Large Subgraphs in Rainbow‐Triangle Free Colorings
Fox–Grinshpun–Pach showed that every 3‐coloring of the complete graph on n vertices without a rainbow triangle contains a clique of size Ω(n1/3log2n) that uses at most two colors, and this bound is tight up to the constant factor. We show that if instead of looking for large cliques one only tries t...
Saved in:
Published in | Journal of graph theory Vol. 86; no. 2; pp. 141 - 148 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.10.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0364-9024 1097-0118 |
DOI | 10.1002/jgt.22117 |
Cover
Abstract | Fox–Grinshpun–Pach showed that every 3‐coloring of the complete graph on n vertices without a rainbow triangle contains a clique of size Ω(n1/3log2n) that uses at most two colors, and this bound is tight up to the constant factor. We show that if instead of looking for large cliques one only tries to find subgraphs of large chromatic number, one can do much better. We show that every such coloring contains a 2‐colored subgraph with chromatic number at least n2/3, and this is best possible. We further show that for fixed positive integers s,r with s≤r, every r‐coloring of the edges of the complete graph on n vertices without a rainbow triangle contains a subgraph that uses at most s colors and has chromatic number at least ns/r, and this is best possible. Fox–Grinshpun–Pach previously showed a clique version of this result. As a direct corollary of our result we obtain a generalization of the celebrated theorem of Erdős‐Szekeres, which states that any sequence of n numbers contains a monotone subsequence of length at least n. We prove that if an r‐coloring of the edges of an n‐vertex tournament does not contain a rainbow triangle then there is an s‐colored directed path on ns/r vertices, which is best possible. This gives a partial answer to a question of Loh. |
---|---|
AbstractList | Fox–Grinshpun–Pach showed that every 3‐coloring of the complete graph on
n
vertices without a rainbow triangle contains a clique of size
that uses at most two colors, and this bound is tight up to the constant factor. We show that if instead of looking for large cliques one only tries to find subgraphs of large chromatic number, one can do much better. We show that every such coloring contains a 2‐colored subgraph with chromatic number at least
, and this is best possible. We further show that for fixed positive integers
with
, every
r
‐coloring of the edges of the complete graph on
n
vertices without a rainbow triangle contains a subgraph that uses at most
s
colors and has chromatic number at least
, and this is best possible. Fox–Grinshpun–Pach previously showed a clique version of this result. As a direct corollary of our result we obtain a generalization of the celebrated theorem of Erdős‐Szekeres, which states that any sequence of
n
numbers contains a monotone subsequence of length at least
. We prove that if an
r
‐coloring of the edges of an
n
‐vertex tournament does not contain a rainbow triangle then there is an
s
‐colored directed path on
vertices, which is best possible. This gives a partial answer to a question of Loh. Fox–Grinshpun–Pach showed that every 3‐coloring of the complete graph on n vertices without a rainbow triangle contains a clique of size Ω(n1/3log2n) that uses at most two colors, and this bound is tight up to the constant factor. We show that if instead of looking for large cliques one only tries to find subgraphs of large chromatic number, one can do much better. We show that every such coloring contains a 2‐colored subgraph with chromatic number at least n2/3, and this is best possible. We further show that for fixed positive integers s,r with s≤r, every r‐coloring of the edges of the complete graph on n vertices without a rainbow triangle contains a subgraph that uses at most s colors and has chromatic number at least ns/r, and this is best possible. Fox–Grinshpun–Pach previously showed a clique version of this result. As a direct corollary of