A novel improved crow‐search algorithm to classify the severity in digital mammograms

The survival rates of breast cancer are going up due to the emerging increase in its screening and diagnosis methods. However, breast cancer is yet the most intrusive disease found in women. Many techniques are emerging during recent years for the investigation of breast cancer using imaging modalit...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of imaging systems and technology Vol. 31; no. 2; pp. 921 - 954
Main Authors Sannasi Chakravarthy, S R, Rajaguru, Harikumar
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.06.2021
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0899-9457
1098-1098
DOI10.1002/ima.22493

Cover

Abstract The survival rates of breast cancer are going up due to the emerging increase in its screening and diagnosis methods. However, breast cancer is yet the most intrusive disease found in women. Many techniques are emerging during recent years for the investigation of breast cancer using imaging modalities. The paper intends to categorize the severity present in the digital mammography images as either benign (B) or malignant (M) using an improved crow‐search optimization algorithm (ImCSOA). In the literature, the CSOA is generally used for solving several feature selection and numerical optimization problems. The objective is to utilize this popular optimization algorithm for the problem of biomedical image classification. However, if this algorithm is applied directly to classification problems, then it will result in poor classification of data. Hence, the original CSO (OCSO) algorithm undergoes suitable enhancements using a novel controlled parameter tuning, control operator and chaotic‐maps‐based controlled randomness. Four distinct chaotic maps are used for controlling the randomness in the OCSO algorithm. The mammogram images are obtained from the Mammographic Image Analysis Society and Digital Database for Screening Mammography data sets for the evaluation. The classification is accomplished through discrete wavelet transform‐based statistical features that are extracted at two levels [level 4 (L4) and level 6 (L6)] of decomposition. For both data sets, the ImCSOA with L4 and L6 decomposed bior4.4 wavelet features provides the maximum accuracy of around 85% to 86%, which is approximately 62% to 88% better than the OCSO algorithm with L4 and L6 decomposed bior4.4 wavelet features.
AbstractList The survival rates of breast cancer are going up due to the emerging increase in its screening and diagnosis methods. However, breast cancer is yet the most intrusive disease found in women. Many techniques are emerging during recent years for the investigation of breast cancer using imaging modalities. The paper intends to categorize the severity present in the digital mammography images as either benign (B) or malignant (M) using an improved crow‐search optimization algorithm (ImCSOA). In the literature, the CSOA is generally used for solving several feature selection and numerical optimization problems. The objective is to utilize this popular optimization algorithm for the problem of biomedical image classification. However, if this algorithm is applied directly to classification problems, then it will result in poor classification of data. Hence, the original CSO (OCSO) algorithm undergoes suitable enhancements using a novel controlled parameter tuning, control operator and chaotic‐maps‐based controlled randomness. Four distinct chaotic maps are used for controlling the randomness in the OCSO algorithm. The mammogram images are obtained from the Mammographic Image Analysis Society and Digital Database for Screening Mammography data sets for the evaluation. The classification is accomplished through discrete wavelet transform‐based statistical features that are extracted at two levels [level 4 (L4) and level 6 (L6)] of decomposition. For both data sets, the ImCSOA with L4 and L6 decomposed bior4.4 wavelet features provides the maximum accuracy of around 85% to 86%, which is approximately 62% to 88% better than the OCSO algorithm with L4 and L6 decomposed bior4.4 wavelet features.
