Shannon Wavelet‐Based Approximation Scheme for Information Entropy Integrals in Confined Domain
ABSTRACT In this work, the author attempted to develop a Shannon wavelet‐based numerical scheme to approximate the information entropies in both configuration and momentum space corresponding to the ground and adjacent excited energy states of one‐dimensional Schrödinger equation appearing in non‐re...
        Saved in:
      
    
          | Published in | International journal of quantum chemistry Vol. 124; no. 21 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
        Hoboken, USA
          John Wiley & Sons, Inc
    
        05.11.2024
     Wiley Subscription Services, Inc  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0020-7608 1097-461X  | 
| DOI | 10.1002/qua.27496 | 
Cover
| Abstract | ABSTRACT
In this work, the author attempted to develop a Shannon wavelet‐based numerical scheme to approximate the information entropies in both configuration and momentum space corresponding to the ground and adjacent excited energy states of one‐dimensional Schrödinger equation appearing in non‐relativistic quantum mechanics. The development of this scheme is based on the judicious use of sinc scale functions as an approximation basis and a suitable numerical quadrature to approximate entropies in position and momentum spaces. Priori and posteriori errors appearing in the approximations of wave functions and entropy integrals have been discussed. The scheme (coded in Python) has been subsequently exercised for various exactly solvable and quasi‐exactly solvable non‐relativistic quantum mechanical models in confined domain.
This work aims to develop a Shannon wavelet‐based scheme to approximate position and momentum space information entropies with reasonably less computational cost for non‐relativistic quantum mechanical models. The scheme, implemented in Python using Jupyter Notebook, has been tested for various exactly and quasi‐exactly solvable potentials in confined domains. Approximate entropy values are presented in tables, and the associated approximation errors are illustrated through graphical plots. | 
    
|---|---|
| AbstractList | In this work, the author attempted to develop a Shannon wavelet‐based numerical scheme to approximate the information entropies in both configuration and momentum space corresponding to the ground and adjacent excited energy states of one‐dimensional Schrödinger equation appearing in non‐relativistic quantum mechanics. The development of this scheme is based on the judicious use of sinc scale functions as an approximation basis and a suitable numerical quadrature to approximate entropies in position and momentum spaces. Priori and posteriori errors appearing in the approximations of wave functions and entropy integrals have been discussed. The scheme (coded in Python) has been subsequently exercised for various exactly solvable and quasi‐exactly solvable non‐relativistic quantum mechanical models in confined domain. ABSTRACT In this work, the author attempted to develop a Shannon wavelet‐based numerical scheme to approximate the information entropies in both configuration and momentum space corresponding to the ground and adjacent excited energy states of one‐dimensional Schrödinger equation appearing in non‐relativistic quantum mechanics. The development of this scheme is based on the judicious use of sinc scale functions as an approximation basis and a suitable numerical quadrature to approximate entropies in position and momentum spaces. Priori and posteriori errors appearing in the approximations of wave functions and entropy integrals have been discussed. The scheme (coded in Python) has been subsequently exercised for various exactly solvable and quasi‐exactly solvable non‐relativistic quantum mechanical models in confined domain. This work aims to develop a Shannon wavelet‐based scheme to approximate position and momentum space information entropies with reasonably less computational cost for non‐relativistic quantum mechanical models. The scheme, implemented in Python using Jupyter Notebook, has been tested for various exactly and quasi‐exactly solvable potentials in confined domains. Approximate entropy values are presented in tables, and the associated approximation errors are illustrated through graphical plots.  | 
    
| Author | Banik, Sayan | 
    
| Author_xml | – sequence: 1 givenname: Sayan orcidid: 0009-0006-0856-4574 surname: Banik fullname: Banik, Sayan email: sayanbanik69@gmail.com organization: Visva‐Bharati  | 
    
