092 10.1016/j.ijhydene.2023.03.033 10.1021/acs.iecr.8b01239 10.1016/j.fuel.2022.125407 10.1016/j.ijhydene.2014.11.136 10.1016/j.saa.2014.12.004 10.1002/anie.201309077 10.1016/j.memsci.2003.09.019 10.1007/s42452-020-2464-2 |
ContentType | Journal Article |
Copyright | 2024 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2024 Wiley Periodicals LLC. |
DBID | AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1002/app.55749 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1097-4628 |
EndPage | n/a |
ExternalDocumentID | 10_1002_app_55749 APP55749 |
Genre | researchArticle |
GrantInformation_xml | – fundername: National Key R&D Program of China funderid: 2018YFE0121200 – fundername: Jiangsu Funding Program for Excellent Postdoctoral Talent funderid: 2023ZB864 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWB RWI RX1 RYL SUPJJ UB1 V2E V8K W8V W99 WBKPD WFSAM WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGYGG CITATION 7SR 8FD AAMMB ADMLS AEFGJ AGXDD AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-c2979-615573e2a9618353e3bec916275625ece471483e3fcf142290802da22319ed073 |
IEDL.DBID | DR2 |
ISSN | 0021-8995 |
IngestDate | Wed Aug 13 11:27:25 EDT 2025 Tue Jul 01 00:59:38 EDT 2025 Thu Apr 24 22:54:58 EDT 2025 Wed Jan 22 17:17:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2979-615573e2a9618353e3bec916275625ece471483e3fcf142290802da22319ed073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5293-1945 |
PQID | 3080021028 |
PQPubID | 1006379 |
PageCount | 13 |
ParticipantIDs | proquest_journals_3080021028 crossref_citationtrail_10_1002_app_55749 crossref_primary_10_1002_app_55749 wiley_primary_10_1002_app_55749_APP55749 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 20, 2024 |
PublicationDateYYYYMMDD | 2024-08-20 |
PublicationDate_xml | – month: 08 year: 2024 text: August 20, 2024 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
PublicationTitle | Journal of applied polymer science |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2013; 3 2017; 2 2023; 4 2023; 140 2019; 11 2020; 17 2016; 146 2023; 149 2024; 141 2019; 208 2016; 182 2018; 42 2009; 48 2022; 29 2020; 8 2018; 6 2005; 261 2023; 22 2020; 2 2015; 138 2015; 40 2020; 9 2018; 30 2020; 44 2022; 329 2019; 590 2016; 45 2022; 641 2014; 53 2021; 9 2021; 46 2015; 5 2022; 270 2015; 127 2019; 149 2024; 243 2011; 36 2004; 229 2022; 116 2013; 38 2007; 315 2023; 48 2022; 7 2017; 57 1992; 25 2023; 119 2022; 10 2022; 107 2018; 57 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 Lu C. (e_1_2_8_38_1) 2019; 11 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 11 start-page: 1177 year: 2019 publication-title: Polymer – volume: 45 start-page: 2327 year: 2016 publication-title: Chem. Soc. Rev. – volume: 208 start-page: 504 year: 2019 publication-title: Carbohydr. Polym. – volume: 10 year: 2022 publication-title: J. Mater. Chem. A – volume: 57 start-page: 8388 year: 2018 publication-title: Ind. Eng. Chem. Res. – volume: 261 year: 2005 publication-title: J. Membr. Sci. – volume: 8 start-page: 694 year: 2020 publication-title: Front. Chem. – volume: 182 start-page: 562 year: 2016 publication-title: Appl. Catal., B – volume: 270 year: 2022 publication-title: Energy Convers. Manage. – volume: 590 year: 2019 publication-title: J. Membr. Sci. – volume: 2 start-page: 877 year: 