Categorization of breast masses based on deep belief network parameters optimized using chaotic krill herd optimization algorithm for frequent diagnosis of breast abnormalities
Several deep learning techniques are utilized for classification of the masses in mammogram images. But the existing method doesnot provide sufficient accuracy . for breast masses classification in mammogram images. In this manuscript, an efficient breast cancer image classification framework utiliz...
Saved in:
| Published in | International journal of imaging systems and technology Vol. 32; no. 5; pp. 1561 - 1576 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken, USA
John Wiley & Sons, Inc
01.09.2022
Wiley Subscription Services, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0899-9457 1098-1098 |
| DOI | 10.1002/ima.22718 |
Cover
| Abstract | Several deep learning techniques are utilized for classification of the masses in mammogram images. But the existing method doesnot provide sufficient accuracy . for breast masses classification in mammogram images. In this manuscript, an efficient breast cancer image classification framework utilizing the deep belief network (DBN) through chaotic krill herd optimization (CKHO) algorithm for classification of masses in mammogram images is proposed. Initially the input mammogram images are pre‐processed by altered phase preserving dynamic range compression (APPDRC) method for removing the unwanted noise and artifacts. Then these pre‐processed images are assumed with DBN for classifying that mass in the mammogram images into normal, benign, and malignant lesions. Generally, DBN does not reveal any acceptance of optimization techniques for computing optimal parameters that guarantee an accurate classification. Therefore in this work, proposed CKHO algorithm is employed for optimizing weight parameters of the self‐attention convolutional neural network (SACNN). The simulation process is performed under MATLAB platform. Finally, the proposed DBN with chaotic krill herd optimization algorithm (DBN‐CKHO) attains high accuracy 44.5%, 33.42%, 55.23%, 62.35%, and 43.42% when compared with the existing method such as extreme learning machine classifier with moth flame optimization (ELMC‐MFO), Kernel extreme learning machine classifier with Chaotic salp swarm algorithm (KELMC‐CSSA), Extreme learning machine classifier with fruit fly optimization algorithm (ELMC‐FOA), Kernel extreme learning machine classifier with grasshopper optimization algorithm (KELMC‐GOA) and deep neural network with non‐dominated sorting genetic algorithm‐based classification approach. |
|---|---|
| AbstractList | Several deep learning techniques are utilized for classification of the masses in mammogram images. But the existing method doesnot provide sufficient accuracy . for breast masses classification in mammogram images. In this manuscript, an efficient breast cancer image classification framework utilizing the deep belief network (DBN) through chaotic krill herd optimization (CKHO) algorithm for classification of masses in mammogram images is proposed. Initially the input mammogram images are pre‐processed by altered phase preserving dynamic range compression (APPDRC) method for removing the unwanted noise and artifacts. Then these pre‐processed images are assumed with DBN for