Advances in Neural Rendering

Synthesizing photo‐realistic images and videos is at the heart of computer graphics and has been the focus of decades of research. Traditionally, synthetic images of a scene are generated using rendering algorithms such as rasterization or ray tracing, which take specifically defined representations...

Full description

Saved in:
Bibliographic Details
Published inComputer graphics forum Vol. 41; no. 2; pp. 703 - 735
Main Authors Tewari, A., Thies, J., Mildenhall, B., Srinivasan, P., Tretschk, E., Yifan, W., Lassner, C., Sitzmann, V., Martin‐Brualla, R., Lombardi, S., Simon, T., Theobalt, C., Nießner, M., Barron, J. T., Wetzstein, G., Zollhöfer, M., Golyanik, V.
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.05.2022
Subjects
Online AccessGet full text
ISSN0167-7055
1467-8659
DOI10.1111/cgf.14507

Cover

Abstract Synthesizing photo‐realistic images and videos is at the heart of computer graphics and has been the focus of decades of research. Traditionally, synthetic images of a scene are generated using rendering algorithms such as rasterization or ray tracing, which take specifically defined representations of geometry and material properties as input. Collectively, these inputs define the actual scene and what is rendered, and are referred to as the scene representation (where a scene consists of one or more objects). Example scene representations are triangle meshes with accompanied textures (e.g., created by an artist), point clouds (e.g., from a depth sensor), volumetric grids (e.g., from a CT scan), or implicit surface functions (e.g., truncated signed distance fields). The reconstruction of such a scene representation from observations using differentiable rendering losses is known as inverse graphics or inverse rendering. Neural rendering is closely related, and combines ideas from classical computer graphics and machine learning to create algorithms for synthesizing images from real‐world observations. Neural rendering is a leap forward towards the goal of synthesizing photo‐realistic image and video content. In recent years, we have seen immense progress in this field through hundreds of publications that show different ways to inject learnable components into the rendering pipeline. This state‐of‐the‐art report on advances in neural rendering focuses on methods that combine classical rendering principles with learned 3D scene representations, often now referred to as neural scene representations. A key advantage of these methods is that they are 3D‐consistent by design, enabling applications such as novel viewpoint synthesis of a captured scene. In addition to methods that handle static scenes, we cover neural scene representations for modeling non‐rigidly deforming objects and scene editing and composition. While most of these approaches are scene‐specific, we also discuss techniques that generalize across object classes and can be used for generative tasks. In addition to reviewing these state‐of‐the‐art methods, we provide an overview of fundamental concepts and definitions used in the current literature. We conclude with a discussion on open challenges and social implications.
AbstractList Synthesizing photo‐realistic images and videos is at the heart of computer graphics and has been the focus of decades of research. Traditionally, synthetic images of a scene are generated using rendering algorithms such as rasterization or ray tracing, which take specifically defined representations of geometry and material properties as input. Collectively, these inputs define the actual scene and what is rendered, and are referred to as the scene representation (where a scene consists of one or more objects). Example scene representations are triangle meshes with accompanied textures (e.g., created by an artist), point clouds (e.g., from a depth sensor), volumetric grids (e.g., from a CT scan), or implicit surface functions (e.g., truncated signed distance fields). The reconstruction of such a scene representation from observations using differentiable rendering losses is known as inverse graphics or inverse rendering. Neural rendering is closely related, and combines ideas from classical computer graphics and machine learning to create algorithms for synthesizing images from real‐world observations. Neural rendering is a leap forward towards the goal of synthesizing photo‐realistic image and video content. In recent years, we have seen immense progress in this field through hundreds of publications that show different ways to inject learnable components into the rendering pipeline. This state‐of‐the‐art report on advances in neural rendering focuses on methods that combine classical rendering principles with learned 3D scene representations, often now referred to as neural scene representations. A key advantage of these methods is that they are 3D‐consistent by design, enabling applications such as novel viewpoint synthesis of a captured scene. In addition to methods that handle static scenes, we cover neural scene representations for modeling non‐rigidly deforming objects and scene editing and composition. While most of these approaches are scene‐specific, we also discuss techniques that generalize across object classes and can be used for generative tasks. In addition to reviewing these state‐of‐the‐art methods, we provide an overview of fundamental concepts and definitions used in the current literature. We conclude with a discussion on open challenges and social implications.
Author Sitzmann, V.
Barron, J. T.
Tretschk, E.
Thies, J.
Yifan, W.
Martin‐Brualla, R.
Zollhöfer, M.
Lombardi, S.
Theobalt, C.
Nießner, M.
Mildenhall, B.
Tewari, A.
Srinivasan, P.
Golyanik, V.
Wetzstein, G.
Lassner, C.
Simon, T.
Author_xml – sequence: 1
  givenname: A.
  surname: Tewari
  fullname: Tewari, A.
– sequence: 2
  givenname: J.
  surname: Thies
  fullname: Thies, J.
– sequence: 3
  givenname: B.
  surname: Mildenhall
  fullname: Mildenhall, B.
– sequence: 4
  givenname: P.
  surname: Srinivasan
  fullname: Srinivasan, P.
– sequence: 5
  givenname: E.
  surname: Tretschk
  fullname: Tretschk, E.
– sequence: 6
  givenname: W.
  surname: Yifan
  fullname: Yifan, W.
– sequence: 7
  givenname: C.
  surname: Lassner
  fullname: Lassner, C.
– sequence: 8
  givenname: V.
  surname: Sitzmann
  fullname: Sitzmann, V.
– sequence: 9
  givenname: R.
  surname: Martin‐Brualla
  fullname: Martin‐Brualla, R.
– sequence: 10
  givenname: S.
  surname: Lombardi
  fullname: Lombardi, S.
– sequence: 11
  givenname: T.
  surname: Simon
  fullname: Simon, T.
– sequence: 12
  givenname: C.
  surname: Theobalt
  fullname: Theobalt, C.
– sequence: 13
  givenname: M.
  surname: Nießner
  fullname: Nießner, M.
  organization: Technical University of Munich
– sequence: 14
  givenname: J. T.
  surname: Barron
  fullname: Barron, J. T.
– sequence: 15
  givenname: G.
  surname: Wetzstein
  fullname: Wetzstein, G.
– sequence: 16
  givenname: M.
  surname: Zollhöfer
  fullname: Zollhöfer, M.
– sequence: 17
  givenname: V.
  surname: Golyanik
  fullname: Golyanik, V.