| BookMark | eNp9UE1PAjEQbQwmAnrwH2ziycNCP3a72yMiKgmJMUj01tR1KiVLu3QXlZs_wd_oL7ECJxO9zCTvvXkz8zqoZZ0FhE4J7hGMaX-1Vj2aJYIfoDbBIosTTh5bqB04HGcc50eoU9cLjDFnPGsjNZ0rGzyiB_UKJTRfH58XqobnaFBV3r2bpWpMYKfFHJYQaeejsQ11D49s4121CVgDL16VdWRsNHRWGxssLt1SGXuMDnVg4GTfu2h2Nbof3sST2-vxcDCJCyoyHmvNhOZMieKJUZYD1YoyghOqRc51wDXJcibSJGOcp5zkBQhBIE01cOA5ZV10tvMNd6_WUDdy4dbehpWSEZpgkTMsgup8pyq8q2sPWlY-POk3kmD5k6AMCcptgkHb_6UtTLN9vPHKlP9NvJkSNn9by7vZYDfxDZRjhTY | 
    
| CitedBy_id | crossref_primary_10_1002_qua_70024 | 
    
| Cites_doi | 10.1088/1751-8113/49/29/295202 10.1002/mma.8028 10.2977/prims/1195192451 10.1103/PhysRevA.69.052107 10.1002/j.1538-7305.1948.tb00917.x 10.1103/PhysRevA.50.3065 10.1007/BF01331132 10.1063/1.2963967 10.1142/S021797920803848X 10.1088/1674-1056/22/5/050302 10.1063/1.530949 10.1103/PhysRevLett.99.263601 10.1080/00268970500493243 10.1088/0031-8949/90/3/035205 10.1016/j.physleta.2013.11.020 10.1137/1.9781611971637 10.1103/PhysRevA.56.2545 10.1088/1402-4896/ab33cd 10.1139/p07-062 10.1007/BF01608825 10.1007/s100530050375 10.1088/0305-4470/29/9/029 10.1063/1.529432 10.1201/b10375 10.1007/s13226-016-0203-6 10.1063/1.530861 10.2307/1970980  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 Wiley Periodicals LLC. | 
    
| Copyright_xml | – notice: 2024 Wiley Periodicals LLC. | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1002/qua.27496 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Chemistry | 
    
| EISSN | 1097-461X | 
    
| EndPage | n/a | 
    
| ExternalDocumentID | 10_1002_qua_27496 QUA27496  | 
    
| Genre | researchArticle | 
    
| GrantInformation_xml | – fundername: Council of Scientific and Industrial Research, India funderid: 09/202(0103)/2019‐EMR‐I  | 
    
| GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS ESX F00 F01 F04 F5P G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RWK RX1 SUPJJ TN5 UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION TUS ACUHS  | 
    
| ID | FETCH-LOGICAL-c2976-ff39f63a9cb3238e2fa231042f986f3a9f178395473665618ce991e55fe6e6823 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 0020-7608 | 
    
| IngestDate | Fri Jul 25 12:18:12 EDT 2025 Thu Apr 24 23:03:55 EDT 2025 Wed Oct 01 03:18:59 EDT 2025 Wed Jan 22 17:15:18 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 21 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c2976-ff39f63a9cb3238e2fa231042f986f3a9f178395473665618ce991e55fe6e6823 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0009-0006-0856-4574 | 
    
| PQID | 3124098309 | 
    
| PQPubID | 1026346 | 
    
| PageCount | 18 | 
    
| ParticipantIDs | proquest_journals_3124098309 crossref_primary_10_1002_qua_27496 crossref_citationtrail_10_1002_qua_27496 wiley_primary_10_1002_qua_27496_QUA27496  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | November 5, 2024 | 
    
| PublicationDateYYYYMMDD | 2024-11-05 | 
    
| PublicationDate_xml | – month: 11 year: 2024 text: November 5, 2024 day: 05  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Hoboken, USA | 
    
| PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken  | 
    
| PublicationTitle | International journal of quantum chemistry | 
    
| PublicationYear | 2024 | 
    
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc  | 
    
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc  | 
    
| References | 1933; 83 2019; 94 2013; 22 2012 1991; 32 1995; 36 2004; 69 2022; 45 2006 1992 1999; 7 2007; 99 1974; 9 2014; 378 1996; 29 2023 2020 2008; 49 1997; 56 1994; 35 2016 2008; 22 1975; 44 2014 2015; 90 2007; 85 2006; 104 1994; 50 1975; 102 2016; 49 2016; 47 1948; 27 e_1_2_11_10_1 e_1_2_11_32_1 e_1_2_11_31_1 e_1_2_11_30_1 e_1_2_11_14_1 e_1_2_11_13_1 e_1_2_11_35_1 e_1_2_11_12_1 Panja M. M. (e_1_2_11_21_1) 2020 e_1_2_11_34_1 e_1_2_11_11_1 e_1_2_11_33_1 e_1_2_11_7_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_2_1 Bailey D. H. (e_1_2_11_25_1) 2006 Borwein J. M. (e_1_2_11_24_1) 2006 Angulo J. C. (e_1_2_11_16_1) 1999; 7 e_1_2_11_20_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_18_1 e_1_2_11_17_1 e_1_2_11_19_1 Galindo A. (e_1_2_11_15_1) 2012  | 
    