classifying that mass in the mammogram images into normal, benign, and malignant lesions. Generally, DBN does not reveal any acceptance of optimization techniques for computing optimal parameters that guarantee an accurate classification. Therefore in this work, proposed CKHO algorithm is employed for optimizing weight parameters of the self‐attention convolutional neural network (SACNN). The simulation process is performed under MATLAB platform. Finally, the proposed DBN with chaotic krill herd optimization algorithm (DBN‐CKHO) attains high accuracy 44.5%, 33.42%, 55.23%, 62.35%, and 43.42% when compared with the existing method such as extreme learning machine classifier with moth flame optimization (ELMC‐MFO), Kernel extreme learning machine classifier with Chaotic salp swarm algorithm (KELMC‐CSSA), Extreme learning machine classifier with fruit fly optimization algorithm (ELMC‐FOA), Kernel extreme learning machine classifier with grasshopper optimization algorithm (KELMC‐GOA) and deep neural network with non‐dominated sorting genetic algorithm‐based classification approach. |
| Author | Chandraraju, Thirumarai Selvi Jeyaprakash, Amudha |
| Author_xml | – sequence: 1 givenname: Thirumarai Selvi orcidid: 0000-0001-7359-3722 surname: Chandraraju fullname: Chandraraju, Thirumarai Selvi email: selvichandraraju001@gmail.com organization: Sri Krishna College of Engineering and Technology – sequence: 2 givenname: Amudha orcidid: 0000-0002-4510-0967 surname: Jeyaprakash fullname: Jeyaprakash, Amudha organization: Dr. Mahalingam College of Engineering and Technology |
| BookMark | eNp9kU1LJDEQhsOi4Phx8B8E9rSH1qS_0n2UYV0FxYuem0pSPRPtTnorGUR_lT9xexwXlgW9VFHUU_UW9R6yPR88MnYqxZkUIj93I5zluZLNN7aQom2ybdhjC9G0bdaWlTpghzE-CiFlJaoFe1tCwlUg9wrJBc9DzzUhxMRHiBEj1xDR8rljESeucXDYc4_pOdATn4BgxIQUeZiSG93rzG6i8ytu1hCSM_yJ3DDwNZL9i-yEYNiqpvXI-0C8J_y9QZ-4dbDyIbr4zyWgfaARBpccxmO238MQ8eQjH7GHy5_3y6vs5u7X9fLiJjN5q5ost1aJQjSolFClLbSpQJk6B1Eoo4ysldR9aWVroCiNqLWtddHrskJd21LI4oh93-2dKMynxdQ9hg35WbLLlWiUqItWzdSPHWUoxEjYdxPNFtBLJ0W3NaSbq-7dkJk9_481Lr0_IxG44auJZzfgy-eru-vbi93EH7sMo-I |
| CitedBy_id | crossref_primary_10_1615_CritRevBiomedEng_2024051166 crossref_primary_10_1109_JBHI_2023_3348436 crossref_primary_10_1080_08839514_2024_2327867 crossref_primary_10_1016_j_matpr_2023_10_154 crossref_primary_10_1007_s11063_022_11055_6 crossref_primary_10_1002_cpe_7605 |
| Cites_doi | 10.1016/j.bspc.2021.102465 10.18280/ejee.224-509 10.1016/j.bspc.2020.101912 10.1007/s11042-018-5804-0 10.1007/s10462-019-09716-5 10.1007/s00500-021-06159-5 10.3322/caac.21395 10.1007/s10916-019-1494-z 10.3322/caac.21254 10.1148/radiographics.18.5.9747612 10.1007/s00530-021-00764-y 10.1016/j.irbm.2020.12.004 10.1016/j.measurement.2019.05.083 10.1016/S1470-2045(10)70273-4 10.1007/s00330-012-2409-2 10.1504/IJNVO.2019.101787 10.1002/ima.22375 10.1109/ACCESS.2019.2897078 10.1007/s40846-017-0321-6 10.1109/BIBM.2015.7359868 10.1016/j.bspc.2020.102108 10.33430/V27N1THIE-2018-0024 10.7763/IJCTE.2011.V3.344 10.1108/IJPCC-09-2020-0136 10.1016/j.fcij.2018.10.005 10.1016/j.asoc.2020.106266 10.7717/peerj-cs.390 10.1016/j.imu.2018.04.008 10.1093/jnci/85.13.1074 10.1002/ijc.25516 |
| ContentType | Journal Article |
| Copyright | 2022 Wiley Periodicals LLC. 2022 Wiley Periodicals, LLC |
| Copyright_xml | – notice: 2022 Wiley Periodicals LLC. – notice: 2022 Wiley Periodicals, LLC |