our result we obtain a generalization of the celebrated theorem of Erdős‐Szekeres, which states that any sequence of n numbers contains a monotone subsequence of length at least n. We prove that if an r‐coloring of the edges of an n‐vertex tournament does not contain a rainbow triangle then there is an s‐colored directed path on ns/r vertices, which is best possible. This gives a partial answer to a question of Loh. Fox-Grinshpun-Pach showed that every 3-coloring of the complete graph on n vertices without a rainbow triangle contains a clique of size [Omega] (n 1 /3 log2 n ) that uses at most two colors, and this bound is tight up to the constant factor. We show that if instead of looking for large cliques one only tries to find subgraphs of large chromatic number, one can do much better. We show that every such coloring contains a 2-colored subgraph with chromatic number at least n 2 /3, and this is best possible. We further show that for fixed positive integers s ,r with s ≤r, every r-coloring of the edges of the complete graph on n vertices without a rainbow triangle contains a subgraph that uses at most s colors and has chromatic number at least n s /r, and this is best possible. Fox-Grinshpun-Pach previously showed a clique version of this result. As a direct corollary of our result we obtain a generalization of the celebrated theorem of Erds-Szekeres, which states that any sequence of n numbers contains a monotone subsequence of length at least n. We prove that if an r-coloring of the edges of an n-vertex tournament does not contain a rainbow triangle then there is an s-colored directed path on n s /r vertices, which is best possible. This gives a partial answer to a question of Loh. |
Author | Wagner, Adam Zsolt |
Author_xml | – sequence: 1 givenname: Adam Zsolt surname: Wagner fullname: Wagner, Adam Zsolt email: zawagne2@illinois.edu organization: UNIVERSITY OF ILLINOIS AT URBANA‐CHAMPAIGN |
BookMark | eNp9kMFKAzEURYNUsK0u_IMBVy6mfcmkmWQpxValIOi4DplMZkwZk5pMKd35CX6jX-JoXQm6enA59z44IzRw3hmEzjFMMACZrptuQgjG-REaYhB5ChjzARpCxmgqgNATNIpxDX08Az5EdKVCY5LHbdkEtXmOiXXJg7Ku9LuPt_ciWOWa1iSLYEwy960P1jXxFB3Xqo3m7OeO0dPiupjfpKv75e38apVqIvI8zbmihtLaVCybadBYKV2bsqSMZTlgozHkleZkRogQnNNaM4GZFprxylRaZGN0cdjdBP-6NbGTa78Nrn8psSCMAhUEeuryQOngYwymlptgX1TYSwzyS4rspchvKT07_cVq26nOetcFZdv_Gjvbmv3f0_JuWRwan4HbdL8 |
CitedBy_id | crossref_primary_10_1016_j_disc_2020_112131 crossref_primary_10_1017_S0963548320000371 crossref_primary_10_1016_j_dam_2020_05_004 crossref_primary_10_1137_19M1253344 |
Cites_doi | 10.1016/j.disc.2009.10.013 10.1007/BF01848646 10.1002/jgt.21730 10.1090/S0002-9904-1947-08785-1 10.1002/jgt.20452 10.1016/j.jctb.2014.09.005 10.1007/BF02579187 10.1007/BF02020961 10.1007/s00373-015-1537-2 10.1016/0166-218X(89)90045-0 10.4064/fm198-3-4 10.1007/s004930070022 10.1007/s00373-010-0891-3 |
ContentType | Journal Article |
Copyright | 2017 Wiley Periodicals, Inc. Copyright © 2017 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2017 Wiley Periodicals, Inc. – notice: Copyright © 2017 Wiley Periodicals, Inc. |
DBID | AAYXX CITATION |
DOI | 10.1002/jgt.22117 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1097-0118 |
EndPage | 148 |
ExternalDocumentID | 10_1002_jgt_22117 JGT22117 |
Genre | article |
GroupedDBID | -DZ -~X .3N .GA .Y3 05W 0R~ 10A 186 1L6 1OB 1OC 1ZS 3-9 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADXHL ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AI. AIAGR AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMVHM AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE FSPIC G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 UB1 UPT V2E V8K VH1 VJK W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WXSBR WYISQ XBAML XG1 XJT XPP XV2 XXG YQT ZZTAW ~IA ~WT AAYXX CITATION |
ID | FETCH-LOGICAL-c2977-78a4e44fed635c0c1aacfebb4663701ec107dc8252299884fc6916c9c68dedc93 |
IEDL.DBID | DR2 |
ISSN | 0364-9024 |
