Heat and mass transfer analysis for bioconvective flow of Eyring Powell nanofluid over a Riga surface with nonlinear thermal features
This study aims to explore the rheological consequences of Eyring Powell nanofluid along with the swimming characteristics of gyrotactic microorganisms over the surface of the Riga plate which is embedded in a porous medium. The bioconvection fluid flow phenomenon in the presence of perpendicularly...
Saved in:
Published in | Numerical methods for partial differential equations Vol. 38; no. 4; pp. 777 - 793 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.07.2022
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0749-159X 1098-2426 |
DOI | 10.1002/num.22696 |
Cover
Abstract | This study aims to explore the rheological consequences of Eyring Powell nanofluid along with the swimming characteristics of gyrotactic microorganisms over the surface of the Riga plate which is embedded in a porous medium. The bioconvection fluid flow phenomenon in the presence of perpendicularly applied magnetic field is investigated. The effects of nonlinear thermal radiation, heat source/sink, and activation energy subject to convective‐Nield boundary conditions are utilized in energy and concentration equations. A precise similarity transformation helps us to transform governing partial differential equations into ordinary differential equations and then numerically tackled through a well‐known shooting method. The upshots of several pertinent parameters upon the dimensionless profiles of velocity, temperature, concentration, and microorganisms are scrutinized. The heat as well as mass transfer rates and local density number are also calculated. To show the accuracy of the adopted numerical scheme a tabular comparison in limiting case is made between the present results and the results from the literature. Finally, the current study tells us that the pertinent parameters have produced a significant influence on the boundary layer profiles. |
---|---|
AbstractList | This study aims to explore the rheological consequences of Eyring Powell nanofluid along with the swimming characteristics of gyrotactic microorganisms over the surface of the Riga plate which is embedded in a porous medium. The bioconvection fluid flow phenomenon in the presence of perpendicularly applied magnetic field is investigated. The effects of nonlinear thermal radiation, heat source/sink, and activation energy subject to convective‐Nield boundary conditions are utilized in energy and concentration equations. A precise similarity transformation helps us to transform governing partial differential equations into ordinary differential equations and then numerically tackled through a well‐known shooting method. The upshots of several pertinent parameters upon the dimensionless profiles of velocity, temperature, concentration, and microorganisms are scrutinized. The heat as well as mass transfer rates and local density number are also calculated. To show the accuracy of the adopted numerical scheme a tabular comparison in limiting case is made between the present results and the results from the literature. Finally, the current study tells us that the pertinent parameters have produced a significant influence on the boundary layer profiles. |
