A novel improved crow‐search algorithm to classify the severity in digital mammograms
The survival rates of breast cancer are going up due to the emerging increase in its screening and diagnosis methods. However, breast cancer is yet the most intrusive disease found in women. Many techniques are emerging during recent years for the investigation of breast cancer using imaging modalit...
Saved in:
| Published in | International journal of imaging systems and technology Vol. 31; no. 2; pp. 921 - 954 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken, USA
John Wiley & Sons, Inc
01.06.2021
Wiley Subscription Services, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0899-9457 1098-1098 |
| DOI | 10.1002/ima.22493 |
Cover
| Abstract | The survival rates of breast cancer are going up due to the emerging increase in its screening and diagnosis methods. However, breast cancer is yet the most intrusive disease found in women. Many techniques are emerging during recent years for the investigation of breast cancer using imaging modalities. The paper intends to categorize the severity present in the digital mammography images as either benign (B) or malignant (M) using an improved crow‐search optimization algorithm (ImCSOA). In the literature, the CSOA is generally used for solving several feature selection and numerical optimization problems. The objective is to utilize this popular optimization algorithm for the problem of biomedical image classification. However, if this algorithm is applied directly to classification problems, then it will result in poor classification of data. Hence, the original CSO (OCSO) algorithm undergoes suitable enhancements using a novel controlled parameter tuning, control operator and chaotic‐maps‐based controlled randomness. Four distinct chaotic maps are used for controlling the randomness in the OCSO algorithm. The mammogram images are obtained from the Mammographic Image Analysis Society and Digital Database for Screening Mammography data sets for the evaluation. The classification is accomplished through discrete wavelet transform‐based statistical features that are extracted at two levels [level 4 (L4) and level 6 (L6)] of decomposition. For both data sets, the ImCSOA with L4 and L6 decomposed bior4.4 wavelet features provides the maximum accuracy of around 85% to 86%, which is approximately 62% to 88% better than the OCSO algorithm with L4 and L6 decomposed bior4.4 wavelet features. |
|---|---|
| AbstractList | The survival rates of breast cancer are going up due to the emerging increase in its screening and diagnosis methods. However, breast cancer is yet the most intrusive disease found in women. Many techniques are emerging during recent years for the investigation of breast cancer using imaging modalities. The paper intends to categorize the severity present in the digital mammography images as either benign (B) or malignant (M) using an improved crow‐search optimization algorithm (ImCSOA). In the literature, the CSOA is generally used for solving several feature selection and numerical optimization problems. The objective is to utilize this popular optimization algorithm for the problem of biomedical image classification. However, if this algorithm is applied directly to classification problems, then it will result in poor classification of data. Hence, the original CSO (OCSO) algorithm