Author Rajaguru, Harikumar
Sannasi Chakravarthy, S R
Author_xml – sequence: 1
  givenname: S R
  orcidid: 0000-0002-0162-7206
  surname: Sannasi Chakravarthy
  fullname: Sannasi Chakravarthy, S R
  email: elektroniqz@gmail.com
  organization: Bannari Amman Institute of Technology
– sequence: 2
  givenname: Harikumar
  surname: Rajaguru
  fullname: Rajaguru, Harikumar
  organization: Bannari Amman Institute of Technology
BookMark eNp9UMtOAjEUbQwmArrwD5q4cjHQx5SZLgnxQYJxo3HZdDotlMxMsR0gs-MT_Ea_xCKuTHRzH7nnnnvPGYBe4xoNwDVGI4wQGdtajghJOT0DfYx4nhxDD_RRznnCU5ZdgEEIa4QwZoj1wdsUNm6nK2jrjY9FCZV3-8_DR9DSqxWU1dJ5265q2DqoKhmCNR1sVxoGvdNx0kHbwNIubSsrWMu6dksv63AJzo2sgr76yUPwen_3MntMFs8P89l0kSjCM5ponuY645JhjEqTGY6KbEIpNhnnOUZFwQoiGc3LsigLrpSROaN4kma0NFwzRYfg5sQbv3_f6tCKtdv6Jp4UhBGCJpE5j6jbEyqKC8FrIzY-OuU7gZE4-iZiJ759i9jxL6yK2lrrmtZLW_23sbeV7v6mFvOn6WnjC2etgmM
CitedBy_id crossref_primary_10_1007_s11042_023_15265_5
crossref_primary_10_1016_j_jksuci_2021_11_016
crossref_primary_10_1002_ima_22570
crossref_primary_10_1002_ima_22781
crossref_primary_10_3390_fermentation10010012
crossref_primary_10_1002_cpe_7231
crossref_primary_10_1007_s11227_024_06036_6
crossref_primary_10_1186_s12880_024_01394_2
Cites_doi 10.1016/j.asoc.2015.07.005
10.1109/TEVC.2014.2373386
10.1007/BF00175354
10.1007/s11042-018-5804-0
10.1177/003754970107600201
10.1007/978-3-540-72950-1_77
10.1007/s00366-011-0241-y
10.1007/978-981-10-7512-4_77
10.1109/ICICIC.2007.209
10.1109/ISITIA.2016.7828626
10.1155/2017/3640901
10.1093/oso/9780195099713.001.0001
10.1016/j.eswa.2017.05.052
10.1148/radiol.2018181371
10.1109/IC3.2015.7346674
10.3322/caac.21583
10.1109/TGRS.2002.804721
10.1109/78.157290
10.1109/TBME.2014.2365494
10.1016/j.compstruc.2016.03.001
10.1007/s00521-014-1597-x
10.1038/sdata.2017.177
10.1109/MeMeA.2018.8438650
10.1001/jama.2018.19323
10.1016/j.eswa.2015.10.014
10.1080/01431160412331269698
10.1108/02644401211235834
10.31557/APJCP.2019.20.8.2333
10.1177/0284185118770917
10.1186/1475-925X-10-55
10.1007/978-3-662-44851-9_15
10.2307/2683673
10.1177/001316446002000104
10.1002/ima.22364
10.1109/ETCM.2017.8247515
10.1371/journal.pone.0177678
10.1109/ICNN.1995.488968
10.1109/SOCPAR.2015.7492775
10.1007/s10278-011-9365-2
10.1016/j.amc.2008.05.115
ContentType Journal Article
Copyright 2020 Wiley Periodicals LLC
2021 Wiley Periodicals LLC.
Copyright_xml – notice: 2020 Wiley Periodicals LLC
– notice: 2021 Wiley Periodicals LLC.