BookMark eNp9j0FLAzEQRoNUsK0evHsoePKw7ew2mWyOpdgqFAXRc8hmk5KyZmuyq_TfG60nQecyc3jfN7wRGfjWG0Iuc5jmaWZ6a6c5ZcBPyDCnyLMSmRiQIeTp5sDYGRnFuAMAypENydWifldemzhxfvJg-qCayZPxtQnOb8_JqVVNNBc_e0xeVrfPy7ts87i-Xy42mS4E5xmWwITgiEyxqhaislowXfNaQUmhEMpSUMxyAYYbawtgnAqL1bwyiKbG-ZhcH3v3oX3rTezkru2DTy9lgVhiQVNPom6OlA5tjMFYuQ_uVYWDzEF-ycskL7_lEzv7xWrXqc61vgvKNf8lPlxjDn9Xy-V6dUx8AnB8alc
CitedBy_id crossref_primary_10_1088_1361_6560_ad33b7
crossref_primary_10_1109_TGRS_2024_3399786
crossref_primary_10_1111_cgf_15062
crossref_primary_10_1109_TVCG_2024_3456342
crossref_primary_10_1109_LRA_2023_3273516
crossref_primary_10_1109_TCSVT_2024_3434733
crossref_primary_10_3390_rs15143585
crossref_primary_10_1051_0004_6361_202450053
crossref_primary_10_1109_TITS_2024_3477570
crossref_primary_10_1109_TVCG_2024_3367431
crossref_primary_10_1109_TVCG_2023_3320248
crossref_primary_10_1145_3528223_3530153
crossref_primary_10_1145_3592443
crossref_primary_10_1080_10095020_2023_2296014
crossref_primary_10_1109_TPAMI_2024_3366237
crossref_primary_10_3390_math12203285
crossref_primary_10_1145_3592407
crossref_primary_10_3390_math11143243
crossref_primary_10_1145_3658163
crossref_primary_10_1016_j_cag_2024_01_013
crossref_primary_10_1109_TCSI_2022_3231863
crossref_primary_10_1111_cgf_15198
crossref_primary_10_1109_TMM_2024_3371792
crossref_primary_10_1007_s00371_024_03368_5
crossref_primary_10_1111_cgf_14981
crossref_primary_10_1109_LRA_2023_3240362
crossref_primary_10_1109_TMRB_2024_3407369
crossref_primary_10_1111_cgf_14943
crossref_primary_10_1088_1361_6560_ada519
crossref_primary_10_1109_TAES_2023_3303856
crossref_primary_10_1145_3592433
crossref_primary_10_1016_j_compag_2024_109523
crossref_primary_10_1109_LRA_2023_3313937
crossref_primary_10_1016_j_cad_2023_103655
crossref_primary_10_1145_3651282
crossref_primary_10_3390_s23146456
crossref_primary_10_1109_TVCG_2023_3323578
crossref_primary_10_1145_3708343
crossref_primary_10_3390_rs15184628
crossref_primary_10_1145_3592426
crossref_primary_10_1016_j_optcom_2024_130920
crossref_primary_10_1145_3618340
crossref_primary_10_1360_SSI_2022_0319
crossref_primary_10_1007_s00371_024_03299_1
crossref_primary_10_1038_s42256_023_00743_0
crossref_primary_10_1109_LRA_2023_3240646
crossref_primary_10_1007_s11467_023_1325_z
crossref_primary_10_1109_TITS_2023_3287912
crossref_primary_10_1007_s11263_023_01936_1
crossref_primary_10_1145_3687914
crossref_primary_10_1007_s00158_024_03834_7
crossref_primary_10_3390_electronics13173546
crossref_primary_10_1016_j_cag_2023_08_024
crossref_primary_10_1016_j_jvcir_2024_104344
crossref_primary_10_1109_TCSI_2023_3293534
crossref_primary_10_1111_cgf_15178
crossref_primary_10_1007_s11263_023_01899_3
crossref_primary_10_1109_TCI_2023_3281196
crossref_primary_10_1111_cgf_15015
crossref_primary_10_3390_rs15184634
crossref_primary_10_3390_rs16234473
crossref_primary_10_1145_3658229
crossref_primary_10_1145_3528223_3530143
crossref_primary_10_1007_s11263_023_01829_3
crossref_primary_10_1145_3592134
crossref_primary_10_1038_s42256_023_00662_0
crossref_primary_10_3390_rs15153808
crossref_primary_10_1145_3649889
crossref_primary_10_1007_s11042_023_17859_5
crossref_primary_10_1145_3658193
Cites_doi 10.1109/CVPR46437.2021.00466
10.1109/2945.468400.
10.1109/CVPR52688.2022.01260
10.1145/3272127.3275109
10.1145/3306346.3323035
10.1109/ICCV48922.2021.00570
10.1145/3386569.3392485
10.1007/978-3-030-58607-2_39
10.1145/3450626.3459787
10.1109/ICCV48922.2021.00572
10.1109/ICCV.2019.00780
10.1007/978-3-030-58598-3_4
10.1109/CVPR52688.2022.00381
10.1109/CVPR52688.2022.00613
10.1109/CVPR52688.2022.01973
10.1111/cgf.14022
10.1109/CVPR46437.2021.01432
10.1109/CVPR46437.2021.00741
10.1016/j.cag.2004.08.014.
10.1109/ICCV.2019.00239
10.1109/CVPR52688.2022.00539
10.1109/CVPR.2019.00459
10.1145/964965.808606.
10.1145/2047196.2047270
10.1145/383259.383266
10.1109/CVPR52688.2022.00541
10.1109/CVPR.2016.262
10.1145/3478513.3480528
10.1007/978-3-030-58452-8_15
10.1109/ICCV.2019.00463
10.1145/15922.15902
10.1145/344779.344936
10.1109/CVPR46437.2021.00541
10.1109/ICCV.2019.00725
10.1109/BigData47090.2019.9005703
10.1109/CVPR42600.2020.00011
10.1145/3476576.3476729
10.1145/3355089.3356513
10.1145/3470848.
10.1109/CVPR42600.2020.00012
10.1111/cgf.14339
10.1109/CVPR46437.2021.00287
10.1109/CVPR46437.2021.00930
10.1109/CVPR46437.2021.00427
10.1145/3306346.3322980
10.1109/CVPR52688.2022.01314
10.1109/CVPR52688.2022.00752
10.1007/978-3-030-58542-6_42
10.1145/1141911.1141964
10.1109/CVPR52688.2022.01258
10.1109/CVPR52688.2022.01571
10.1109/CVPR.2016.595
10.1145/237170.237269
10.1109/CVPR46437.2021.00288
10.1145/2508363.2508374
10.1109/CVPR.2019.00025
10.1109/CVPR46437.2021.01129
10.1109/ICCV48922.2021.00580
10.1126/science.aar6170
10.1109/CVPR46437.2021.00854
10.1109/CVPR42600.2020.00264
10.1109/ICCV48922.2021.01406
10.1109/ICCV48922.2021.00573
10.1109/CVPR52688.2022.01252
10.1109/ICCV.2019.00768
10.1145/1882261.1866201.
10.1109/CVPR46437.2021.01120
10.1111/cgf.14344.
10.1109/CVPR52688.2022.01254
10.1007/978-3-030-58452-8_26
10.1109/ICCV48922.2021.00566
10.1145/166117.166153
10.1609/aaai.v32i1.11671
10.1109/CVPR42600.2020.00209
10.1109/CVPR46437.2021.00713
10.1109/CVPR52688.2022.00538
10.1007/978-3-031-20062-5_16
10.1109/CVPR52688.2022.01572
10.1109/ICCV.2019.00484
10.1109/CVPR46437.2021.00704
10.1145/3450626.3459863.
10.1109/CVPR52688.2022.01041
10.1109/CVPR.2019.00704
10.1109/CVPR52688.2022.01920
10.1145/2766977
10.1109/CVPR.2017.701
10.1109/ICCV48922.2021.00582
10.1109/ICCV48922.2021.01554
10.1109/CVPR.2019.00254
10.1109/ICCV48922.2021.01286
10.1109/CVPR52688.2022.00094
10.1145/2816795.2818013
10.1109/CVPR42600.2020.00063
10.1109/CVPR46437.2021.00574
10.1117/12.386541
10.1007/s003710050084
10.1145/3503161.3547808
10.1145/3072959.3073601.
10.1109/ICCV48922.2021.00541
10.1109/CVPR.2019.00255
10.1109/CVPR46437.2021.00455
10.1109/CVPR52688.2022.01577
10.1109/CVPR46437.2021.00565
10.1109/CVPR46437.2021.00843
10.1109/ICCV48922.2021.00646
10.1007/978-3-030-58517-4_42
10.1145/3355089.3356498
10.1109/CVPR52688.2022.00759
10.1109/CVPR.2017.30
10.1109/CVPR52688.2022.01786
10.1109/CVPR.2019.00247
10.1109/CVPR42600.2020.00261
10.1111/cgf.13369
10.1109/ICCV48922.2021.00554
10.1109/TVCG.2002.1021576
10.1109/CVPR52688.2022.00542
10.1109/CVPR46437.2021.00782
10.1145/3272127.3275047
10.1109/CVPR46437.2021.01261
10.1109/CVPR52688.2022.01782
10.1109/ICCV48922.2021.01405
10.1109/3DV50981.2020.00052
10.1109/ICCV48922.2021.01139
10.1109/CVPR.2018.00439
10.1109/CVPR42600.2020.00133
10.1145/3197517.3201383
10.1109/CVPR46437.2021.01018
10.1109/CVPR.2015.7298631
10.1109/CVPR42600.2020.00356
10.1007/978-3-319-10584-0_11
10.1145/383259.383300
10.1109/ICCV.2019.00009
10.1109/ICCV48922.2021.01072
10.1111/cgf.14340.