2017 publication-title: Nat. Energy – volume: 4 start-page: 2636 year: 2023 publication-title: Mater. Adv. – volume: 36 start-page: 689 year: 2011 publication-title: Arabian J. Sci. Eng. – volume: 140 year: 2023 publication-title: J. Appl. Polym. Sci. – volume: 641 year: 2022 publication-title: J. Membr. Sci. – volume: 146 start-page: 1875 year: 2016 publication-title: Catal. Lett. – volume: 53 start-page: 2638 year: 2014 publication-title: Angewandte Chem. Int. Ed. – volume: 36 start-page: 6809 year: 2011 publication-title: Int. J. Hydrogen Energy – volume: 127 start-page: 5231 year: 2015 publication-title: Angewandte Chem. Int. Ed. – volume: 3 start-page: 182 year: 2013 publication-title: Membranes – volume: 22 year: 2023 publication-title: Mater. Today Bio. – volume: 40 start-page: 1836 year: 2015 publication-title: Int. J. Hydrogen Energy – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 42 year: 2018 publication-title: New J. Chem. – volume: 116 start-page: 32 year: 2022 publication-title: J. Ind. Eng. Chem. – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 17 year: 2020 publication-title: Mater. Today Energy – volume: 315 start-page: 1828 year: 2007 publication-title: Science – volume: 2 start-page: 1 year: 2020 publication-title: SN Appl. Sci. – volume: 229 start-page: 95 year: 2004 publication-title: J. Membr. Sci. – volume: 29 start-page: 434 year: 2022 publication-title: J. Polym. Res. – volume: 25 start-page: 6495 year: 1992 publication-title: Macromolecules – volume: 138 start-page: 693 year: 2015 publication-title: Spectrochim. Acta, Part A – volume: 149 year: 2023 publication-title: J. Energy Eng. – volume: 5 start-page: 536 year: 2015 publication-title: RSC Adv. – volume: 9 start-page: 7409 year: 2020 publication-title: J. Mater. Res. Technol. – volume: 48 year: 2023 publication-title: Int. J. Hydrogen Energy – volume: 119 start-page: 439 year: 2023 publication-title: J. Ind. Eng. Chem. – volume: 149 start-page: 3312 year: 2019 publication-title: Catal. Lett. – volume: 243 year: 2024 publication-title: Appl. Therm. Eng. – volume: 44 start-page: 1673 year: 2020 publication-title: Int. J. Energy Res. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 46 year: 2021 publication-title: Int. J. Hydrogen Energy – volume: 7 year: 2022 publication-title: ACS Omega – volume: 141 year: 2024 publication-title: J. Appl. Polym. Sci. – volume: 36 year: 2011 publication-title: Int. J. Hydrogen Energy – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 11 year: 2019 publication-title: Polymers – volume: 329 year: 2022 publication-title: Fuel – volume: 38 start-page: 5084 year: 2013 publication-title: Int. J. Hydrogen Energy – volume: 57 start-page: 789 year: 2017 publication-title: Polym. Eng. Sci. – volume: 48 start-page: 9968 year: 2009 publication-title: Inorg. Chem. – volume: 107 start-page: 436 year: 2022 publication-title: J. Ind. Eng. Chem. – ident: e_1_2_8_7_1 doi: 10.1002/app.54606 – ident: e_1_2_8_18_1 doi: 10.1002/er.4981 – ident: e_1_2_8_20_1 doi: 10.1039/C8TA08013E – ident: e_1_2_8_44_1 doi: 10.1016/j.jmrt.2020.05.015 – ident: e_1_2_8_3_1 doi: 10.1061/(ASCE)EY.1943-7897.0000871 – ident: e_1_2_8_25_1 doi: 10.1039/C5CS00837A – ident: e_1_2_8_26_1 doi: 10.1002/pen.24453 – ident: e_1_2_8_23_1 doi: 10.1126/science.1137975 – ident: e_1_2_8_33_1 