| DBID | AAYXX CITATION |
| DOI | 10.1002/ima.22718 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1098-1098 |
| EndPage | 1576 |
| ExternalDocumentID | 10_1002_ima_22718 IMA22718 |
| Genre | article |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HDBZQ HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION |
| ID | FETCH-LOGICAL-c2978-2dd70308e77074d3bc5a7c62a037c7c1671bf4d19ca34c06bd6b3fb45eb6d4013 |
| IEDL.DBID | DR2 |
| ISSN | 0899-9457 |
| IngestDate | Fri Jul 25 02:51:09 EDT 2025 Wed Oct 01 02:12:04 EDT 2025 Thu Apr 24 23:06:47 EDT 2025 Wed Jan 22 16:22:30 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2978-2dd70308e77074d3bc5a7c62a037c7c1671bf4d19ca34c06bd6b3fb45eb6d4013 |
| Notes | Funding information This investigation did not obtain any specific grants from funding agencies in the public, commercial, or not‐for‐profit sectors ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7359-3722 0000-0002-4510-0967 |
| PQID | 2708706397 |
| PQPubID | 1026352 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_2708706397 crossref_primary_10_1002_ima_22718 crossref_citationtrail_10_1002_ima_22718 wiley_primary_10_1002_ima_22718_IMA22718 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | September 2022 2022-09-00 20220901 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: New York |
| PublicationTitle | International journal of imaging systems and technology |
| PublicationYear | 2022 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2021; 25 2019; 7 2021; 27 2021; 7 2021; 66 2011 2010; 127 2020; 62 2019; 78 2017; 67 1993; 85 2020; 17 2020; 59 2019; 146 2011; 12 2022; 43 2020; 10 2011; 3 1998; 18 2018; 3 2020; 53 2020; 30 2019; 21 2020 2020; 91 2015; 65 2020; 27 2017 2015 2020; 22 2020; 44 2018; 12 2012; 22 2018; 38 e_1_2_8_28_1 e_1_2_8_29_1 Javed AR (e_1_2_8_21_1) 2020; 10 e_1_2_8_24_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 Ye‐Rong LG (e_1_2_8_11_1) 2011 e_1_2_8_4_1 Oliveira PH (e_1_2_8_37_1) 2017 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_22_1 e_1_2_8_23_1 Thota MK (e_1_2_8_17_1) 2020; 17 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 Melekoodappattu JG (e_1_2_8_25_1) 2020 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
| References_xml | – volume: 10 start-page: 1 issue: 1 year: 2020 end-page: 21 article-title: A collaborative healthcare framework for shared healthcare plan with ambient intelligence publication-title: HCIS – volume: 43 start-page: 49 issue: 1 year: 2022 end-page: 61 article-title: Automatic detection and classification of mammograms using improved extreme learning machine with deep learning publication-title: IRBM – volume: 62 year: 2020 article-title: Automated diagnosis of breast cancer using parameter optimized kernel extreme learning machine publication-title: Biomed Signal Process Control – volume: 22 start-page: 1717 issue: 8 year: 2012 end-page: 1723 article-title: The breast imaging reporting and data system (BI‐RADS) in the Dutch breast cancer screening programme: its role as an assessment and stratification tool publication-title: Eur Radiol – volume: 12 start-page: 14 year: 2018 end-page: 20 article-title: The effect of filtering algorithms for breast ultrasound lesions segmentation publication-title: Inform Med Unlocked – volume: 85 