Author | Shah, Faisal Khan, M. Ijaz Chu, Yu‐Ming Ghaffari, Abuzar Usman Khan, Sami Ullah |
Author_xml | – sequence: 1 givenname: surname: Usman fullname: Usman, organization: University of Science and Technology Beijing – sequence: 2 givenname: M. Ijaz orcidid: 0000-0002-9041-3292 surname: Khan fullname: Khan, M. Ijaz organization: Riphah International University I‐14 – sequence: 3 givenname: Faisal orcidid: 0000-0003-0198-5959 surname: Shah fullname: Shah, Faisal organization: Quaid‐I‐Azam University 45320 – sequence: 4 givenname: Sami Ullah surname: Khan fullname: Khan, Sami Ullah organization: COMSATS University Islamabad – sequence: 5 givenname: Abuzar surname: Ghaffari fullname: Ghaffari, Abuzar organization: University of Education – sequence: 6 givenname: Yu‐Ming surname: Chu fullname: Chu, Yu‐Ming email: chuyuming@zjhu.edu.cn organization: Changsha University of Science & Technology |
BookMark | eNp9kM9KAzEQxoMo2FYPvsGAJw_bJtluujlKqVaofxAL3pZsmrQpaVKT3S59AN_brfUk6GEYGL7vm5lfF5067xRCVwT3CcZ04OpNn1LG2QnqEMzzhA4pO0UdPBryhGT8_Rx1Y1xjTEhGeAd9TpWoQLgFbESMUAXholahnQi7jyaC9gFK46V3OyUrs1OgrW_Aa5jsg3FLePGNshaccF7b2izA7w5-eDVLAbEOWkgFjalW0J5qjVMiQLVSYSMs6HZ5HVS8QGda2Kguf3oPze8mb-NpMnu-fxjfzhJJ-YglhJdU4pQNh4s0z2lGBJeLkSaqLLVQMhMMc51LRgiTkuuMkzJnmjKd5pnUNE176PqYuw3-o1axKta-Du2rsaCMZSlPR2310M1RJYOPMShdbIPZiLAvCC4OlIuWcvFNudUOfmmlqURlvGtRGvufozFW7f-OLp7mj0fHF0b9kyI |
CitedBy_id | crossref_primary_10_1016_j_molliq_2024_124244 crossref_primary_10_1080_01430750_2023_2224334 crossref_primary_10_1016_j_padiff_2025_101111 crossref_primary_10_1016_j_rinp_2023_106915 crossref_primary_10_1515_ntrev_2023_0160 crossref_primary_10_1007_s12043_021_02272_0 crossref_primary_10_1002_mma_9065 crossref_primary_10_1142_S0217984924504001 crossref_primary_10_1016_j_ijft_2024_101006 crossref_primary_10_1016_j_euromechflu_2024_06_001 crossref_primary_10_1080_17455030_2022_2032865 crossref_primary_10_1002_zamm_202300064 crossref_primary_10_1016_j_asej_2024_102959 crossref_primary_10_1016_j_csite_2024_105717 crossref_primary_10_1016_j_padiff_2025_101160 crossref_primary_10_1016_j_icheatmasstransfer_2024_107565 crossref_primary_10_1016_j_aej_2023_11_071 crossref_primary_10_1002_num_22874 crossref_primary_10_1016_j_ceja_2022_100366 crossref_primary_10_1080_17455030_2022_2124468 crossref_primary_10_1007_s13369_021_06274_3 crossref_primary_10_1140_epjs_s11734_025_01525_y crossref_primary_10_1080_17455030_2022_2058111 crossref_primary_10_1002_adts_202401345 crossref_primary_10_1016_j_ijft_2024_100585 crossref_primary_10_1142_S0217984923501464 crossref_primary_10_1016_j_jrras_2025_101403 crossref_primary_10_1016_j_ijft_2023_100425 crossref_primary_10_1016_j_aej_2022_04_015 crossref_primary_10_1016_j_csite_2023_103209 crossref_primary_10_1002_htj_23206 crossref_primary_10_1142_S0217984924504712 crossref_primary_10_1080_02286203_2025_2475433 crossref_primary_10_1080_01932691_2021_1942035 crossref_primary_10_1515_ntrev_2024_0014 crossref_primary_10_1016_j_cjph_2024_03_018 crossref_primary_10_1007_s10973_024_13792_3 crossref_primary_10_1080_10407782_2023_2167028 crossref_primary_10_1016_j_csite_2023_103172 crossref_primary_10_1016_j_csite_2023_103490 crossref_primary_10_1016_j_ijft_2025_101160 