DBID AAYXX
CITATION
DOI 10.1002/ima.22493
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1098-1098
EndPage 954
ExternalDocumentID 10_1002_ima_22493
IMA22493
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HDBZQ
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
ID FETCH-LOGICAL-c2973-e948e79a5110df7f90b76331f799810bb5b2a538ddbdb9ccfa85316473df9e5c3
IEDL.DBID DR2
ISSN 0899-9457
IngestDate Fri Jul 25 06:11:52 EDT 2025
Wed Oct 01 02:12:03 EDT 2025
Thu Apr 24 23:09:44 EDT 2025
Wed Jan 22 16:29:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2973-e948e79a5110df7f90b76331f799810bb5b2a538ddbdb9ccfa85316473df9e5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0162-7206
PQID 2522065118
PQPubID 1026352
PageCount 34
ParticipantIDs proquest_journals_2522065118
crossref_primary_10_1002_ima_22493
crossref_citationtrail_10_1002_ima_22493
wiley_primary_10_1002_ima_22493_IMA22493
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: New York
PublicationTitle International journal of imaging systems and technology
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2015; 35
2013; 29
2017; 86
2019; 290
1974; 12
2017; 4
2013; 2
2005; 20
2014; 25
2011; 10
2005; 26
2012; 13
2014; 62
2019; 321
2011; 204
2019; 60
2014; 3
2010; 1
2019; 20
1990
2002; 40
2019; 69
2011; 24
2014; 19
2008; 20
2009; 19
2016; 46
1992; 40
2017; 2017
2019; 30
2019; 78
1994; 1069
2007
1996
2006
2008; 205
2016; 169
2002
1995; 4
2007; 14
1960; 20
1975; 29
2017; 12
2018
2017
2016
2015
2012; 01
2016; 8
1994; 4
2014; 8725
2001; 76
e_1_2_9_52_1
Kale VU (e_1_2_9_41_1) 2010; 1
e_1_2_9_10_1
e_1_2_9_35_1
Mangasarian OL (e_1_2_9_56_1) 1990
e_1_2_9_12_1
Ashlock D (e_1_2_9_15_1) 2006
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
Yang XS (e_1_2_9_13_1) 2008
e_1_2_9_16_1
Karaboga D (e_1_2_9_30_1) 2009; 19
e_1_2_9_37_1
Vala HJ (e_1_2_9_38_1) 2013; 2
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
Glover F (e_1_2_9_7_1) 1974; 12
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_28_1
Chittineni S (e_1_2_9_29_1) 2011; 204
e_1_2_9_47_1
Kanan HR (e_1_2_9_27_1) 2008; 205
Sundaram KM (e_1_2_9_36_1) 2014; 3
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_32_1
e_1_2_9_55_1
Yusiong JPT (e_1_2_9_31_1) 2012; 01
Harikumar R (e_1_2_9_49_1) 2016; 8
e_1_2_9_17_1
e_1_2_9_19_1
Shan L (e_1_2_9_46_1) 2005; 20
e_1_2_9_42_1
e_1_2_9_40_1
Alvarez SA (e_1_2_9_53_1) 2002
e_1_2_9_21_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
Sukanesh R (e_1_2_9_50_1) 2007; 14
e_1_2_9_25_1
Suckling J (e_1_2_9_34_1) 1994; 1069
e_1_2_9_48_1
References_xml – volume: 321
  start-page: 288
  issue: 3
  year: 2019
  end-page: 300
  article-title: Breast cancer treatment: a review
  publication-title: JAMA
– volume: 26
  start-page: 217
  issue: 1
  year: 2005
  end-page: 222
  article-title: Random forest classifier for remote sensing classification
  publication-title: Int J Remote Sens
– volume: 24
  start-page: 754
  issue: 5
  year: 2011
  end-page: 763
  article-title: Marker‐controlled watershed for lesion segmentation in mammograms
  publication-title: J Digit Imaging
– volume: 29
  start-page: 3
  issue: 1
  year: 1975
  end-page: 20
  article-title: Ridge regression in practice
  publication-title: Am Stat
– volume: 10
  start-page: 55
  issue: 1
  year: 2011
  article-title: Classification of breast tissue in mammograms using efficient coding
  publication-title: Biomed Eng Online
– volume: 204
  start-page: 186
  year: 2011
  end-page: 195
