Sulfonated poly (ether ether ketone)/MOF hybrid polymer electrolyte membrane with ultra‐low methanol permeability for enhanced direct methanol fuel cell performance

A novel hybrid polymer electrolyte membrane (PEM) was developed for direct methanol fuel cell (DMFC) applications by incorporating sulfonated poly (ether ether ketone) (SPEEK) with a chromium‐based metal–organic framework (MOF), namely, BUT‐8(Cr). The incorporation of BUT‐8(Cr) significantly improve...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied polymer science Vol. 141; no. 32
Main Authors Divya, Kumar, Liu, Huiyuan, Zhang, Weiqi, Xu, Qian, Su, Huaneng
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 20.08.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0021-8995
1097-4628
DOI10.1002/app.55749

Cover

Abstract A novel hybrid polymer electrolyte membrane (PEM) was developed for direct methanol fuel cell (DMFC) applications by incorporating sulfonated poly (ether ether ketone) (SPEEK) with a chromium‐based metal–organic framework (MOF), namely, BUT‐8(Cr). The incorporation of BUT‐8(Cr) significantly improved the dispersion of the MOF within the SPEEK matrix, leading to alterations in surface morphology and the creation of hydrophilic channels, as confirmed by SEM. Furthermore, the presence of an excess of sulfonic groups and the flexible structure of the MOF enhanced the physicochemical properties of the membrane, such as water uptake, proton conductivity and ion exchange capacity. Importantly, well‐defined rigid coordination structure of MOF effectively blocks methanol migration, resulting in a notably low methanol permeability value of 1.6 × 10−7 cm2 s−1, compared to Nafion 117 (20 × 10−7cm2s−1). For practical DMFC operation, the hybrid membrane (~0.75 wt.% MOF) exhibited a maximum power density of 88.6mWcm−2 with current density of 434.04 mAcm−2, outperforming Nafion 117 (73.4mWcm−2 and 380 mAcm−2 respectively) at same conditions. Our results suggest that the prepared SPEEK‐0.75 hybrid membrane holds a great promise as a PEM material for DMFC applications. SPEEK/BUT‐8 Cr hybrid membranes have high ion selectivity and superior DMFC performance.
AbstractList A novel hybrid polymer electrolyte membrane (PEM) was developed for direct methanol fuel cell (DMFC) applications by incorporating sulfonated poly (ether ether ketone) (SPEEK) with a chromium‐based metal–organic framework (MOF), namely, BUT‐8(Cr). The incorporation of BUT‐8(Cr) significantly improved the dispersion of the MOF within the SPEEK matrix, leading to alterations in surface morphology and the creation of hydrophilic channels, as confirmed by SEM. Furthermore, the presence of an excess of sulfonic groups and the flexible structure of the MOF enhanced the physicochemical properties of the membrane, such as water uptake, proton conductivity and ion exchange capacity. Importantly, well‐defined rigid coordination structure of MOF effectively blocks methanol migration, resulting in a notably low methanol permeability value of 1.6 × 10 −7  cm 2  s −1 , compared to Nafion 117 (20 × 10 −7 cm 2 s −1 ). For practical DMFC operation, the hybrid membrane (~0.75 wt.% MOF) exhibited a maximum power density of 88.6mWcm −2 with current density of 434.04 mAcm −2 , outperforming Nafion 117 (73.4mWcm −2 and 380 mAcm −2 respectively) at same conditions. Our results suggest that the prepared SPEEK‐0.75 hybrid membrane holds a great promise as a PEM material for DMFC applications.