crossref_primary_10_1142_S0217984923410063 crossref_primary_10_1038_s41598_023_41449_y crossref_primary_10_1016_j_jrras_2024_101277 crossref_primary_10_1016_j_molliq_2025_127449 crossref_primary_10_1007_s40819_022_01476_1 crossref_primary_10_1016_j_tsep_2023_102283 crossref_primary_10_1038_s41598_022_21255_8 crossref_primary_10_1108_MMMS_07_2023_0245 crossref_primary_10_1016_j_padiff_2025_101148 crossref_primary_10_1515_phys_2023_0118 crossref_primary_10_1016_j_jrras_2025_101335 crossref_primary_10_1016_j_padiff_2025_101103 crossref_primary_10_1007_s41939_024_00704_z crossref_primary_10_1515_nleng_2022_0031 crossref_primary_10_1016_j_asej_2022_101887 crossref_primary_10_1016_j_csite_2023_102767 |
Cites_doi | 10.1016/j.rinp.2020.103233 10.1007/s40430-018-1371-6 10.1016/j.icheatmasstransfer.2020.104842 10.1186/1556-276X-6-100 10.1016/j.cmpb.2020.105564 10.1016/j.icheatmasstransfer.2010.08.015 10.1016/j.cnsns.2008.05.003 10.1016/j.heliyon.2019.e01651 10.1016/j.molliq.2017.12.001 10.1088/1402-4896/ab0b58 10.1016/j.cjph.2019.11.012 10.1016/j.jcis.2017.03.024 10.1016/j.icheatmasstransfer.2019.104401 10.1016/j.apt.2019.09.029 10.1016/j.cmpb.2019.105186 10.1016/j.jmrt.2020.07.025 10.1016/j.ijheatmasstransfer.2018.05.074 10.1016/j.icheatmasstransfer.2020.104738 10.1016/j.ijmecsci.2017.06.009 10.1038/s41598-016-0028-x 10.1016/j.cmpb.2019.105298 10.1016/j.ijheatmasstransfer.2011.09.029 10.1016/j.icheatmasstransfer.2004.11.005 10.1016/j.cmpb.2019.105294 10.1016/j.ijheatmasstransfer.2006.09.034 10.1016/j.cjche.2018.12.023 10.1016/j.icheatmasstransfer.2020.104700 10.1016/j.molliq.2017.10.018 10.1115/1.2150834 10.1016/j.icheatmasstransfer.2005.05.004 10.1016/j.jmrt.2020.04.079 10.1016/j.ijheatmasstransfer.2011.10.046 10.1016/j.molliq.2018.01.064 10.1016/j.icheatmasstransfer.2020.104655 10.1016/j.csite.2019.100521 10.1016/j.csite.2018.11.007 |
ContentType | Journal Article |
Copyright | 2020 Wiley Periodicals LLC. 2022 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2020 Wiley Periodicals LLC. – notice: 2022 Wiley Periodicals LLC. |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
DOI | 10.1002/num.22696 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1098-2426 |
EndPage | 793 |
ExternalDocumentID | 10_1002_num_22696 NUM22696 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 11601485; 11626101; 11701176; 61673169; 11871202; 11971142 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 41~ 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GBZZK GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ H~9 I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6O MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RWS RX1 RYL SAMSI SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WXSBR WYISQ XBAML XG1 XPP XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION 7SC 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 H8D JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c2976-19b2c03644d388251a9cd7f1ebbfaec5a609f8c6116cc9f591b86f26f385cf233 |
IEDL.DBID | DR2 |
ISSN | 0749-159X |
IngestDate | Fri Jul 25 12:17:09 EDT 2025 Tue Jul 01 03:28:36 EDT 2025 Thu Apr 24 22:56:09 EDT 2025 Wed Jan 22 16:26:25 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2976-19b2c03644d388251a9cd7f1ebbfaec5a609f8c6116cc9f591b86f26f385cf233 |