10.1109/ICCV48922.2021.01235
10.1109/ICCV48922.2021.00556
10.1109/ICCV48922.2021.00579
10.1145/3355089.3356506
10.1109/CVPR42600.2020.00016
10.1109/CVPR46437.2021.00149
10.1016/0893-6080(89)90020-8.
10.1007/978-3-030-58517-4_18
10.1016/j.cag.2004.08.009.
10.1007/978-3-030-58558-7_7
10.1109/CVPR52688.2022.01318
10.1109/CVPR.2019.00026
10.1109/CVPR46437.2021.00643
10.1109/CVPR42600.2020.00604
10.1109/CVPR.2014.59
10.1007/978-3-030-58526-6_36
10.1109/ICCV48922.2021.01271
10.1109/CVPR42600.2020.00491
10.1109/ICCV48922.2021.00571
10.1145/3306346.3323020
10.1109/ICCV48922.2021.00629
10.1109/ICCV48922.2021.01245
10.1109/3DV53792.2021.00118
10.1145/3478513.3480496
10.1109/CVPR52688.2022.01785
10.1109/CVPR.2018.00411
10.1109/ICCV48922.2021.01272
10.1109/ICCV48922.2021.01483
10.1109/CVPR52688.2022.01573
10.1109/CVPR52688.2022.01255
10.1007/978-3-319-46475-6_43
10.1007/978-3-030-58580-8_31
10.1109/ICCV48922.2021.01408
10.1109/CVPR52688.2022.01807
10.1109/38.656788
10.1109/3DV53792.2021.00104
10.1609/aaai.v32i1.12278
10.1109/ICCV48922.2021.00569
10.1007/978-3-030-01267-0_23
ContentType Journal Article
Copyright 2022 The author(s) Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2022 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2022 The author(s) Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2022 The Eurographics Association and John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1111/cgf.14507
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 735
ExternalDocumentID 10_1111_cgf_14507
CGF14507
Genre article
GrantInformation_xml – fundername: ERC
  funderid: 770784; 804724
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SC
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2977-6805997665a5bd99bfc95cd7da084029af40a5f790e7eff205749f6b3be66ed63
IEDL.DBID DR2
ISSN 0167-7055
IngestDate Sun Sep 07 03:40:22 EDT 2025
Tue Jul 01 02:23:14 EDT 2025
Thu Apr 24 22:57:10 EDT 2025
Wed Jan 22 16:25:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2977-6805997665a5bd99bfc95cd7da084029af40a5f790e7eff205749f6b3be66ed63
Notes Equal contribution.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2668624840
PQPubID 30877
PageCount 33
ParticipantIDs proquest_journals_2668624840
crossref_primary_10_1111_cgf_14507
crossref_citationtrail_10_1111_cgf_14507
wiley_primary_10_1111_cgf_14507_CGF14507
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2022
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 1989; 2
2015; 34
2018; 360
2011
2010
2004; 28
2002; 8
2020; 39
2009
2019; 38
2008
1996
2006
1993
1992
1995; 1
1996; 12
1998; 18
2018; 18
2020; 2
2001
2017; 36
2022
2000
2021
2010; 29
2020
2019
1986
2018
2017
2016
1984; 18
2015
2014
2013
2010; 2
2021; 41
2021; 40
2018; 37
e_1_2_9_231_2
e_1_2_9_254_2
e_1_2_9_71_2
e_1_2_9_10_2
e_1_2_9_33_2
e_1_2_9_56_2
e_1_2_9_94_2
e_1_2_9_216_2
e_1_2_9_277_2
e_1_2_9_107_2
Li L. (e_1_2_9_114_2) 2020; 2
e_1_2_9_122_2
e_1_2_9_145_2
e_1_2_9_168_2
e_1_2_9_183_2
e_1_2_9_239_2
e_1_2_9_18_2
e_1_2_9_79_2
e_1_2_9_160_2
e_1_2_9_265_2
e_1_2_9_60_2
e_1_2_9_242_2
e_1_2_9_45_2
e_1_2_9_83_2
e_1_2_9_22_2
e_1_2_9_204_2
e_1_2_9_6_2
e_1_2_9_119_2
e_1_2_9_280_2
e_1_2_9_111_2
e_1_2_9_134_2
e_1_2_9_157_2
e_1_2_9_172_2
e_1_2_9_195_2
e_1_2_9_68_2
e_1_2_9_255_2
e_1_2_9_72_2
e_1_2_9_232_2
e_1_2_9_34_2
e_1_2_9_95_2
e_1_2_9_11_2
e_1_2_9_278_2
e_1_2_9_129_2
e_1_2_9_270_2
e_1_2_9_106_2
e_1_2_9_121_2
e_1_2_9_144_2
e_1_2_9_167_2
e_1_2_9_217_2
e_1_2_9_57_2
e_1_2_9_182_2
e_1_2_9_19_2
e_1_2_9_61_2
e_1_2_9_220_2
e_1_2_9_243_2
e_1_2_9_23_2
e_1_2_9_84_2
e_1_2_9_205_2
e_1_2_9_266_2
e_1_2_9_5_2
e_1_2_9_118_2
e_1_2_9_281_2
e_1_2_9_110_2
e_1_2_9_133_2
e_1_2_9_156_2
e_1_2_9_46_2
e_1_2_9_69_2
e_1_2_9_228_2
e_1_2_9_194_2
e_1_2_9_171_2
e_1_2_9_210_2
e_1_2_9_233_2
e_1_2_9_256_2
e_1_2_9_279_2
e_1_2_9_77_2
e_1_2_9_31_2
e_1_2_9_54_2
e_1_2_9_271_2
e_1_2_9_109_2
e_1_2_9_92_2
e_1_2_9_101_2
e_1_2_9_147_2
e_1_2_9_124_2
e_1_2_9_162_2
e_1_2_9_185_2
e_1_2_9_218_2
e_1_2_9_16_2
e_1_2_9_39_2
e_1_2_9_244_2
e_1_2_9_89_2
e_1_2_9_221_2
e_1_2_9_66_2
e_1_2_9_43_2
e_1_2_9_267_2
e_1_2_9_282_2
e_1_2_9_81_2
e_1_2_9_113_2
e_1_2_9_136_2
e_1_2_9_159_2
e_1_2_9_8_2
e_1_2_9_151_2
e_1_2_9_197_2
e_1_2_9_206_2
e_1_2_9_229_2
e_1_2_9_28_2
e_1_2_9_234_2
e_1_2_9_211_2
e_1_2_9_78_2
e_1_2_9_93_2
e_1_2_9_55_2
e_1_2_9_32_2
e_1_2_9_257_2
e_1_2_9_272_2
e_1_2_9_108_2
e_1_2_9_70_2
e_1_2_9_169_2
e_1_2_9_100_2
e_1_2_9_123_2
e_1_2_9_146_2
e_1_2_9_161_2
e_1_2_9_184_2
e_1_2_9_219_2
e_1_2_9_17_2
Pan X. (e_1_2_9_179_2) 2021
e_1_2_9_222_2
e_1_2_9_245_2
e_1_2_9_268_2
e_1_2_9_21_2
e_1_2_9_44_2
e_1_2_9_67_2
e_1_2_9_82_2
e_1_2_9_7_2
e_1_2_9_283_2
e_1_2_9_260_2
e_1_2_9_112_2
e_1_2_9_158_2
Bangaru S. (e_1_2_9_20_2) 2021; 40
e_1_2_9_135_2
e_1_2_9_207_2
e_1_2_9_150_2
e_1_2_9_196_2
e_1_2_9_173_2
e_1_2_9_29_2
e_1_2_9_52_2
e_1_2_9_98_2
e_1_2_9_212_2
e_1_2_9_235_2
e_1_2_9_258_2
e_1_2_9_75_2
e_1_2_9_90_2
e_1_2_9_273_2
e_1_2_9_250_2
e_1_2_9_126_2
e_1_2_9_149_2
e_1_2_9_187_2
e_1_2_9_103_2
e_1_2_9_14_2
e_1_2_9_37_2
e_1_2_9_141_2
e_1_2_9_164_2
Peng S. (e_1_2_9_181_2) 2021
e_1_2_9_41_2
e_1_2_9_87_2
e_1_2_9_223_2
e_1_2_9_269_2
e_1_2_9_200_2
e_1_2_9_64_2
e_1_2_9_246_2
Li L. (e_1_2_9_115_2) 2018; 18
e_1_2_9_284_2
e_1_2_9_2_2
e_1_2_9_261_2
e_1_2_9_138_2
e_1_2_9_176_2
e_1_2_9_199_2
e_1_2_9_49_2
e_1_2_9_130_2
e_1_2_9_153_2
e_1_2_9_26_2
e_1_2_9_208_2
e_1_2_9_191_2
e_1_2_9_30_2
e_1_2_9_99_2