  article-title: A comparative study of CSO and PSO trained artificial neural network for stock market prediction
  publication-title: Trends Computer Sci Eng Inf Technol Part Commun Computer Inf Sci Book Series (CCIS)
– volume: 12
  start-page: 1
  issue: 6
  year: 2017
  end-page: 17
  article-title: Optimal classifier for imbalanced data using Matthews correlation coefficient metric
  publication-title: PLoS One
– volume: 20
  start-page: 79
  year: 2008
  end-page: 90
– volume: 01
  start-page: 69
  year: 2012
  end-page: 80
  article-title: Optimizing artificial neural networks using cat swarm optimization algorithm
  publication-title: Int J Intell Syst Appl
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 11
  article-title: Three‐class mammogram classification based on descriptive CNN features
  publication-title: Biomed Res Int
– start-page: 475
  year: 2007
– start-page: 787
  year: 2018
  end-page: 795
– start-page: 1
  year: 2002
  end-page: 22
– year: 1990
– volume: 4
  start-page: 170177
  year: 2017
  article-title: A curated mammography data set for use in computer‐aided detection and diagnosis research
  publication-title: Sci Data
– volume: 25
  start-page: 1077
  issue: 5
  year: 2014
  end-page: 1097
  article-title: Biogeography‐based optimisation with chaos
  publication-title: Neural Comput Appl
– volume: 30
  start-page: 1
  year: 2019
  end-page: 21
  article-title: Detection and classification of microcalcification from digital mammograms with firefly algorithm, extreme learning machine and nonlinear regression models: A comparison
  publication-title: Int J Imaging Syst Technol
– volume: 62
  start-page: 783
  issue: 2
  year: 2014
  end-page: 792
  article-title: Computer‐aided diagnosis of mammographic masses using scalable image retrieval
  publication-title: IEEE Trans Biomed Eng
– volume: 3
  start-page: 10333
  issue: 3
  year: 2014
  end-page: 10337
  article-title: A study on preprocessing a mammogram image using Adaptive Median Filter
  publication-title: Int J Innovat Res Sci Eng Technol
– volume: 19
  start-page: 694
  issue: 5
  year: 2014
  end-page: 716
  article-title: An evolutionary many‐objective optimization algorithm based on dominance and decomposition
  publication-title: IEEE Trans Evol Comput
– volume: 169
  start-page: 1
  year: 2016
  end-page: 2
  article-title: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm
  publication-title: Comput Struct
– volume: 69
  start-page: 438
  issue: 6
  year: 2019
  end-page: 451
  article-title: Breast cancer statistics, 2019
  publication-title: CA Cancer J Clin
– start-page: 1
  year: 2018
  end-page: 5
– volume: 205
  start-page: 716
  issue: 2
  year: 2008
  end-page: 725
  article-title: An improved feature selection method based on ant colony optimization (ACO) evaluated on face recognition system
  publication-title: Appl Math Comput
– volume: 12
  start-page: 293
  issue: 3
  year: 1974
  end-page: 298
  article-title: Augmented threaded index method for network optimization
  publication-title: INFOR Inf Syst Operat Res
– year: 2015
– volume: 40
  start-page: 2464
  issue: 10
  year: 1992
  end-page: 2482
  article-title: The discrete wavelet transform: wedding the a Trous and Mallat algorithms
  publication-title: IEEE Trans Signal Process
– volume: 290
  start-page: 305
  issue: 2
  year: 2019
  end-page: 314
  article-title: Detection of breast cancer with mammography: effect of an artificial intelligence support system