Notes | Funding information National Natural Science Foundation of China, 11601485; 11626101; 11701176; 61673169; 11871202; 11971142 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0198-5959 0000-0002-9041-3292 |
PQID | 2665393739 |
PQPubID | 1016406 |
PageCount | 33 |
ParticipantIDs | proquest_journals_2665393739 crossref_primary_10_1002_num_22696 crossref_citationtrail_10_1002_num_22696 wiley_primary_10_1002_num_22696_NUM22696 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2022 2022-07-00 20220701 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: New York |
PublicationTitle | Numerical methods for partial differential equations |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2017; 7 2010; 37 2019; 5 2019; 94 2019; 30 2020; 63 2019; 13 2018; 126 2019; 15 1995 2020; 188 2018; 40 2020; 189 2017; 130 2007; 50 1961; 12 2017; 498 2011; 6 2012; 55 2020; 18 2019; 187 2018; 251 2009; 14 2018; 254 2020; 196 2020 2020; 9 2019; 27 2020; 116 2020; 117 2005; 32 2020; 118 2020; 112 2006; 128 2017; 248 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 Mallawi F. O. M. (e_1_2_8_29_1) 2020 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 Waqas S. H. (e_1_2_8_41_1) 2019; 94 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Gailitis A. (e_1_2_8_7_1) 1961; 12 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 18 year: 2020 article-title: Magnetohydrodynamic oblique stagnation point flow of second grade fluid over an oscillatory stretching surface publication-title: Results Phys. – volume: 30 start-page: 3203 year: 2019 end-page: 3213 article-title: Effect of nonlinear thermal radiation on 3D magneto slip flow of Eyring‐Powell nanofluid flow over a slendering sheet inspired through binary chemical reaction and Arrhenius activation energy publication-title: Adv. Powder Technol. – volume: 7 start-page: 1 year: 2017 end-page: 22 article-title: A numerical treatment of radiative nanofluid 3D flow containing gyrotactic microorganism with anisotropic slip, binary chemical reaction and activation energy publication-title: Sci. Rep. – volume: 37 start-page: 1421 year: 2010 end-page: 1425 article-title: The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms publication-title: Int. Commun. Heat Mass Transf. – volume: 50 start-page: 2002 year: 2007 end-page: 2018 article-title: Heat transfer augmentation in a two‐sided lid‐driven differentially heated square cavity utilizing nanofluids publication-title: Int. J. Heat Mass Transf. – volume: 118 year: 2020 article-title: Fluid flow and heat transfer analysis of nanofluid jet cooling on a hot surface with various roughness publication-title: Int. Commun. Heat Mass Transf. – volume: 55 start-page: 375 year: 2012 end-page: 383 article-title: Characteristics of heating scheme and mass transfer on the peristaltic flow for an Eyring‐Powell fluid in an endoscope publication-title: Int. J. Heat Mass Transf. – volume: 63 start-page: 168 year: 2020 end-page: 185 article-title: Influence of metallic nanoparticles in water driven along a wavy circular cylinder publication-title: Chin. J. Phys. – volume: 248 start-page: 143 year: 2017 end-page: 152 article-title: Radiative heat transfer