A novel hybrid polymer electrolyte membrane (PEM) was developed for direct methanol fuel cell (DMFC) applications by incorporating sulfonated poly (ether ether ketone) (SPEEK) with a chromium‐based metal–organic framework (MOF), namely, BUT‐8(Cr). The incorporation of BUT‐8(Cr) significantly improved the dispersion of the MOF within the SPEEK matrix, leading to alterations in surface morphology and the creation of hydrophilic channels, as confirmed by SEM. Furthermore, the presence of an excess of sulfonic groups and the flexible structure of the MOF enhanced the physicochemical properties of the membrane, such as water uptake, proton conductivity and ion exchange capacity. Importantly, well‐defined rigid coordination structure of MOF effectively blocks methanol migration, resulting in a notably low methanol permeability value of 1.6 × 10−7 cm2 s−1, compared to Nafion 117 (20 × 10−7cm2s−1). For practical DMFC operation, the hybrid membrane (~0.75 wt.% MOF) exhibited a maximum power density of 88.6mWcm−2 with current density of 434.04 mAcm−2, outperforming Nafion 117 (73.4mWcm−2 and 380 mAcm−2 respectively) at same conditions. Our results suggest that the prepared SPEEK‐0.75 hybrid membrane holds a great promise as a PEM material for DMFC applications. SPEEK/BUT‐8 Cr hybrid membranes have high ion selectivity and superior DMFC performance.
A novel hybrid polymer electrolyte membrane (PEM) was developed for direct methanol fuel cell (DMFC) applications by incorporating sulfonated poly (ether ether ketone) (SPEEK) with a chromium‐based metal–organic framework (MOF), namely, BUT‐8(Cr). The incorporation of BUT‐8(Cr) significantly improved the dispersion of the MOF within the SPEEK matrix, leading to alterations in surface morphology and the creation of hydrophilic channels, as confirmed by SEM. Furthermore, the presence of an excess of sulfonic groups and the flexible structure of the MOF enhanced the physicochemical properties of the membrane, such as water uptake, proton conductivity and ion exchange capacity. Importantly, well‐defined rigid coordination structure of MOF effectively blocks methanol migration, resulting in a notably low methanol permeability value of 1.6 × 10−7 cm2 s−1, compared to Nafion 117 (20 × 10−7cm2s−1). For practical DMFC operation, the hybrid membrane (~0.75 wt.% MOF) exhibited a maximum power density of 88.6mWcm−2 with current density of 434.04 mAcm−2, outperforming Nafion 117 (73.4mWcm−2 and 380 mAcm−2 respectively) at same conditions. Our results suggest that the prepared SPEEK‐0.75 hybrid membrane holds a great promise as a PEM material for DMFC applications.
Author Divya, Kumar
Xu, Qian
Liu, Huiyuan
Zhang, Weiqi
Su, Huaneng
Author_xml – sequence: 1
  givenname: Kumar
  surname: Divya
  fullname: Divya, Kumar
  organization: Jiangsu University
– sequence: 2
  givenname: Huiyuan
  surname: Liu
  fullname: Liu, Huiyuan
  organization: Jiangsu University
– sequence: 3
  givenname: Weiqi
  surname: Zhang
  fullname: Zhang, Weiqi
  organization: Jiangsu University
– sequence: 4
  givenname: Qian
  surname: Xu
  fullname: Xu, Qian
  organization: Jiangsu University
– sequence: 5
  givenname: Huaneng
  orcidid: 0000-0002-5293-1945
  surname: Su
  fullname: Su, Huaneng
  email: suhuaneng@ujs.edu.cn, suhuaneng@foxmail.com
  organization: Jiangsu University
BookMark eNp1kU1KBDEQhYMoOP4svEHAjS7aSdK_WYo4KigK6rrJZKqZaLrTptMMvfMInsKDeRJrbEEQ3SSk3vdeUakdstm4Bgg54OyEMyamqm1P0jRP5AaZcCbzKMlEsUkmqPGokDLdJjtd98QY5ynLJuT9vreVa1SABW2dHegRhCV4Op7PEDD-eHpzO6PLYe7NCNVrwIIOHh8BaA313KsG6MqEJe1t8Orj9c26FSphqRpnaQu-BjU31oSBVg79DQoauy6Mx6QfsurBUg32y4Nkvcb2yFalbAf73_cueZydP5xdRte3F1dnp9eRFjKXUcZx9hiEkhkv4jSGeA5a8kzkaSZS0JDkPCmwXOmKJ0JIVjCxUELEXMKC5fEuORxzW-9eeuhC-eR632DLMkYWP5GJAqnpSGnvus5DVWoTVDCuwcmNLTkr18socRnl1zLQcfzL0XpTKz_8yX6nr4yF4X-wPL27Gx2fcyye9g
CitedBy_id crossref_primary_10_1016_j_memsci_2024_123510
crossref_primary_10_1016_j_gee_2025_03_003
crossref_primary_10_1039_D4YA00446A
crossref_primary_10_1016_j_memsci_2024_123193
crossref_primary_10_1080_25740881_2024_2441941