  publication-title: Radiology
– volume: 8725
  start-page: 225
  year: 2014
  end-page: 239
  article-title: Thresholding classifiers to maximize F1 score
  publication-title: Mach Learn Knowl Discov Databases
– volume: 14
  start-page: 96
  issue: 1
  year: 2007
  end-page: 104
  article-title: Comparison of genetic algorithm and neural network (MLP) in patient specific classification of epilepsy risk levels from EEG signals
  publication-title: J Eng Lett
– volume: 60
  start-page: 13
  issue: 1
  year: 2019
  end-page: 18
  article-title: The efficacy of using computer‐aided detection (CAD) for detection of breast cancer in mammography screening: a systematic review
  publication-title: Acta Radiol
– start-page: 17
  year: 2016
  end-page: 20
– volume: 35
  start-page: 629
  year: 2015
  end-page: 636
  article-title: Improved particle swarm optimization algorithm and its application in text feature selection
  publication-title: Appl Soft Comput
– start-page: 789
  year: 2007
  end-page: 798
– volume: 19
  start-page: 279
  issue: 3
  year: 2009
  end-page: 292
  article-title: Neural networks training by artificial bee colony algorithm on pattern classification
  publication-title: Neural Netw World
– volume: 1
  start-page: 179
  issue: 1
  year: 2010
  end-page: 184
  article-title: Performance evaluation of various wavelets for image compression of natural and artificial images
  publication-title: Int J Comput Sci Commun
– volume: 86
  start-page: 99
  year: 2017
  end-page: 112
  article-title: Non‐linear classifiers applied to EEG analysis for epilepsy seizure detection
  publication-title: Expert Syst Appl
– year: 1996
– start-page: 171
  year: 2015
  end-page: 176
– volume: 8
  start-page: 18273
  issue: 3
  year: 2016
  end-page: 18283
  article-title: Performance analysis of original particle swarm optimization and modified PSO technique for robust classification of epilepsy risk level from EEE signals
  publication-title: Int J Pharm Technol (IJPT)
– volume: 29
  start-page: 17
  issue: 1
  year: 2013
  end-page: 35
  article-title: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems
  publication-title: Eng Comput
– volume: 40
  start-page: 2331
  issue: 10
  year: 2002
  end-page: 2338
  article-title: Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction
  publication-title: IEEE Trans Geosci Remote Sens
– volume: 78
  start-page: 12805
  issue: 10
  year: 2019
  end-page: 12834
  article-title: Mammogram classification using contourlet features with forest optimization‐based feature selection approach
  publication-title: Multimed Tools Appl
– start-page: 1
  year: 2017
  end-page: 6
– volume: 4
  start-page: 1942
  year: 1995
  end-page: 1948
– volume: 46
  start-page: 106
  year: 2016
  end-page: 121
  article-title: Classifier ensemble generation and selection with multiple feature representations for classification applications in computer‐aided detection and diagnosis on mammography
  publication-title: Expert Syst Appl
– volume: 1069
  start-page: 375
  year: 1994
  end-page: 378
  article-title: The Mammographic Image Analysis Society Digital Mammogram Database
  publication-title: Exerpta Medica Int Congr Ser
– year: 2006
– volume: 20
  start-page: 179
  issue: 2
  year: 2005
  end-page: 182
  article-title: Chaotic optimization algorithm based on Tent map
  publication-title: Control Decision
– volume: 20
  start-page: 37
  issue: 1
  year: 1960
  end-page: 46