study for flow of non‐Newtonian nanofluid past a Riga plate with variable thickness publication-title: J. Mol. Liq. – volume: 14 start-page: 1064 year: 2009 end-page: 1068 article-title: A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 27 start-page: 2352 year: 2019 end-page: 2358 article-title: Change in internal energy of thermal diffusion stagnation point Maxwell nanofluid flow along with solar radiation and thermal conductivity publication-title: Chin. J. Chem. Eng. – volume: 94 year: 2019 article-title: Impact of an oblique stagnation point on MHD micropolar nanomaterial in porous medium over an oscillatory surface with partial slip publication-title: Phys. Scr. – volume: 112 year: 2020 article-title: Numerical simulation for nonlinear radiated Eyring‐Powell nanofluid considering magnetic dipole and activation energy publication-title: Int. Commun. Heat Mass Transf. – volume: 55 start-page: 1817 year: 2012 end-page: 1822 article-title: Steady flow of an Eyring Powell fluid over a moving surface with convective boundary conditions publication-title: Int. J. Heat Mass Transf. – volume: 40 year: 2018 article-title: An immediate change in viscosity of Carreau nanofluid due to double stratified medium: Application of Fourier's and Fick's laws publication-title: J. Braz. Soc. Mech. Sci. Eng. – volume: 6 start-page: 1 year: 2011 end-page: 13 article-title: Nanofluid bioconvection in water‐based suspensions containing nanoparticles and oxytactic microorganisms: Oscillatory instability publication-title: Nanoscale Res. Lett. – start-page: 99 year: 1995 end-page: 105 – volume: 188 year: 2020 article-title: Fully developed Darcy–Forchheimer mixed convective flow over a curved surface with activation energy and entropy generation publication-title: Comput. Methods Prog. Biomed. – volume: 189 year: 2020 article-title: Magnetohydrodynamics (MHD) radiated nanomaterial viscous material flow by a curved surface with second order slip and entropy generation publication-title: Comput. Methods Prog. Biomed. – volume: 9 start-page: 10468 year: 2020 end-page: 10477 article-title: Modeling and theoretical analysis of gyrotactic microorganisms in radiated nanomaterial Williamson fluid with activation energy publication-title: J. Mater. Res. Technol. – volume: 196 year: 2020 article-title: Cattaneo–Christov heat flux (CC model) in mixed convective stagnation point flow towards a Riga plate publication-title: Comput. Methods Prog. Biomed. – volume: 13 year: 2019 article-title: Investigation of MHD Eyring‐Powell fluid flow over a rotating disk under effect of homogeneous–heterogeneous reactions publication-title: Case Stud. Therm. Eng. – volume: 251 start-page: 7 year: 2018 end-page: 14 article-title: Thermal and concentration diffusion in Jeffery nanofluid flow over an inclined stretching sheet: A generalized Fourier's and Fick's perspective publication-title: J. Mol. Liq. – volume: 128 start-page: 240 year: 2006 end-page: 250 article-title: Convective transport in nanofluids publication-title: J. Heat Transf. – volume: 187 year: 2019 article-title: Development of thixotropic nanomaterial in fluid flow with gyrotactic microorganisms, activation energy, mixed convection publication-title: Comput. Methods