Large Subgraphs in Rainbow‐Triangle Free Colorings

Fox–Grinshpun–Pach showed that every 3‐coloring of the complete graph on n vertices without a rainbow triangle contains a clique of size Ω(n1/3log2n) that uses at most two colors, and this bound is tight up to the constant factor. We show that if instead of looking for large cliques one only tries t...

Full description

Saved in:
Bibliographic Details
Published inJournal of graph theory Vol. 86; no. 2; pp. 141 - 148
Main Author Wagner, Adam Zsolt
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.10.2017
Subjects
Online AccessGet full text
ISSN0364-9024
1097-0118
DOI10.1002/jgt.22117

Cover

Abstract Fox–Grinshpun–Pach showed that every 3‐coloring of the complete graph on n vertices without a rainbow triangle contains a clique of size Ω(n1/3log2n) that uses at most two colors, and this bound is tight up to the constant factor. We show that if instead of looking for large cliques one only tries to find subgraphs of large chromatic number, one can do much better. We show that every such coloring contains a 2‐colored subgraph with chromatic number at least n2/3, and this is best possible. We further show that for fixed positive integers s,r with s≤r, every r‐coloring of the edges of the complete graph on n vertices without a rainbow triangle contains a subgraph that uses at most s colors and has chromatic number at least ns/r, and this is best possible. Fox–Grinshpun–Pach previously showed a clique version of this result. As a direct corollary of our result we obtain a generalization of the celebrated theorem of Erdős‐Szekeres, which states that any sequence of n numbers contains a monotone subsequence of length at least n. We prove that if an r‐coloring of the edges of an n‐vertex tournament does not contain a rainbow triangle then there is an s‐colored directed path on ns/r vertices, which is best possible. This gives a partial answer to a question of Loh.
AbstractList Fox–Grinshpun–Pach showed that every 3‐coloring of the complete graph on n vertices without a rainbow triangle contains a clique of size that uses at most two colors, and this bound is tight up to the constant factor. We show that if instead of looking for large cliques one only tries to find subgraphs of large chromatic number, one can do much better. We show that every such coloring contains a 2‐colored subgraph with chromatic number at least , and this is best possible. We further show that for fixed positive integers with , every r ‐coloring of the edges of the complete graph on n vertices without a rainbow triangle contains a subgraph that uses at most s colors and has chromatic number at least , and this is best possible. Fox–Grinshpun–Pach previously showed a clique version of this result. As a direct corollary of our result we obtain a generalization of the celebrated theorem of Erdős‐Szekeres, which states that any sequence of n numbers contains a monotone subsequence of length at least . We prove that if an r ‐coloring of the edges of an n ‐vertex tournament does not contain a rainbow triangle then there is an s ‐colored directed path on vertices, which is best possible. This gives a partial answer to a question of Loh.
Fox–Grinshpun–Pach showed that every 3‐coloring of the complete graph on n vertices without a rainbow triangle contains a clique of size Ω(n1/3log2n) that uses at most two colors, and this bound is tight up to the constant factor. We show that if instead of looking for large cliques one only tries to find subgraphs of large chromatic number, one can do much better. We show that every such coloring contains a 2‐colored subgraph with chromatic number at least n2/3, and this is best possible. We further show that for fixed positive integers s,r with s≤r, every r‐coloring of the edges of the complete graph on n vertices without a rainbow triangle contains a subgraph that uses at most s colors and has chromatic number at least ns/r, and this is best possible. Fox–Grinshpun–Pach previously showed a clique version of this result. As a direct corollary of our result we obtain a generalization of the celebrated theorem of Erdős‐Szekeres, which states that any sequence of n numbers contains a monotone subsequence of length at least n. We prove that if an r‐coloring of the edges of an n‐vertex tournament does not contain a rainbow triangle then there is an s‐colored directed path on ns/r vertices, which is best possible. This gives a partial answer to a question of Loh.
Fox-Grinshpun-Pach showed that every 3-coloring of the complete graph on n vertices without a rainbow triangle contains a clique of size [Omega] (n 1 /3 log2 n ) that uses at most two colors, and this bound is tight up to the constant factor. We show that if instead of looking for large cliques one only tries to find subgraphs of large chromatic number, one can do much better. We show that every such coloring contains a 2-colored subgraph with chromatic number at least n 2 /3, and this is best possible. We further show that for fixed positive integers s ,r with s ≤r, every r-coloring of the edges of the complete graph on n vertices without a rainbow triangle contains a subgraph that uses at most s colors and has chromatic number at least n s /r, and this is best possible. Fox-Grinshpun-Pach previously showed a clique version of this result. As a direct corollary of our result we obtain a generalization of the celebrated theorem of Erds-Szekeres, which states that any sequence of n numbers contains a monotone subsequence of length at least n. We prove that if an r-coloring of the edges of an n-vertex tournament does not contain a rainbow triangle then there is an s-colored directed path on n s /r vertices, which is best possible. This gives a partial answer to a question of Loh.