  article-title: A coefficient of agreement for nominal scales
  publication-title: Educ Psychol Meas
– volume: 4
  start-page: 65
  issue: 2
  year: 1994
  end-page: 85
  article-title: A genetic algorithm tutorial
  publication-title: Stat Comput
– volume: 13
  start-page: 464
  year: 2012
  end-page: 483
  article-title: Bat algorithm: a novel approach for global engineering optimization
  publication-title: Eng Comput
– volume: 2
  start-page: 387
  issue: 2
  year: 2013
  end-page: 389
  article-title: A review on Otsu image segmentation algorithm
  publication-title: Int J Adv Res Comput Eng Technol (IJARCET)
– volume: 76
  start-page: 60
  issue: 2
  year: 2001
  end-page: 68
– volume: 20
  start-page: 2333
  issue: 8
  year: 2019
  article-title: Comparison analysis of linear discriminant analysis and cuckoo‐search algorithm in the classification of breast cancer from digital mammograms
  publication-title: Asian Pacific J Cancer Prevent (APJCP)
– volume: 01
  start-page: 69
  year: 2012
  ident: e_1_2_9_31_1
  article-title: Optimizing artificial neural networks using cat swarm optimization algorithm
  publication-title: Int J Intell Syst Appl
– ident: e_1_2_9_25_1
  doi: 10.1016/j.asoc.2015.07.005
– ident: e_1_2_9_6_1
  doi: 10.1109/TEVC.2014.2373386
– ident: e_1_2_9_8_1
  doi: 10.1007/BF00175354
– start-page: 79
  volume-title: Nature‐Inspired Metaheuristic Algorithms
  year: 2008
  ident: e_1_2_9_13_1
– ident: e_1_2_9_17_1
  doi: 10.1007/s11042-018-5804-0
– ident: e_1_2_9_11_1
  doi: 10.1177/003754970107600201
– ident: e_1_2_9_14_1
  doi: 10.1007/978-3-540-72950-1_77
– ident: e_1_2_9_10_1
  doi: 10.1007/s00366-011-0241-y
– ident: e_1_2_9_18_1
  doi: 10.1007/978-981-10-7512-4_77
– ident: e_1_2_9_47_1
  doi: 10.1109/ICICIC.2007.209
– volume: 2
  start-page: 387
  issue: 2
  year: 2013
  ident: e_1_2_9_38_1
  article-title: A review on Otsu image segmentation algorithm
  publication-title: Int J Adv Res Comput Eng Technol (IJARCET)
– ident: e_1_2_9_42_1
  doi: 10.1109/ISITIA.2016.7828626
– ident: e_1_2_9_20_1
  doi: 10.1155/2017/3640901
– ident: e_1_2_9_16_1
  doi: 10.1093/oso/9780195099713.001.0001
– ident: e_1_2_9_43_1
  doi: 10.1016/j.eswa.2017.05.052
– volume: 12
  start-page: 293
  issue: 3
  year: 1974
  ident: e_1_2_9_7_1
  article-title: Augmented threaded index method for network optimization
  publication-title: INFOR Inf Syst Operat Res
– volume: 1
  start-page: 179
  issue: 1
  year: 2010
  ident: e_1_2_9_41_1
  article-title: Performance evaluation of various wavelets for image compression of natural and artificial images
  publication-title: Int J Comput Sci Commun
– ident: e_1_2_9_4_1
  doi: 10.1148/radiol.2018181371
– volume: 3
  start-page: 10333
  issue: 3
  year: 2014
  ident: e_1_2_9_36_1
  article-title: A study on preprocessing a mammogram image using Adaptive Median Filter
  publication-title: Int J Innovat Res Sci Eng Technol
– ident: e_1_2_9_26_1
  doi: 10.1109/IC3.2015.7346674
– ident: e_1_2_9_2_1
  doi: 10.3322/caac.21583
– volume: 14
  start-page: 96
  issue: 1
  year: 2007
  ident: e_1_2_9_50_1
  article-title: Comparison of genetic algorithm and neural network (MLP) in patient specific classification of epilepsy risk levels from EEG signals
  publication-title: J Eng Lett
– ident: e_1_2_9_40_1
  doi: 10.1109/TGRS.2002.804721
– volume: 204
  start-page: 186
  year: 2011
  ident: e_1_2_9_29_1
  article-title: A comparative study of CSO and PSO trained artificial neural network for stock market prediction