Progr. Biomed. – volume: 94 year: 2019 article-title: Thermally developed Falkner–Skan bioconvection flow of a magnetized nanofluid in the presence of motile gyrotactic microorganism: Buongiorno's nanofluid model publication-title: PhysicaScripta – volume: 117 year: 2020 article-title: Simultaneous effects of bioconvection and velocity slip in three‐dimensional flow of Eyring‐Powell nanofluid with Arrhenius activation energy and binary chemical reaction publication-title: Int. Commun. Heat Mass Transf. – volume: 126 start-page: 941 year: 2018 end-page: 948 article-title: Change in viscosity of Williamson nanofluid flow due to thermal and solutal stratification publication-title: Int. J. Heat Mass Transf. – volume: 5 year: 2019 article-title: Riga—Plate flow of γ Al O –water/ethylene glycol with effective Prandtl number impacts publication-title: Heliyon – volume: 117 year: 2020 article-title: Hydrothermal performance of nanofluid flow in a sinusoidal double layer microchannel in order to geometric optimization publication-title: Int. Commun. Heat Mass Transf. – volume: 32 start-page: 1119 year: 2005 end-page: 1127 article-title: The onset of bioconvection in a suspension of negatively geotactic microorganisms with high frequency vertical vibration publication-title: Int. Commun. Heat Mass Transf. – volume: 130 start-page: 31 year: 2017 end-page: 40 article-title: Radiative magnetohydrodynamic nanofluid flow due to gyrotactic microorganisms with chemical reaction and non‐linear thermal radiation publication-title: Int. J. Mech. Sci. – year: 2020 article-title: Impact of double‐stratification on convective flow of a non‐Newtonian liquid in a Riga plate with Cattaneo–Christov double‐flux and thermal radiation publication-title: Ain Shams Eng. J. – volume: 9 start-page: 7335 year: 2020 end-page: 7340 article-title: Simulation and modeling of second order velocity slip flow of micropolar ferrofluid with Darcy–Forchheimer porous medium publication-title: J. Mater. Res. Technol. – volume: 498 start-page: 85 year: 2017 end-page: 90 article-title: A comparative study of Casson fluid with homogeneous–heterogeneous reactions publication-title: J. Colloid Interface Sci. – volume: 32 start-page: 991 year: 2005 end-page: 999 article-title: Thermo‐bioconvection in a suspension of oxytactic bacteria publication-title: Int. Commun. Heat Mass Transf. – volume: 12 start-page: 143 year: 1961 end-page: 146 article-title: On a possibility to reduce the hydrodynamic resistance of a plate in an electrolyte publication-title: Appl. Magnetohydrodyn. – volume: 254 start-page: 47 year: 2018 end-page: 54 article-title: Endoscopy effect in mixed convective peristalsis of Powell–Eyring nanofluid publication-title: J. Mol. Liq. – volume: 15 year: 2019 article-title: Non‐uniform heat source/sink effects on the three‐dimensional flow of Fe O /Al O nanoparticles with different base fluids past a Riga plate publication-title: Case Stud. Therm. Eng. – volume: 116 year: 2020 article-title: Significance of activation energy in radiative peristaltic transport of Eyring‐Powell nanofluid publication-title: Int. Commun. Heat Mass Transf. – ident: e_1_2_8_3_1 doi: 10.1016/j.rinp.2020.103233 – ident: e_1_2_8_14_1 doi: 