e_1_2_9_213_2
e_1_2_9_259_2
e_1_2_9_76_2
e_1_2_9_53_2
e_1_2_9_236_2
e_1_2_9_91_2
e_1_2_9_274_2
e_1_2_9_251_2
e_1_2_9_102_2
e_1_2_9_125_2
e_1_2_9_148_2
e_1_2_9_38_2
e_1_2_9_140_2
e_1_2_9_186_2
e_1_2_9_15_2
e_1_2_9_163_2
e_1_2_9_88_2
e_1_2_9_201_2
e_1_2_9_42_2
e_1_2_9_65_2
e_1_2_9_224_2
e_1_2_9_247_2
e_1_2_9_80_2
e_1_2_9_262_2
Paszke A. (e_1_2_9_174_2) 2019
e_1_2_9_137_2
e_1_2_9_9_2
e_1_2_9_198_2
e_1_2_9_175_2
e_1_2_9_27_2
e_1_2_9_209_2
e_1_2_9_152_2
e_1_2_9_190_2
e_1_2_9_73_2
e_1_2_9_50_2
e_1_2_9_214_2
e_1_2_9_237_2
e_1_2_9_275_2
e_1_2_9_12_2
e_1_2_9_96_2
e_1_2_9_252_2
e_1_2_9_128_2
e_1_2_9_143_2
e_1_2_9_166_2
e_1_2_9_189_2
Tancik M. (e_1_2_9_227_2) 2020
e_1_2_9_105_2
e_1_2_9_35_2
e_1_2_9_58_2
e_1_2_9_120_2
e_1_2_9_62_2
e_1_2_9_202_2
e_1_2_9_248_2
e_1_2_9_85_2
e_1_2_9_225_2
e_1_2_9_4_2
e_1_2_9_263_2
e_1_2_9_240_2
e_1_2_9_117_2
e_1_2_9_132_2
e_1_2_9_155_2
e_1_2_9_24_2
e_1_2_9_47_2
e_1_2_9_170_2
e_1_2_9_193_2
e_1_2_9_51_2
e_1_2_9_74_2
e_1_2_9_97_2
e_1_2_9_253_2
e_1_2_9_238_2
e_1_2_9_276_2
e_1_2_9_215_2
e_1_2_9_230_2
e_1_2_9_127_2
e_1_2_9_165_2
e_1_2_9_104_2
Park K. (e_1_2_9_178_2) 2021
e_1_2_9_188_2
e_1_2_9_13_2
e_1_2_9_59_2
e_1_2_9_36_2
e_1_2_9_142_2
e_1_2_9_180_2
e_1_2_9_40_2
e_1_2_9_63_2
e_1_2_9_86_2
Laine S. (e_1_2_9_116_2) 2010; 2
e_1_2_9_264_2
e_1_2_9_203_2
e_1_2_9_226_2
e_1_2_9_249_2
e_1_2_9_3_2
e_1_2_9_241_2
e_1_2_9_139_2
e_1_2_9_154_2
e_1_2_9_177_2
e_1_2_9_25_2
e_1_2_9_48_2
e_1_2_9_131_2
e_1_2_9_192_2
References_xml – year: 2021
  article-title: A shading-guided generative implicit model for shape-accurate 3d-aware image synthesis
  publication-title: Advances in Neural Information Processing Systems (NeurIPS)
– volume: 39
  issue: 4
  year: 2020
  article-title: Immersive light field video with a layered mesh representation
  publication-title: ACM Trans. Graph. (SIGGRAPH)
– volume: 34
  start-page: 248:1
  issue: 6
  year: 2015
  end-page: 248:16
  article-title: SMPL: A skinned multi-person linear model
  publication-title: ACM Trans. Graphics (Proc. SIGGRAPH Asia)
– start-page: 4176
  year: 2018
  end-page: 4184
– start-page: 6498
  year: 2021
  end-page: 6508
– volume: 41
  issue: 1
  year: 2021
  article-title: Sofgan: A portrait image generator with dynamic styling
  publication-title: ACM Trans. Graph.
– start-page: 15108
  year: 2021
  end-page: 15117
– year: 2014
– start-page: 835
  year: 2006
  end-page: 846
– start-page: 559
  year: 2011
  end-page: 568
– start-page: 12803
  year: 2021
  end-page: 12813
– start-page: 9054
  year: 2021
  end-page: 9063
  article-title: Neural body: Implicit neural representations with structured latent codes for novel view synthesis of dynamic humans
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2008
– year: 2022
– year: 2021
  article-title: Hypernerf: A higher-dimensional representation for topologically varying neural radiance fields
  publication-title: arXiv preprint arXiv:2106.13228
– start-page: 696
  year: 2020
  end-page: 712
– start-page: 8295
  year: 2019
  end-page: 8306
– start-page: 1
  year: 2020
  end-page: 13
– start-page: 2565
  year: 2020
  end-page: 2574
– start-page: 2802
  year: 2018
  end-page: 2812
– volume: 18
  start-page: 1
  year: 2018
  end-page: 52
  article-title: Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization
  publication-title: Journal of Machine Learning Research
– volume: 2
  year: 2020
  article-title: A SYSTEM FOR MASSIVELY PARALLEL HYPERPARAMETER TUNING
  publication-title: MLSys
– year: 2019
– start-page: 5939
  year: 2019
  end-page: 5948
– start-page: 221
  year: 2018
  end-page: 1
– start-page: 3577
  year: 2017
  end-page: 3586
– start-page: 667
  year: 2020
  end-page: 683
– start-page: 371
  year: 2018
  end-page: 386
– start-page: 4743
  year: 2019
  end-page: 4752
– start-page: 7708
  year: 2019
  end-page: 7717
– volume: 2
  year: 2010
  article-title: Efficient sparse voxel octrees–analysis, extensions, and implementation
  publication-title: NVIDIA Corporation
– volume: 12
  start-page: 527
  issue: 10
  year: 1996
  end-page: 545
  article-title: Sphere tracing: A geometric method for the antialiased ray tracing of implicit surfaces
  publication-title: The Visual Computer
– start-page: 551
  year: 2020
  end-page: 560
– year: 2016
– start-page: 371
  year: 2001
  end-page: 378
– year: 1992
– start-page: 303
  year: 1996
  end-page: 312
– start-page: 154
  year: 2014
  end-page: 169
– year: 2010
– start-page: 2447
  year: 2019
  end-page: 2456
– volume: 1
  start-page: 99
  issue: 2
  year: 1995
  end-page: 108
  article-title: Optical models for direct volume rendering
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 28
  start-page: 869
  issue: 6
  year: 2004
  end-page: 879
  article-title: Point-based rendering techniques
  publication-title: Computers and Graphics
– start-page: 694
  year: 2016
  end-page: 711
– start-page: 2
  year: 2000
  end-page: 13
– start-page: 335
  year: 2000
  end-page: 342
– volume: 40
  start-page: 45
  issue: 4
  year: 2021
  end-page: 59
  article-title: DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks
  publication-title: Computer Graphics Forum
– volume: 40
  start-page: 107:1
  issue: 107
  year: 2021
  end-page: 107:17
  article-title: Systematically differentiating parametric discontinuities
  publication-title: ACM Trans. Graph.