Author Wagner, Adam Zsolt
Author_xml – sequence: 1
  givenname: Adam Zsolt
  surname: Wagner
  fullname: Wagner, Adam Zsolt
  email: zawagne2@illinois.edu
  organization: UNIVERSITY OF ILLINOIS AT URBANA‐CHAMPAIGN
BookMark eNp9kMFKAzEURYNUsK0u_IMBVy6mfcmkmWQpxValIOi4DplMZkwZk5pMKd35CX6jX-JoXQm6enA59z44IzRw3hmEzjFMMACZrptuQgjG-REaYhB5ChjzARpCxmgqgNATNIpxDX08Az5EdKVCY5LHbdkEtXmOiXXJg7Ku9LuPt_ciWOWa1iSLYEwy960P1jXxFB3Xqo3m7OeO0dPiupjfpKv75e38apVqIvI8zbmihtLaVCybadBYKV2bsqSMZTlgozHkleZkRogQnNNaM4GZFprxylRaZGN0cdjdBP-6NbGTa78Nrn8psSCMAhUEeuryQOngYwymlptgX1TYSwzyS4rspchvKT07_cVq26nOetcFZdv_Gjvbmv3f0_JuWRwan4HbdL8
CitedBy_id crossref_primary_10_1016_j_disc_2020_112131
crossref_primary_10_1017_S0963548320000371
crossref_primary_10_1016_j_dam_2020_05_004
crossref_primary_10_1137_19M1253344
Cites_doi 10.1016/j.disc.2009.10.013
10.1007/BF01848646
10.1002/jgt.21730
10.1090/S0002-9904-1947-08785-1
10.1002/jgt.20452
10.1016/j.jctb.2014.09.005
10.1007/BF02579187
10.1007/BF02020961
10.1007/s00373-015-1537-2
10.1016/0166-218X(89)90045-0
10.4064/fm198-3-4
10.1007/s004930070022
10.1007/s00373-010-0891-3
ContentType Journal Article
Copyright 2017 Wiley Periodicals, Inc.
Copyright © 2017 Wiley Periodicals, Inc.
Copyright_xml – notice: 2017 Wiley Periodicals, Inc.
– notice: Copyright © 2017 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
DOI 10.1002/jgt.22117
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1097-0118
EndPage 148
ExternalDocumentID 10_1002_jgt_22117
JGT22117
Genre article
GroupedDBID -DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
186
1L6
1OB
1OC
1ZS
3-9
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADXHL
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AI.
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
V8K
VH1
VJK
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XJT
XPP
XV2
XXG
YQT
ZZTAW
~IA
~WT
AAYXX
CITATION
ID FETCH-LOGICAL-c2977-78a4e44fed635c0c1aacfebb4663701ec107dc8252299884fc6916c9c68dedc93
IEDL.DBID DR2
ISSN 0364-9024
IngestDate Fri Jul 25 12:17:06 EDT 2025
Wed Oct 01 02:30:47 EDT 2025
Thu Apr 24 22:55:16 EDT 2025
Sun Sep 21 06:26:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2977-78a4e44fed635c0c1aacfebb4663701ec107dc8252299884fc6916c9c68dedc93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1926404920
PQPubID 1006407
PageCount 8
ParticipantIDs proquest_journals_1926404920
crossref_primary_10_1002_jgt_22117
crossref_citationtrail_10_1002_jgt_22117
wiley_primary_10_1002_jgt_22117_JGT22117
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2017
2017-10-00
20171001
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: October 2017
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of graph theory
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 64
2010; 26
2001
1983; 3
2015; 111
2010; 310
2000; 20
2016; 32
1986; 17
1967; 18
2016
1947; 53
2015
2008; 198
1989; 25
1968
1935; 2
2014; 75
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
Gallai T. (e_1_2_5_10_1) 1968
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_18_1
Maffray F. (e_1_2_5_19_1) 2001
Erdős P. (e_1_2_5_7_1) 1935; 2
References_xml – volume: 310
  start-page: 977
  year: 2010
  end-page: 980
  article-title: Gallai colorings of noncomplete graphs
  publication-title: Discrete Math
– volume: 26
  start-page: 1
  year: 2010
  end-page: 30
  article-title: Rainbow generalizations of Ramsey theory: A survey
  publication-title: Graphs Combin
– volume: 20
