Categorization of breast masses based on deep belief network parameters optimized using chaotic krill herd optimization algorithm for frequent diagnosis of breast abnormalities

Several deep learning techniques are utilized for classification of the masses in mammogram images. But the existing method doesnot provide sufficient accuracy . for breast masses classification in mammogram images. In this manuscript, an efficient breast cancer image classification framework utiliz...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of imaging systems and technology Vol. 32; no. 5; pp. 1561 - 1576
Main Authors Chandraraju, Thirumarai Selvi, Jeyaprakash, Amudha
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.09.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0899-9457
1098-1098
DOI10.1002/ima.22718

Cover

Abstract Several deep learning techniques are utilized for classification of the masses in mammogram images. But the existing method doesnot provide sufficient accuracy . for breast masses classification in mammogram images. In this manuscript, an efficient breast cancer image classification framework utilizing the deep belief network (DBN) through chaotic krill herd optimization (CKHO) algorithm for classification of masses in mammogram images is proposed. Initially the input mammogram images are pre‐processed by altered phase preserving dynamic range compression (APPDRC) method for removing the unwanted noise and artifacts. Then these pre‐processed images are assumed with DBN for classifying that mass in the mammogram images into normal, benign, and malignant lesions. Generally, DBN does not reveal any acceptance of optimization techniques for computing optimal parameters that guarantee an accurate classification. Therefore in this work, proposed CKHO algorithm is employed for optimizing weight parameters of the self‐attention convolutional neural network (SACNN). The simulation process is performed under MATLAB platform. Finally, the proposed DBN with chaotic krill herd optimization algorithm (DBN‐CKHO) attains high accuracy 44.5%, 33.42%, 55.23%, 62.35%, and 43.42% when compared with the existing method such as extreme learning machine classifier with moth flame optimization (ELMC‐MFO), Kernel extreme learning machine classifier with Chaotic salp swarm algorithm (KELMC‐CSSA), Extreme learning machine classifier with fruit fly optimization algorithm (ELMC‐FOA), Kernel extreme learning machine classifier with grasshopper optimization algorithm (KELMC‐GOA) and deep neural network with non‐dominated sorting genetic algorithm‐based classification approach.
AbstractList Several deep learning techniques are utilized for classification of the masses in mammogram images. But the existing method doesnot provide sufficient accuracy . for breast masses classification in mammogram images. In this manuscript, an efficient breast cancer image classification framework utilizing the deep belief network (DBN) through chaotic krill herd optimization (CKHO) algorithm for classification of masses in mammogram images is proposed. Initially the input mammogram images are pre‐processed by altered phase preserving dynamic range compression (APPDRC) method for removing the unwanted noise and artifacts. Then these pre‐processed images are assumed with DBN for classifying that mass in the mammogram images into normal, benign, and malignant lesions. Generally, DBN does not reveal any acceptance of optimization techniques for computing optimal parameters that guarantee an accurate classification. Therefore in this work, proposed CKHO algorithm is employed for optimizing weight parameters of the self‐attention convolutional neural network (SACNN). The simulation process is performed under MATLAB platform. Finally, the proposed DBN with chaotic krill herd optimization algorithm (DBN‐CKHO) attains high accuracy 44.5%, 33.42%, 55.23%, 62.35%, and 43.42% when compared with the existing method such as extreme learning machine classifier with moth flame optimization (ELMC‐MFO), Kernel extreme learning machine classifier with Chaotic salp swarm algorithm (KELMC‐CSSA), Extreme learning machine classifier with fruit fly optimization algorithm (ELMC‐FOA), Kernel extreme learning machine classifier with grasshopper optimization algorithm (KELMC‐GOA) and deep neural network with non‐dominated sorting genetic algorithm‐based classification approach.