undergoes suitable enhancements using a novel controlled parameter tuning, control operator and chaotic‐maps‐based controlled randomness. Four distinct chaotic maps are used for controlling the randomness in the OCSO algorithm. The mammogram images are obtained from the Mammographic Image Analysis Society and Digital Database for Screening Mammography data sets for the evaluation. The classification is accomplished through discrete wavelet transform‐based statistical features that are extracted at two levels [level 4 (L4) and level 6 (L6)] of decomposition. For both data sets, the ImCSOA with L4 and L6 decomposed bior4.4 wavelet features provides the maximum accuracy of around 85% to 86%, which is approximately 62% to 88% better than the OCSO algorithm with L4 and L6 decomposed bior4.4 wavelet features. |
| Author | Rajaguru, Harikumar Sannasi Chakravarthy, S R |
| Author_xml | – sequence: 1 givenname: S R orcidid: 0000-0002-0162-7206 surname: Sannasi Chakravarthy fullname: Sannasi Chakravarthy, S R email: elektroniqz@gmail.com organization: Bannari Amman Institute of Technology – sequence: 2 givenname: Harikumar surname: Rajaguru fullname: Rajaguru, Harikumar organization: Bannari Amman Institute of Technology |
| BookMark | eNp9UMtOAjEUbQwmArrwD5q4cjHQx5SZLgnxQYJxo3HZdDotlMxMsR0gs-MT_Ea_xCKuTHRzH7nnnnvPGYBe4xoNwDVGI4wQGdtajghJOT0DfYx4nhxDD_RRznnCU5ZdgEEIa4QwZoj1wdsUNm6nK2jrjY9FCZV3-8_DR9DSqxWU1dJ5265q2DqoKhmCNR1sVxoGvdNx0kHbwNIubSsrWMu6dksv63AJzo2sgr76yUPwen_3MntMFs8P89l0kSjCM5ponuY645JhjEqTGY6KbEIpNhnnOUZFwQoiGc3LsigLrpSROaN4kma0NFwzRYfg5sQbv3_f6tCKtdv6Jp4UhBGCJpE5j6jbEyqKC8FrIzY-OuU7gZE4-iZiJ759i9jxL6yK2lrrmtZLW_23sbeV7v6mFvOn6WnjC2etgmM |
| CitedBy_id | crossref_primary_10_1007_s11042_023_15265_5 crossref_primary_10_1016_j_jksuci_2021_11_016 crossref_primary_10_1002_ima_22570 crossref_primary_10_1002_ima_22781 crossref_primary_10_3390_fermentation10010012 crossref_primary_10_1002_cpe_7231 crossref_primary_10_1007_s11227_024_06036_6 crossref_primary_10_1186_s12880_024_01394_2 |
| Cites_doi | 10.1016/j.asoc.2015.07.005 10.1109/TEVC.2014.2373386 10.1007/BF00175354 10.1007/s11042-018-5804-0 10.1177/003754970107600201 10.1007/978-3-540-72950-1_77 10.1007/s00366-011-0241-y 10.1007/978-981-10-7512-4_77 10.1109/ICICIC.2007.209 10.1109/ISITIA.2016.7828626 10.1155/2017/3640901 10.1093/oso/9780195099713.001.0001 10.1016/j.eswa.2017.05.052 10.1148/radiol.2018181371 10.1109/IC3.2015.7346674 10.3322/caac.21583 10.1109/TGRS.2002.804721 10.1109/78.157290 10.1109/TBME.2014.2365494 10.1016/j.compstruc.2016.03.001 10.1007/s00521-014-1597-x 10.1038/sdata.2017.177 10.1109/MeMeA.2018.8438650 10.1001/jama.2018.19323 10.1016/j.eswa.2015.10.014 10.1080/01431160412331269698 10.1108/02644401211235834 10.31557/APJCP.2019.20.8.2333 10.1177/0284185118770917 10.1186/1475-925X-10-55 10.1007/978-3-662-44851-9_15 10.2307/2683673 10.1177/001316446002000104 10.1002/ima.22364 10.1109/ETCM.2017.8247515 10.1371/journal.pone.0177678 10.1109/ICNN.1995.488968 10.1109/SOCPAR.2015.7492775 10.1007/s10278-011-9365-2 10.1016/j.amc.2008.05.115 |
| ContentType | Journal Article |
| Copyright | 2020 Wiley Periodicals LLC 2021 Wiley Periodicals LLC. |
| Copyright_xml | – notice: 2020 Wiley Periodicals LLC – notice: 2021 Wiley Periodicals LLC. |
| DBID | AAYXX CITATION |
| DOI | 10.1002/ima.22493 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1098-1098 |