crossref_primary_10_1016_j_apsusc_2024_161544
crossref_primary_10_1002_app_56931
crossref_primary_10_1016_j_colsurfa_2025_136394
Cites_doi 10.1002/app.54606
10.1002/er.4981
10.1039/C8TA08013E
10.1016/j.jmrt.2020.05.015
10.1061/(ASCE)EY.1943-7897.0000871
10.1039/C5CS00837A
10.1002/pen.24453
10.1126/science.1137975
10.1016/j.jiec.2022.11.066
10.1016/j.jiec.2022.09.006
10.1007/s10562-016-1826-2
10.1016/j.mtener.2020.100427
10.1016/j.ijhydene.2021.03.033
10.1007/s10562-019-02904-6
10.1039/C4RA12651C
10.1007/s13369-011-0085-1
10.1016/j.applthermaleng.2024.122559
10.1016/j.enconman.2022.116179
10.1002/app.53737
10.1039/D1TA03690D
10.1016/j.memsci.2021.119926
10.1039/C8NJ03459A
10.1038/s41560-017-0018-7
10.1002/app.55156
10.1002/ange.201411703
10.1016/j.ijhydene.2013.02.036
10.1039/D3MA00123G
10.1021/acsomega.2c00263
10.1021/ic901145d
10.1016/j.memsci.2019.117277
10.1039/D2TA03166C
10.1016/j.ijhydene.2011.08.044
10.1016/j.ijhydene.2011.02.115
10.1002/app.54560
10.1016/j.jiec.2021.12.014
10.1016/j.mtbio.2023.100754
10.1016/j.memsci.2021.119906
10.1021/ma00050a017
10.3389/fchem.2020.00694
10.1007/s10965-022-03280-3
10.3390/polym11071177
10.1002/adma.201705155
10.3390/membranes3030182
10.1021/acsami.9b09183
10.1016/j.memsci.2005.03.036
10.1016/j.apcatb.2015.10.005
10.1016/j.carbpol.2018.12.092
10.1016/j.ijhydene.2023.03.033
10.1021/acs.iecr.8b01239
10.1016/j.fuel.2022.125407
10.1016/j.ijhydene.2014.11.136
10.1016/j.saa.2014.12.004
10.1002/anie.201309077
10.1016/j.memsci.2003.09.019
10.1007/s42452-020-2464-2
ContentType Journal Article
Copyright 2024 Wiley Periodicals LLC.
Copyright_xml – notice: 2024 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1002/app.55749
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1097-4628
EndPage n/a
ExternalDocumentID 10_1002_app_55749
APP55749
Genre researchArticle
GrantInformation_xml – fundername: National Key R&D Program of China
  funderid: 2018YFE0121200
– fundername: Jiangsu Funding Program for Excellent Postdoctoral Talent
  funderid: 2023ZB864
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWB
RWI
RX1
RYL
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
7SR
8FD
AAMMB
ADMLS
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-c2979-615573e2a9618353e3bec916275625ece471483e3fcf142290802da22319ed073
IEDL.DBID DR2
ISSN 0021-8995
IngestDate Wed Aug 13 11:27:25 EDT 2025
Tue Jul 01 00:59:38 EDT 2025
Thu Apr 24 22:54:58 EDT 2025
Wed Jan 22 17:17:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 32
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2979-615573e2a9618353e3bec916275625ece471483e3fcf142290802da22319ed073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5293-1945
PQID 3080021028
PQPubID 1006379
PageCount 13
ParticipantIDs proquest_journals_3080021028
crossref_citationtrail_10_1002_app_55749
crossref_primary_10_1002_app_55749
wiley_primary_10_1002_app_55749_APP55749
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 20, 2024
PublicationDateYYYYMMDD 2024-08-20
PublicationDate_xml – month: 08
  year: 2024
  text: August 20, 2024
  day: 20
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Journal of applied polymer science
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2013; 3
2017; 2
2023; 4
2023; 140
2019; 11
2020; 17
2016; 146
2023; 149
2024; 141
2019; 208
2016; 182
2018; 42
2009; 48
2022; 29
2020; 8
2018; 6
2005; 261
2023; 22
2020; 2
2015; 138
2015; 40
2020; 9
2018; 30
2020; 44
2022; 329
2019; 590
2016; 45
2022; 641
2014; 53
2021; 9
2021; 46
2015; 5
2022; 270
2015; 127
2019; 149
2024; 243
2011; 36
2004; 229
2022; 116
2013; 38
2007; 315
2023; 48
2022; 7
2017; 57
1992; 25
2023; 119
2022; 10
2022; 107
2018; 57
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
Lu C. (e_1_2_8_38_1) 2019; 11
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 11
  start-page: 1177
  year: 2019
  publication-title: Polymer
– volume: 45
  start-page: 2327
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 208
  start-page: 504
  year: 2019
  publication-title: Carbohydr. Polym.