Author Chandraraju, Thirumarai Selvi
Jeyaprakash, Amudha
Author_xml – sequence: 1
  givenname: Thirumarai Selvi
  orcidid: 0000-0001-7359-3722
  surname: Chandraraju
  fullname: Chandraraju, Thirumarai Selvi
  email: selvichandraraju001@gmail.com
  organization: Sri Krishna College of Engineering and Technology
– sequence: 2
  givenname: Amudha
  orcidid: 0000-0002-4510-0967
  surname: Jeyaprakash
  fullname: Jeyaprakash, Amudha
  organization: Dr. Mahalingam College of Engineering and Technology
BookMark eNp9kU1LJDEQhsOi4Phx8B8E9rSH1qS_0n2UYV0FxYuem0pSPRPtTnorGUR_lT9xexwXlgW9VFHUU_UW9R6yPR88MnYqxZkUIj93I5zluZLNN7aQom2ybdhjC9G0bdaWlTpghzE-CiFlJaoFe1tCwlUg9wrJBc9DzzUhxMRHiBEj1xDR8rljESeucXDYc4_pOdATn4BgxIQUeZiSG93rzG6i8ytu1hCSM_yJ3DDwNZL9i-yEYNiqpvXI-0C8J_y9QZ-4dbDyIbr4zyWgfaARBpccxmO238MQ8eQjH7GHy5_3y6vs5u7X9fLiJjN5q5ost1aJQjSolFClLbSpQJk6B1Eoo4ysldR9aWVroCiNqLWtddHrskJd21LI4oh93-2dKMynxdQ9hg35WbLLlWiUqItWzdSPHWUoxEjYdxPNFtBLJ0W3NaSbq-7dkJk9_481Lr0_IxG44auJZzfgy-eru-vbi93EH7sMo-I
CitedBy_id crossref_primary_10_1615_CritRevBiomedEng_2024051166
crossref_primary_10_1109_JBHI_2023_3348436
crossref_primary_10_1080_08839514_2024_2327867
crossref_primary_10_1016_j_matpr_2023_10_154
crossref_primary_10_1007_s11063_022_11055_6
crossref_primary_10_1002_cpe_7605
Cites_doi 10.1016/j.bspc.2021.102465
10.18280/ejee.224-509
10.1016/j.bspc.2020.101912
10.1007/s11042-018-5804-0
10.1007/s10462-019-09716-5
10.1007/s00500-021-06159-5
10.3322/caac.21395
10.1007/s10916-019-1494-z
10.3322/caac.21254
10.1148/radiographics.18.5.9747612
10.1007/s00530-021-00764-y
10.1016/j.irbm.2020.12.004
10.1016/j.measurement.2019.05.083
10.1016/S1470-2045(10)70273-4
10.1007/s00330-012-2409-2
10.1504/IJNVO.2019.101787
10.1002/ima.22375
10.1109/ACCESS.2019.2897078
10.1007/s40846-017-0321-6
10.1109/BIBM.2015.7359868
10.1016/j.bspc.2020.102108
10.33430/V27N1THIE-2018-0024
10.7763/IJCTE.2011.V3.344
10.1108/IJPCC-09-2020-0136
10.1016/j.fcij.2018.10.005
10.1016/j.asoc.2020.106266
10.7717/peerj-cs.390
10.1016/j.imu.2018.04.008
10.1093/jnci/85.13.1074
10.1002/ijc.25516
ContentType Journal Article
Copyright 2022 Wiley Periodicals LLC.
2022 Wiley Periodicals, LLC
Copyright_xml – notice: 2022 Wiley Periodicals LLC.