  start-page: 227
  year: 2000
  end-page: 240
  article-title: Graph pairs and their entropies: Modularity problems
  publication-title: Combinatorica
– volume: 64
  start-page: 233
  year: 2010
  end-page: 243
  article-title: Ramsey‐type results for Gallai colorings
  publication-title: J Graph Theory
– volume: 53
  start-page: 292
  year: 1947
  end-page: 294
  article-title: Some remarks on the theory of graphs
  publication-title: Bull Amer Math Soc
– volume: 17
  start-page: 173
  year: 1986
  end-page: 175
  article-title: A note on perfect graphs
  publication-title: Period Math Hungar
– volume: 111
  start-page: 75
  year: 2015
  end-page: 125
  article-title: The Erdős–Hajnal conjecture for rainbow triangles
  publication-title: J Comb Theory Series B
– volume: 3
  start-page: 315
  year: 1983
  end-page: 324
  article-title: Edge‐colored complete graphs with precisely colored subgraphs
  publication-title: Combinatorica
– volume: 2
  start-page: 463
  year: 1935
  end-page: 470
  article-title: A combinatorial problem in geometry
  publication-title: Compositio Math
– volume: 198
  start-page: 255
  year: 2008
  end-page: 262
  article-title: Rainbow Ramsey theorems for colorings establishing negative partition relations
  publication-title: Fund Math
– start-page: 25
  year: 2001
  end-page: 66
– volume: 25
  start-page: 37
  year: 1989
  end-page: 52
  article-title: Ramsey‐type theorems
  publication-title: Discrete Appl Math
– year: 2016
– start-page: 115
  year: 1968
  end-page: 118
– volume: 18
  start-page: 25
  year: 1967
  end-page: 66
  article-title: Transitiv orientierbare Graphen
  publication-title: Acta Math Acad Sci Hungar
– volume: 75
  start-page: 178
  year: 2014
  end-page: 190
  article-title: The Erdős‐Hajnal conjecture—A survey
  publication-title: J Graph Theory
– volume: 32
  start-page: 257
  issue: 1
  year: 2016
  end-page: 269
  article-title: Connected colourings of complete graphs and hypergraphs
  publication-title: Graphs Combin
– year: 2015
– ident: e_1_2_5_13_1
  doi: 10.1016/j.disc.2009.10.013
– ident: e_1_2_5_2_1
  doi: 10.1007/BF01848646
– ident: e_1_2_5_3_1
  doi: 10.1002/jgt.21730
– ident: e_1_2_5_5_1
  doi: 10.1090/S0002-9904-1947-08785-1
– ident: e_1_2_5_12_1
– ident: e_1_2_5_14_1
  doi: 10.1002/jgt.20452
– ident: e_1_2_5_8_1
  doi: 10.1016/j.jctb.2014.09.005
– ident: e_1_2_5_4_1
  doi: 10.1007/BF02579187
– ident: e_1_2_5_11_1
  doi: 10.1007/BF02020961
– ident: e_1_2_5_18_1
– ident: e_1_2_5_17_1
  doi: 10.1007/s00373-015-1537-2
– ident: e_1_2_5_6_1
  doi: 10.1016/0166-218X(89)90045-0
– volume: 2
  start-page: 463
  year: 1935
  ident: e_1_2_5_7_1
  article-title: A combinatorial problem in geometry
  publication-title: Compositio Math
– ident: e_1_2_5_15_1
  doi: 10.4064/fm198-3-4
– ident: e_1_2_5_16_1
  doi: 10.1007/s004930070022
– start-page: 25
  volume-title: Perfect graphs
  year: 2001
  ident: e_1_2_5_19_1
– start-page: 115
  volume-title: On directed graphs and circuits
  year: 1968
  ident: e_1_2_5_10_1
– ident: e_1_2_5_9_1
  doi: 10.1007/s00373-010-0891-3
SSID ssj0011508
Score 2.1482203
Snippet Fox–Grinshpun–Pach showed that every 3‐coloring of the complete graph on n vertices without a rainbow triangle contains a clique of size Ω(n1/3log2n) that uses...
Fox–Grinshpun–Pach showed that every 3‐coloring of the complete graph on n vertices without a rainbow triangle contains a clique of size that uses at most two...