doi: 10.1016/j.jiec.2022.11.066 – ident: e_1_2_8_35_1 doi: 10.1016/j.jiec.2022.09.006 – ident: e_1_2_8_45_1 doi: 10.1007/s10562-016-1826-2 – ident: e_1_2_8_30_1 doi: 10.1016/j.mtener.2020.100427 – ident: e_1_2_8_19_1 doi: 10.1016/j.ijhydene.2021.03.033 – ident: e_1_2_8_46_1 doi: 10.1007/s10562-019-02904-6 – ident: e_1_2_8_56_1 doi: 10.1039/C4RA12651C – ident: e_1_2_8_52_1 doi: 10.1007/s13369-011-0085-1 – ident: e_1_2_8_2_1 doi: 10.1016/j.applthermaleng.2024.122559 – ident: e_1_2_8_4_1 doi: 10.1016/j.enconman.2022.116179 – ident: e_1_2_8_36_1 doi: 10.1002/app.53737 – ident: e_1_2_8_10_1 doi: 10.1039/D1TA03690D – ident: e_1_2_8_53_1 doi: 10.1016/j.memsci.2021.119926 – ident: e_1_2_8_16_1 doi: 10.1039/C8NJ03459A – ident: e_1_2_8_22_1 doi: 10.1038/s41560-017-0018-7 – ident: e_1_2_8_6_1 doi: 10.1002/app.55156 – ident: e_1_2_8_49_1 doi: 10.1002/ange.201411703 – ident: e_1_2_8_9_1 doi: 10.1016/j.ijhydene.2013.02.036 – ident: e_1_2_8_28_1 doi: 10.1039/D3MA00123G – ident: e_1_2_8_57_1 doi: 10.1021/acsomega.2c00263 – ident: e_1_2_8_27_1 doi: 10.1021/ic901145d – ident: e_1_2_8_17_1 doi: 10.1016/j.memsci.2019.117277 – ident: e_1_2_8_55_1 doi: 10.1039/D2TA03166C – ident: e_1_2_8_8_1 doi: 10.1016/j.ijhydene.2011.08.044 – ident: e_1_2_8_48_1 doi: 10.1016/j.ijhydene.2011.02.115 – ident: e_1_2_8_31_1 doi: 10.1002/app.54560 – ident: e_1_2_8_32_1 doi: 10.1016/j.jiec.2021.12.014 – ident: e_1_2_8_42_1 doi: 10.1016/j.mtbio.2023.100754 – ident: e_1_2_8_51_1 doi: 10.1016/j.memsci.2021.119906 – ident: e_1_2_8_43_1 doi: 10.1021/ma00050a017 – ident: e_1_2_8_14_1 doi: 10.3389/fchem.2020.00694 – ident: e_1_2_8_13_1 doi: 10.1007/s10965-022-03280-3 – ident: e_1_2_8_39_1 doi: 10.3390/polym11071177 – ident: e_1_2_8_15_1 doi: 10.1002/adma.201705155 – ident: e_1_2_8_11_1 doi: 10.3390/membranes3030182 – ident: e_1_2_8_21_1 doi: 10.1021/acsami.9b09183 – ident: e_1_2_8_12_1 doi: 10.1016/j.memsci.2005.03.036 – ident: e_1_2_8_24_1 doi: 10.1016/j.apcatb.2015.10.005 – ident: e_1_2_8_34_1 doi: 10.1016/j.carbpol.2018.12.092 – ident: e_1_2_8_5_1 doi: 10.1016/j.ijhydene.2023.03.033 – volume: 11 year: 2019 ident: e_1_2_8_38_1 publication-title: Polymers – ident: e_1_2_8_29_1 doi: 10.1021/acs.iecr.8b01239 – ident: e_1_2_8_41_1 doi: 10.1016/j.fuel.2022.125407 – ident: e_1_2_8_54_1 doi: 10.1016/j.ijhydene.2014.11.136 – ident: e_1_2_8_40_1 doi: 10.1016/j.saa.2014.12.004 – ident: e_1_2_8_50_1 doi: 10.1002/anie.201309077 – ident: e_1_2_8_37_1 doi: 10.1016/j.memsci.2003.09.019 – ident: e_1_2_8_47_1 doi: 10.1007/s42452-020-2464-2 |
SSID | ssj0011506 |
Score | 2.4917955 |
Snippet | A novel hybrid polymer electrolyte membrane (PEM) was developed for direct methanol fuel cell (DMFC) applications by incorporating sulfonated poly (ether ether... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Electrolytes Flexible structures Fuel cells Ion exchange Ketones Maximum power density metal organic framework Metal-organic frameworks Methanol Permeability Polymers power density proton conductivity proton exchange membrane Proton exchange membrane fuel cells Sulfonic acid thermal stability |
Title | Sulfonated poly (ether ether ketone)/MOF hybrid polymer electrolyte membrane with ultra‐low methanol permeability for enhanced direct methanol fuel cell performance |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapp.55749 https://www.proquest.com/docview/3080021028 |