IngestDate | Fri Jul 25 12:17:06 EDT 2025 Wed Oct 01 02:30:47 EDT 2025 Thu Apr 24 22:55:16 EDT 2025 Sun Sep 21 06:26:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2977-78a4e44fed635c0c1aacfebb4663701ec107dc8252299884fc6916c9c68dedc93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1926404920 |
PQPubID | 1006407 |
PageCount | 8 |
ParticipantIDs | proquest_journals_1926404920 crossref_primary_10_1002_jgt_22117 crossref_citationtrail_10_1002_jgt_22117 wiley_primary_10_1002_jgt_22117_JGT22117 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2017 2017-10-00 20171001 |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: October 2017 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Journal of graph theory |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 64 2010; 26 2001 1983; 3 2015; 111 2010; 310 2000; 20 2016; 32 1986; 17 1967; 18 2016 1947; 53 2015 2008; 198 1989; 25 1968 1935; 2 2014; 75 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_17_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_8_1 e_1_2_5_11_1 Gallai T. (e_1_2_5_10_1) 1968 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_18_1 Maffray F. (e_1_2_5_19_1) 2001 Erdős P. (e_1_2_5_7_1) 1935; 2 |
References_xml | – volume: 310 start-page: 977 year: 2010 end-page: 980 article-title: Gallai colorings of noncomplete graphs publication-title: Discrete Math – volume: 26 start-page: 1 year: 2010 end-page: 30 article-title: Rainbow generalizations of Ramsey theory: A survey publication-title: Graphs Combin – volume: 20 start-page: 227 year: 2000 end-page: 240 article-title: Graph pairs and their entropies: Modularity problems publication-title: Combinatorica – volume: 64 start-page: 233 year: 2010 end-page: 243 article-title: Ramsey‐type results for Gallai colorings publication-title: J Graph Theory – volume: 53 start-page: 292 year: 1947 end-page: 294 article-title: Some remarks on the theory of graphs publication-title: Bull Amer Math Soc – volume: 17 start-page: 173 year: 1986 end-page: 175 article-title: A note on perfect graphs publication-title: Period Math Hungar – volume: 111 start-page: 75 year: 2015 end-page: 125 article-title: The Erdős–Hajnal conjecture for rainbow triangles publication-title: J Comb Theory Series B – volume: 3 start-page: 315 year: 1983 end-page: 324 article-title: Edge‐colored complete graphs with precisely colored subgraphs publication-title: Combinatorica – volume: 2 start-page: 463 year: 1935 end-page: 470 article-title: A combinatorial problem in geometry publication-title: Compositio Math – volume: 198 start-page: 255 year: 2008 end-page: 262 article-title: Rainbow Ramsey theorems for colorings establishing negative partition relations publication-title: Fund Math – start-page: 25 year: 2001 end-page: 66 – volume: 25 start-page: 37 year: 1989 end-page: 52 article-title: Ramsey‐type theorems publication-title: Discrete Appl Math – year: 2016 – start-page: 115 year: 1968 end-page: 118 – volume: 18 start-page: 25 year: 1967 end-page: 66 article-title: Transitiv orientierbare Graphen publication-title: Acta Math Acad Sci Hungar – volume: 75 start-page: 178 year: 2014 end-page: 190 article-title: The Erdős‐Hajnal conjecture—A survey publication-title: J Graph Theory – volume: 32 start-page: 257 issue: 1 year: 2016 end-page: 269 article-title: Connected colourings of complete graphs and hypergraphs publication-title: Graphs Combin – year: 2015 – ident: e_1_2_5_13_1 doi: 10.1016/j.disc.2009.10.013 – ident: e_1_2_5_2_1 doi: 10.1007/BF01848646 – ident: e_1_2_5_3_1 doi: 10.1002/jgt.21730 – ident: e_1_2_5_5_1 doi: 10.1090/S0002-9904-1947-08785-1 – ident: e_1_2_5_12_1 – ident: e_1_2_5_14_1 doi: 10.1002/jgt.20452 – ident: e_1_2_5_8_1 doi: 10.1016/j.jctb.2014.09.005 – ident: e_1_2_5_4_1 doi: 10.1007/BF02579187 – ident: e_1_2_5_11_1 doi: 10.1007/BF02020961 – ident: e_1_2_5_18_1 – ident: e_1_2_5_17_1 doi: 10.1007/s00373-015-1537-2 – ident: e_1_2_5_6_1 doi: 10.1016/0166-218X(89)90045-0 – volume: 2 start-page: 463 year: 1935 ident: e_1_2_5_7_1 article-title: A combinatorial problem in geometry publication-title: Compositio Math – ident: e_1_2_5_15_1 doi: 10.4064/fm198-3-4 – ident: e_1_2_5_16_1 doi: 10.1007/s004930070022 – start-page: 25 volume-title: Perfect graphs year: 2001 ident: e_1_2_5_19_1 – start-page: 115 volume-title: On directed graphs and circuits year: 1968 ident: e_1_2_5_10_1 – ident: e_1_2_5_9_1 doi: 10.1007/s00373-010-0891-3 |