| EndPage | 954 |
| ExternalDocumentID | 10_1002_ima_22493 IMA22493 |
| Genre | article |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HDBZQ HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION |
| ID | FETCH-LOGICAL-c2973-e948e79a5110df7f90b76331f799810bb5b2a538ddbdb9ccfa85316473df9e5c3 |
| IEDL.DBID | DR2 |
| ISSN | 0899-9457 |
| IngestDate | Fri Jul 25 06:11:52 EDT 2025 Wed Oct 01 02:12:03 EDT 2025 Thu Apr 24 23:09:44 EDT 2025 Wed Jan 22 16:29:31 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2973-e948e79a5110df7f90b76331f799810bb5b2a538ddbdb9ccfa85316473df9e5c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0162-7206 |
| PQID | 2522065118 |
| PQPubID | 1026352 |
| PageCount | 34 |
| ParticipantIDs | proquest_journals_2522065118 crossref_primary_10_1002_ima_22493 crossref_citationtrail_10_1002_ima_22493 wiley_primary_10_1002_ima_22493_IMA22493 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | June 2021 2021-06-00 20210601 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: New York |
| PublicationTitle | International journal of imaging systems and technology |
| PublicationYear | 2021 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2015; 35 2013; 29 2017; 86 2019; 290 1974; 12 2017; 4 2013; 2 2005; 20 2014; 25 2011; 10 2005; 26 2012; 13 2014; 62 2019; 321 2011; 204 2019; 60 2014; 3 2010; 1 2019; 20 1990 2002; 40 2019; 69 2011; 24 2014; 19 2008; 20 2009; 19 2016; 46 1992; 40 2017; 2017 2019; 30 2019; 78 1994; 1069 2007 1996 2006 2008; 205 2016; 169 2002 1995; 4 2007; 14 1960; 20 1975; 29 2017; 12 2018 2017 2016 2015 2012; 01 2016; 8 1994; 4 2014; 8725 2001; 76 e_1_2_9_52_1 Kale VU (e_1_2_9_41_1) 2010; 1 e_1_2_9_10_1 e_1_2_9_35_1 Mangasarian OL (e_1_2_9_56_1) 1990 e_1_2_9_12_1 Ashlock D (e_1_2_9_15_1) 2006 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 Yang XS (e_1_2_9_13_1) 2008 e_1_2_9_16_1 Karaboga D (e_1_2_9_30_1) 2009; 19 e_1_2_9_37_1 Vala HJ (e_1_2_9_38_1) 2013; 2 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 Glover F (e_1_2_9_7_1) 1974; 12 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_28_1 Chittineni S (e_1_2_9_29_1) 2011; 204 e_1_2_9_47_1 Kanan HR (e_1_2_9_27_1) 2008; 205 Sundaram KM (e_1_2_9_36_1) 2014; 3 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_32_1 e_1_2_9_55_1 Yusiong JPT (e_1_2_9_31_1) 2012; 01 Harikumar R (e_1_2_9_49_1) 2016; 8 e_1_2_9_17_1 e_1_2_9_19_1 Shan L (e_1_2_9_46_1) 2005; 20 e_1_2_9_42_1 e_1_2_9_40_1 Alvarez SA (e_1_2_9_53_1) 2002 e_1_2_9_21_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 Sukanesh R (e_1_2_9_50_1) 2007; 14 e_1_2_9_25_1 Suckling J (e_1_2_9_34_1) 1994; 1069 e_1_2_9_48_1 |
| References_xml | – volume: 321 start-page: 288 issue: 3 year: 2019 end-page: 300 article-title: Breast cancer treatment: a review publication-title: JAMA – volume: 26 start-page: 217 issue: 1 year: 2005 end-page: 222 article-title: Random forest classifier for remote sensing classification publication-title: Int J Remote Sens – volume: 24 start-page: 754 issue: 5 year: 2011 end-page: 763 article-title: Marker‐controlled watershed for lesion segmentation in mammograms publication-title: J Digit Imaging – volume: 29 start-page: 3 issue: 1 year: 1975 end-page: 20 article-title: Ridge regression in practice publication-title: Am Stat – volume: 10 start-page: 55 issue: 1 year: 2011 article-title: Classification of breast tissue in mammograms