– start-page: 8649
  year: 2021
  end-page: 8658
– start-page: 343
  year: 2015
  end-page: 352
– year: 2013
– start-page: 279
  year: 1993
  end-page: 288
– volume: 38
  start-page: 65:1
  issue: 4
  year: 2019
  end-page: 65:14
  article-title: Neural volumes: Learning dynamic renderable volumes from images
  publication-title: ACM Trans. Graph.
– start-page: 108
  year: 2020
  end-page: 124
– start-page: 7588
  year: 2019
  end-page: 7597
– year: 2009
– volume: 40
  start-page: 101
  issue: 4
  year: 2021
  end-page: 113
  article-title: Unified Shape and SVBRDF Recovery using Differentiable Monte Carlo Rendering
  publication-title: Computer Graphics Forum
– volume: 18
  start-page: 32
  issue: 2
  year: 1998
  end-page: 43
  article-title: The irradiance volume
  publication-title: IEEE Computer Graphics and Applications
– year: 2021
– volume: 37
  start-page: 222:1
  issue: 6
  year: 2018
  end-page: 222:11
  article-title: Differentiable monte carlo ray tracing through edge sampling
  publication-title: ACM Trans. Graph. (Proc. SIGGRAPH Asia)
– start-page: 5846
  year: 2021
  end-page: 5854
– start-page: 6351
  year: 2021
  end-page: 6361
– start-page: 2367
  year: 2019
  end-page: 2376
– year: 2018
– volume: 38
  issue: 4
  year: 2019
  article-title: Local light field fusion: Practical view synthesis with prescriptive sampling guidelines
  publication-title: ACM Trans. Graph. (SIGGRAPH)
– start-page: 2304
  year: 2019
  end-page: 2314
– start-page: 45
  year: 2020
  end-page: 54
– year: 2019
  article-title: Pytorch: An imperative style, high-performance deep learning library
  publication-title: Advances in Neural Information Processing Systems
– start-page: 293
  year: 2020
  end-page: 309
– volume: 36
  start-page: 98:1
  issue: 4
  year: 2017
  end-page: 98:12
  article-title: Interactive reconstruction of monte carlo image sequences using a recurrent denoising autoencoder
  publication-title: ACM Trans. Graph.
– start-page: 9421
  year: 2021
  end-page: 9431
– volume: 28
  start-page: 801
  issue: 6
  year: 2004
  end-page: 814
  article-title: A survey of point-based techniques in computer graphics
  publication-title: Computers and Graphics
– start-page: 5965
  year: 2019
  end-page: 5967
– start-page: 67
  year: 2001
  end-page: 76
– volume: 18
  start-page: 253
  issue: 3
  year: 1984
  end-page: 259
  article-title: Compositing digital images
  publication-title: SIGGRAPH Comput. Graph.
– year: 2015
– start-page: 12949
  year: 2021
  end-page: 12958
– volume: 8
  start-page: 223
  issue: 3
  year: 2002
  end-page: 238
  article-title: Ewa splatting
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– start-page: 31
  year: 1996
  end-page: 42
– start-page: 6878
  year: 2019
  end-page: 6887
– volume: 38
  start-page: 1
  issue: 4
  year: 2019
  end-page: 12
  article-title: Deferred neural rendering: Image synthesis using neural textures
  publication-title: ACM Trans. Graph.
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  end-page: 366
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Networks
– start-page: 143
  year: 1986
  end-page: 150
– start-page: 3907
  year: 2018
  end-page: 3916
– volume: 29
  issue: 6
  year: 2010
  article-title: Fast parallel surface and solid voxelization on gpus
  publication-title: ACM Trans. Graph.
– start-page: 31
  year: 2020
  end-page: 44
– volume: 36
  start-page: 1
  issue: 4
  year: 2017
  end-page: 11
  article-title: O-cnn: Octree-based convolutional neural networks for 3d shape analysis
  publication-title: ACM Transactions On Graphics (TOG)
– year: 2006
– volume: 360
  start-page: 1204
  issue: 6394
  year: 2018
  end-page: 1210
  article-title: Neural scene representation and rendering
  publication-title: Science
– volume: 40
  issue: 4
  year: 2021
  article-title: Mixture of volumetric primitives for efficient neural rendering
  publication-title: ACM Trans. Graph.
– year: 2020
– start-page: 7154
  year: 2019
  end-page: 7164
– start-page: 51
  year: 2020
  end-page: 67
– year: 2017
– year: 2020
  article-title: Fourier features let networks learn high frequency functions in low dimensional domains
  publication-title: NeurIPS
– volume: 37
  start-page: 139:1
  issue: 4
  year: 2018
  end-page: 139:13
  article-title: Differentiable programming for image processing and deep learning in Halide
  publication-title: ACM Trans. Graph. (Proc. SIGGRAPH)
– volume: 38
  start-page: 201
  issue: 6
  year: 2019
  article-title: Taichi: a language for high-performance computation on spatially sparse data structures
  publication-title: ACM Transactions on Graphics (TOG)
– start-page: 4857
  year: 2020
  end-page: 4866
– ident: e_1_2_9_248_2
  doi: 10.1109/CVPR46437.2021.00466
– ident: e_1_2_9_2_2
– ident: e_1_2_9_137_2
  doi: 10.1109/2945.468400.
– ident: e_1_2_9_42_2
  doi: 10.1109/CVPR52688.2022.01260
– ident: e_1_2_9_106_2
  doi: 10.1145/3272127.3275109
– ident: e_1_2_9_230_2
– ident: e_1_2_9_232_2
  doi: 10.1145/3306346.3323035
– ident: e_1_2_9_266_2
  doi: 10.1109/ICCV48922.2021.00570
– ident: e_1_2_9_23_2
– ident: e_1_2_9_176_2
– ident: e_1_2_9_16_2
  doi: 10.1145/3386569.3392485
– ident: e_1_2_9_172_2
  doi: 10.1007/978-3-030-58607-2_39
– ident: e_1_2_9_243_2
  doi: 10.1145/3450626.3459787
– ident: e_1_2_9_136_2
  doi: 10.1109/ICCV48922.2021.00572
– ident: e_1_2_9_119_2
  doi: 10.1109/ICCV.2019.00780
– ident: e_1_2_9_47_2
  doi: 10.1007/978-3-030-58598-3_4
– ident: e_1_2_9_239_2
  doi: 10.1109/CVPR52688.2022.00381
– ident: e_1_2_9_208_2
  doi: 10.1109/CVPR52688.2022.00613
– ident: e_1_2_9_188_2
– ident: e_1_2_9_72_2
  doi: 10.1109/CVPR52688.2022.01973
– ident: e_1_2_9_221_2
  doi: 10.1111/cgf.14022
– ident: e_1_2_9_124_2
  doi: 10.1109/CVPR46437.2021.01432
– ident: e_1_2_9_200_2
  doi: 10.1109/CVPR46437.2021.00741
– ident: e_1_2_9_209_2
  doi: 10.1016/j.cag.2004.08.014.
– ident: e_1_2_9_147_2
– ident: e_1_2_9_202_2
  doi: 10.1109/ICCV.2019.00239
– ident: e_1_2_9_40_2
– ident: e_1_2_9_22_2
  doi: 10.1109/CVPR52688.2022.00539
– ident: e_1_2_9_148_2
  doi: 10.1109/CVPR.2019.00459
– ident: e_1_2_9_170_2
  doi: 10.1145/964965.808606.