| References_xml | – volume: 44 start-page: 129 year: 1975 end-page: 132 article-title: Uncertainty Relations for Information Entropy in Wave Mechanics publication-title: Communications in Mathematical Physics – volume: 47 start-page: 553 year: 2016 end-page: 579 article-title: Computing Eigenelements of Sturm‐Liouville Problems by Using Daubechies Wavelets publication-title: Indian Journal of Pure and Applied Mathematics – volume: 378 start-page: 124 issue: 3 year: 2014 end-page: 130 article-title: Quantum Information Entropies for a Squared Tangent Potential Well publication-title: Physics Letters A – volume: 85 start-page: 733 issue: 7 year: 2007 end-page: 743 article-title: Semiclassical Position and Momentum Information Entropy for sech2 and a Family of Rational Potentials publication-title: Canadian Journal of Physics – volume: 22 start-page: 231 issue: 3 year: 2008 end-page: 237 article-title: Quantum Information Entropies of the Eigenstates of the Morse Potential publication-title: International Journal of Modern Physics B – volume: 94 issue: 12 year: 2019 article-title: Tridiagonal Representation Approach in Quantum Mechanics publication-title: Physica Scripta – volume: 83 start-page: 143 issue: 3 year: 1933 end-page: 151 article-title: Bemerkungen zur Quantenmechanik des anharmonischen Oszillators publication-title: Zeitschrift für Physik – volume: 104 start-page: 613 issue: 4 year: 2006 end-page: 622 article-title: Information‐Theoretic Measures for Morse and Pöschl–Teller Potentials publication-title: Molecular Physics – year: 2006 article-title: Tanh‐Sinh High‐Precision Quadrature publication-title: International Journal of Computational Science and Engineering – volume: 32 start-page: 447 issue: 2 year: 1991 end-page: 456 article-title: Exact Solutions for Nonpolynomial Potentials in N‐Space Dimensions Using a Factorization Method and Supersymmetry publication-title: Journal of Mathematical Physics – volume: 90 issue: 3 year: 2015 article-title: Quantum Information Entropy for a Hyperbolical Potential Function publication-title: Physica Scripta – volume: 102 start-page: 159 issue: 1 year: 1975 end-page: 182 article-title: Inequalities in Fourier Analysis publication-title: Annals of Mathematics – volume: 36 start-page: 4106 issue: 8 year: 1995 end-page: 4118 article-title: Entropy of Orthogonal Polynomials With Freud Weights and Information Entropies of the Harmonic Oscillator Potential publication-title: Journal of Mathematical Physics – year: 2016 – volume: 45 start-page: 4002 issue: 7 year: 2022 end-page: 4023 article-title: An Efficient Interpolating Wavelet Collocation Scheme for Quasi‐Exactly Solvable Sturm‐Liouville Problems in publication-title: Mathematicsl Methods in the Applied Sciences – volume: 35 start-page: 4423 issue: 9 year: 1994 end-page: 4428 article-title: Spatial Entropy of Central Potentials and Strong Asymptotics of Orthogonal Polynomials publication-title: Journal of Mathematical Physics – year: 1992 – year: 2014 – start-page: 1 year: 2006 end-page: 18 article-title: Quadratic Convergence of the Tanh‐Sinh Quadrature Rule publication-title: Mathematics of Computation – year: 2012 – volume: 9 start-page: 721 issue: 3 year: 1974 end-page: 741 article-title: Double Exponential Formulas for Numerical Integration publication-title: Kyoto University – volume: 49 issue: 8 year: 2008 article-title: Extending the Class of Solvable Potentials. I. The Infinite Potential Well With a Sinusoidal Bottom publication-title: Journal of Mathematical Physics – volume: 69 issue: 5 year: 2004 article-title: Quantum‐Information Entropies of the Eigenstates and the Coherent State of the Pöschl‐Teller Potential publication-title: Physical Review A – volume: 27 start-page: 623 year: 1948 article-title: A Mathematical Theory of Communication publication-title: Bell System Technical Journal – volume: 22 issue: 5 year: 2013 article-title: Quantum Information Entropies of the Eigenstates for the Pöschl—Teller‐Like Potential publication-title: Chinese Physics B – year: 2020 – year: 2023 – volume: 50 start-page: 3065 issue: 4 year: 1994 article-title: Position and Momentum Information Entropies of the D‐Dimensional Harmonic Oscillator and Hydrogen Atom publication-title: Physical Review A – volume: 29 start-page: 2187 issue: 9 year: 1996 article-title: Entropic Uncertainty Relations for a Quantum Oscillator publication-title: Journal of Physics A: Mathematical and Theoretical – volume: 7 start-page: 479 year: 1999 end-page: 485 article-title: Maximum‐Entropy Technique With Logarithmic Constraints: Estimation of Atomic Radial Densities publication-title: European Physical Journal D: Atomic, Molecular, Optical and Plasma Physics – volume: 49 issue: 29 year: 2016 article-title: Perspective on the Lagrange–Jacobi Mesh publication-title: Journal of Physics A: Mathematical and Theoretical – volume: 56 start-page: 2545 issue: 4 year: 1997 article-title: Information Entropy and Squeezing of Quantum Fluctuations publication-title: Physical Review A – volume: 99 issue: 26 year: 2007 article-title: Identifying Wave‐Packet Fractional Revivals by Means of Information Entropy publication-title: Physical Review Letters – ident: e_1_2_11_31_1 doi: 10.1088/1751-8113/49/29/295202 – ident: e_1_2_11_23_1 doi: 10.1002/mma.8028 – ident: e_1_2_11_26_1 doi: 10.2977/prims/1195192451 – ident: e_1_2_11_14_1 doi: 10.1103/PhysRevA.69.052107 – ident: e_1_2_11_2_1 doi: 10.1002/j.1538-7305.1948.tb00917.x – ident: e_1_2_11_4_1 doi: 10.1103/PhysRevA.50.3065 – ident: e_1_2_11_30_1 doi: 10.1007/BF01331132 – ident: e_1_2_11_34_1 doi: 10.1063/1.2963967 – ident: e_1_2_11_6_1 doi: 10.1142/S021797920803848X – ident: e_1_2_11_7_1 doi: 10.1088/1674-1056/22/5/050302 – ident: e_1_2_11_5_1 doi: 10.1063/1.530949 – ident: e_1_2_11_13_1 doi: 10.1103/PhysRevLett.99.263601 – ident: e_1_2_11_17_1 doi: 10.1080/00268970500493243 – ident: e_1_2_11_8_1 doi: 10.1088/0031-8949/90/3/035205 – ident: e_1_2_11_9_1 doi: 10.1016/j.physleta.2013.11.020 – ident: e_1_2_11_20_1 doi: 10.1137/1.9781611971637 – start-page: 1 year: 2006 ident: e_1_2_11_24_1 article-title: Quadratic Convergence of the Tanh‐Sinh Quadrature Rule publication-title: Mathematics of Computation – ident: e_1_2_11_12_1 doi: 10.1103/PhysRevA.56.2545 – ident: e_1_2_11_27_1 – ident: e_1_2_11_35_1 doi: 10.1088/1402-4896/ab33cd – year: 2006 ident: e_1_2_11_25_1 article-title: Tanh‐Sinh High‐Precision Quadrature publication-title: International Journal of Computational Science and Engineering – ident: e_1_2_11_18_1 doi: 10.1139/p07-062 – ident: e_1_2_11_29_1 – volume-title: Quantum Mechanics I year: 2012 ident: e_1_2_11_15_1 – ident: e_1_2_11_10_1 doi: 10.1007/BF01608825 – volume: 7 start-page: 479 year: 1999 ident: e_1_2_11_16_1 article-title: Maximum‐Entropy Technique With Logarithmic Constraints: Estimation of Atomic Radial Densities publication-title: European Physical Journal D: Atomic, Molecular, Optical and Plasma Physics doi: 10.1007/s100530050375 – ident: e_1_2_11_28_1 – ident: e_1_2_11_19_1 doi: 10.1088/0305-4470/29/9/029 – volume-title: Wavelet Based Approximation Schemes for Singular Integral Equations year: 2020 ident: e_1_2_11_21_1 – ident: e_1_2_11_33_1 doi: 10.1063/1.529432 – ident: e_1_2_11_22_1 doi: 10.1201/b10375 – ident: e_1_2_11_32_1 doi: 10.1007/s13226-016-0203-6 – ident: e_1_2_11_3_1 doi: 10.1063/1.530861 – ident: e_1_2_11_11_1 doi: 10.2307/1970980  | 
    