using efficient coding publication-title: Biomed Eng Online – volume: 204 start-page: 186 year: 2011 end-page: 195 article-title: A comparative study of CSO and PSO trained artificial neural network for stock market prediction publication-title: Trends Computer Sci Eng Inf Technol Part Commun Computer Inf Sci Book Series (CCIS) – volume: 12 start-page: 1 issue: 6 year: 2017 end-page: 17 article-title: Optimal classifier for imbalanced data using Matthews correlation coefficient metric publication-title: PLoS One – volume: 20 start-page: 79 year: 2008 end-page: 90 – volume: 01 start-page: 69 year: 2012 end-page: 80 article-title: Optimizing artificial neural networks using cat swarm optimization algorithm publication-title: Int J Intell Syst Appl – volume: 2017 start-page: 1 year: 2017 end-page: 11 article-title: Three‐class mammogram classification based on descriptive CNN features publication-title: Biomed Res Int – start-page: 475 year: 2007 – start-page: 787 year: 2018 end-page: 795 – start-page: 1 year: 2002 end-page: 22 – year: 1990 – volume: 4 start-page: 170177 year: 2017 article-title: A curated mammography data set for use in computer‐aided detection and diagnosis research publication-title: Sci Data – volume: 25 start-page: 1077 issue: 5 year: 2014 end-page: 1097 article-title: Biogeography‐based optimisation with chaos publication-title: Neural Comput Appl – volume: 30 start-page: 1 year: 2019 end-page: 21 article-title: Detection and classification of microcalcification from digital mammograms with firefly algorithm, extreme learning machine and nonlinear regression models: A comparison publication-title: Int J Imaging Syst Technol – volume: 62 start-page: 783 issue: 2 year: 2014 end-page: 792 article-title: Computer‐aided diagnosis of mammographic masses using scalable image retrieval publication-title: IEEE Trans Biomed Eng – volume: 3 start-page: 10333 issue: 3 year: 2014 end-page: 10337 article-title: A study on preprocessing a mammogram image using Adaptive Median Filter publication-title: Int J Innovat Res Sci Eng Technol – volume: 19 start-page: 694 issue: 5 year: 2014 end-page: 716 article-title: An evolutionary many‐objective optimization algorithm based on dominance and decomposition publication-title: IEEE Trans Evol Comput – volume: 169 start-page: 1 year: 2016 end-page: 2 article-title: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm publication-title: Comput Struct – volume: 69 start-page: 438 issue: 6 year: 2019 end-page: 451 article-title: Breast cancer statistics, 2019 publication-title: CA Cancer J Clin – start-page: 1 year: 2018 end-page: 5 – volume: 205 start-page: 716 issue: 2 year: 2008 end-page: 725 article-title: An improved feature selection method based on ant colony optimization (ACO) evaluated on face recognition system publication-title: Appl Math Comput – volume: 12 start-page: 293 issue: 3 year: 1974 end-page: 298 article-title: Augmented threaded index method for network optimization publication-title: INFOR Inf Syst Operat Res – year: 2015 – volume: 40 start-page: 2464 issue: 10 year: 1992 end-page: 2482 article-title: The discrete wavelet transform: wedding the a Trous and Mallat algorithms publication-title: IEEE Trans Signal Process – volume: 290 start-page: 305 issue: 2 year: 2019 end-page: 314 article-title: Detection of breast cancer with mammography: effect of an artificial intelligence support system publication-title: Radiology – volume: 8725 start-page: 225 year: 2014 end-page: 239 article-title: Thresholding classifiers to maximize F1 score publication-title: Mach Learn Knowl Discov Databases – volume: 14 start-page: 96 issue: 1 year: 2007 end-page: 104 article-title: Comparison of genetic algorithm and neural network (MLP) in patient specific classification of epilepsy risk levels from EEG signals publication-title: J Eng Lett – volume: 60 start-page: 13 issue: 1 year: 2019 end-page: 18 article-title: The efficacy of using computer‐aided detection (CAD) for detection of breast cancer in mammography screening: a systematic review publication-title: Acta Radiol – start-page: 17 year: 2016 end-page: 20 – volume: 35 start-page: 629 year: 2015 end-page: 636 article-title: Improved particle swarm optimization algorithm and its application in text feature selection publication-title: Appl Soft Comput – start-page: 789 year: 2007 end-page: 798 – volume: 19 start-page: 279 issue: 3 year: 2009 end-page: 292 article-title: Neural networks training by artificial bee colony algorithm on pattern classification publication-title: Neural Netw World – volume: 1 start-page: 179 issue: 1 year: 2010 end-page: 184 article-title: Performance evaluation of various wavelets for image compression of natural and artificial images publication-title: Int J Comput Sci Commun – volume: 86 start-page: 99 year: 2017 end-page: 112 article-title: Non‐linear classifiers applied to EEG analysis for epilepsy seizure detection publication-title: Expert Syst Appl – year: 1996 – start-page: 171 year: 2015 end-page: 176 – volume: 8 start-page: 18273 issue: 3 year: 2016 end-page: 18283 article-title: Performance analysis of original particle swarm optimization and modified PSO technique for robust classification of epilepsy risk level from EEE signals publication-title: Int J Pharm Technol (IJPT) – volume: 29 start-page: 17 issue: 1 year: 2013 end-page: 35 article-title: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems publication-title: Eng Comput – volume: 40 start-page: 2331 issue: 10 year: 2002 end-page: 2338 article-title: Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction publication-title: IEEE Trans Geosci Remote Sens – volume: 78 start-page: 12805 issue: 10 year: 2019 end-page: 12834 article-title: Mammogram classification using contourlet features with forest optimization‐based feature selection approach publication-title: Multimed Tools Appl – start-page: 1 year: 2017 end-page: 6 – volume: 4 start-page: 1942 year: 1995 end-page: 1948 – volume: 46 start-page: 106 year: 2016 end-page: 121 article-title: Classifier ensemble generation and selection with multiple feature representations for classification applications in computer‐aided detection and diagnosis on mammography publication-title: Expert Syst Appl – volume: 1069 start-page: 375 year: 1994 end-page: 378 article-title: The Mammographic Image Analysis Society Digital Mammogram Database publication-title: Exerpta Medica Int Congr Ser – year: 2006 – volume: 20 start-page: 179 issue: 2 year: 2005 end-page: 182 article-title: Chaotic optimization algorithm based on Tent map publication-title: Control Decision – volume: 20 start-page: 37 issue: 1 year: 1960 end-page: 46 article-title: A coefficient of agreement for nominal scales publication-title: Educ Psychol Meas – volume: 4 start-page: 65 issue: 2 year: 1994 end-page: 85 article-title: A genetic algorithm tutorial publication-title: Stat Comput – volume: 13 start-page: 464 year: 2012 end-page: 483 article-title: Bat algorithm: a novel approach for global engineering optimization publication-title: Eng Comput – volume: 2 start-page: 387 issue: 2 year: 2013 end-page: 389 article-title: A review on Otsu image segmentation algorithm publication-title: Int J Adv Res Comput Eng Technol (IJARCET) – volume: 76 start-page: 60 issue: 2 year: 2001 end-page: 68 – volume: 20 start-page: 2333 issue: 8 year: 2019 article-title: Comparison analysis of linear discriminant analysis and cuckoo‐search algorithm in the classification of breast cancer from digital mammograms publication-title: Asian Pacific J Cancer Prevent (APJCP) – volume: 01 start-page: 69 year: 2012 ident: e_1_2_9_31_1 article-title: Optimizing artificial neural networks using cat swarm optimization algorithm publication-title: Int J Intell Syst Appl – ident: e_1_2_9_25_1 doi: 10.1016/j.asoc.2015.07.005 – ident: e_1_2_9_6_1 doi: 10.1109/TEVC.2014.2373386 – ident: e_1_2_9_8_1 doi: 10.1007/BF00175354 – start-page: 79 volume-title: Nature‐Inspired Metaheuristic Algorithms year: 2008 ident: e_1_2_9_13_1 – ident: e_1_2_9_17_1 doi: 10.1007/s11042-018-5804-0 – ident: e_1_2_9_11_1 doi: 10.1177/003754970107600201 – ident: e_1_2_9_14_1 doi: 10.1007/978-3-540-72950-1_77 – ident: e_1_2_9_10_1 doi: 10.1007/s00366-011-0241-y – ident: e_1_2_9_18_1 doi: 10.1007/978-981-10-7512-4_77 – ident: e_1_2_9_47_1 doi: 10.1109/ICICIC.2007.209 – volume: 2 start-page: 387 issue: 2 year: 2013 ident: e_1_2_9_38_1 article-title: A review on Otsu image segmentation algorithm publication-title: Int J Adv Res Comput Eng Technol (IJARCET) – ident: e_1_2_9_42_1 doi: 10.1109/ISITIA.2016.7828626 – ident: e_1_2_9_20_1 doi: 10.1155/2017/3640901 – ident: e_1_2_9_16_1 doi: 10.1093/oso/9780195099713.001.0001 – ident: e_1_2_9_43_1 doi: 10.1016/j.eswa.2017.05.052 – volume: 12 start-page: 293 issue: 3 year: 1974 ident: e_1_2_9_7_1 article-title: Augmented threaded index method for network optimization publication-title: INFOR Inf Syst Operat Res – volume: 1 start-page: 179 issue: 1 year: 2010 ident: e_1_2_9_41_1 article-title: Performance evaluation of various wavelets for image compression of natural and artificial images publication-title: Int J Comput Sci Commun – ident: e_1_2_9_4_1 doi: 10.1148/radiol.2018181371 – volume: 3 start-page: 10333 issue: 3 year: 2014 ident: e_1_2_9_36_1 article-title: A study on preprocessing a mammogram image using Adaptive Median Filter publication-title: Int J Innovat Res Sci Eng Technol – ident: e_1_2_9_26_1 doi: 10.1109/IC3.2015.7346674 – ident: e_1_2_9_2_1 doi: 10.3322/caac.21583 – volume: 14 start-page: 96 issue: 1 year: 2007 ident: e_1_2_9_50_1 article-title: Comparison of genetic algorithm and neural network (MLP) in patient specific classification of epilepsy risk levels from EEG signals publication-title: J Eng Lett – ident: e_1_2_9_40_1 doi: 10.1109/TGRS.2002.804721 – volume: 204 start-page: 186 year: 2011 ident: e_1_2_9_29_1 article-title: A comparative study of CSO and PSO trained artificial neural network for stock market prediction publication-title: Trends Computer Sci Eng Inf Technol Part Commun Computer Inf Sci Book Series (CCIS) – ident: e_1_2_9_39_1 doi: 10.1109/78.157290 – ident: e_1_2_9_22_1 doi: 10.1109/TBME.2014.2365494 – ident: e_1_2_9_45_1 doi: 10.1016/j.compstruc.2016.03.001 – ident: e_1_2_9_48_1 doi: 10.1007/s00521-014-1597-x – ident: e_1_2_9_35_1 doi: 10.1038/sdata.2017.177 – ident: e_1_2_9_19_1 doi: 10.1109/MeMeA.2018.8438650 – volume: 8 start-page: 18273 issue: 3 year: 2016 ident: e_1_2_9_49_1 article-title: Performance analysis of original particle swarm optimization and modified PSO technique for robust classification of epilepsy risk level from EEE signals publication-title: Int J Pharm Technol (IJPT) – volume-title: Cancer Diagnosis via Linear Programming year: 1990 ident: e_1_2_9_56_1 – volume: 20 start-page: 179 issue: 2 year: 2005 ident: e_1_2_9_46_1 article-title: Chaotic optimization algorithm based on Tent map publication-title: Control Decision – volume: 1069 start-page: 375 year: 1994 ident: e_1_2_9_34_1 article-title: The Mammographic Image Analysis Society Digital Mammogram Database publication-title: Exerpta Medica Int Congr Ser – ident: e_1_2_9_3_1 doi: 10.1001/jama.2018.19323 – volume-title: Evolutionary Computation for Modeling and Optimization year: 2006 ident: e_1_2_9_15_1 – ident: e_1_2_9_23_1 doi: 10.1016/j.eswa.2015.10.014 – ident: e_1_2_9_52_1 doi: 10.1080/01431160412331269698 – ident: e_1_2_9_12_1 doi: 10.1108/02644401211235834 – ident: e_1_2_9_32_1 doi: 10.31557/APJCP.2019.20.8.2333 – ident: e_1_2_9_5_1 doi: 10.1177/0284185118770917 – ident: e_1_2_9_24_1 doi: 10.1186/1475-925X-10-55 – ident: e_1_2_9_54_1 doi: 10.1007/978-3-662-44851-9_15 – ident: e_1_2_9_44_1 doi: 10.2307/2683673 – start-page: 1 volume-title: An Exact Analytical Relation Among Recall, Precision, and Classification Accuracy in Information Retrieval year: 2002 ident: e_1_2_9_53_1 – ident: e_1_2_9_55_1 doi: 10.1177/001316446002000104 – ident: e_1_2_9_33_1 doi: 10.1002/ima.22364 – ident: e_1_2_9_21_1 doi: 10.1109/ETCM.2017.8247515 – ident: e_1_2_9_51_1 doi: 10.1371/journal.pone.0177678 – ident: e_1_2_9_9_1 doi: 10.1109/ICNN.1995.488968 – volume: 19 start-page: 279 issue: 3 year: 2009 ident: e_1_2_9_30_1 article-title: Neural networks training by artificial bee colony algorithm on pattern classification publication-title: Neural Netw World – ident: e_1_2_9_28_1 doi: 10.1109/SOCPAR.2015.7492775 – ident: e_1_2_9_37_1 doi: 10.1007/s10278-011-9365-2 – volume: 205 start-page: 716 issue: 2 year: 2008 ident: e_1_2_9_27_1 article-title: An improved feature selection method based on ant colony optimization (ACO) evaluated on face recognition system publication-title: Appl Math Comput doi: 10.1016/j.amc.2008.05.115 |
| SSID | ssj0011505 |
| Score | 2.3447924 |
| Snippet | The survival rates of breast cancer are going up due to the emerging increase in its screening and diagnosis methods. However, breast cancer is yet the most... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 921 |
| SubjectTerms | Breast cancer Classification crow‐search algorithm and chaotic maps Datasets Decomposition Digital imaging Discrete Wavelet Transform Feature extraction Image analysis Image classification mammogram images Mammography Medical imaging Optimization Optimization algorithms Randomness Screening Search algorithms wavelet Wavelet transforms |
| Title | A novel improved crow‐search algorithm to classify the severity in digital mammograms |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fima.22493 https://www.proquest.com/docview/2522065118 |
| Volume | 31 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCO Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1098-1098 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0011505 issn: 0899-9457 databaseCode: ABDBF dateStart: 19890601 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1098-1098 dateEnd: 20241101 omitProxy: false ssIdentifier: ssj0011505 issn: 0899-9457 databaseCode: ADMLS dateStart: 19890601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0899-9457 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1098-1098 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011505 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KIOjBR1WsVlnEg5e0eSeLpyKWKtSDWOxBCNlHarBNpE0VPfkT_I3-Emc3TVpFQbzlMHnszszON8PkG4SOOWEQeDxbc4nNNTvkvkZdzjUIbsyjph4RLuuQ3Su307Mv-06_gk6Lf2Fyfoiy4CY9Q53X0sFDOmnOSUNjSRsEyYNk-jQsV6VT1yV1lAQ6qn3RlwyUtuMVrEK62Szv_BqL5gBzEaaqONNeR3fFF-btJQ-NaUYb7PUbeeM_l7CB1mb4E7dyg9lEFZFU0eoCK2EVLauuUDbZQrctnKRPYohjVXoQHMNCnj_e3nP_wOFwkI7j7H6EsxQzicPj6AUDpMQQb4Uci4fjBPN4ICeT4FEINi-bwSbbqNc-vznraLNJDBqTs600QWxfeCQEdKbzyIuITuFcsozIg2zN0Cl1qBnC0ck55ZQwFoWAAiRTmcUjIhxm7aClJE3ELsKmDVIO80LX5TaB7NIgHvO55eiRawrm19BJoZOAzWjK5bSMYZATLJsB7Fqgdq2GjkrRx5yb4yeheqHYYOaek8AE1AnYC5IreJ3S0O8PCC66LXWx93fRfbRiyt4XVa2po6VsPBUHAF4yeqis9BOPc-t9 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsNADLVYhIADO6KsI8SBS2iaTJaRuFQIVJZyQCC4oCizBCJKitoAghOfwDfyJXgmTVkEEuKWg7PM2B4_W84zwIZkAgNPQC2fUWnRWIYW96W0MLiJgDt2wqSuQzaP_cYZPbjwLgZgu_wXpuCH6BfctGeY81o7uC5IVz9YQ1PNG4TZgzsIw9THPEVDopM-eZSGOqaBMdQclNQLSl4h26n2b_0ajT4g5megaiLN3iRclt9YNJjcbN3nfEs8f6Nv_O8ipmCiB0FJvbCZaRhQ2QyMfyImnIER0xgqurNwXidZ-0G1SGqqD0oSXMnj28tr4SIkbl21O2l-fUvyNhEaiqfJE0FUSTDkKj0Zj6QZkemVHk5CbmM0e90P1p2Ds73d052G1RvGYAk93spSjIYqYDECNFsmQcJsjkeTW0sCTNhqNuced2I8PaXkkjMhkhiBgCYrc2XClCfceRjK2plaAOJQlPJEEPu-pAwVV2OBCKXr2YnvKBFWYLNUSiR6TOV6YEYrKjiWnQh3LTK7VoH1vuhdQc_xk9Byqdmo56HdyEHgifAL8yt8nVHR7w-I9pt1c7H4d9E1GG2cNo-io_3jwyUYc3QrjCneLMNQ3rlXK4hlcr5qTPYdVE7vng |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB6lIKr2QIGCSpvCCvXQixPHXj9W6iVqGoVCEKpAzQVZ3lewGmxETKv21J_Ab-SXMLuOE6ioVPXmw_ixOzM734zG3wC8k0xg4ImoEzIqHZrK2OGhlA4GNxFxz9VMmjrk8CgcnNLPo2DUgA_1vzAVP8S84GY8w57XxsHVpdTtBWtoZniDMHvwn8AyDVhsGvp6X-bkUQbq2AbG2HBQ0iCqeYVcrz2_9WE0WkDM-0DVRpr-Czirv7FqMPnWui55S_z6g77xfxexBqszCEq6lc2sQ0PlG_D8HjHhBqzYxlAxfQlfuyQvvqsJyWz1QUmCK_lx-_umchGSTsbFVVaeX5CyIMJA8Uz_JIgqCYZcZSbjkSwnMhub4STkIkWzN_1g00047X86-ThwZsMYHGHGWzmK0VhFLEWA5kodaeZyPJr8jo4wYeu4nAfcS_H0lJJLzoTQKQIBQ1bmS81UIPwtWMqLXL0C4lGUCkSUhqGkDBPMDotELP3A1aGnRLwN72ulJGLGVG4GZkySimPZS3DXErtr27A3F72s6DkeE2rWmk1mHjpNPASeCL8wv8LXWRX9_QHJ_rBrL17_u-guPD3u9ZPD_aODN_DMM50wtnbThKXy6lq9RShT8h1rsXcS1-8i |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+improved+crow%E2%80%90search+algorithm+to+classify+the+severity+in+digital+mammograms&rft.jtitle=International+journal+of+imaging+systems+and+technology&rft.au=Sannasi+Chakravarthy%2C+S+R&rft.au=Rajaguru%2C+Harikumar&rft.date=2021-06-01&rft.issn=0899-9457&rft.eissn=1098-1098&rft.volume=31&rft.issue=2&rft.spage=921&rft.epage=954&rft_id=info:doi/10.1002%2Fima.22493&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ima_22493 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-9457&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-9457&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-9457&client=summon |