– notice: 2022 Wiley Periodicals, LLC
DBID AAYXX
CITATION
DOI 10.1002/ima.22718
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1098-1098
EndPage 1576
ExternalDocumentID 10_1002_ima_22718
IMA22718
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HDBZQ
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
ID FETCH-LOGICAL-c2978-2dd70308e77074d3bc5a7c62a037c7c1671bf4d19ca34c06bd6b3fb45eb6d4013
IEDL.DBID DR2
ISSN 0899-9457
IngestDate Fri Jul 25 02:51:09 EDT 2025
Wed Oct 01 02:12:04 EDT 2025
Thu Apr 24 23:06:47 EDT 2025
Wed Jan 22 16:22:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2978-2dd70308e77074d3bc5a7c62a037c7c1671bf4d19ca34c06bd6b3fb45eb6d4013
Notes Funding information
This investigation did not obtain any specific grants from funding agencies in the public, commercial, or not‐for‐profit sectors
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7359-3722
0000-0002-4510-0967
PQID 2708706397
PQPubID 1026352
PageCount 16
ParticipantIDs proquest_journals_2708706397
crossref_primary_10_1002_ima_22718
crossref_citationtrail_10_1002_ima_22718
wiley_primary_10_1002_ima_22718_IMA22718
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: New York
PublicationTitle International journal of imaging systems and technology
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2021; 25
2019; 7
2021; 27
2021; 7
2021; 66
2011
2010; 127
2020; 62
2019; 78
2017; 67
1993; 85
2020; 17
2020; 59
2019; 146
2011; 12
2022; 43
2020; 10
2011; 3
1998; 18
2018; 3
2020; 53
2020; 30
2019; 21
2020
2020; 91
2015; 65
2020; 27
2017
2015
2020; 22
2020; 44
2018; 12
2012; 22
2018; 38
e_1_2_8_28_1
e_1_2_8_29_1
Javed AR (e_1_2_8_21_1) 2020; 10
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
Ye‐Rong LG (e_1_2_8_11_1) 2011
e_1_2_8_4_1
Oliveira PH (e_1_2_8_37_1) 2017
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_23_1
Thota MK (e_1_2_8_17_1) 2020; 17
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
Melekoodappattu JG (e_1_2_8_25_1) 2020
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 10
  start-page: 1
  issue: 1
  year: 2020
  end-page: 21
  article-title: A collaborative healthcare framework for shared healthcare plan with ambient intelligence
  publication-title: HCIS
– volume: 43
  start-page: 49
  issue: 1
  year: 2022
  end-page: 61
  article-title: Automatic detection and classification of mammograms using improved extreme learning machine with deep learning
  publication-title: IRBM
– volume: 62
  year: 2020
  article-title: Automated diagnosis of breast cancer using parameter optimized kernel extreme learning machine
  publication-title: Biomed Signal Process Control
– volume: 22
  start-page: 1717
  issue: 8
  year: 2012
  end-page: 1723
  article-title: The breast imaging reporting and data system (BI‐RADS) in the Dutch breast cancer screening programme: its role as an assessment and stratification tool
  publication-title: Eur Radiol
– volume: 12
  start-page: 14
  year: 2018
  end-page: 20
  article-title: The effect of filtering algorithms for breast ultrasound lesions segmentation
  publication-title: Inform Med Unlocked
– volume: 85
  start-page: 1074
  issue: 13
  year: 1993
  end-page: 1080
  article-title: Mammography adherence and psychological distress among women at risk for breast cancer
  publication-title: JNCI: J Natl Canc Inst
– volume: 22
  start-page: 224
  issue: 4–5