| SSID | ssj0006367 | 
    
| Score | 2.429799 | 
    
| Snippet | ABSTRACT
In this work, the author attempted to develop a Shannon wavelet‐based numerical scheme to approximate the information entropies in both configuration... In this work, the author attempted to develop a Shannon wavelet‐based numerical scheme to approximate the information entropies in both configuration and...  | 
    
| SourceID | proquest crossref wiley  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| SubjectTerms | Approximation Entropy (Information theory) information entropies Integrals Mathematical analysis Momentum position and momentum space wave function Quadratures Quantum mechanics Relativistic effects Schrodinger equation Schrödinger equation Shannon scale functions tanh‐sinh quadrature Wave functions  | 
    
| Title | Shannon Wavelet‐Based Approximation Scheme for Information Entropy Integrals in Confined Domain | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqua.27496 https://www.proquest.com/docview/3124098309  | 
    
| Volume | 124 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0020-7608 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-461X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006367 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqXuDCjlgKshAHLmkTO3FicSpLVZDgQKnoASlyEltUtGFpKgEnPoFv5EsYO0kLCCTELXKcZOKxPc-W3xuEdkXk2zKRzHIjSSxXqNgKuKdZwI5wbeoxN9YE57Nz1u66pz2vV0H7JRcm14eYbLjpkWHmaz3ARTRqTEVDH8aiDksqruW2HcrMcupiKh3FKCvStdqWz-ygVBWySWPy5NdYNAWYn2GqiTOteXRdWpgfL7mtj7OoHr98E2_85y8soLkCf-Jm3mEWUUWmS2jmsEz7toxE50ak6V2Kr4TOSZG9v74dQKRLcFOrjz_1c6oj7oCzhxID5MUFo8kUH-uD7_fP-CRXoRiMcD_FmlUItib46G4o-ukK6raOLw_bVpGHwYoJoBVLKcoVo4LHEYUIL4kSGhW6RPGAKShXjg84S2cxZgAPnSCWgDql5ynJJAsIXUVVsFuuIewruOEHjopJ4mpebaDsxOfEURHM2Fyuo73SI2FciJTrXBmDMJdXJiG0WWjabB3tTKre58ocP1WqlW4Ni8E5CilgGpsH1ObwOeOf318QwsLCXGz8veommiUAfQxj0auhavY4llsAXbJo2_TRD0In6vo | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xHODCjiirhThwSZs4iRNLXKAUFWg5sIheUOQktqiAsKUScOIT-Ea-hHGWFhBIiFvkOMnEY3ueLb83ABsi9EwZS2Y4oaSGI1Rk-NzVLGBLOKbtMifSBOf2EWueOQcdtzMEWyUXJteH6G-46ZGRzdd6gOsN6dpANfS-J6q4puJsGEYdhusUDYmOB-JRzGZFwlbT8Jjpl7pCJq31H_0ajQYQ8zNQzSLN3iRclDbmB0yuqr00rEYv3-Qb__sTUzBRQFCynfeZaRiSyQyM1cvMb7MgTi5Fktwm5FzotBTp--vbDga7mGxrAfKnbs52JCfo7xtJEPWSgtSUFTf02fe7Z7KfC1FcP5JuQjSxEI2Nye7tjegmc3C21zitN40iFYMRUQQshlI2V8wWPAptDPKSKqGBoUMV95nCcmV5CLV0ImOGCNHyI4nAU7qukkwyn9rzMIJ2ywUgnsIbnm-piMaOptb6yow9Ti0V4qTNZQU2S5cEUaFTrtNlXAe5wjINsM2CrM0qsN6vepeLc_xUabn0a1CMz8fARlhjct82OX4uc9DvLwhwbZFdLP696hqMNU_braC1f3S4BOMUkVBGYHSXYSR96MkVRDJpuJp12A_-te8b | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsQwFL34AHXjWxyfQVy46dimbZqAG3UcfCM-0I2UtE1wUOuoM6Cu_AS_0S_xpo8ZFQVxV9K0vc1Nck9CzrkAyzIKbJUoZnmRopYndWxx4RsWsCM92_WZFxuC88Eh2z7zdi_8ix5YK7kwuT5EZ8PNjIxsvjYDXDUTvdpVDb1vyyquqQTrhX7PF9wc6Ksdd8WjmMuKhK22FTCbl7pCNl3tPPo1GnUh5megmkWa-ghcljbmB0yuq-1WVI1fvsk3_vcnRmG4gKBkPe8zY9Cj0nEY3Cwzv02APLmSaXqXknNp0lK03l_fNjDYJWTdCJA_NXK2IzlBf98qgqiXFKSmrHjLnH1vPpOdXIji5pE0UmKIhWhsQmp3t7KRTsJZfet0c9sqUjFYMUXAYmntCs1cKeLIxSCvqJYGGHpUC840lmsnQKhlEhkzRIgOjxUCT-X7WjHFOHWnoA_tVtNAAo03Au7omCaeodZybSeBoI6OcNIWqgIrpUvCuNApN-kybsJcYZmG2GZh1mYVWOpUbebiHD9Vmiv9Ghbj8zF0EdbYgru2wM9lDvr9BSGuLbKLmb9XXYSBo1o93N853JuFIYpAKOMv-nPQ13poq3kEMq1oIeuvH74E7p8 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shannon+Wavelet%E2%80%90Based+Approximation+Scheme+for+Information+Entropy+Integrals+in+Confined+Domain&rft.jtitle=International+journal+of+quantum+chemistry&rft.au=Banik%2C+Sayan&rft.date=2024-11-05&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0020-7608&rft.eissn=1097-461X&rft.volume=124&rft.issue=21&rft_id=info:doi/10.1002%2Fqua.27496&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7608&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7608&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7608&client=summon |