  publication-title: Trends Computer Sci Eng Inf Technol Part Commun Computer Inf Sci Book Series (CCIS)
– ident: e_1_2_9_39_1
  doi: 10.1109/78.157290
– ident: e_1_2_9_22_1
  doi: 10.1109/TBME.2014.2365494
– ident: e_1_2_9_45_1
  doi: 10.1016/j.compstruc.2016.03.001
– ident: e_1_2_9_48_1
  doi: 10.1007/s00521-014-1597-x
– ident: e_1_2_9_35_1
  doi: 10.1038/sdata.2017.177
– ident: e_1_2_9_19_1
  doi: 10.1109/MeMeA.2018.8438650
– volume: 8
  start-page: 18273
  issue: 3
  year: 2016
  ident: e_1_2_9_49_1
  article-title: Performance analysis of original particle swarm optimization and modified PSO technique for robust classification of epilepsy risk level from EEE signals
  publication-title: Int J Pharm Technol (IJPT)
– volume-title: Cancer Diagnosis via Linear Programming
  year: 1990
  ident: e_1_2_9_56_1
– volume: 20
  start-page: 179
  issue: 2
  year: 2005
  ident: e_1_2_9_46_1
  article-title: Chaotic optimization algorithm based on Tent map
  publication-title: Control Decision
– volume: 1069
  start-page: 375
  year: 1994
  ident: e_1_2_9_34_1
  article-title: The Mammographic Image Analysis Society Digital Mammogram Database
  publication-title: Exerpta Medica Int Congr Ser
– ident: e_1_2_9_3_1
  doi: 10.1001/jama.2018.19323
– volume-title: Evolutionary Computation for Modeling and Optimization
  year: 2006
  ident: e_1_2_9_15_1
– ident: e_1_2_9_23_1
  doi: 10.1016/j.eswa.2015.10.014
– ident: e_1_2_9_52_1
  doi: 10.1080/01431160412331269698
– ident: e_1_2_9_12_1
  doi: 10.1108/02644401211235834
– ident: e_1_2_9_32_1
  doi: 10.31557/APJCP.2019.20.8.2333
– ident: e_1_2_9_5_1
  doi: 10.1177/0284185118770917
– ident: e_1_2_9_24_1
  doi: 10.1186/1475-925X-10-55
– ident: e_1_2_9_54_1
  doi: 10.1007/978-3-662-44851-9_15
– ident: e_1_2_9_44_1
  doi: 10.2307/2683673
– start-page: 1
  volume-title: An Exact Analytical Relation Among Recall, Precision, and Classification Accuracy in Information Retrieval
  year: 2002
  ident: e_1_2_9_53_1
– ident: e_1_2_9_55_1
  doi: 10.1177/001316446002000104
– ident: e_1_2_9_33_1
  doi: 10.1002/ima.22364
– ident: e_1_2_9_21_1
  doi: 10.1109/ETCM.2017.8247515
– ident: e_1_2_9_51_1
  doi: 10.1371/journal.pone.0177678
– ident: e_1_2_9_9_1
  doi: 10.1109/ICNN.1995.488968
– volume: 19
  start-page: 279
  issue: 3
  year: 2009
  ident: e_1_2_9_30_1
  article-title: Neural networks training by artificial bee colony algorithm on pattern classification
  publication-title: Neural Netw World
– ident: e_1_2_9_28_1
  doi: 10.1109/SOCPAR.2015.7492775
– ident: e_1_2_9_37_1
  doi: 10.1007/s10278-011-9365-2
– volume: 205
  start-page: 716
  issue: 2
  year: 2008
  ident: e_1_2_9_27_1
  article-title: An improved feature selection method based on ant colony optimization (ACO) evaluated on face recognition system
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2008.05.115
SSID ssj0011505
Score 2.3447924
Snippet The survival rates of breast cancer are going up due to the emerging increase in its screening and diagnosis methods. However, breast cancer is yet the most...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 921
SubjectTerms Breast cancer
Classification
crow‐search algorithm and chaotic maps
Datasets
Decomposition
Digital imaging
Discrete Wavelet Transform
Feature extraction
Image analysis
Image classification
mammogram images
Mammography
Medical imaging
Optimization
Optimization algorithms
Randomness
Screening
Search algorithms
wavelet
Wavelet transforms