Volume | 141 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1097-4628 dateEnd: 20240930 omitProxy: false ssIdentifier: ssj0011506 issn: 0021-8995 databaseCode: ADMLS dateStart: 20120905 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0021-8995 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-4628 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011506 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kJz34Fh9VFvGgh9g06eaBJxGLCNWiFnoQwiaZUDBNi02QevIn-Cv8Yf4SZ3abVkVBvIQQZpN9zGa-nd35hrED6XnQiCPXMENXGKghtuFLBwzT82UscfbFCfkhW1fORadx2RXdOXZSxsJofoipw41mhvpf0wSX4ag2Iw2lNFhCuA0K3qvbQm3R3kypowjoOPp4R93ANYUoWYVMqzYt-dUWzQDmZ5iq7Exzid2XNdTHSx6Oizw8jp6_kTf-swnLbHGCP_mpVpgVNgfZKlv4xEq4xt5uizQhpzrEfDhIx_xQBQVzfX0Aou8-qrWum7w3pngvJdQnAZ1SJx3nwPvQx5plwMnRy4s0f5TvL6_p4IlTzmqZDVI-RKMAmiZ8zBE7c8h66jwC13Z2JpkUkHLaYqAyZZzDOus0z-_OLoxJOgcjsnzXN2gH1LXBkpRkxhY22Kg_iE6JgN4SEAHayYaHj5MoIc-UT2HAsUT8Uvchxl_RBqtk2MJNxnHN5jjEVCMQDZnS9JIIIhE6EMah7cpwix2WAxtEE65zSrmRBpql2Qqw6wPV9Vtsfyo61AQfPwlVS-0IJnN8FNgKbBNAw8-pYf79BcFpu61utv8uusPmLURQ5MC2zCqr5I8F7CICysM9peofDAQFwA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTttAEB4BPQCH0hYQaaFdVT3AwcSxs_6RekHQKG0JIH4kLsha22Mh4ThRaqtKT32EPkUfjCdhZjdOKAKp4mJZ1qzt3Z3xfJ7d-QbgkwoCbKeJb9mxLy3SENcKlYeWHYQqVWR9acZxyN6R171of7uUl3Pwuc6FMfwQ04AbW4b-XrOBc0C6OWMN5TpYUvrtcB5e8Pocm-XB6ZQ8iqGOZzZ4tCz6q5A1r5DtNKdN__VGM4h5H6hqT9NZgav6Hc0Gk5vdqox3k18P6Buf24lX8HICQcWe0ZnXMIfFG1i-R0y4Cn_PqjzjuDqmYjjIx2Jb5wULc7xBZvDeafaOO-J6zClfWqjPAqaqTj4uUfSxT69WoOBYr6jycqRuf__JBz8Fl61WxSAXQ_ILaJjCx4Lgs8DiWm9JEMbVziSzCnPBqwzcpk51WIOLzpfz_a41qehgJU7ohxYvgvouOorrzLjSRZdUiAAqc9A7EhMkV9kO6HKWZBycCjkTOFUEYVohpvQ1WoeFgnq4AYJ-2zyPyWokASJb2UGWYCJjD-M0dn0VN2C7ntkomdCdc9WNPDJEzU5EQx_poW_Ax6no0HB8PCa0WatHNDHzH5Gr8TZjNHqcnuenbxDtnZzok7f_L_oBFrvnvcPo8OvR93ew5BCg4ni2Y2_CQjmqcIsAURm_13p_B1AiCdw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTttAEB6lVKraA5S2qFBaVohDejAxttc_6gnRRikQiGiROFSy1vZYSDhOBLZQeuIReIo-GE_CzG6cQNVKVS-WZc3a-zPr-XZ25xuALRWG6GVpYNlJIC3SENeKlI-WHUYqUzT7spz9kP0jv3fq7Z_JsxZ8amJhDD_EzOHGM0P_r3mCj7O8MycN5TRYUgZe9ASeej6trhgRncy4oxjp-OZ8x45FiwrZ0ArZTmdW9LExmiPMhzhVG5ruEvxoqmjOl1xs11Wynf78jb3xP9vwEhanAFTsGo1ZhhaWr-DFA1rC1_DrW13k7FXHTIxHxUS0dVSwMNcLZP7uj53-cVecTzjgSwsNWcDk1CkmFYohDqlmJQr29Iq6qC7V3c1tMboWnLRalaNCjMkqoOEJnwgCzwLLc30gQRhDO5fMaywE7zFwmSbQ4Q2cdr983-tZ03wOVupEQWTxFmjgoqM4y4wrXXRJgQieMgO9IzFFMpReSI_zNGfXVMRxwJkiALMTYUb_ohVYKKmFb0HQos33mapGEhyylR3mKaYy8THJEjdQySq0m4GN0ynZOefcKGJD0-zE1PWx7vpV2JyJjg3Dx5-E1hvtiKeT_Cp2NdpmhEaf08P89xfEu4OBvln7d9ENeDb43I0Pvx4dvIPnDqEpdmY79josVJc1vic0VCUftNbfAzn-CIs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sulfonated+poly+%28ether+ether+ketone%29%2FMOF+hybrid+polymer+electrolyte+membrane+with+ultra%E2%80%90low+methanol+permeability+for+enhanced+direct+methanol+fuel+cell+performance&rft.jtitle=Journal+of+applied+polymer+science&rft.au=Kumar%2C+Divya&rft.au=Liu%2C+Huiyuan&rft.au=Zhang%2C+Weiqi&rft.au=Xu%2C+Qian&rft.date=2024-08-20&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0021-8995&rft.eissn=1097-4628&rft.volume=141&rft.issue=32&rft_id=info:doi/10.1002%2Fapp.55749&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8995&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8995&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8995&client=summon |