– ident: e_1_2_9_79_2
  doi: 10.1145/2047196.2047270
– ident: e_1_2_9_26_2
  doi: 10.1145/383259.383266
– ident: e_1_2_9_234_2
  doi: 10.1109/CVPR52688.2022.00541
– ident: e_1_2_9_233_2
  doi: 10.1109/CVPR.2016.262
– ident: e_1_2_9_256_2
– ident: e_1_2_9_113_2
  doi: 10.1145/3478513.3480528
– ident: e_1_2_9_251_2
  doi: 10.1007/978-3-030-58452-8_15
– ident: e_1_2_9_83_2
– ident: e_1_2_9_164_2
  doi: 10.1109/ICCV.2019.00463
– ident: e_1_2_9_91_2
  doi: 10.1145/15922.15902
– ident: e_1_2_9_61_2
– ident: e_1_2_9_180_2
  doi: 10.1145/344779.344936
– ident: e_1_2_9_275_2
  doi: 10.1109/CVPR46437.2021.00541
– ident: e_1_2_9_56_2
  doi: 10.1109/ICCV.2019.00725
– ident: e_1_2_9_9_2
– ident: e_1_2_9_143_2
– ident: e_1_2_9_8_2
  doi: 10.1109/BigData47090.2019.9005703
– ident: e_1_2_9_6_2
– ident: e_1_2_9_191_2
– volume: 2
  year: 2010
  ident: e_1_2_9_116_2
  article-title: Efficient sparse voxel octrees–analysis, extensions, and implementation
  publication-title: NVIDIA Corporation
– ident: e_1_2_9_43_2
  doi: 10.1109/CVPR42600.2020.00011
– ident: e_1_2_9_244_2
– ident: e_1_2_9_263_2
– ident: e_1_2_9_90_2
  doi: 10.1145/3476576.3476729
– ident: e_1_2_9_268_2
  doi: 10.1145/3355089.3356513
– ident: e_1_2_9_121_2
– ident: e_1_2_9_267_2
– ident: e_1_2_9_222_2
– ident: e_1_2_9_33_2
  doi: 10.1145/3470848.
– ident: e_1_2_9_38_2
  doi: 10.1109/CVPR42600.2020.00012
– ident: e_1_2_9_99_2
  doi: 10.1111/cgf.14339
– ident: e_1_2_9_184_2
– ident: e_1_2_9_224_2
  doi: 10.1109/CVPR46437.2021.00287
– ident: e_1_2_9_252_2
  doi: 10.1109/CVPR46437.2021.00930
– ident: e_1_2_9_97_2
  doi: 10.1109/CVPR46437.2021.00427
– ident: e_1_2_9_150_2
  doi: 10.1145/3306346.3322980
– ident: e_1_2_9_162_2
  doi: 10.1109/CVPR52688.2022.01314
– ident: e_1_2_9_217_2
  doi: 10.1109/CVPR52688.2022.00752
– ident: e_1_2_9_11_2
  doi: 10.1007/978-3-030-58542-6_42
– start-page: 9054
  year: 2021
  ident: e_1_2_9_181_2
  article-title: Neural body: Implicit neural representations with structured latent codes for novel view synthesis of dynamic humans
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– ident: e_1_2_9_213_2
  doi: 10.1145/1141911.1141964
– ident: e_1_2_9_225_2
  doi: 10.1109/CVPR52688.2022.01258
– ident: e_1_2_9_145_2
  doi: 10.1109/CVPR52688.2022.01571
– ident: e_1_2_9_52_2
  doi: 10.1109/CVPR.2016.595
– ident: e_1_2_9_198_2
– ident: e_1_2_9_253_2
– ident: e_1_2_9_30_2
  doi: 10.1145/237170.237269
– ident: e_1_2_9_165_2
  doi: 10.1109/CVPR46437.2021.00288
– ident: e_1_2_9_161_2
  doi: 10.1145/2508363.2508374
– ident: e_1_2_9_95_2
– ident: e_1_2_9_76_2
– ident: e_1_2_9_173_2
  doi: 10.1109/CVPR.2019.00025
– ident: e_1_2_9_199_2
– ident: e_1_2_9_156_2
  doi: 10.1109/CVPR46437.2021.01129
– ident: e_1_2_9_249_2
– ident: e_1_2_9_21_2
  doi: 10.1109/ICCV48922.2021.00580
– ident: e_1_2_9_50_2
  doi: 10.1126/science.aar6170
– ident: e_1_2_9_65_2
  doi: 10.1109/CVPR46437.2021.00854
– ident: e_1_2_9_155_2
– ident: e_1_2_9_219_2
– ident: e_1_2_9_4_2
  doi: 10.1109/CVPR42600.2020.00264
– ident: e_1_2_9_48_2
  doi: 10.1109/ICCV48922.2021.01406
– ident: e_1_2_9_54_2
  doi: 10.1109/ICCV48922.2021.00573
– ident: e_1_2_9_146_2
  doi: 10.1109/CVPR52688.2022.01252
– year: 2021
  ident: e_1_2_9_178_2
  article-title: Hypernerf: A higher-dimensional representation for topologically varying neural radiance fields
  publication-title: arXiv preprint arXiv:2106.13228
– ident: e_1_2_9_158_2
  doi: 10.1109/ICCV.2019.00768
– ident: e_1_2_9_205_2
– ident: e_1_2_9_211_2
  doi: 10.1145/1882261.1866201.
– ident: e_1_2_9_60_2
– ident: e_1_2_9_223_2
  doi: 10.1109/CVPR46437.2021.01120
– ident: e_1_2_9_134_2
  doi: 10.1111/cgf.14344.
– ident: e_1_2_9_44_2
  doi: 10.1109/CVPR52688.2022.01254
– ident: e_1_2_9_281_2
– ident: e_1_2_9_5_2
  doi: 10.1007/978-3-030-58452-8_26
– ident: e_1_2_9_63_2
  doi: 10.1109/ICCV48922.2021.00566
– ident: e_1_2_9_12_2
– ident: e_1_2_9_39_2
  doi: 10.1145/166117.166153
– ident: e_1_2_9_177_2
  doi: 10.1609/aaai.v32i1.11671
– ident: e_1_2_9_120_2
– ident: e_1_2_9_135_2
  doi: 10.1109/CVPR42600.2020.00209
– ident: e_1_2_9_126_2
– ident: e_1_2_9_18_2
– ident: e_1_2_9_138_2
  doi: 10.1109/CVPR46437.2021.00713
– ident: e_1_2_9_212_2
  doi: 10.1109/CVPR52688.2022.00538
– ident: e_1_2_9_280_2
– ident: e_1_2_9_284_2
  doi: 10.1007/978-3-031-20062-5_16
– ident: e_1_2_9_242_2
  doi: 10.1109/CVPR52688.2022.01572
– ident: e_1_2_9_149_2
  doi: 10.1109/ICCV.2019.00484
– ident: e_1_2_9_257_2
  doi: 10.1109/CVPR46437.2021.00704
– ident: e_1_2_9_269_2
  doi: 10.1145/3355089.3356513
– ident: e_1_2_9_129_2
  doi: 10.1145/3450626.3459863.