  year: 2020
  end-page: 509
  article-title: A multi‐objective hybrid algorithm for planning electrical distribution system
  publication-title: Euro J Electrical Eng
– volume: 25
  start-page: 14333
  issue: 22
  year: 2021
  end-page: 14355
  article-title: Rubber bushing optimization by using a novel chaotic krill herd optimization algorithm
  publication-title: Soft Comput
– start-page: 256
  year: 2017
  end-page: 266
  article-title: MAMMOSET: an enhanced dataset of mammograms
  publication-title: Proc Satellite Events 32nd Brazilian Symp Databases
– volume: 66
  year: 2021
  article-title: A modified salp swarm algorithm (SSA) combined with a chaotic coupled map lattices (CML) approach for the secured encryption and compression of medical images during data transmission
  publication-title: Biomed Signal Process Control
– volume: 146
  start-page: 800
  year: 2019
  end-page: 805
  article-title: Classification of mammogram for early detection of breast cancer using SVM classifier and Hough transform
  publication-title: Measurement
– volume: 7
  start-page: 18050
  year: 2019
  end-page: 18060
  article-title: Analytics of heterogeneous breast cancer data using neuroevolution
  publication-title: IEEE Access
– volume: 18
  start-page: 1137
  issue: 5
  year: 1998
  end-page: 1154
  article-title: The false‐negative mammogram
  publication-title: Radiographics
– volume: 27
  start-page: 25
  issue: 1
  year: 2020
  end-page: 37
  article-title: Ideal position and size selection of unified power flow controllers (UPFCs) to upgrade the dynamic stability of systems: an antlion optimiser and invasive weed optimisation algorithm
  publication-title: HKIE Trans
– volume: 91
  year: 2020
  article-title: An improved scheme for digital mammogram classification using weighted chaotic salp swarm algorithm‐based kernel extreme learning machine
  publication-title: Appl Soft Comput
– volume: 38
  start-page: 443
  issue: 3
  year: 2018
  end-page: 456
  article-title: An automatic computer‐aided diagnosis system for breast cancer in digital mammograms via deep belief network
  publication-title: J Med Biol Eng
– volume: 27
  start-page: 1056
  issue: 6
  year: 2021
  end-page: 1074
  article-title: Medical image encryption and compression by adaptive sigma filterized synorrcertificateless sign cryptive Levenshte in entropy‐coding‐based deep neural learning
  publication-title: Multimedia Syst
– volume: 67
  start-page: 177
  issue: 3
  year: 2017
  end-page: 193
  article-title: Colorectal cancer statistics, 2017
  publication-title: CA Cancer J Clin
– volume: 3
  start-page: 431
  issue: 3
  year: 2011
  end-page: 434
  article-title: An automated system for classification of micro calcification in mammogram based on Jacobi moments
  publication-title: Int J Comput Theory Eng
– volume: 65
  start-page: 5
  issue: 1
  year: 2015
  end-page: 29
  article-title: Cancer statistics, 2015
  publication-title: CA Cancer J Clin
– volume: 3
  start-page: 348
  issue: 2
  year: 2018
  end-page: 358
  article-title: Benign and malignant breast cancer segmentation using optimized region growing technique
  publication-title: Future Comput Inform J
– volume: 17
  start-page: 331
  issue: 4
  year: 2020
  end-page: 344
  article-title: Survey on software defect prediction techniques
  publication-title: Int J Appl Sci Eng