– volume: 10
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 57
  start-page: 8388
  year: 2018
  publication-title: Ind. Eng. Chem. Res.
– volume: 261
  year: 2005
  publication-title: J. Membr. Sci.
– volume: 8
  start-page: 694
  year: 2020
  publication-title: Front. Chem.
– volume: 182
  start-page: 562
  year: 2016
  publication-title: Appl. Catal., B
– volume: 270
  year: 2022
  publication-title: Energy Convers. Manage.
– volume: 590
  year: 2019
  publication-title: J. Membr. Sci.
– volume: 2
  start-page: 877
  year: 2017
  publication-title: Nat. Energy
– volume: 4
  start-page: 2636
  year: 2023
  publication-title: Mater. Adv.
– volume: 36
  start-page: 689
  year: 2011
  publication-title: Arabian J. Sci. Eng.
– volume: 140
  year: 2023
  publication-title: J. Appl. Polym. Sci.
– volume: 641
  year: 2022
  publication-title: J. Membr. Sci.
– volume: 146
  start-page: 1875
  year: 2016
  publication-title: Catal. Lett.
– volume: 53
  start-page: 2638
  year: 2014
  publication-title: Angewandte Chem. Int. Ed.
– volume: 36
  start-page: 6809
  year: 2011
  publication-title: Int. J. Hydrogen Energy
– volume: 127
  start-page: 5231
  year: 2015
  publication-title: Angewandte Chem. Int. Ed.
– volume: 3
  start-page: 182
  year: 2013
  publication-title: Membranes
– volume: 22
  year: 2023
  publication-title: Mater. Today Bio.
– volume: 40
  start-page: 1836
  year: 2015
  publication-title: Int. J. Hydrogen Energy
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 42
  year: 2018
  publication-title: New J. Chem.
– volume: 116
  start-page: 32
  year: 2022
  publication-title: J. Ind. Eng. Chem.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 17
  year: 2020
  publication-title: Mater. Today Energy
– volume: 315
  start-page: 1828
  year: 2007
  publication-title: Science
– volume: 2
  start-page: 1
  year: 2020
  publication-title: SN Appl. Sci.
– volume: 229
  start-page: 95
  year: 2004
  publication-title: J. Membr. Sci.
– volume: 29
  start-page: 434
  year: 2022
  publication-title: J. Polym. Res.
– volume: 25
  start-page: 6495
  year: 1992
  publication-title: Macromolecules
– volume: 138
  start-page: 693
  year: 2015
  publication-title: Spectrochim. Acta, Part A
– volume: 149
  year: 2023
  publication-title: J. Energy Eng.
– volume: 5
  start-page: 536
  year: 2015
  publication-title: RSC Adv.
– volume: 9
  start-page: 7409
  year: 2020
  publication-title: J. Mater. Res. Technol.
– volume: 48
  year: 2023
  publication-title: Int. J. Hydrogen Energy
– volume: 119
  start-page: 439
  year: 2023
  publication-title: J. Ind. Eng. Chem.
– volume: 149
  start-page: 3312
  year: 2019
  publication-title: Catal. Lett.
– volume: 243
  year: 2024
  publication-title: Appl. Therm. Eng.