– ident: e_1_2_9_46_2
  doi: 10.1109/CVPR52688.2022.01041
– ident: e_1_2_9_144_2
  doi: 10.1109/CVPR.2019.00704
– ident: e_1_2_9_204_2
– ident: e_1_2_9_271_2
– ident: e_1_2_9_3_2
  doi: 10.1109/CVPR52688.2022.01920
– ident: e_1_2_9_94_2
  doi: 10.1145/2766977
– ident: e_1_2_9_31_2
– ident: e_1_2_9_154_2
– ident: e_1_2_9_28_2
– ident: e_1_2_9_193_2
  doi: 10.1109/CVPR.2017.701
– ident: e_1_2_9_74_2
  doi: 10.1109/ICCV48922.2021.00582
– ident: e_1_2_9_258_2
– ident: e_1_2_9_189_2
– ident: e_1_2_9_274_2
  doi: 10.1109/ICCV48922.2021.01554
– ident: e_1_2_9_110_2
– ident: e_1_2_9_216_2
  doi: 10.1109/CVPR.2019.00254
– ident: e_1_2_9_112_2
  doi: 10.1109/ICCV48922.2021.01286
– ident: e_1_2_9_88_2
  doi: 10.1109/CVPR52688.2022.00094
– ident: e_1_2_9_66_2
– ident: e_1_2_9_122_2
  doi: 10.1145/2816795.2818013
– ident: e_1_2_9_24_2
– ident: e_1_2_9_226_2
  doi: 10.1109/CVPR42600.2020.00063
– ident: e_1_2_9_10_2
– ident: e_1_2_9_192_2
– ident: e_1_2_9_259_2
– ident: e_1_2_9_130_2
– ident: e_1_2_9_34_2
  doi: 10.1109/CVPR46437.2021.00574
– ident: e_1_2_9_203_2
  doi: 10.1117/12.386541
– ident: e_1_2_9_68_2
  doi: 10.1007/s003710050084
– ident: e_1_2_9_247_2
  doi: 10.1145/3503161.3547808
– ident: e_1_2_9_29_2
  doi: 10.1145/3072959.3073601.
– ident: e_1_2_9_13_2
  doi: 10.1109/ICCV48922.2021.00541
– ident: e_1_2_9_7_2
  doi: 10.1109/CVPR.2019.00255
– ident: e_1_2_9_84_2
– ident: e_1_2_9_67_2
– ident: e_1_2_9_272_2
  doi: 10.1109/CVPR46437.2021.00455
– ident: e_1_2_9_101_2
– ident: e_1_2_9_70_2
– ident: e_1_2_9_132_2
  doi: 10.1109/CVPR52688.2022.01577
– ident: e_1_2_9_262_2
– ident: e_1_2_9_238_2
  doi: 10.1109/CVPR46437.2021.00565
– ident: e_1_2_9_246_2
  doi: 10.1109/CVPR46437.2021.00843
– ident: e_1_2_9_19_2
– ident: e_1_2_9_163_2
– ident: e_1_2_9_190_2
– ident: e_1_2_9_111_2
– ident: e_1_2_9_250_2
– ident: e_1_2_9_282_2
  doi: 10.1109/ICCV48922.2021.00646
– ident: e_1_2_9_220_2
  doi: 10.1007/978-3-030-58517-4_42
– ident: e_1_2_9_139_2
– ident: e_1_2_9_152_2
  doi: 10.1145/3355089.3356498
– ident: e_1_2_9_25_2
  doi: 10.1145/383259.383266
– ident: e_1_2_9_283_2
  doi: 10.1109/CVPR52688.2022.00759
– ident: e_1_2_9_231_2
  doi: 10.1109/CVPR.2017.30
– ident: e_1_2_9_117_2
– ident: e_1_2_9_57_2
  doi: 10.1109/CVPR52688.2022.01786
– ident: e_1_2_9_241_2
– ident: e_1_2_9_278_2
– ident: e_1_2_9_51_2
  doi: 10.1109/CVPR.2019.00247
– ident: e_1_2_9_187_2
– volume: 18
  start-page: 1
  year: 2018
  ident: e_1_2_9_115_2
  article-title: Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_9_206_2
  doi: 10.1109/CVPR42600.2020.00261
– ident: e_1_2_9_17_2
– ident: e_1_2_9_73_2
  doi: 10.1111/cgf.13369
– ident: e_1_2_9_218_2
– ident: e_1_2_9_166_2
  doi: 10.1109/ICCV48922.2021.00554
– ident: e_1_2_9_277_2
  doi: 10.1109/TVCG.2002.1021576
– ident: e_1_2_9_260_2
– ident: e_1_2_9_194_2
– ident: e_1_2_9_261_2
  doi: 10.1109/CVPR52688.2022.00542
– ident: e_1_2_9_36_2
– ident: e_1_2_9_93_2
– ident: e_1_2_9_96_2
– ident: e_1_2_9_127_2
– ident: e_1_2_9_27_2
  doi: 10.1109/CVPR46437.2021.00782
– ident: e_1_2_9_131_2
  doi: 10.1145/3272127.3275047
– ident: e_1_2_9_140_2
– ident: e_1_2_9_270_2
  doi: 10.1109/CVPR46437.2021.01261
– ident: e_1_2_9_105_2
– ident: e_1_2_9_87_2
  doi: 10.1109/CVPR52688.2022.01782
– ident: e_1_2_9_171_2
  doi: 10.1109/ICCV48922.2021.01405
– ident: e_1_2_9_167_2
– ident: e_1_2_9_100_2
  doi: 10.1109/3DV50981.2020.00052
– year: 2021
  ident: e_1_2_9_179_2
  article-title: A shading-guided generative implicit model for shape-accurate 3d-aware image synthesis
  publication-title: Advances in Neural Information Processing Systems (NeurIPS)
– ident: e_1_2_9_41_2
  doi: 10.1109/ICCV48922.2021.01139
– ident: e_1_2_9_196_2
  doi: 10.1109/CVPR.2018.00439
– ident: e_1_2_9_86_2
  doi: 10.1109/CVPR42600.2020.00133
– year: 2020
  ident: e_1_2_9_227_2
  article-title: Fourier features let networks learn high frequency functions in low dimensional domains
  publication-title: NeurIPS
– ident: e_1_2_9_236_2
– ident: e_1_2_9_109_2
  doi: 10.1145/3197517.3201383
– ident: e_1_2_9_169_2
  doi: 10.1109/CVPR46437.2021.01018
– ident: e_1_2_9_153_2
  doi: 10.1109/CVPR.2015.7298631
– ident: e_1_2_9_157_2
  doi: 10.1109/CVPR42600.2020.00356
– ident: e_1_2_9_107_2
  doi: 10.1007/978-3-319-10584-0_11
– ident: e_1_2_9_15_2
– ident: e_1_2_9_276_2
  doi: 10.1145/383259.383300
– ident: e_1_2_9_183_2
  doi: 10.1109/ICCV.2019.00009
– ident: e_1_2_9_64_2
– ident: e_1_2_9_197_2
  doi: 10.1109/ICCV48922.2021.01072
– ident: e_1_2_9_160_2
  doi: 10.1111/cgf.14340.
– volume: 2
  year: 2020
  ident: e_1_2_9_114_2
  article-title: A SYSTEM FOR MASSIVELY PARALLEL HYPERPARAMETER TUNING
  publication-title: MLSys
– ident: e_1_2_9_108_2
  doi: 10.1109/ICCV48922.2021.01235
– ident: e_1_2_9_245_2
  doi: 10.1109/ICCV48922.2021.00556
– ident: e_1_2_9_45_2
– ident: e_1_2_9_81_2
  doi: 10.1109/ICCV48922.2021.00579
– ident: e_1_2_9_237_2
– ident: e_1_2_9_59_2
– ident: e_1_2_9_71_2
  doi: 10.1145/3355089.3356506
– ident: e_1_2_9_214_2
  doi: 10.1109/CVPR42600.2020.00016
– ident: e_1_2_9_185_2
– ident: e_1_2_9_133_2
  doi: 10.1109/CVPR46437.2021.00149
– ident: e_1_2_9_75_2
  doi: 10.1016/0893-6080(89)90020-8.
– ident: e_1_2_9_235_2
– ident: e_1_2_9_228_2
  doi: 10.1007/978-3-030-58517-4_18
– ident: e_1_2_9_92_2
  doi: 10.1016/j.cag.2004.08.009.
– ident: e_1_2_9_78_2
– ident: e_1_2_9_49_2
  doi: 10.1007/978-3-030-58558-7_7
– ident: e_1_2_9_265_2
– volume: 40
  start-page: 107:1
  issue: 107
  year: 2021
  ident: e_1_2_9_20_2
  article-title: Systematically differentiating parametric discontinuities
  publication-title: ACM Trans. Graph.