start-page: 1074 issue: 13 year: 1993 end-page: 1080 article-title: Mammography adherence and psychological distress among women at risk for breast cancer publication-title: JNCI: J Natl Canc Inst – volume: 22 start-page: 224 issue: 4–5 year: 2020 end-page: 509 article-title: A multi‐objective hybrid algorithm for planning electrical distribution system publication-title: Euro J Electrical Eng – volume: 25 start-page: 14333 issue: 22 year: 2021 end-page: 14355 article-title: Rubber bushing optimization by using a novel chaotic krill herd optimization algorithm publication-title: Soft Comput – start-page: 256 year: 2017 end-page: 266 article-title: MAMMOSET: an enhanced dataset of mammograms publication-title: Proc Satellite Events 32nd Brazilian Symp Databases – volume: 66 year: 2021 article-title: A modified salp swarm algorithm (SSA) combined with a chaotic coupled map lattices (CML) approach for the secured encryption and compression of medical images during data transmission publication-title: Biomed Signal Process Control – volume: 146 start-page: 800 year: 2019 end-page: 805 article-title: Classification of mammogram for early detection of breast cancer using SVM classifier and Hough transform publication-title: Measurement – volume: 7 start-page: 18050 year: 2019 end-page: 18060 article-title: Analytics of heterogeneous breast cancer data using neuroevolution publication-title: IEEE Access – volume: 18 start-page: 1137 issue: 5 year: 1998 end-page: 1154 article-title: The false‐negative mammogram publication-title: Radiographics – volume: 27 start-page: 25 issue: 1 year: 2020 end-page: 37 article-title: Ideal position and size selection of unified power flow controllers (UPFCs) to upgrade the dynamic stability of systems: an antlion optimiser and invasive weed optimisation algorithm publication-title: HKIE Trans – volume: 91 year: 2020 article-title: An improved scheme for digital mammogram classification using weighted chaotic salp swarm algorithm‐based kernel extreme learning machine publication-title: Appl Soft Comput – volume: 38 start-page: 443 issue: 3 year: 2018 end-page: 456 article-title: An automatic computer‐aided diagnosis system for breast cancer in digital mammograms via deep belief network publication-title: J Med Biol Eng – volume: 27 start-page: 1056 issue: 6 year: 2021 end-page: 1074 article-title: Medical image encryption and compression by adaptive sigma filterized synorrcertificateless sign cryptive Levenshte in entropy‐coding‐based deep neural learning publication-title: Multimedia Syst – volume: 67 start-page: 177 issue: 3 year: 2017 end-page: 193 article-title: Colorectal cancer statistics, 2017 publication-title: CA Cancer J Clin – volume: 3 start-page: 431 issue: 3 year: 2011 end-page: 434 article-title: An automated system for classification of micro calcification in mammogram based on Jacobi moments publication-title: Int J Comput Theory Eng – volume: 65 start-page: 5 issue: 1 year: 2015 end-page: 29 article-title: Cancer statistics, 2015 publication-title: CA Cancer J Clin – volume: 3 start-page: 348 issue: 2 year: 2018 end-page: 358 article-title: Benign and malignant breast cancer segmentation using optimized region growing technique publication-title: Future Comput Inform J – volume: 17 start-page: 331 issue: 4 year: 2020 end-page: 344 article-title: Survey on software defect prediction techniques publication-title: Int J Appl Sci Eng – volume: 59 year: 2020 article-title: Automated breast cancer detection in digital mammograms: a moth flame optimization based ELM approach publication-title: Biomed Signal Process Control – volume: 30 start-page: 168 issue: 1 year: 2020 end-page: 184 article-title: Optimizing deep belief network parameters using grasshopper algorithm for liver disease classification publication-title: Int J Imaging Syst Technol – volume: 7 year: 2021 article-title: BCD‐WERT: a novel approach for breast cancer detection using whale optimization based efficient features and extremely randomized tree algorithm publication-title: PeerJ Comput Sci – volume: 78 start-page: 12805 issue: 10 year: 2019 end-page: 12834 article-title: Mammogram classification using contourlet features with forest optimization‐based feature selection approach publication-title: Multimed Tools Appl – volume: 53 start-page: 1655 issue: 3 year: 2020 end-page: 1720 article-title: Deep learning‐based breast cancer classification through medical imaging modalities: state of the art and research challenges publication-title: Artif Intell Rev – year: 2011 article-title: Three‐dimensional microwave‐induced thermo‐acoustic imaging for breast cancer detection publication-title: Acta Physica Sinica – volume: 44 start-page: 1 issue: 1 year: 2020 end-page: 9 article-title: Classification of mammogram images using multiscale all convolutional neural network (MA‐CNN) publication-title: J Med Syst – year: 2020 article-title: Trusted secure geographic routing protocol: outsider attack detection in mobile ad hoc networks by adopting trusted secure geographic routing protocol publication-title: Int J Pervasive Comput Commun – volume: 21 start-page: 221 issue: 2 year: 2019 end-page: 236 article-title: Intelligent decision making service framework based on analytic hierarchy process in cloud environment publication-title: Int J Networking Virtual Organisations – start-page: 1 year: 2020 end-page: 10 article-title: Automated breast cancer detection using hybrid extreme learning machine classifier publication-title: J Ambient Intell Humanized Comput – volume: 12 start-page: 306 issue: 3 year: 2011 end-page: 312 article-title: Breast‐cancer early detection in low‐income and middle‐income countries: do what you can versus one size fits all publication-title: Lancet Oncol – volume: 127 start-page: 2893 issue: 12 year: 2010 end-page: 2917 article-title: Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008 publication-title: Int J Cancer – start-page: 1310 year: 2015 end-page: 1315 article-title: Probabilistic visual search for masses within mammography images using deep learning publication-title: IEEE International Conference on Bioinformatics and Biomedicine (BIBM) – year: 2011 ident: e_1_2_8_11_1 article-title: Three‐dimensional microwave‐induced thermo‐acoustic imaging for breast cancer detection publication-title: Acta Physica Sinica – ident: e_1_2_8_19_1 doi: 10.1016/j.bspc.2021.102465 – ident: e_1_2_8_15_1 doi: 10.18280/ejee.224-509 – ident: e_1_2_8_23_1 doi: 10.1016/j.bspc.2020.101912 – ident: e_1_2_8_29_1 doi: 10.1007/s11042-018-5804-0 – ident: e_1_2_8_32_1 doi: 10.1007/s10462-019-09716-5 – ident: e_1_2_8_36_1 doi: 