– volume: 44
  start-page: 1673
  year: 2020
  publication-title: Int. J. Energy Res.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 46
  year: 2021
  publication-title: Int. J. Hydrogen Energy
– volume: 7
  year: 2022
  publication-title: ACS Omega
– volume: 141
  year: 2024
  publication-title: J. Appl. Polym. Sci.
– volume: 36
  year: 2011
  publication-title: Int. J. Hydrogen Energy
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 11
  year: 2019
  publication-title: Polymers
– volume: 329
  year: 2022
  publication-title: Fuel
– volume: 38
  start-page: 5084
  year: 2013
  publication-title: Int. J. Hydrogen Energy
– volume: 57
  start-page: 789
  year: 2017
  publication-title: Polym. Eng. Sci.
– volume: 48
  start-page: 9968
  year: 2009
  publication-title: Inorg. Chem.
– volume: 107
  start-page: 436
  year: 2022
  publication-title: J. Ind. Eng. Chem.
– ident: e_1_2_8_7_1
  doi: 10.1002/app.54606
– ident: e_1_2_8_18_1
  doi: 10.1002/er.4981
– ident: e_1_2_8_20_1
  doi: 10.1039/C8TA08013E
– ident: e_1_2_8_44_1
  doi: 10.1016/j.jmrt.2020.05.015
– ident: e_1_2_8_3_1
  doi: 10.1061/(ASCE)EY.1943-7897.0000871
– ident: e_1_2_8_25_1
  doi: 10.1039/C5CS00837A
– ident: e_1_2_8_26_1
  doi: 10.1002/pen.24453
– ident: e_1_2_8_23_1
  doi: 10.1126/science.1137975
– ident: e_1_2_8_33_1
  doi: 10.1016/j.jiec.2022.11.066
– ident: e_1_2_8_35_1
  doi: 10.1016/j.jiec.2022.09.006
– ident: e_1_2_8_45_1
  doi: 10.1007/s10562-016-1826-2
– ident: e_1_2_8_30_1
  doi: 10.1016/j.mtener.2020.100427
– ident: e_1_2_8_19_1
  doi: 10.1016/j.ijhydene.2021.03.033
– ident: e_1_2_8_46_1
  doi: 10.1007/s10562-019-02904-6
– ident: e_1_2_8_56_1
  doi: 10.1039/C4RA12651C
– ident: e_1_2_8_52_1
  doi: 10.1007/s13369-011-0085-1
– ident: e_1_2_8_2_1
  doi: 10.1016/j.applthermaleng.2024.122559
– ident: e_1_2_8_4_1
  doi: 10.1016/j.enconman.2022.116179
– ident: e_1_2_8_36_1
  doi: 10.1002/app.53737
– ident: e_1_2_8_10_1
  doi: 10.1039/D1TA03690D
– ident: e_1_2_8_53_1
  doi: 10.1016/j.memsci.2021.119926
– ident: e_1_2_8_16_1
  doi: 10.1039/C8NJ03459A
– ident: e_1_2_8_22_1
  doi: 10.1038/s41560-017-0018-7
– ident: e_1_2_8_6_1
  doi: 10.1002/app.55156
– ident: e_1_2_8_49_1
  doi: 10.1002/ange.201411703
– ident: e_1_2_8_9_1
  doi: 10.1016/j.ijhydene.2013.02.036
– ident: e_1_2_8_28_1
  doi: 10.1039/D3MA00123G
– ident: e_1_2_8_57_1
  doi: 10.1021/acsomega.2c00263
– ident: e_1_2_8_27_1
  doi: 10.1021/ic901145d
– ident: e_1_2_8_17_1
  doi: 10.1016/j.memsci.2019.117277
– ident: e_1_2_8_55_1
  doi: 10.1039/D2TA03166C
– ident: e_1_2_8_8_1
  doi: 10.1016/j.ijhydene.2011.08.044
– ident: e_1_2_8_48_1
  doi: 10.1016/j.ijhydene.2011.02.115
– ident: e_1_2_8_31_1