SSID | ssj0011508 |
Score | 2.1482203 |
Snippet | Fox–Grinshpun–Pach showed that every 3‐coloring of the complete graph on n vertices without a rainbow triangle contains a clique of size Ω(n1/3log2n) that uses... Fox–Grinshpun–Pach showed that every 3‐coloring of the complete graph on n vertices without a rainbow triangle contains a clique of size that uses at most two... Fox-Grinshpun-Pach showed that every 3-coloring of the complete graph on n vertices without a rainbow triangle contains a clique of size [Omega] (n 1 /3 log2 n... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 141 |
SubjectTerms | chromatic number Coloring Erdős‐Szekeres Gallai coloring Graph algorithms Graph theory Integers Numbers rainbow triangle |
Title | Large Subgraphs in Rainbow‐Triangle Free Colorings |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjgt.22117 https://www.proquest.com/docview/1926404920 |
Volume | 86 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1097-0118 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0011508 issn: 0364-9024 databaseCode: ABDBF dateStart: 20120801 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0364-9024 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-0118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011508 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ29TsMwEMetqhMMfCMKBUWIgSVt7LiOIyZUUaoKGFArdUCKEtupoFWKmnRh4hF4Rp6Es_NRQCAhtgyOk1x8ud_F578ROmNUMcpcCY4E-EYx8WzgZF1gIxkLscuFNNUWd6w_ooNxZ1xDF-VamFwfovrhpj3DfK-1g4dR2l6Jhj5NshaB9EWvJMdux0zR3lfSURp0eD5PSW0fAlGpKuSQdnXm11i0AszPmGriTG8TPZR3mJeXTFvLLGqJl2_ijf98hC20UfCndZkPmG1UU8kOWr-txFvTXURvdHW4BZ8Uo2adWo-JVUwDvb--DWHEJpOZsnoLpazuPK_gS_fQqHc17PbtYnMFWxBgPtvjIVWUxkoCcghH4DAUsYoiCgjiOVgJyAulgPyRQMDinMaCAUkKXzAulRS-u4_qyTxRB8gCRvBDP_KlwwiNHegDc4mZkjHmXujEDXRemjkQhfK43gBjFuSaySQAQwTGEA10WjV9zuU2fmrULN9VUHhcGgCpMgrpDnHgcsbov3cQDK6H5uDw702P0BrREd3U8TVRPVss1THwSBadmIH3AUbY2h8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ07T8MwEMdPBQZg4I0ozwgxsKQkrnESiQUBpZSWAQWJBUWJ7VRAlaImLEx8BD4jn4Sz8yggkBBbBsdJLr7c7-zL3wB7jEpGWVOgIyG-UZs4JnKyKrARjIV20-VCV1tcsfYN7dwe3tbgqPwXJteHqCbclGfo77VycDUhfTBWDX3oZw2C-YszAVNqfU655el1JR6lUMfNVyqp6WEoKnWFLHJQnfo1Go0R8zOo6kjTmoe78h7zApPHxnMWNfjLN_nG_z7EAswVCGoc52NmEWoyWYLZXqXfmi4D7aoCcQO_KlrQOjXuE6NYCXp_ffNx0Cb9gTRaIymNk2FexJeuwE3rzD9pm8X-CiYniH2m44ZUUhpLgdTBLW6HIY9lFFGkEMeyJcfUUHBMIQnGLNelMWcIk9zjzBVScK-5CpPJMJFrYCAmeKEXecJihMYW9mG7wmZSxLbrhFZch_3SzgEvxMfVHhiDIJdNJgEaItCGqMNu1fQpV9z4qdFm-bKCwunSAGGVUcx4iIWX01b_vYOgc-7rg_W_N92B6bbf6wbdi6vLDZghKsDrsr5NmMxGz3IL8SSLtvUo_AD0Lt47 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NSsNAEMeHWkH04LdYrRrEg5fUZLtuEjxJtdZai0gLPQgh2d0UtaSlaS-efASf0SdxsvmoioJ4y2GzSSY7O7_JTv4LcMSoZJRVBToS4hs1iaUjJ8cFNoIxz6zaXKhqizZrdGmzd9orwFn2L0yiD5F_cIs9Q83XsYOPRHAyEw196k8qBNMXaw7mKcPsKiai-1w7KiYdO1mopLqDkSiTFTLISX7q12A0I8zPnKoCTX0FHrJbTOpLnivTiV_hL9_UG__5DKuwnAKodp6MmDUoyHAdlm5z9dZoA2grLg_XcE5RctaR9hhq6TrQ--tbB4ds2B9IrT6WUqsNkxK-aBO69ctOraGnuyvonCD06ZbtUUlpIAUyBze46Xk8kL5PkUEsw5QcE0PBMYEkGLFsmwacIUpyhzNbSMGd6hYUw2Eot0FDSHA8x3eEwQgNDOzDtIXJpAhM2_KMoATHmZldnkqPxztgDNxENJm4aAhXGaIEh3nTUaK38VOjcvau3NTlIhdRlVHMd4iBl1NG_70Dt3nVUQc7f296AAt3F3W3dd2-2YVFEkd3VdNXhuJkPJV7yCYTf1-NwQ95Rdzq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+Subgraphs+in+Rainbow%E2%80%90Triangle+Free+Colorings&rft.jtitle=Journal+of+graph+theory&rft.au=Wagner%2C+Adam+Zsolt&rft.date=2017-10-01&rft.issn=0364-9024&rft.eissn=1097-0118&rft.volume=86&rft.issue=2&rft.spage=141&rft.epage=148&rft_id=info:doi/10.1002%2Fjgt.22117&rft.externalDBID=10.1002%252Fjgt.22117&rft.externalDocID=JGT22117 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-9024&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-9024&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-9024&client=summon |