10.1007/s00500-021-06159-5 – ident: e_1_2_8_2_1 doi: 10.3322/caac.21395 – ident: e_1_2_8_22_1 doi: 10.1007/s10916-019-1494-z – ident: e_1_2_8_7_1 doi: 10.3322/caac.21254 – ident: e_1_2_8_5_1 doi: 10.1148/radiographics.18.5.9747612 – ident: e_1_2_8_10_1 doi: 10.1007/s00530-021-00764-y – ident: e_1_2_8_30_1 doi: 10.1016/j.irbm.2020.12.004 – ident: e_1_2_8_31_1 doi: 10.1016/j.measurement.2019.05.083 – ident: e_1_2_8_3_1 doi: 10.1016/S1470-2045(10)70273-4 – volume: 17 start-page: 331 issue: 4 year: 2020 ident: e_1_2_8_17_1 article-title: Survey on software defect prediction techniques publication-title: Int J Appl Sci Eng – ident: e_1_2_8_12_1 doi: 10.1007/s00330-012-2409-2 – ident: e_1_2_8_13_1 doi: 10.1504/IJNVO.2019.101787 – ident: e_1_2_8_35_1 doi: 10.1002/ima.22375 – ident: e_1_2_8_27_1 doi: 10.1109/ACCESS.2019.2897078 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: e_1_2_8_21_1 article-title: A collaborative healthcare framework for shared healthcare plan with ambient intelligence publication-title: HCIS – ident: e_1_2_8_33_1 doi: 10.1007/s40846-017-0321-6 – ident: e_1_2_8_6_1 doi: 10.1109/BIBM.2015.7359868 – ident: e_1_2_8_26_1 doi: 10.1016/j.bspc.2020.102108 – start-page: 1 year: 2020 ident: e_1_2_8_25_1 article-title: Automated breast cancer detection using hybrid extreme learning machine classifier publication-title: J Ambient Intell Humanized Comput – ident: e_1_2_8_14_1 doi: 10.33430/V27N1THIE-2018-0024 – ident: e_1_2_8_18_1 doi: 10.7763/IJCTE.2011.V3.344 – ident: e_1_2_8_16_1 doi: 10.1108/IJPCC-09-2020-0136 – ident: e_1_2_8_28_1 doi: 10.1016/j.fcij.2018.10.005 – ident: e_1_2_8_8_1 – ident: e_1_2_8_24_1 doi: 10.1016/j.asoc.2020.106266 – start-page: 256 year: 2017 ident: e_1_2_8_37_1 article-title: MAMMOSET: an enhanced dataset of mammograms publication-title: Proc Satellite Events 32nd Brazilian Symp Databases – ident: e_1_2_8_20_1 doi: 10.7717/peerj-cs.390 – ident: e_1_2_8_34_1 doi: 10.1016/j.imu.2018.04.008 – ident: e_1_2_8_4_1 doi: 10.1093/jnci/85.13.1074 – ident: e_1_2_8_9_1 doi: 10.1002/ijc.25516 |
| SSID | ssj0011505 |
| Score | 2.333427 |
| Snippet | Several deep learning techniques are utilized for classification of the masses in mammogram images. But the existing method doesnot provide sufficient accuracy... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1561 |
| SubjectTerms | Abnormalities altered phase preserving dynamic range compression (APPDRC) Artificial neural networks Belief networks breast cancer chaotic krill herd optimization (CKHO) Classification Classifiers deep belief network (DBN) Deep learning Genetic algorithms Image classification Image compression Kernels Krill Machine learning Mammography Medical imaging Neural networks Optimization Optimization algorithms Optimization techniques Parameters Sorting algorithms |
| Title | Categorization of breast masses based on deep belief network parameters optimized using chaotic krill herd optimization algorithm for frequent diagnosis of breast abnormalities |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fima.22718 https://www.proquest.com/docview/2708706397 |