  doi: 10.1002/app.54560
– ident: e_1_2_8_32_1
  doi: 10.1016/j.jiec.2021.12.014
– ident: e_1_2_8_42_1
  doi: 10.1016/j.mtbio.2023.100754
– ident: e_1_2_8_51_1
  doi: 10.1016/j.memsci.2021.119906
– ident: e_1_2_8_43_1
  doi: 10.1021/ma00050a017
– ident: e_1_2_8_14_1
  doi: 10.3389/fchem.2020.00694
– ident: e_1_2_8_13_1
  doi: 10.1007/s10965-022-03280-3
– ident: e_1_2_8_39_1
  doi: 10.3390/polym11071177
– ident: e_1_2_8_15_1
  doi: 10.1002/adma.201705155
– ident: e_1_2_8_11_1
  doi: 10.3390/membranes3030182
– ident: e_1_2_8_21_1
  doi: 10.1021/acsami.9b09183
– ident: e_1_2_8_12_1
  doi: 10.1016/j.memsci.2005.03.036
– ident: e_1_2_8_24_1
  doi: 10.1016/j.apcatb.2015.10.005
– ident: e_1_2_8_34_1
  doi: 10.1016/j.carbpol.2018.12.092
– ident: e_1_2_8_5_1
  doi: 10.1016/j.ijhydene.2023.03.033
– volume: 11
  year: 2019
  ident: e_1_2_8_38_1
  publication-title: Polymers
– ident: e_1_2_8_29_1
  doi: 10.1021/acs.iecr.8b01239
– ident: e_1_2_8_41_1
  doi: 10.1016/j.fuel.2022.125407
– ident: e_1_2_8_54_1
  doi: 10.1016/j.ijhydene.2014.11.136
– ident: e_1_2_8_40_1
  doi: 10.1016/j.saa.2014.12.004
– ident: e_1_2_8_50_1
  doi: 10.1002/anie.201309077
– ident: e_1_2_8_37_1
  doi: 10.1016/j.memsci.2003.09.019
– ident: e_1_2_8_47_1
  doi: 10.1007/s42452-020-2464-2
SSID ssj0011506
Score 2.4917955
Snippet A novel hybrid polymer electrolyte membrane (PEM) was developed for direct methanol fuel cell (DMFC) applications by incorporating sulfonated poly (ether ether...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Electrolytes
Flexible structures
Fuel cells
Ion exchange
Ketones
Maximum power density
metal organic framework
Metal-organic frameworks
Methanol
Permeability
Polymers
power density
proton conductivity
proton exchange membrane
Proton exchange membrane fuel cells
Sulfonic acid
thermal stability
Title Sulfonated poly (ether ether ketone)/MOF hybrid polymer electrolyte membrane with ultra‐low methanol permeability for enhanced direct methanol fuel cell performance
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapp.55749
https://www.proquest.com/docview/3080021028
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1097-4628
  dateEnd: 20240930
  omitProxy: false
  ssIdentifier: ssj0011506
  issn: 0021-8995
  databaseCode: ADMLS
  dateStart: 20120905
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0021-8995
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-4628
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011506