– volume: 59
  year: 2020
  article-title: Automated breast cancer detection in digital mammograms: a moth flame optimization based ELM approach
  publication-title: Biomed Signal Process Control
– volume: 30
  start-page: 168
  issue: 1
  year: 2020
  end-page: 184
  article-title: Optimizing deep belief network parameters using grasshopper algorithm for liver disease classification
  publication-title: Int J Imaging Syst Technol
– volume: 7
  year: 2021
  article-title: BCD‐WERT: a novel approach for breast cancer detection using whale optimization based efficient features and extremely randomized tree algorithm
  publication-title: PeerJ Comput Sci
– volume: 78
  start-page: 12805
  issue: 10
  year: 2019
  end-page: 12834
  article-title: Mammogram classification using contourlet features with forest optimization‐based feature selection approach
  publication-title: Multimed Tools Appl
– volume: 53
  start-page: 1655
  issue: 3
  year: 2020
  end-page: 1720
  article-title: Deep learning‐based breast cancer classification through medical imaging modalities: state of the art and research challenges
  publication-title: Artif Intell Rev
– year: 2011
  article-title: Three‐dimensional microwave‐induced thermo‐acoustic imaging for breast cancer detection
  publication-title: Acta Physica Sinica
– volume: 44
  start-page: 1
  issue: 1
  year: 2020
  end-page: 9
  article-title: Classification of mammogram images using multiscale all convolutional neural network (MA‐CNN)
  publication-title: J Med Syst
– year: 2020
  article-title: Trusted secure geographic routing protocol: outsider attack detection in mobile ad hoc networks by adopting trusted secure geographic routing protocol
  publication-title: Int J Pervasive Comput Commun
– volume: 21
  start-page: 221
  issue: 2
  year: 2019
  end-page: 236
  article-title: Intelligent decision making service framework based on analytic hierarchy process in cloud environment
  publication-title: Int J Networking Virtual Organisations
– start-page: 1
  year: 2020
  end-page: 10
  article-title: Automated breast cancer detection using hybrid extreme learning machine classifier
  publication-title: J Ambient Intell Humanized Comput
– volume: 12
  start-page: 306
  issue: 3
  year: 2011
  end-page: 312
  article-title: Breast‐cancer early detection in low‐income and middle‐income countries: do what you can versus one size fits all
  publication-title: Lancet Oncol
– volume: 127
  start-page: 2893
  issue: 12
  year: 2010
  end-page: 2917
  article-title: Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008
  publication-title: Int J Cancer
– start-page: 1310
  year: 2015
  end-page: 1315
  article-title: Probabilistic visual search for masses within mammography images using deep learning
  publication-title: IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
– year: 2011
  ident: e_1_2_8_11_1
  article-title: Three‐dimensional microwave‐induced thermo‐acoustic imaging for breast cancer detection
  publication-title: Acta Physica Sinica
– ident: e_1_2_8_19_1
  doi: 10.1016/j.bspc.2021.102465
– ident: e_1_2_8_15_1
  doi: 10.18280/ejee.224-509
– ident: e_1_2_8_23_1
  doi: 10.1016/j.bspc.2020.101912
– ident: e_1_2_8_29_1
  doi: 10.1007/s11042-018-5804-0
– ident: e_1_2_8_32_1
  doi: 10.1007/s10462-019-09716-5
– ident: e_1_2_8_36_1