Title A novel improved crow‐search algorithm to classify the severity in digital mammograms
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fima.22493
https://www.proquest.com/docview/2522065118
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCO Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1098-1098
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0011505
  issn: 0899-9457
  databaseCode: ABDBF
  dateStart: 19890601
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1098-1098
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0011505
  issn: 0899-9457
  databaseCode: ADMLS
  dateStart: 19890601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0899-9457
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1098-1098
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011505
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KIOjBR1WsVlnEg5e0eSeLpyKWKtSDWOxBCNlHarBNpE0VPfkT_I3-Emc3TVpFQbzlMHnszszON8PkG4SOOWEQeDxbc4nNNTvkvkZdzjUIbsyjph4RLuuQ3Su307Mv-06_gk6Lf2Fyfoiy4CY9Q53X0sFDOmnOSUNjSRsEyYNk-jQsV6VT1yV1lAQ6qn3RlwyUtuMVrEK62Szv_BqL5gBzEaaqONNeR3fFF-btJQ-NaUYb7PUbeeM_l7CB1mb4E7dyg9lEFZFU0eoCK2EVLauuUDbZQrctnKRPYohjVXoQHMNCnj_e3nP_wOFwkI7j7H6EsxQzicPj6AUDpMQQb4Uci4fjBPN4ICeT4FEINi-bwSbbqNc-vznraLNJDBqTs600QWxfeCQEdKbzyIuITuFcsozIg2zN0Cl1qBnC0ck55ZQwFoWAAiRTmcUjIhxm7aClJE3ELsKmDVIO80LX5TaB7NIgHvO55eiRawrm19BJoZOAzWjK5bSMYZATLJsB7Fqgdq2GjkrRx5yb4yeheqHYYOaek8AE1AnYC5IreJ3S0O8PCC66LXWx93fRfbRiyt4XVa2po6VsPBUHAF4yeqis9BOPc-t9
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsNADLVYhIADO6KsI8SBS2iaTJaRuFQIVJZyQCC4oCizBCJKitoAghOfwDfyJXgmTVkEEuKWg7PM2B4_W84zwIZkAgNPQC2fUWnRWIYW96W0MLiJgDt2wqSuQzaP_cYZPbjwLgZgu_wXpuCH6BfctGeY81o7uC5IVz9YQ1PNG4TZgzsIw9THPEVDopM-eZSGOqaBMdQclNQLSl4h26n2b_0ajT4g5megaiLN3iRclt9YNJjcbN3nfEs8f6Nv_O8ipmCiB0FJvbCZaRhQ2QyMfyImnIER0xgqurNwXidZ-0G1SGqqD0oSXMnj28tr4SIkbl21O2l-fUvyNhEaiqfJE0FUSTDkKj0Zj6QZkemVHk5CbmM0e90P1p2Ds73d052G1RvGYAk93spSjIYqYDECNFsmQcJsjkeTW0sCTNhqNuced2I8PaXkkjMhkhiBgCYrc2XClCfceRjK2plaAOJQlPJEEPu-pAwVV2OBCKXr2YnvKBFWYLNUSiR6TOV6YEYrKjiWnQh3LTK7VoH1vuhdQc_xk9Byqdmo56HdyEHgifAL8yt8nVHR7w-I9pt1c7H4d9E1GG2cNo-io_3jwyUYc3QrjCneLMNQ3rlXK4hlcr5qTPYdVE7vng
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB6lIKr2QIGCSpvCCvXQixPHXj9W6iVqGoVCEKpAzQVZ3lewGmxETKv21J_Ab-SXMLuOE6ioVPXmw_ixOzM734zG3wC8k0xg4ImoEzIqHZrK2OGhlA4GNxFxz9VMmjrk8CgcnNLPo2DUgA_1vzAVP8S84GY8w57XxsHVpdTtBWtoZniDMHvwn8AyDVhsGvp6X-bkUQbq2AbG2HBQ0iCqeYVcrz2_9WE0WkDM-0DVRpr-Czirv7FqMPnWui55S_z6g77xfxexBqszCEq6lc2sQ0PlG_D8HjHhBqzYxlAxfQlfuyQvvqsJyWz1QUmCK_lx-_umchGSTsbFVVaeX5CyIMJA8Uz_JIgqCYZcZSbjkSwnMhub4STkIkWzN_1g00047X86-ThwZsMYHGHGWzmK0VhFLEWA5kodaeZyPJr8jo4wYeu4nAfcS_H0lJJLzoTQKQIBQ1bmS81UIPwtWMqLXL0C4lGUCkSUhqGkDBPMDotELP3A1aGnRLwN72ulJGLGVG4GZkySimPZS3DXErtr27A3F72s6DkeE2rWmk1mHjpNPASeCL8wv8LXWRX9_QHJ_rBrL17_u-guPD3u9ZPD_aODN_DMM50wtnbThKXy6lq9RShT8h1rsXcS1-8i
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+improved+crow%E2%80%90search+algorithm+to+classify+the+severity+in+digital+mammograms&rft.jtitle=International+journal+of+imaging+systems+and+technology&rft.au=Sannasi+Chakravarthy%2C+S+R&rft.au=Rajaguru%2C+Harikumar&rft.date=2021-06-01&rft.issn=0899-9457&rft.eissn=1098-1098&rft.volume=31&rft.issue=2&rft.spage=921&rft.epage=954&rft_id=info:doi/10.1002%2Fima.22493&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ima_22493
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-9457&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-9457&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-9457&client=summon