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kJz34Fh9VFvGgh9g06eaBJxGLCNWiFnoQwiaZUDBNi02QevIn-Cv8Yf4SZ3abVkVBvIQQZpN9zGa-nd35hrED6XnQiCPXMENXGKghtuFLBwzT82UscfbFCfkhW1fORadx2RXdOXZSxsJofoipw41mhvpf0wSX4ag2Iw2lNFhCuA0K3qvbQm3R3kypowjoOPp4R93ANYUoWYVMqzYt-dUWzQDmZ5iq7Exzid2XNdTHSx6Oizw8jp6_kTf-swnLbHGCP_mpVpgVNgfZKlv4xEq4xt5uizQhpzrEfDhIx_xQBQVzfX0Aou8-qrWum7w3pngvJdQnAZ1SJx3nwPvQx5plwMnRy4s0f5TvL6_p4IlTzmqZDVI-RKMAmiZ8zBE7c8h66jwC13Z2JpkUkHLaYqAyZZzDOus0z-_OLoxJOgcjsnzXN2gH1LXBkpRkxhY22Kg_iE6JgN4SEAHayYaHj5MoIc-UT2HAsUT8Uvchxl_RBqtk2MJNxnHN5jjEVCMQDZnS9JIIIhE6EMah7cpwix2WAxtEE65zSrmRBpql2Qqw6wPV9Vtsfyo61AQfPwlVS-0IJnN8FNgKbBNAw8-pYf79BcFpu61utv8uusPmLURQ5MC2zCqr5I8F7CICysM9peofDAQFwA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTttAEB4BPQCH0hYQaaFdVT3AwcSxs_6RekHQKG0JIH4kLsha22Mh4ThRaqtKT32EPkUfjCdhZjdOKAKp4mJZ1qzt3Z3xfJ7d-QbgkwoCbKeJb9mxLy3SENcKlYeWHYQqVWR9acZxyN6R171of7uUl3Pwuc6FMfwQ04AbW4b-XrOBc0C6OWMN5TpYUvrtcB5e8Pocm-XB6ZQ8iqGOZzZ4tCz6q5A1r5DtNKdN__VGM4h5H6hqT9NZgav6Hc0Gk5vdqox3k18P6Buf24lX8HICQcWe0ZnXMIfFG1i-R0y4Cn_PqjzjuDqmYjjIx2Jb5wULc7xBZvDeafaOO-J6zClfWqjPAqaqTj4uUfSxT69WoOBYr6jycqRuf__JBz8Fl61WxSAXQ_ILaJjCx4Lgs8DiWm9JEMbVziSzCnPBqwzcpk51WIOLzpfz_a41qehgJU7ohxYvgvouOorrzLjSRZdUiAAqc9A7EhMkV9kO6HKWZBycCjkTOFUEYVohpvQ1WoeFgnq4AYJ-2zyPyWokASJb2UGWYCJjD-M0dn0VN2C7ntkomdCdc9WNPDJEzU5EQx_poW_Ax6no0HB8PCa0WatHNDHzH5Gr8TZjNHqcnuenbxDtnZzok7f_L_oBFrvnvcPo8OvR93ew5BCg4ni2Y2_CQjmqcIsAURm_13p_B1AiCdw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTttAEB6lVKraA5S2qFBaVohDejAxttc_6gnRRikQiGiROFSy1vZYSDhOBLZQeuIReIo-GE_CzG6cQNVKVS-WZc3a-zPr-XZ25xuALRWG6GVpYNlJIC3SENeKlI-WHUYqUzT7spz9kP0jv3fq7Z_JsxZ8amJhDD_EzOHGM0P_r3mCj7O8MycN5TRYUgZe9ASeej6trhgRncy4oxjp-OZ8x45FiwrZ0ArZTmdW9LExmiPMhzhVG5ruEvxoqmjOl1xs11Wynf78jb3xP9vwEhanAFTsGo1ZhhaWr-DFA1rC1_DrW13k7FXHTIxHxUS0dVSwMNcLZP7uj53-cVecTzjgSwsNWcDk1CkmFYohDqlmJQr29Iq6qC7V3c1tMboWnLRalaNCjMkqoOEJnwgCzwLLc30gQRhDO5fMaywE7zFwmSbQ4Q2cdr983-tZ03wOVupEQWTxFmjgoqM4y4wrXXRJgQieMgO9IzFFMpReSI_zNGfXVMRxwJkiALMTYUb_ohVYKKmFb0HQos33mapGEhyylR3mKaYy8THJEjdQySq0m4GN0ynZOefcKGJD0-zE1PWx7vpV2JyJjg3Dx5-E1hvtiKeT_Cp2NdpmhEaf08P89xfEu4OBvln7d9ENeDb43I0Pvx4dvIPnDqEpdmY79josVJc1vic0VCUftNbfAzn-CIs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sulfonated+poly+%28ether+ether+ketone%29%2FMOF+hybrid+polymer+electrolyte+membrane+with+ultra%E2%80%90low+methanol+permeability+for+enhanced+direct+methanol+fuel+cell+performance&rft.jtitle=Journal+of+applied+polymer+science&rft.au=Kumar%2C+Divya&rft.au=Liu%2C+Huiyuan&rft.au=Zhang%2C+Weiqi&rft.au=Xu%2C+Qian&rft.date=2024-08-20&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0021-8995&rft.eissn=1097-4628&rft.volume=141&rft.issue=32&rft_id=info:doi/10.1002%2Fapp.55749&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8995&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8995&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8995&client=summon