Fox-Grinshpun-Pach showed that every 3-coloring of the complete graph on n vertices without a rainbow triangle contains a clique of size [Omega] (n 1 /3 log2 n...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 141
SubjectTerms chromatic number
Coloring
Erdős‐Szekeres
Gallai coloring
Graph algorithms
Graph theory
Integers
Numbers
rainbow triangle
Title Large Subgraphs in Rainbow‐Triangle Free Colorings
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjgt.22117
https://www.proquest.com/docview/1926404920
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1097-0118
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0011508
  issn: 0364-9024
  databaseCode: ABDBF
  dateStart: 20120801
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0364-9024
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011508
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ29TsMwEMetqhMMfCMKBUWIgSVt7LiOIyZUUaoKGFArdUCKEtupoFWKmnRh4hF4Rp6Es_NRQCAhtgyOk1x8ud_F578ROmNUMcpcCY4E-EYx8WzgZF1gIxkLscuFNNUWd6w_ooNxZ1xDF-VamFwfovrhpj3DfK-1g4dR2l6Jhj5NshaB9EWvJMdux0zR3lfSURp0eD5PSW0fAlGpKuSQdnXm11i0AszPmGriTG8TPZR3mJeXTFvLLGqJl2_ijf98hC20UfCndZkPmG1UU8kOWr-txFvTXURvdHW4BZ8Uo2adWo-JVUwDvb--DWHEJpOZsnoLpazuPK_gS_fQqHc17PbtYnMFWxBgPtvjIVWUxkoCcghH4DAUsYoiCgjiOVgJyAulgPyRQMDinMaCAUkKXzAulRS-u4_qyTxRB8gCRvBDP_KlwwiNHegDc4mZkjHmXujEDXRemjkQhfK43gBjFuSaySQAQwTGEA10WjV9zuU2fmrULN9VUHhcGgCpMgrpDnHgcsbov3cQDK6H5uDw702P0BrREd3U8TVRPVss1THwSBadmIH3AUbY2h8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ07T8MwEMdPBQZg4I0ozwgxsKQkrnESiQUBpZSWAQWJBUWJ7VRAlaImLEx8BD4jn4Sz8yggkBBbBsdJLr7c7-zL3wB7jEpGWVOgIyG-UZs4JnKyKrARjIV20-VCV1tcsfYN7dwe3tbgqPwXJteHqCbclGfo77VycDUhfTBWDX3oZw2C-YszAVNqfU655el1JR6lUMfNVyqp6WEoKnWFLHJQnfo1Go0R8zOo6kjTmoe78h7zApPHxnMWNfjLN_nG_z7EAswVCGoc52NmEWoyWYLZXqXfmi4D7aoCcQO_KlrQOjXuE6NYCXp_ffNx0Cb9gTRaIymNk2FexJeuwE3rzD9pm8X-CiYniH2m44ZUUhpLgdTBLW6HIY9lFFGkEMeyJcfUUHBMIQnGLNelMWcIk9zjzBVScK-5CpPJMJFrYCAmeKEXecJihMYW9mG7wmZSxLbrhFZch_3SzgEvxMfVHhiDIJdNJgEaItCGqMNu1fQpV9z4qdFm-bKCwunSAGGVUcx4iIWX01b_vYOgc-7rg_W_N92B6bbf6wbdi6vLDZghKsDrsr5NmMxGz3IL8SSLtvUo_AD0Lt47
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NSsNAEMeHWkH04LdYrRrEg5fUZLtuEjxJtdZai0gLPQgh2d0UtaSlaS-efASf0SdxsvmoioJ4y2GzSSY7O7_JTv4LcMSoZJRVBToS4hs1iaUjJ8cFNoIxz6zaXKhqizZrdGmzd9orwFn2L0yiD5F_cIs9Q83XsYOPRHAyEw196k8qBNMXaw7mKcPsKiai-1w7KiYdO1mopLqDkSiTFTLISX7q12A0I8zPnKoCTX0FHrJbTOpLnivTiV_hL9_UG__5DKuwnAKodp6MmDUoyHAdlm5z9dZoA2grLg_XcE5RctaR9hhq6TrQ--tbB4ds2B9IrT6WUqsNkxK-aBO69ctOraGnuyvonCD06ZbtUUlpIAUyBze46Xk8kL5PkUEsw5QcE0PBMYEkGLFsmwacIUpyhzNbSMGd6hYUw2Eot0FDSHA8x3eEwQgNDOzDtIXJpAhM2_KMoATHmZldnkqPxztgDNxENJm4aAhXGaIEh3nTUaK38VOjcvau3NTlIhdRlVHMd4iBl1NG_70Dt3nVUQc7f296AAt3F3W3dd2-2YVFEkd3VdNXhuJkPJV7yCYTf1-NwQ95Rdzq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+Subgraphs+in+Rainbow%E2%80%90Triangle+Free+Colorings&rft.jtitle=Journal+of+graph+theory&rft.au=Wagner%2C+Adam+Zsolt&rft.date=2017-10-01&rft.issn=0364-9024&rft.eissn=1097-0118&rft.volume=86&rft.issue=2&rft.spage=141&rft.epage=148&rft_id=info:doi/10.1002%2Fjgt.22117&rft.externalDBID=10.1002%252Fjgt.22117&rft.externalDocID=JGT22117
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-9024&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-9024&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-9024&client=summon