| Volume | 32 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1098-1098 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0011505 issn: 0899-9457 databaseCode: ABDBF dateStart: 19890601 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1098-1098 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0011505 issn: 0899-9457 databaseCode: ADMLS dateStart: 19890601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0899-9457 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1098-1098 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011505 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBUhEGgOaZsm5GNThtJDL05s2ZZ26WkJDWkhPZQGcigYfTbLeu2wdi75Vf2JmZHtzbakUHozeGzJzGj0ZL15Yuy90hOdTHIV4eqBR5kyItLcish4TJjO45xlqVD46qu4vM6-3OQ3G-zjUAvT6UOsfrjRyAj5mga40s3Zk2jojGSDOKZWzL9JKsJy6ttKOoqATqAvjkmBMsvloCoU87PVk7_PRU8Acx2mhnnm4iX7MfSwo5fMT-9bfWoe_hBv_M9PeMV2evwJ0y5gXrMNV-2y7TVVwl22FVihpnnDfp2TjkS97Gs1ofagicTewkLRZjHQHGgB71jn7kBjd5yHqmOWA6mKL4ht00CNiWkxe0Bb4tn_BHOrauwAzJezsgQMGzuYdA2pklptbxeAmBr8MvC9W7AdL3DWrPVE6YpgdxmUYffY9cWn7-eXUX_EQ2Q4rV-5tZRyxk5KxDI21SZX0giu4lQaaRIhE2ISJhOj0szEQluhU6-z3GlhaWm4zzarunIHDEw8tlninZKpzYyYaLRP88za2BnpU3_IPgzOLkyvf07HcJRFp9zMC3RHEdxxyN6tTO860Y_njEZDxBT9uG8KLmPaOEaQh80F1__9BcXnq2m4OPp302P2glP9RSC5jdhmu7x3J4iKWv02hP8jQEoOKg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9RAFH5BjFEOqKgRQZ0YD14K7bSd2U24EAJZlOVgIOFimvkJG7ot2S0X_ir-RN-btstqNDHemvS1M83MvPe9me99Bfis9FAnw1xFmD3wKFNGRJpbERmPDtN5jFmWCoXHp2J0nn29yC9WYK-vhWn1IRYbbrQygr-mBU4b0rsPqqET0g3i6FsfweNMYJ5CkOj7QjyKoE4gMA5IgzLLZa8rFPPdxaO_RqMHiLkMVEOkOXoOP_o-tgST653bRu-Yu9_kG__3I17AegdB2X47Z17Ciqs2YG1JmHADngRiqJm_gvsDkpKoZ125Jqs908Rjb9hU0XkxozBoGd6xzt0wjf1xnlUtuZyRsPiUCDdzVqNvmk7u0Jao9pfMXKkaO8CuZ5OyZDhzbG_SNqRKarW5mjKE1czPAuW7YbalBk7mSz1RuiLkXQZx2NdwfnR4djCKur88RIZTCsutJa8zcFIinLGpNrmSRnAVp9JIkwiZEJkwGRqVZiYW2gqdep3lTgtL2eEbWK3qyr0FZuKBzRLvlExtZsRQo32aZ9bGzkif-k340o92YToJdPoTR1m04s28wOEownBswqeF6U2r-_Eno-1-yhTd0p8XXMZ0dow4D5sLY__3FxTH4_1w8e7fTT_C09HZ-KQ4OT79tgXPOJVjBM7bNqw2s1v3HkFSoz-EtfATEWASSw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9RAFH5BiEYOiqgBRZ0YD14K7XQ6s024EGADIsQYSbiYZn7Khm672S0X_ir_ROZN22UlkhhvTframebNe_NN53vfAHySKldJnsnIrx5oxKTmkaKGR9r5hGmdn7MMFgqfnvGjc_blIrtYgt2-FqbVh5j_cMPICPkaA9xOjNu5Uw0doW4Q9bn1EaywLB8goe_g-1w8CqFOIDAOUIOSZaLXFYrpzvzRP2ejO4i5CFTDTDN8Dj_7PrYEk6vt60Zt65t78o3_-xFr8KyDoGSvHTMvYMlW67C6IEy4Do8DMVTPXsLvfZSSqKdduSapHVHIY2_IWOJ-McFp0BB_x1g7Icr3xzpSteRygsLiYyTczEjtc9N4dONtkWr_i-hLWfsOkKvpqCyJHzmmN2kbkiW22lyOiYfVxE0D5bshpqUGjmYLPZGqQuRdBnHYV3A-PPyxfxR1pzxEmuISlhqDWWdghfBwxqRKZ1JoTmWcCi10wkWCZMIk1zJlOubKcJU6xTKruMHV4WtYrurKbgDR8cCwxFkpUsM0z5W3TzNmTGy1cKnbhM-9twvdSaDjSRxl0Yo308K7owju2ISPc9NJq_vxN6OtfsgUXejPCipi3Dv2OM83F3z_8AuK49O9cPHm300_wJNvB8Pi6_HZyVt4SrEaI1DetmC5mV7bdx4jNep9CIVboiARzw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Categorization+of+breast+masses+based+on+deep+belief+network+parameters+optimized+using+chaotic+krill+herd+optimization+algorithm+for+frequent+diagnosis+of+breast+abnormalities&rft.jtitle=International+journal+of+imaging+systems+and+technology&rft.au=Chandraraju%2C+Thirumarai+Selvi&rft.au=Jeyaprakash%2C+Amudha&rft.date=2022-09-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0899-9457&rft.eissn=1098-1098&rft.volume=32&rft.issue=5&rft.spage=1561&rft.epage=1576&rft_id=info:doi/10.1002%2Fima.22718&rft.externalDBID=10.1002%252Fima.22718&rft.externalDocID=IMA22718 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-9457&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-9457&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-9457&client=summon |