10.1007/s40430-018-1371-6 – ident: e_1_2_8_28_1 doi: 10.1016/j.icheatmasstransfer.2020.104842 – ident: e_1_2_8_26_1 doi: 10.1186/1556-276X-6-100 – ident: e_1_2_8_37_1 doi: 10.1016/j.cmpb.2020.105564 – ident: e_1_2_8_25_1 doi: 10.1016/j.icheatmasstransfer.2010.08.015 – ident: e_1_2_8_4_1 doi: 10.1016/j.cnsns.2008.05.003 – ident: e_1_2_8_6_1 – volume: 94 start-page: 115304 year: 2019 ident: e_1_2_8_41_1 article-title: Thermally developed Falkner–Skan bioconvection flow of a magnetized nanofluid in the presence of motile gyrotactic microorganism: Buongiorno's nanofluid model publication-title: PhysicaScripta – ident: e_1_2_8_8_1 doi: 10.1016/j.heliyon.2019.e01651 – ident: e_1_2_8_17_1 doi: 10.1016/j.molliq.2017.12.001 – ident: e_1_2_8_32_1 doi: 10.1088/1402-4896/ab0b58 – ident: e_1_2_8_39_1 doi: 10.1016/j.cjph.2019.11.012 – ident: e_1_2_8_20_1 doi: 10.1016/j.jcis.2017.03.024 – ident: e_1_2_8_40_1 doi: 10.1016/j.icheatmasstransfer.2019.104401 – ident: e_1_2_8_36_1 doi: 10.1016/j.apt.2019.09.029 – ident: e_1_2_8_19_1 doi: 10.1016/j.cmpb.2019.105186 – ident: e_1_2_8_10_1 doi: 10.1016/j.jmrt.2020.07.025 – ident: e_1_2_8_15_1 doi: 10.1016/j.ijheatmasstransfer.2018.05.074 – ident: e_1_2_8_21_1 doi: 10.1016/j.icheatmasstransfer.2020.104738 – ident: e_1_2_8_35_1 doi: 10.1016/j.ijmecsci.2017.06.009 – ident: e_1_2_8_27_1 doi: 10.1038/s41598-016-0028-x – ident: e_1_2_8_30_1 doi: 10.1016/j.cmpb.2019.105298 – ident: e_1_2_8_2_1 doi: 10.1016/j.ijheatmasstransfer.2011.09.029 – ident: e_1_2_8_23_1 doi: 10.1016/j.icheatmasstransfer.2004.11.005 – year: 2020 ident: e_1_2_8_29_1 article-title: Impact of double‐stratification on convective flow of a non‐Newtonian liquid in a Riga plate with Cattaneo–Christov double‐flux and thermal radiation publication-title: Ain Shams Eng. J. – ident: e_1_2_8_31_1 doi: 10.1016/j.cmpb.2019.105294 – ident: e_1_2_8_38_1 doi: 10.1016/j.ijheatmasstransfer.2006.09.034 – ident: e_1_2_8_16_1 doi: 10.1016/j.cjche.2018.12.023 – ident: e_1_2_8_13_1 doi: 10.1016/j.icheatmasstransfer.2020.104700 – ident: e_1_2_8_22_1 doi: 10.1016/j.molliq.2017.10.018 – volume: 12 start-page: 143 year: 1961 ident: e_1_2_8_7_1 article-title: On a possibility to reduce the hydrodynamic resistance of a plate in an electrolyte publication-title: Appl. Magnetohydrodyn. – ident: e_1_2_8_5_1 doi: 10.1115/1.2150834 – ident: e_1_2_8_24_1 doi: 10.1016/j.icheatmasstransfer.2005.05.004 – ident: e_1_2_8_18_1 doi: 10.1016/j.jmrt.2020.04.079 – ident: e_1_2_8_12_1 doi: 10.1016/j.ijheatmasstransfer.2011.10.046 – ident: e_1_2_8_11_1 doi: 10.1016/j.molliq.2018.01.064 – ident: e_1_2_8_33_1 doi: 10.1016/j.icheatmasstransfer.2020.104655 – ident: e_1_2_8_34_1 doi: 10.1016/j.csite.2019.100521 – ident: e_1_2_8_9_1 doi: 10.1016/j.csite.2018.11.007 |
SSID | ssj0011519 |
Score | 2.5703459 |
Snippet | This study aims to explore the rheological consequences of Eyring Powell nanofluid along with the swimming characteristics of gyrotactic microorganisms over... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 777 |
SubjectTerms | activation energy Boundary conditions Boundary layers Eyring Powell nanofluid Fluid dynamics Fluid flow gyrotactic microorganisms heat and mass transfer Mass transfer Microorganisms Nanofluids Ordinary differential equations Parameters Partial differential equations Porous media Porous media flow Rheological properties similarity solution Swimming Thermal radiation |
Title | Heat and mass transfer analysis for bioconvective flow of Eyring Powell nanofluid over a Riga surface with nonlinear thermal features |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnum.22696 https://www.proquest.com/docview/2665393739 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3La9wwEIdFyKk59JWW5tEylBx68WYtWbJFT6VNWAobSujCHgpGz7J01w7rNSW59__uSF47SWmh5GaMbEnWYz7kmd8QclJ4ZCHLWSIUY0nGWZYoLWySSptTZrwY5yE4eXohJrPs85zPd8j7Pham04cYDtzCyoj7dVjgSjend0RD29UI2UEGue2UiaCb_-lykI5C0IlJPdBCygRN9rxXFRrT0-HJ-7boFjDvYmq0M-dPyLe-hZ17yY9Ru9Ejc_OHeOMDu_CUPN7yJ3zoJswzsuOq52RvOoi3Nvvk1wT3Z1CVhRWSNWwi2ro13un0SwA5F_Sijg7rcbsEv6x_Qu3h7DocE8KXOhwJQqWq2i_bhYXgJwoKLhffFTTt2ivjIJwAQ9V1Q60hgOgKW-ZdlBptXpDZ-dnXj5Nkm60hMRSZBkdXUxP-amaWFSEgVkljc586rb1yhisxlr4wIk2FMdJzmepCeCo8K7jxlLGXZBcrda8IKOZtNmZ5jjCZWe00Yg1ViCZcstTx_IC868etNFsp85BRY1l2Isw0pFMp45c9IG-HoledfsffCh33g19ul3BTIrnwoBbIJFYXR_HfLygvZtN4cfj_RY_IIxpCKaLr7zHZ3axb9xoBZ6PfxJn8G_E_-TM |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Pb9MwFMetMQ7AgfFTDAY8IQ5c0jV27MQSl2naVGCt0LRKvaDIP6eKNkFtIwR3_m-enSYbCCTELYqcOM7zj4-en7-PkNeFRxaynCVCMZZknGWJ0sImqbQ5ZcaLYR4OJ48nYjTN3s_4bIe87c7CtPoQvcMtjIw4X4cBHhzSh9dUQ5vlAOFBihvkZtyfC0h03otHIerEtB64RsoEF-1Zpys0pIf9o7-uRleIeR1U40pzukc-dd_YBph8HjQbPTDff5Nv_N9G3CN3twgKR22fuU92XPWA3Bn3-q3rh-THCKdoUJWFJcI1bCLduhXeaSVMAFEX9LyOMetxxgS_qL9C7eHkW_AUwsc6eAWhUlXtF83cQggVBQXn80sF62bllXEQnMBQte1QKwgsusQv8y6qja4fkenpycXxKNkmbEgMRaxBA2tqwsZmZlkRzsQqaWzuU6e1V85wJYbSF0akqTBGei5TXQhPhWcFN54y9pjsYqXuCQHFvM2GLM-RJzOrnUayoQrphEuWOp7vkzed4UqzVTMPSTUWZavDTENGlTL-2X3yqi_6pZXw-FOhg8765XYUr0uEFx4EA5nE6qIZ__6CcjIdx4un_170Jbk1uhiflWfvJh-ekds0nKyIkcAHZHezatxz5J2NfhG79U99bP1R |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Pi9QwFMfDuoK4B3-Lu676EA9eOjtNmrTBk-gO448ZlsWBOQglP2Vwpl1mpoje_b99Sad1FQXxVkraJH1J3ofX5PsIeVZ4ZCHLWSIUY0nGWZYoLWySSptTZrwY5uFw8mQqxrPs7ZzP98iL7ixMqw_RB9zCzIjrdZjgF9afXBINbVYDZAcprpCrmUA3GYjovNeOQtKJWT3QRcoEffa8kxUa0pP-0V-d0U_CvMyp0dGMbpKPXRPb_SWfB81WD8y339Qb_7MPt8iNHYDCy3bE3CZ7rrpDDia9euvmLvk-xgUaVGVhhWgN28i2bo13WgETQNAFvajjjvW4XoJf1l-g9nD6NcQJ4awOMUGoVFX7ZbOwEDaKgoLzxScFm2btlXEQQsBQtd1QawgkusKWeRe1Rjf3yGx0-uHVONmla0gMRahB82pqwm_NzLIinIhV0tjcp05rr5zhSgylL4xIU2GM9FymuhCeCs8Kbjxl7D7Zx0rdAwKKeZsNWZ4jTWZWO41cQxWyCZcsdTw_JM87u5Vmp2UeUmosy1aFmYZ8KmX8sofkaV_0ohXw-FOh48745W4Ob0pEFx7kApnE6qIV__6CcjqbxIujfy_6hFw7ez0q37-ZvntIrtNwrCJuAz4m-9t14x4h7Gz14ziofwCTm_wA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heat+and+mass+transfer+analysis+for+bioconvective+flow+of+Eyring+Powell+nanofluid+over+a+Riga+surface+with+nonlinear+thermal+features&rft.jtitle=Numerical+methods+for+partial+differential+equations&rft.au=%C2%A0+Usman&rft.au=M+Ijaz+Khan&rft.au=Shah%2C+Faisal&rft.au=Khan%2C+Sami+Ullah&rft.date=2022-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0749-159X&rft.eissn=1098-2426&rft.volume=38&rft.issue=4&rft.spage=777&rft.epage=793&rft_id=info:doi/10.1002%2Fnum.22696&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-159X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-159X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-159X&client=summon |