– ident: e_1_2_9_210_2
– ident: e_1_2_9_273_2
  doi: 10.1109/CVPR52688.2022.01318
– ident: e_1_2_9_215_2
  doi: 10.1109/CVPR.2019.00026
– ident: e_1_2_9_264_2
– ident: e_1_2_9_195_2
– ident: e_1_2_9_125_2
  doi: 10.1109/CVPR46437.2021.00643
– ident: e_1_2_9_89_2
  doi: 10.1109/CVPR42600.2020.00604
– ident: e_1_2_9_35_2
– ident: e_1_2_9_85_2
  doi: 10.1109/CVPR.2014.59
– ident: e_1_2_9_32_2
  doi: 10.1007/978-3-030-58526-6_36
– ident: e_1_2_9_186_2
– ident: e_1_2_9_80_2
  doi: 10.1109/ICCV48922.2021.01271
– ident: e_1_2_9_55_2
  doi: 10.1109/CVPR42600.2020.00491
– year: 2019
  ident: e_1_2_9_174_2
  article-title: Pytorch: An imperative style, high-performance deep learning library
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_9_159_2
  doi: 10.1109/ICCV48922.2021.00571
– ident: e_1_2_9_128_2
  doi: 10.1145/3306346.3323020
– ident: e_1_2_9_142_2
– ident: e_1_2_9_53_2
– ident: e_1_2_9_141_2
  doi: 10.1109/ICCV48922.2021.00629
– ident: e_1_2_9_98_2
– ident: e_1_2_9_14_2
  doi: 10.1109/ICCV48922.2021.01245
– ident: e_1_2_9_207_2
– ident: e_1_2_9_168_2
  doi: 10.1109/3DV53792.2021.00118
– ident: e_1_2_9_201_2
– ident: e_1_2_9_279_2
  doi: 10.1145/3478513.3480496
– ident: e_1_2_9_77_2
  doi: 10.1109/CVPR52688.2022.01785
– ident: e_1_2_9_103_2
  doi: 10.1109/CVPR.2018.00411
– ident: e_1_2_9_229_2
  doi: 10.1109/ICCV48922.2021.01272
– ident: e_1_2_9_37_2
  doi: 10.1109/ICCV48922.2021.01483
– ident: e_1_2_9_240_2
  doi: 10.1109/CVPR52688.2022.01573
– ident: e_1_2_9_182_2
  doi: 10.1109/CVPR52688.2022.01255
– ident: e_1_2_9_82_2
  doi: 10.1007/978-3-319-46475-6_43
– ident: e_1_2_9_175_2
  doi: 10.1007/978-3-030-58580-8_31
– ident: e_1_2_9_58_2
  doi: 10.1109/ICCV48922.2021.01408
– ident: e_1_2_9_255_2
– ident: e_1_2_9_104_2
  doi: 10.1109/CVPR52688.2022.01807
– ident: e_1_2_9_151_2
– ident: e_1_2_9_62_2
  doi: 10.1109/38.656788
– ident: e_1_2_9_254_2
  doi: 10.1109/3DV53792.2021.00104
– ident: e_1_2_9_118_2
  doi: 10.1609/aaai.v32i1.12278
– ident: e_1_2_9_123_2
  doi: 10.1109/ICCV48922.2021.00569
– ident: e_1_2_9_69_2
– ident: e_1_2_9_102_2
  doi: 10.1007/978-3-030-01267-0_23
SSID ssj0004765
Score 2.713227
Snippet Synthesizing photo‐realistic images and videos is at the heart of computer graphics and has been the focus of decades of research. Traditionally, synthetic...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 703
SubjectTerms Algorithms
Computed tomography
Computer graphics
Image reconstruction
Machine learning
Material properties
Ray tracing
Rendering
Representations
Synthesis
Triangles
Title Advances in Neural Rendering
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.14507
https://www.proquest.com/docview/2668624840
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5KvejBt1itZREPXrbsI8lu8FRaaxHroVroQVjyFFFWse3FX2-S3W2rKIi3hZ1kM0lm50uY-QbgTOgwTjmVfqR05COGtc-NF_Y1T0WoEMeBu9Af3pLBGF1P8KQGF1UuTMEPsbhws5bh_tfWwBmfrhi5eNTGzLHLJA9jYnnze6MldRRKCK54vS1jTMkqZKN4Fi2_-qIlwFyFqc7P9LfgoRphEV7y3J7PeFt8fCNv_KcK27BZ4k-vU2yYHaipfBc2VlgJ96DZKeICpt5T7lnyDiM_chXnzOt9GPcv77sDvyyi4IvIYDufpJaBJSEEM8wlpVwLioVMJAvM2S6iTKPArFBCA5UorSOD3xDVhMdcEaIkiQ-gnr_m6hA8TC2e4DHTOEAqlSzVBn5oaRqIMJKoAefVdGaiZBi3hS5esuqkYRTOnMINOF2IvhW0Gj8JNas1yUrLmmYGUNicFjN28zk3ub93kHWv-u7h6O-ix7Ae2QwHF9PYhPrsfa5ODO6Y8RasdXrDm7uW22ifmw3SRQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH6MeVAP_hanU4t48NLRtUnagJcxnFO3HcYGu0hp0kREqeK2i3-9L2k7pyiIt0Jf2rwkr_ny-t73AM6lbgaR4KnrK-27JKHaFbgLu1pEsqmIoJ516PcHrDsmtxM6qcBlmQuT80MsHG7GMuz32hi4cUgvWbl80Gjn1KSSrxAEGvYn7fCTPIqEjJbM3oYzpuAVMnE8i6Zfd6NPiLkMVO1O09mE-7KPeYDJU2M-Ew35_o2-8b9KbMFGAUGdVr5mtqGish1YXyIm3IV6Kw8NmDqPmWP4O1B-aIvO4e09GHeuRu2uW9RRcKWP8M5lkSFhCRmjCRUp50JLTmUapomHxzufJ5p4OEkh91SotPYRwhGumQiEYkylLNiHavaSqQNwKDeQQgSJph5RUZpEGhGITrGBbPopqcFFOZ6xLEjGTa2L57g8bKDCsVW4BmcL0decWeMnoXo5KXFhXNMYMYVJa8G-4-vs6P7-gLh93bEXh38XPYXV7qjfi3s3g7sjWPNNwoMNcaxDdfY2V8cIQ2bixK62DzZ61M8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED-GguiD3-J0ahEffOno2iRt8WlM5_waMhzsQSjNl4hSh9te_Ou9pO02RUF8K_SS5pJc75dw9zuAE6EbQcRj6fpK-y5JqXY5emFX80g0FOHUsxf6d13W6ZPrAR1U4KzMhcn5IaYXbsYy7P_aGPhQ6jkjF08azZyaTPJFwtCTGUTUm3FHkZDRktjbUMYUtEImjGfa9KszmiHMeZxqHU17DR7LIebxJS_1yZjXxcc39sZ_6rAOqwUAdZr5jtmAiso2YWWOlnALas08MGDkPGeOYe9A-Z4tOYevt6HfvnhoddyiioIrfAR3LosMBUvIGE0pl3HMtYipkKFMPTzc-XGqiYdLFMaeCpXWPgI4EmvGA64YU5IFO7CQvWVqFxwaG0DBg1RTj6hIppFG_KElNhANX5IqnJbTmYiCYtxUunhNyqMGKpxYhatwPBUd5rwaPwnVyjVJCtMaJYgoTFILjh0_Zyf39w6S1mXbPuz9XfQIlu7P28ntVfdmH5Z9k-1g4xtrsDB-n6gDxCBjfmj32ifZCtN-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+Neural+Rendering&rft.jtitle=Computer+graphics+forum&rft.au=Tewari%2C+A.&rft.au=Thies%2C+J.&rft.au=Mildenhall%2C+B.&rft.au=Srinivasan%2C+P.&rft.date=2022-05-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=41&rft.issue=2&rft.spage=703&rft.epage=735&rft_id=info:doi/10.1111%2Fcgf.14507&rft.externalDBID=10.1111%252Fcgf.14507&rft.externalDocID=CGF14507
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon