Pneumonia detection from lung X‐ray images using local search aided sine cosine algorithm based deep feature selection method
Pneumonia is a major cause of death among children below the age of 5 years, globally. It is especially prevalent in developing and underdeveloped nations where the risk factors for the disease such as unhygienic living conditions, high levels of pollution and overcrowding are higher. Radiological e...
Saved in:
| Published in | International journal of intelligent systems Vol. 37; no. 7; pp. 3777 - 3814 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
John Wiley & Sons, Inc
01.07.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0884-8173 1098-111X |
| DOI | 10.1002/int.22703 |
Cover
| Abstract | Pneumonia is a major cause of death among children below the age of 5 years, globally. It is especially prevalent in developing and underdeveloped nations where the risk factors for the disease such as unhygienic living conditions, high levels of pollution and overcrowding are higher. Radiological examination (usually X‐ray scans) is conducted to detect pneumonia, yet it is prone to subjective variability and can lead to disagreements among different radiologists. To detect traces of pneumonia from X‐ray images, a more robust method is therefore required, which can be achieved by using a computer‐aided diagnosis (CAD) system. In this study, we develop a two‐stage framework, using the combination of deep learning and optimization algorithms, which is both accurate and time‐efficient. In its first stage, the proposed framework extracts feature using a customized deep learning model called DenseNet‐201 following the concept of transfer learning to cope with the scanty available data. In the second stage, we then reduce the feature dimension using an improved sine cosine algorithm equipped with adaptive beta hill climbing‐based local search algorithm. The optimized feature subset is utilized for the classification of “Pneumonia” and “Normal” X‐ray images using a support vector machines classifier. Upon an evaluation on a publicly available data set, the proposed method demonstrates the highest accuracy of 98.36% and sensitivity of 98.79% with a feature reduction of 85.55% (74 features selected out of 512), using a five‐fold cross‐validation scheme. Extensive additional experiments on continuous benchmark functions as well as the CEC‐2017 test suite further showcase the superiority and suitability of our proposed approach in application to real‐valued optimization problems. The relevant codes for the proposed method can be found in https://github.com/soumitri2001/Pneumonia-Detection-Local-Search-aided-SCA. |
|---|---|
| AbstractList | Pneumonia is a major cause of death among children below the age of 5 years, globally. It is especially prevalent in developing and underdeveloped nations where the risk factors for the disease such as unhygienic living conditions, high levels of pollution and overcrowding are higher. Radiological examination (usually X‐ray scans) is conducted to detect pneumonia, yet it is prone to subjective variability and can lead to disagreements among different radiologists. To detect traces of pneumonia from X‐ray images, a more robust method is therefore required, which can be achieved by using a computer‐aided diagnosis (CAD) system. In this study, we develop a two‐stage framework, using the combination of deep learning and optimization algorithms, which is both accurate and time‐efficient. In its first stage, the proposed framework extracts feature using a customized deep learning model called DenseNet‐201 following the concept of transfer learning to cope with the scanty available data. In the second stage, we then reduce the feature dimension using an improved sine cosine algorithm equipped with adaptive beta hill climbing‐based local search algorithm. The optimized feature subset is utilized for the classification of “Pneumonia” and “Normal” X‐ray images using a support vector machines classifier. Upon an evaluation on a publicly available data set, the proposed method demonstrates the highest accuracy of 98.36% and sensitivity of 98.79% with a feature reduction of 85.55% (74 features selected out of 512), using a five‐fold cross‐validation scheme. Extensive additional experiments on continuous benchmark functions as well as the CEC‐2017 test suite further showcase the superiority and suitability of our proposed approach in application to real‐valued optimization problems. The relevant codes for the proposed method can be found in https://github.com/soumitri2001/Pneumonia-Detection-Local-Search-aided-SCA. |
| Author | Sarkar, Ram Kundu, Rohit Singh, Pawan Kumar Chattopadhyay, Soumitri Mirjalili, Seyedali |
| Author_xml | – sequence: 1 givenname: Soumitri orcidid: 0000-0002-2647-6053 surname: Chattopadhyay fullname: Chattopadhyay, Soumitri organization: Jadavpur University – sequence: 2 givenname: Rohit surname: Kundu fullname: Kundu, Rohit organization: Jadavpur University – sequence: 3 givenname: Pawan Kumar orcidid: 0000-0002-9598-7981 surname: Singh fullname: Singh, Pawan Kumar organization: Jadavpur University – sequence: 4 givenname: Seyedali orcidid: 0000-0002-1443-9458 surname: Mirjalili fullname: Mirjalili, Seyedali email: ali.mirjalili@gmail.com organization: Yonsei University – sequence: 5 givenname: Ram orcidid: 0000-0001-8813-4086 surname: Sarkar fullname: Sarkar, Ram organization: Jadavpur University |
| BookMark | eNp1UMlKA0EQbSSCMXrwDxo8eRjtJZnlKMElENRDhNyGmp6apMPMdOzuQXLST_Ab_RI7y0mUOjyoekvxTkmvNS0ScsHZNWdM3OjWXwuRMHlE-pxlacQ5n_dIn6XpMEp5Ik_IqXMrxjhPhqM--XhpsWtMq4GW6FF5bVpaWdPQumsXdP79-WVhQ3UDC3S0czosa6Ogpg7BqiUFXWJJwx6pMjuAemGs9suGFuDCrURc0wrBdxaDqj6ENOiXpjwjxxXUDs8POCCv93ez8WM0fX6YjG-nkRJZIiNQHCrGYw5cYiyyQolSFUURy1FSYVoyiYgADGMlUskRE0h4mEyWFaTDSg7I5d53bc1bh87nK9PZNkTmIo6zkRBZKgLrZs9S1jhnscqV9rB911vQdc5Zvm05Dy3nu5aD4uqXYm1DWXbzJ_fg_q5r3PxPzCdPs73iBzdakig |
| CitedBy_id | crossref_primary_10_1016_j_future_2024_02_017 crossref_primary_10_1093_jcde_qwac040 crossref_primary_10_32604_iasc_2024_047126 crossref_primary_10_1007_s11042_022_13829_5 crossref_primary_10_1007_s11277_024_11587_1 crossref_primary_10_32604_cmes_2023_029910 crossref_primary_10_1002_suco_202200779 crossref_primary_10_1007_s10462_024_11049_x crossref_primary_10_1016_j_asoc_2024_112258 crossref_primary_10_1038_s41598_024_74491_5 crossref_primary_10_1016_j_eswa_2022_118528 crossref_primary_10_1016_j_apm_2024_04_057 crossref_primary_10_1016_j_compbiomed_2023_107212 crossref_primary_10_1007_s11042_022_13471_1 crossref_primary_10_1109_TETCI_2024_3425285 crossref_primary_10_1007_s11042_022_14052_y crossref_primary_10_1007_s11042_024_18301_0 |
| Cites_doi | 10.1155/2019/4180949 10.1016/j.advengsoft.2016.01.008 10.1007/s00521-015-1870-7 10.1108/02644401211235834 10.1016/j.eswa.2019.113122 10.1162/089976698300017197 10.1016/j.cmpb.2019.06.023 10.1007/978-981-16-4435-1_1 10.1016/j.eswa.2021.115756 10.1186/s12911-019-0792-1 10.1016/j.cma.2020.113609 10.1007/s00521-020-05297-5 10.1016/j.asoc.2021.107221 10.1016/j.asoc.2020.106341 10.1016/j.knosys.2020.105889 10.1038/scientificamerican0792-66 10.1002/ppul.22806 10.1007/s00500-019-03887-7 10.3390/app10093233 10.1002/jhm.955 10.1016/j.knosys.2015.12.022 10.1007/978-981-32-9088-4_3 10.1016/j.measurement.2019.05.076 10.1080/0305215X.2013.832237 10.1109/JPROC.2020.3004555 10.1007/978-981-16-0882-7_10 10.1007/s00521-016-2328-2 10.1016/j.eswa.2020.113389 10.1109/CVPR.2017.243 10.1002/int.22535 10.1109/CVPR.2009.5206848 10.1007/978-3-030-70542-8_24 10.1109/TEVC.2010.2059031 10.1016/j.eswa.2020.114159 10.1109/ACCESS.2020.2991543 10.1016/j.advengsoft.2013.12.007 10.1007/978-3-030-70542-8_21 10.1007/s00500-020-05183-1 10.1371/journal.pone.0256630 10.37917/ijeee.17.1.1 10.1109/NABIC.2009.5393690 10.1016/j.eswa.2021.114766 10.1007/978-981-15-5345-5_13 10.1007/BF00994018 10.1016/j.ins.2009.03.004 10.1155/2021/8862089 10.3390/app8101715 10.1016/j.patrec.2020.12.010 10.1109/Confluence47617.2020.9057809 10.1016/j.compbiomed.2020.103869 10.1016/j.swevo.2014.01.003 10.1016/j.asoc.2015.12.001 10.1016/j.compbiomed.2020.103898 10.1016/j.eswa.2020.114230 10.1007/s00521-020-05409-1 10.1109/ICNN.1995.488968 10.1016/j.cie.2021.107224 10.1016/j.knosys.2015.07.006 10.1109/ACCESS.2020.3024095 10.1109/EBBT.2019.8741582 10.1109/ACCESS.2021.3056407 10.1038/s41598-021-93658-y 10.5220/0007404301120119 10.1007/s10489-020-01893-z |
| ContentType | Journal Article |
| Copyright | 2021 Wiley Periodicals LLC 2022 Wiley Periodicals LLC. |
| Copyright_xml | – notice: 2021 Wiley Periodicals LLC – notice: 2022 Wiley Periodicals LLC. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1002/int.22703 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1098-111X |
| EndPage | 3814 |
| ExternalDocumentID | 10_1002_int_22703 INT22703 |
| Genre | article |
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJEY AANHP AAONW AASGY AAXRX AAYOK AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJCF ABJNI ABPVW ABTAH ABUWG ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFZJQ AI. AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DWQXO EBS EDO EJD F00 F01 F04 FEDTE G-S G.N GNP GNUQQ GODZA H.T H.X H13 HBH HCIFZ HF~ HHY HVGLF HZ~ I-F IX1 J0M JPC K7- KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 M7S MK4 MK~ MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PIMPY PQQKQ PTHSS Q.N Q11 QB0 QRW R.K RHX RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TN5 TUS UB1 V2E VH1 W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WRC WWI WXSBR WYISQ WZISG XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AGQPQ AGXDD AIDQK AIDYY AIQQE CITATION PHGZM PHGZT PQGLB PUEGO 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2973-ac1af0161a13e629bc2dcbbb6357fe8d03eeeaa0e6c2831ee7a7171793dfa84f3 |
| IEDL.DBID | DR2 |
| ISSN | 0884-8173 |
| IngestDate | Fri Jul 25 12:12:40 EDT 2025 Thu Apr 24 22:57:24 EDT 2025 Wed Oct 01 03:27:36 EDT 2025 Wed Jan 22 16:25:33 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2973-ac1af0161a13e629bc2dcbbb6357fe8d03eeeaa0e6c2831ee7a7171793dfa84f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2647-6053 0000-0002-1443-9458 0000-0002-9598-7981 0000-0001-8813-4086 |
| PQID | 2669522982 |
| PQPubID | 1026350 |
| PageCount | 38 |
| ParticipantIDs | proquest_journals_2669522982 crossref_citationtrail_10_1002_int_22703 crossref_primary_10_1002_int_22703 wiley_primary_10_1002_int_22703_INT22703 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | July 2022 2022-07-00 20220701 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | International journal of intelligent systems |
| PublicationYear | 2022 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2019; 2019 2010; 15 2021; 168 2021; 167 2019; 19 2014; 69 2020; 122 2020; 10 2020; 8 1995; 20 2015; 89 2018; 8 2021; 33 2021; 156 2020; 93 2019; 23 2014; 16 2016; 41 1998; 10 2021; 2021 2021; 9 2013; 48 2012 2017; 28 2020; 187 2019; 32 2021; 105 1992; 267 2009 2016; 96 1995 2016; 95 2014; 46 2009; 179 2020; 145 2021; 143 2021; 51 2019; 145 2020; 109 2021; 11 2020; 151 2020; 272 2021; 376 2021 2020; 197 2020 2021; 17 2021; 292 2019 2018 2017 2020; 24 2021; 174 2013 2012; 7 2016; 27 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_17_1 e_1_2_8_19_1 Akay B (e_1_2_8_47_1) 2021 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 Chatterjee B (e_1_2_8_72_1) 2021 e_1_2_8_15_1 e_1_2_8_38_1 Khan W (e_1_2_8_23_1) 2021 Shaw SS (e_1_2_8_56_1) 2021 e_1_2_8_70_1 Zubair S (e_1_2_8_41_1) 2020; 272 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 Abualigah L (e_1_2_8_44_1) 2021 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 Gillala R (e_1_2_8_57_1) 2021 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 Jain A (e_1_2_8_22_1) 2021; 9 e_1_2_8_2_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_84_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 Yue H (e_1_2_8_26_1) 2020; 8 Sen S (e_1_2_8_7_1) 2021 Liu Y (e_1_2_8_46_1) 2021 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_77_1 Ibrahim AU (e_1_2_8_42_1) 2021 Paszke A (e_1_2_8_78_1) 2019; 32 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
| References_xml | – volume: 69 start-page: 46 year: 2014 end-page: 61 article-title: Grey wolf optimizer publication-title: Adv Eng Software – volume: 10 start-page: 3233 issue: 9 year: 2020 article-title: Transfer learning with deep convolutional neural network (CNN) for pneumonia detection using chest x‐ray publication-title: Appl Sci – year: 2021 article-title: Intelligent pneumonia identification from chest X‐rays: a systematic literature review publication-title: IEEE Access – volume: 51 start-page: 1531 issue: 3 year: 2021 end-page: 1551 article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems publication-title: Appl Intell – start-page: 1 year: 2021 end-page: 13 article-title: Pneumonia classification using deep learning from chest X‐ray images during COVID‐19 publication-title: Cogn Computat – volume: 46 start-page: 1222 issue: 9 year: 2014 end-page: 1237 article-title: Flower pollination algorithm: a novel approach for multiobjective optimization publication-title: Eng Optim – start-page: 21 year: 2020 end-page: 33 – volume: 15 start-page: 4 issue: 1 year: 2010 end-page: 31 article-title: Differential evolution: a survey of the state‐of‐the‐art publication-title: IEEE Trans Evol Computat – start-page: 1 year: 2021 end-page: 21 article-title: A survey on evolutionary neural architecture search publication-title: IEEE Trans Neural Network Learn Syst – year: 2021 article-title: A new wrapper feature selection method for language‐invariant offline signature verification publication-title: Expert Syst Appl – volume: 156 year: 2021 article-title: Flow direction algorithm (FDA): a novel optimization approach for solving optimization problems publication-title: Comput Industrial Eng – start-page: 227 year: 2020 end-page: 231 – volume: 41 start-page: 192 year: 2016 end-page: 213 article-title: Automatic clustering using nature‐inspired metaheuristics: a survey publication-title: Appl Soft Comput – volume: 8 start-page: 83548 year: 2020 end-page: 83560 article-title: Improved binary sailfish optimizer based on adaptive ‐hill climbing for feature selection publication-title: IEEE Access – start-page: 248 year: 2009 end-page: 255 – year: 2018 – volume: 19 start-page: 1 issue: 1 year: 2019 end-page: 8 article-title: Predicting hospital‐acquired pneumonia among schizophrenic patients: a machine learning approach publication-title: BMC Medical Informatics and Decision Making – year: 2020 article-title: Accuracy of deep learning for automated detection of pneumonia using chest x‐ray images: a systematic review and meta‐analysis publication-title: Comput Biol Med – year: 2021 article-title: A novel meta‐heuristic approach for influence maximization in social networks publication-title: Expert Syst – volume: 33 start-page: 5267 issue: 10 year: 2021 end-page: 5286 article-title: CGA: a new feature selection model for visual human action recognition publication-title: Neural Comput Appl – volume: 272 start-page: 457 year: 2020 article-title: An efficient method to predict pneumonia from chest X‐rays using deep learning approach publication-title: Stud Health Technol Inform – volume: 48 start-page: 1195 issue: 12 year: 2013 end-page: 1200 article-title: Variability and accuracy in interpretation of consolidation on chest radiography for diagnosing pneumonia in children under 5 years of age publication-title: Pediatric Pulmonol – volume: 8 start-page: 169196 year: 2020 end-page: 169214 article-title: Gray level image contrast enhancement using barnacles mating optimizer publication-title: IEEE Access – volume: 96 start-page: 120 year: 2016 end-page: 133 article-title: SCA: a sine cosine algorithm for solving optimization problems publication-title: Knowl‐Based Syst – year: 2012 article-title: Bat algorithm: a novel approach for global engineering optimization publication-title: Eng Computat – volume: 151 year: 2020 article-title: Selective opposition based grey wolf optimization publication-title: Expert Syst Appl – start-page: 1 year: 2019 end-page: 5 – volume: 197 year: 2020 article-title: Fractional‐order calculus‐based flower pollination algorithm with local search for global optimization and image segmentation publication-title: Knowl‐Based Syst – start-page: 515 year: 2021 end-page: 543 – volume: 179 start-page: 2232 issue: 13 year: 2009 end-page: 2248 article-title: GSA: a gravitational search algorithm publication-title: Inform Sci – volume: 23 start-page: 13489 issue: 24 year: 2019 end-page: 13512 article-title: Adaptive ‐hill climbing for optimization publication-title: Soft Comput – volume: 9 start-page: 26766 year: 2021 end-page: 26791 article-title: Metaheuristic algorithms on feature selection: a survey of one decade of research (2009‐2019) publication-title: IEEE Access – volume: 174 year: 2021 article-title: Opposition‐based laplacian equilibrium optimizer with application in image segmentation using multilevel thresholding publication-title: Expert Syst Appl – volume: 168 year: 2021 article-title: Enhanced multi‐verse optimizer for task scheduling in cloud computing environments publication-title: Expert Syst Appl – volume: 187 year: 2020 article-title: A transfer learning method with deep residual network for pediatric pneumonia diagnosis publication-title: Comput Methods Programs Biomed – volume: 7 start-page: 294 issue: 4 year: 2012 end-page: 298 article-title: Variability in the interpretation of chest radiographs for the diagnosis of pneumonia in children publication-title: J Hospital Med – start-page: 145 year: 2021 end-page: 155 – start-page: 4700 year: 2017 end-page: 4708 – volume: 27 start-page: 495 issue: 2 year: 2016 end-page: 513 article-title: Multi‐verse optimizer: a nature‐inspired algorithm for global optimization publication-title: Neural Comput Appl – volume: 122 year: 2020 article-title: CovXNet: a multi‐dilation convolutional neural network for automatic COVID‐19 and other pneumonia detection from chest x‐ray images with transferable multi‐receptive feature optimization publication-title: Comput Biol Med – year: 2019 – start-page: 1 year: 2021 end-page: 66 article-title: A comprehensive survey on optimizing deep learning models by metaheuristics publication-title: Artif Intell Rev – volume: 20 start-page: 273 year: 1995 end-page: 297 article-title: Support‐vector networks publication-title: Mach Learning – volume: 109 start-page: 43 issue: 1 year: 2020 end-page: 76 article-title: A comprehensive survey on transfer learning publication-title: Proc IEEE – volume: 145 year: 2020 article-title: Improved salp swarm algorithm based on opposition based learning and novel local search algorithm for feature selection publication-title: Expert Syst Appl – volume: 93 year: 2020 article-title: Introducing clustering based population in binary gravitational search algorithm for feature selection publication-title: Appl Soft Comput – volume: 292 start-page: 3 year: 2021 end-page: 13 – volume: 11 start-page: 1 issue: 1 year: 2021 end-page: 12 article-title: Fuzzy rank‐based fusion of CNN models using Gompertz function for screening COVID‐19 CT‐scans publication-title: Scientific Reports – volume: 9 start-page: 7 year: 2021 article-title: A survey on pneumonia detection methods using computer‐aided diagnosis publication-title: Int J Emerging Trends Eng Res – year: 2021 article-title: Artificial gorilla troops optimizer: a new nature‐inspired metaheuristic algorithm for global optimization problems publication-title: Int J Intell Syst – volume: 33 start-page: 6467 issue: 12 year: 2021 end-page: 6486 article-title: Improved coral reefs optimization with adaptive ‐hill climbing for feature selection publication-title: Neural Comput Appl – volume: 10 start-page: 1895 issue: 7 year: 1998 end-page: 1923 article-title: Approximate statistical tests for comparing supervised classification learning algorithms publication-title: Neural Computat – volume: 2021 year: 2021 article-title: A pneumonia diagnosis scheme based on hybrid features extracted from chest radiographs using an ensemble learning algorithm publication-title: J Healthcare Eng – start-page: 1 year: 2021 end-page: 11 article-title: An efficient chaotic salp swarm optimization approach based on ensemble algorithm for class imbalance problems publication-title: Soft Comput – volume: 143 start-page: 67 year: 2021 end-page: 74 article-title: Customized VGG19 architecture for pneumonia detection in chest X‐rays publication-title: Pattern Recogn Lett – volume: 16 start-page: 69 year: 2014 end-page: 84 article-title: An artificial bee colony algorithm for image contrast enhancement publication-title: Swarm Evol Computat – start-page: 609 year: 2021 end-page: 634 – volume: 95 start-page: 51 year: 2016 end-page: 67 article-title: The whale optimization algorithm publication-title: Adv Eng Software – start-page: 1 year: 2021 end-page: 16 article-title: A bi‐stage feature selection approach for COVID‐19 prediction using chest CT images publication-title: Appl Intell – volume: 8 start-page: 14 year: 2020 article-title: Machine learning‐based CT radiomics method for predicting hospital stay in patients with pneumonia associated with SARS‐CoV‐2 infection: a multicenter study publication-title: Annal Transl Med – year: 2021 article-title: Pneumonia detection in chest x‐ray images using an ensemble of deep learning models publication-title: PLOS One – volume: 8 start-page: 10 year: 2018 article-title: Visualization and interpretation of convolutional neural network predictions in detecting pneumonia in pediatric chest radiographs publication-title: Appl Sci – start-page: 210 year: 2009 end-page: 214 – start-page: 1139 year: 2013 end-page: 1147 – volume: 32 start-page: 8026 year: 2019 end-page: 8037 article-title: Pytorch: an imperative style, high‐performance deep learning library publication-title: Adv Neural Inform Process Syst – volume: 2019 year: 2019 article-title: An efficient deep learning approach to pneumonia classification in healthcare publication-title: J Healthcare Eng – volume: 89 start-page: 228 year: 2015 end-page: 249 article-title: Moth‐flame optimization algorithm: a novel nature‐inspired heuristic paradigm publication-title: Knowl‐Based Syst – volume: 376 year: 2021 article-title: The arithmetic optimization algorithm publication-title: Comput Methods Appl Mech Eng – volume: 145 start-page: 511 year: 2019 end-page: 518 article-title: Identifying pneumonia in chest X‐rays: a deep learning approach publication-title: Measurement – volume: 17 start-page: 1 issue: 1 year: 2021 end-page: 10 article-title: Stochastic local search algorithms for feature selection: a review publication-title: Iraq J Electr Electron Eng. – start-page: 1 year: 2021 end-page: 23 article-title: Hybridization of ring theory‐based evolutionary algorithm and particle swarm optimization to solve class imbalance problem publication-title: Complex Intell Syst – volume: 267 start-page: 66 issue: 1 year: 1992 end-page: 73 article-title: Genetic algorithms publication-title: Scientific Am – volume: 28 start-page: 153 issue: 1 year: 2017 end-page: 168 article-title: ‐Hill climbing: an exploratory local search publication-title: Neural Comput Appl – start-page: 112 year: 2019 end-page: 119 – year: 1995 – volume: 24 start-page: 12821 issue: 17 year: 2020 end-page: 12843 article-title: Embedded chaotic whale survival algorithm for filter‐wrapper feature selection publication-title: Soft Comput. – volume: 105 year: 2021 article-title: Quantum squirrel inspired algorithm for gene selection in methylation and expression data of prostate cancer publication-title: Appl Soft Comput – start-page: 1 year: 2021 end-page: 42 article-title: Advances in sine cosine algorithm: a comprehensive survey publication-title: Artif Intell Rev – start-page: 1942 year: 1995 end-page: 1948 – year: 2017 – volume: 167 year: 2021 article-title: A novel black widow optimization algorithm for multilevel thresholding image segmentation publication-title: Expert Syst Appl – start-page: 141 year: 2021 end-page: 152 – ident: e_1_2_8_28_1 doi: 10.1155/2019/4180949 – ident: e_1_2_8_60_1 doi: 10.1016/j.advengsoft.2016.01.008 – ident: e_1_2_8_66_1 doi: 10.1007/s00521-015-1870-7 – ident: e_1_2_8_84_1 – ident: e_1_2_8_82_1 doi: 10.1108/02644401211235834 – volume: 32 start-page: 8026 year: 2019 ident: e_1_2_8_78_1 article-title: Pytorch: an imperative style, high‐performance deep learning library publication-title: Adv Neural Inform Process Syst – ident: e_1_2_8_16_1 doi: 10.1016/j.eswa.2019.113122 – ident: e_1_2_8_81_1 doi: 10.1162/089976698300017197 – ident: e_1_2_8_3_1 – ident: e_1_2_8_33_1 doi: 10.1016/j.cmpb.2019.06.023 – ident: e_1_2_8_49_1 doi: 10.1007/978-981-16-4435-1_1 – ident: e_1_2_8_71_1 doi: 10.1016/j.eswa.2021.115756 – ident: e_1_2_8_24_1 doi: 10.1186/s12911-019-0792-1 – ident: e_1_2_8_70_1 doi: 10.1016/j.cma.2020.113609 – ident: e_1_2_8_15_1 doi: 10.1007/s00521-020-05297-5 – ident: e_1_2_8_8_1 doi: 10.1016/j.asoc.2021.107221 – ident: e_1_2_8_13_1 doi: 10.1016/j.asoc.2020.106341 – ident: e_1_2_8_73_1 doi: 10.1016/j.knosys.2020.105889 – ident: e_1_2_8_58_1 doi: 10.1038/scientificamerican0792-66 – ident: e_1_2_8_5_1 doi: 10.1002/ppul.22806 – ident: e_1_2_8_19_1 doi: 10.1007/s00500-019-03887-7 – ident: e_1_2_8_40_1 doi: 10.3390/app10093233 – ident: e_1_2_8_4_1 doi: 10.1002/jhm.955 – start-page: 1 year: 2021 ident: e_1_2_8_7_1 article-title: A bi‐stage feature selection approach for COVID‐19 prediction using chest CT images publication-title: Appl Intell – ident: e_1_2_8_18_1 doi: 10.1016/j.knosys.2015.12.022 – start-page: 1 year: 2021 ident: e_1_2_8_44_1 article-title: Advances in sine cosine algorithm: a comprehensive survey publication-title: Artif Intell Rev – ident: e_1_2_8_25_1 doi: 10.1007/978-981-32-9088-4_3 – ident: e_1_2_8_29_1 doi: 10.1016/j.measurement.2019.05.076 – ident: e_1_2_8_62_1 doi: 10.1080/0305215X.2013.832237 – ident: e_1_2_8_37_1 doi: 10.1109/JPROC.2020.3004555 – ident: e_1_2_8_30_1 doi: 10.1007/978-981-16-0882-7_10 – ident: e_1_2_8_76_1 doi: 10.1007/s00521-016-2328-2 – ident: e_1_2_8_12_1 doi: 10.1016/j.eswa.2020.113389 – ident: e_1_2_8_11_1 doi: 10.1109/CVPR.2017.243 – ident: e_1_2_8_34_1 – ident: e_1_2_8_68_1 doi: 10.1002/int.22535 – ident: e_1_2_8_10_1 doi: 10.1109/CVPR.2009.5206848 – ident: e_1_2_8_20_1 – ident: e_1_2_8_52_1 doi: 10.1007/978-3-030-70542-8_24 – ident: e_1_2_8_59_1 doi: 10.1109/TEVC.2010.2059031 – volume: 8 start-page: 14 year: 2020 ident: e_1_2_8_26_1 article-title: Machine learning‐based CT radiomics method for predicting hospital stay in patients with pneumonia associated with SARS‐CoV‐2 infection: a multicenter study publication-title: Annal Transl Med – ident: e_1_2_8_54_1 doi: 10.1016/j.eswa.2020.114159 – ident: e_1_2_8_74_1 doi: 10.1109/ACCESS.2020.2991543 – ident: e_1_2_8_64_1 doi: 10.1016/j.advengsoft.2013.12.007 – volume: 272 start-page: 457 year: 2020 ident: e_1_2_8_41_1 article-title: An efficient method to predict pneumonia from chest X‐rays using deep learning approach publication-title: Stud Health Technol Inform – ident: e_1_2_8_43_1 doi: 10.1007/978-3-030-70542-8_21 – ident: e_1_2_8_14_1 doi: 10.1007/s00500-020-05183-1 – start-page: 1 year: 2021 ident: e_1_2_8_57_1 article-title: An efficient chaotic salp swarm optimization approach based on ensemble algorithm for class imbalance problems publication-title: Soft Comput – ident: e_1_2_8_9_1 doi: 10.1371/journal.pone.0256630 – ident: e_1_2_8_17_1 doi: 10.37917/ijeee.17.1.1 – ident: e_1_2_8_61_1 doi: 10.1109/NABIC.2009.5393690 – ident: e_1_2_8_55_1 doi: 10.1016/j.eswa.2021.114766 – ident: e_1_2_8_38_1 doi: 10.1007/978-981-15-5345-5_13 – ident: e_1_2_8_77_1 doi: 10.1007/BF00994018 – ident: e_1_2_8_65_1 doi: 10.1016/j.ins.2009.03.004 – ident: e_1_2_8_2_1 – volume: 9 start-page: 7 year: 2021 ident: e_1_2_8_22_1 article-title: A survey on pneumonia detection methods using computer‐aided diagnosis publication-title: Int J Emerging Trends Eng Res – ident: e_1_2_8_35_1 doi: 10.1155/2021/8862089 – start-page: e12676 year: 2021 ident: e_1_2_8_72_1 article-title: A novel meta‐heuristic approach for influence maximization in social networks publication-title: Expert Syst – year: 2021 ident: e_1_2_8_23_1 article-title: Intelligent pneumonia identification from chest X‐rays: a systematic literature review publication-title: IEEE Access – ident: e_1_2_8_27_1 doi: 10.3390/app8101715 – ident: e_1_2_8_36_1 doi: 10.1016/j.patrec.2020.12.010 – start-page: 1 year: 2021 ident: e_1_2_8_42_1 article-title: Pneumonia classification using deep learning from chest X‐ray images during COVID‐19 publication-title: Cogn Computat – ident: e_1_2_8_32_1 doi: 10.1109/Confluence47617.2020.9057809 – ident: e_1_2_8_80_1 doi: 10.1016/j.compbiomed.2020.103869 – ident: e_1_2_8_50_1 doi: 10.1016/j.swevo.2014.01.003 – ident: e_1_2_8_53_1 doi: 10.1016/j.asoc.2015.12.001 – ident: e_1_2_8_21_1 doi: 10.1016/j.compbiomed.2020.103898 – ident: e_1_2_8_48_1 doi: 10.1016/j.eswa.2020.114230 – ident: e_1_2_8_75_1 doi: 10.1007/s00521-020-05409-1 – start-page: 1 year: 2021 ident: e_1_2_8_56_1 article-title: Hybridization of ring theory‐based evolutionary algorithm and particle swarm optimization to solve class imbalance problem publication-title: Complex Intell Syst – ident: e_1_2_8_63_1 doi: 10.1109/ICNN.1995.488968 – ident: e_1_2_8_67_1 doi: 10.1016/j.cie.2021.107224 – ident: e_1_2_8_83_1 doi: 10.1016/j.knosys.2015.07.006 – ident: e_1_2_8_51_1 doi: 10.1109/ACCESS.2020.3024095 – ident: e_1_2_8_39_1 doi: 10.1109/EBBT.2019.8741582 – start-page: 1 year: 2021 ident: e_1_2_8_46_1 article-title: A survey on evolutionary neural architecture search publication-title: IEEE Trans Neural Network Learn Syst – start-page: 1 year: 2021 ident: e_1_2_8_47_1 article-title: A comprehensive survey on optimizing deep learning models by metaheuristics publication-title: Artif Intell Rev – ident: e_1_2_8_45_1 doi: 10.1109/ACCESS.2021.3056407 – ident: e_1_2_8_6_1 doi: 10.1038/s41598-021-93658-y – ident: e_1_2_8_31_1 doi: 10.5220/0007404301120119 – ident: e_1_2_8_69_1 doi: 10.1007/s10489-020-01893-z – ident: e_1_2_8_79_1 |
| SSID | ssj0011745 |
| Score | 2.4349334 |
| Snippet | Pneumonia is a major cause of death among children below the age of 5 years, globally. It is especially prevalent in developing and underdeveloped nations... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3777 |
| SubjectTerms | Adaptive algorithms Algorithms Continuity (mathematics) Deep learning Feature extraction Image classification Intelligent systems local search optimization lung X‐ray Machine learning Medical imaging meta‐heuristic Optimization Pneumonia pneumonia detection Risk analysis Search algorithms Support vector machines Trigonometric functions |
| Title | Pneumonia detection from lung X‐ray images using local search aided sine cosine algorithm based deep feature selection method |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fint.22703 https://www.proquest.com/docview/2669522982 |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1098-111X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011745 issn: 0884-8173 databaseCode: ADMLS dateStart: 19860301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0884-8173 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1098-111X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011745 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQXHrh1SLeGqEeuGRJHG-SVU-IhwABQi1Ie0CKHHsCK5Ys2s0e2kv5CfxGfgkzTrIURKWqp-Tg2Ik9j2-c8TdCfPV1h9yuIuRG6uApxf93Le9bMfdmFNo4ynm_4-w8OrpSJ912d0p8a87CVPwQkw031gxnr1nBdTbaeSUN7RVlS8rYMX0GYeTCqe8T6qiAkHa7QpDKS4I4bFiFfLkzefKtL3oFmH_CVOdnDufEdfOGVXrJXWtcZi3z6x15439-wryYrfEn7FYCsyCmsFgUc01tB6hV_bP4fVHgmES0p8Fi6fK1CuCzKNAn8wDd58enof4JvXuyRyPg7PkbcH4RKt0Bpp60wFn1YAbuovs3g2GvvL0Hdp2W-sUHyNExi8LI1ePhQaqa1l_E1eHB5d6RVxdr8AyXv_K0CXTO-FEHIUaykxlpTZZlzHeXY2L9EBG19jEyhGgCxFhTJMnmweY6UXm4JKaLQYHLAlTsS4NJSHKUKxVHWjOFOIaqHVN0ZvWK2G6WLTU1kzkX1OinFQezTGliUzexK2Jr0vShou_4qNF6s_ZprcGjlIBLh7BpJ5E0nFvEv3eQHp9fupvVf2-6Jj5JPknhMn_XxXQ5HOMG4Zsy2xQzu_tnpz82nUC_AIEY-pE |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELYQHMql_BWVFuio4tBLlsTxJlmpF4RAC4VVVS3SXlDk2BO66pJFu9kDXNpH6DPyJMw4ydJWIKGekoNjJ_b8fJ6MvxFiz9cdcruKkBupg6cU_9-1HLdi7s0otHGUc7zjvBd1L9TpoD1YEJ-bszAVP8Q84Maa4ew1KzgHpPcfWUOHRdmSMmaqzyUV0T6FIdG3OXlUQFi7XWFI5SVBHDa8Qr7cnz_6tzd6hJh_AlXnaY5XxGXzjlWCyY_WrMxa5u4f-sb__YhV8bqGoHBQycyaWMBiXaw05R2g1vYN8fNrgTOS0qEGi6VL2SqAj6PAiCwEDO5__Z7oWxhek0maAifQX4FzjVCpDzD7pAVOrAczdhc9uhpPhuX3a2DvaalfvIEcHbkoTF1JHh6kKmv9RlwcH_UPu15dr8EzXAHL0ybQOUNIHYQYyU5mpDVZljHlXY6J9UNE1NrHyBCoCRBjTZtJthA214nKw02xWIwLfCtAxb40mIQkSrlScaQ1s4hjqNoxbdCs3hKfmnVLTU1mzjU1RmlFwyxTmtjUTeyW-DhvelMxeDzVaLtZ_LRW4mlK2KVD8LSTSBrOreLzHaQnvb67effyph_Eq27__Cw9O-l9eS-WJR-scInA22KxnMxwh-BOme06qX4APkj9Hg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQSFUvQAsVtLQdVT1wyZI43jykXiroCvpYIQTSXqrIsSew6pJd7WYP5UJ_Qn9jfwkzTrJA1UqIU3Jw7MSex-fJ-Bsh3vs6JberCLmROnhK8f9dy3Er5t6MQhtHBcc7vvWjwzP1edAdLIkP7VmYmh9iEXBjzXD2mhUcJ7bYu2UNHZZVR8qYqT5XVDdNOKHv4GRBHhUQ1u7WGFJ5SRCHLa-QL_cWj973RrcQ8y5QdZ6mtya-t-9YJ5j86MyrvGOu_qJvfOxHrIvVBoLCx1pmnoklLJ-Ltba8AzTaviGuj0uck5QONVisXMpWCXwcBUZkIWDw59fvqf4Jw0sySTPgBPpzcK4RavUBZp-0wIn1YMbuokfn4-mwurgE9p6W-sUJFOjIRWHmSvLwIHVZ601x1vt0un_oNfUaPMMVsDxtAl0whNRBiJFMcyOtyfOcKe8KTKwfIqLWPkaGQE2AGGvaTLKFsIVOVBG-EMvluMQtASr2pcEkJFEqlIojrZlFHEPVjWmDZvW22G3XLTMNmTnX1BhlNQ2zzGhiMzex2-LdoumkZvD4V6OddvGzRolnGWGXlOBpmkgazq3i_zvIjvqn7ublw5u-FU-OD3rZ16P-l1fiqeRzFS4PeEcsV9M5via0U-VvnFDfAOrk_KI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pneumonia+detection+from+lung+X%E2%80%90ray+images+using+local+search+aided+sine+cosine+algorithm+based+deep+feature+selection+method&rft.jtitle=International+journal+of+intelligent+systems&rft.au=Chattopadhyay%2C+Soumitri&rft.au=Kundu%2C+Rohit&rft.au=Singh%2C+Pawan+Kumar&rft.au=Mirjalili%2C+Seyedali&rft.date=2022-07-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0884-8173&rft.eissn=1098-111X&rft.volume=37&rft.issue=7&rft.spage=3777&rft.epage=3814&rft_id=info:doi/10.1002%2Fint.22703&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-8173&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-8173&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-8173&client=summon |