  doi: 10.1007/s00500-021-06159-5
– ident: e_1_2_8_2_1
  doi: 10.3322/caac.21395
– ident: e_1_2_8_22_1
  doi: 10.1007/s10916-019-1494-z
– ident: e_1_2_8_7_1
  doi: 10.3322/caac.21254
– ident: e_1_2_8_5_1
  doi: 10.1148/radiographics.18.5.9747612
– ident: e_1_2_8_10_1
  doi: 10.1007/s00530-021-00764-y
– ident: e_1_2_8_30_1
  doi: 10.1016/j.irbm.2020.12.004
– ident: e_1_2_8_31_1
  doi: 10.1016/j.measurement.2019.05.083
– ident: e_1_2_8_3_1
  doi: 10.1016/S1470-2045(10)70273-4
– volume: 17
  start-page: 331
  issue: 4
  year: 2020
  ident: e_1_2_8_17_1
  article-title: Survey on software defect prediction techniques
  publication-title: Int J Appl Sci Eng
– ident: e_1_2_8_12_1
  doi: 10.1007/s00330-012-2409-2
– ident: e_1_2_8_13_1
  doi: 10.1504/IJNVO.2019.101787
– ident: e_1_2_8_35_1
  doi: 10.1002/ima.22375
– ident: e_1_2_8_27_1
  doi: 10.1109/ACCESS.2019.2897078
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: e_1_2_8_21_1
  article-title: A collaborative healthcare framework for shared healthcare plan with ambient intelligence
  publication-title: HCIS
– ident: e_1_2_8_33_1
  doi: 10.1007/s40846-017-0321-6
– ident: e_1_2_8_6_1
  doi: 10.1109/BIBM.2015.7359868
– ident: e_1_2_8_26_1
  doi: 10.1016/j.bspc.2020.102108
– start-page: 1
  year: 2020
  ident: e_1_2_8_25_1
  article-title: Automated breast cancer detection using hybrid extreme learning machine classifier
  publication-title: J Ambient Intell Humanized Comput
– ident: e_1_2_8_14_1
  doi: 10.33430/V27N1THIE-2018-0024
– ident: e_1_2_8_18_1
  doi: 10.7763/IJCTE.2011.V3.344
– ident: e_1_2_8_16_1
  doi: 10.1108/IJPCC-09-2020-0136
– ident: e_1_2_8_28_1
  doi: 10.1016/j.fcij.2018.10.005
– ident: e_1_2_8_8_1
– ident: e_1_2_8_24_1
  doi: 10.1016/j.asoc.2020.106266
– start-page: 256
  year: 2017
  ident: e_1_2_8_37_1
  article-title: MAMMOSET: an enhanced dataset of mammograms
  publication-title: Proc Satellite Events 32nd Brazilian Symp Databases
– ident: e_1_2_8_20_1
  doi: 10.7717/peerj-cs.390
– ident: e_1_2_8_34_1
  doi: 10.1016/j.imu.2018.04.008
– ident: e_1_2_8_4_1
  doi: 10.1093/jnci/85.13.1074
– ident: e_1_2_8_9_1
  doi: 10.1002/ijc.25516
SSID ssj0011505
Score 2.333427
Snippet Several deep learning techniques are utilized for classification of the masses in mammogram images. But the existing method doesnot provide sufficient accuracy...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1561
SubjectTerms Abnormalities
altered phase preserving dynamic range compression (APPDRC)
Artificial neural networks
Belief networks
breast cancer
chaotic krill herd optimization (CKHO)
Classification
Classifiers
deep belief network (DBN)
Deep learning
Genetic algorithms
Image classification
Image compression
Kernels
Krill
Machine learning
Mammography
Medical imaging
Neural networks
Optimization
Optimization algorithms
Optimization techniques
Parameters
Sorting algorithms
Title Categorization of breast masses based on deep belief network parameters optimized using chaotic krill herd optimization algorithm for frequent diagnosis of breast abnormalities
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fima.22718
https://www.proquest.com/docview/2708706397
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1098-1098
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0011505
  issn: 0899-9457
  databaseCode: ABDBF
  dateStart: 19890601
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1098-1098
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0011505
  issn: 0899-9457
  databaseCode: ADMLS
  dateStart: 19890601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0899-9457
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1098-1098
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011505
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBUhEGgOaZsm5GNThtJDL05s2ZZ26WkJDWkhPZQGcigYfTbLeu2wdi75Vf2JmZHtzbakUHozeGzJzGj0ZL15Yuy90hOdTHIV4eqBR5kyItLcish4TJjO45xlqVD46qu4vM6-3OQ3G-zjUAvT6UOsfrjRyAj5mga40s3Zk2jojGSDOKZWzL9JKsJy6ttKOoqATqAvjkmBMsvloCoU87PVk7_PRU8Acx2mhnnm4iX7MfSwo5fMT-9bfWoe_hBv_M9PeMV2evwJ0y5gXrMNV-2y7TVVwl22FVihpnnDfp2TjkS97Gs1ofagicTewkLRZjHQHGgB71jn7kBjd5yHqmOWA6mKL4ht00CNiWkxe0Bb4tn_BHOrauwAzJezsgQMGzuYdA2pklptbxeAmBr8MvC9W7AdL3DWrPVE6YpgdxmUYffY9cWn7-eXUX_EQ2Q4rV-5tZRyxk5KxDI21SZX0giu4lQaaRIhE2ISJhOj0szEQluhU6-z3GlhaWm4zzarunIHDEw8tlninZKpzYyYaLRP88za2BnpU3_IPgzOLkyvf07HcJRFp9zMC3RHEdxxyN6tTO860Y_njEZDxBT9uG8KLmPaOEaQh80F1__9BcXnq2m4OPp302P2glP9RSC5jdhmu7x3J4iKWv02hP8jQEoOKg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9RAFH5BjFEOqKgRQZ0YD14K7bSd2U24EAJZlOVgIOFimvkJG7ot2S0X_ir-RN-btstqNDHemvS1M83MvPe9me99Bfis9FAnw1xFmD3wKFNGRJpbERmPDtN5jFmWCoXHp2J0nn29yC9WYK-vhWn1IRYbbrQygr-mBU4b0rsPqqET0g3i6FsfweNMYJ5CkOj7QjyKoE4gMA5IgzLLZa8rFPPdxaO_RqMHiLkMVEOkOXoOP_o-tgST653bRu-Yu9_kG__3I17AegdB2X47Z17Ciqs2YG1JmHADngRiqJm_gvsDkpKoZ125Jqs908Rjb9hU0XkxozBoGd6xzt0wjf1xnlUtuZyRsPiUCDdzVqNvmk7u0Jao9pfMXKkaO8CuZ5OyZDhzbG_SNqRKarW5mjKE1czPAuW7YbalBk7mSz1RuiLkXQZx2NdwfnR4djCKur88RIZTCsutJa8zcFIinLGpNrmSRnAVp9JIkwiZEJkwGRqVZiYW2gqdep3lTgtL2eEbWK3qyr0FZuKBzRLvlExtZsRQo32aZ9bGzkif-k340o92YToJdPoTR1m04s28wOEownBswqeF6U2r-_Eno-1-yhTd0p8XXMZ0dow4D5sLY__3FxTH4_1w8e7fTT_C09HZ-KQ4OT79tgXPOJVjBM7bNqw2s1v3HkFSoz-EtfATEWASSw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9RAFH5BiEYOiqgBRZ0YD14K7XQ6s024EGADIsQYSbiYZn7Khm672S0X_ir_ROZN22UlkhhvTframebNe_NN53vfAHySKldJnsnIrx5oxKTmkaKGR9r5hGmdn7MMFgqfnvGjc_blIrtYgt2-FqbVh5j_cMPICPkaA9xOjNu5Uw0doW4Q9bn1EaywLB8goe_g-1w8CqFOIDAOUIOSZaLXFYrpzvzRP2ejO4i5CFTDTDN8Dj_7PrYEk6vt60Zt65t78o3_-xFr8KyDoGSvHTMvYMlW67C6IEy4Do8DMVTPXsLvfZSSqKdduSapHVHIY2_IWOJ-McFp0BB_x1g7Icr3xzpSteRygsLiYyTczEjtc9N4dONtkWr_i-hLWfsOkKvpqCyJHzmmN2kbkiW22lyOiYfVxE0D5bshpqUGjmYLPZGqQuRdBnHYV3A-PPyxfxR1pzxEmuISlhqDWWdghfBwxqRKZ1JoTmWcCi10wkWCZMIk1zJlOubKcJU6xTKruMHV4WtYrurKbgDR8cCwxFkpUsM0z5W3TzNmTGy1cKnbhM-9twvdSaDjSRxl0Yo308K7owju2ISPc9NJq_vxN6OtfsgUXejPCipi3Dv2OM83F3z_8AuK49O9cPHm300_wJNvB8Pi6_HZyVt4SrEaI1DetmC5mV7bdx4jNep9CIVboiARzw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Categorization+of+breast+masses+based+on+deep+belief+network+parameters+optimized+using+chaotic+krill+herd+optimization+algorithm+for+frequent+diagnosis+of+breast+abnormalities&rft.jtitle=International+journal+of+imaging+systems+and+technology&rft.au=Chandraraju%2C+Thirumarai+Selvi&rft.au=Jeyaprakash%2C+Amudha&rft.date=2022-09-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0899-9457&rft.eissn=1098-1098&rft.volume=32&rft.issue=5&rft.spage=1561&rft.epage=1576&rft_id=info:doi/10.1002%2Fima.22718&rft.externalDBID=10.1002%252Fima.22718&rft.externalDocID=IMA22718
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-9457&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-9457&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-9457&client=summon