Dementia MRI image classification using transformation technique based on elephant herding optimization with Randomized Adam method for updating the hyper‐parameters
The primary objective of this research work is to build a binary classifier for categorizing the input brain magnetic resonanceimaging (MRI) images as either demented or nondemented with high accuracy. A novel hyper‐parameter updating method called Randomized Adam (RanAdam) is proposed for enhancing...
Saved in:
| Published in | International journal of imaging systems and technology Vol. 31; no. 3; pp. 1221 - 1245 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken, USA
John Wiley & Sons, Inc
01.09.2021
Wiley Subscription Services, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0899-9457 1098-1098 |
| DOI | 10.1002/ima.22522 |
Cover
| Abstract | The primary objective of this research work is to build a binary classifier for categorizing the input brain magnetic resonanceimaging (MRI) images as either demented or nondemented with high accuracy. A novel hyper‐parameter updating method called Randomized Adam (RanAdam) is proposed for enhancing the dementia classification accuracy of elephant herding optimization algorithm and other swarm intelligence (SI) algorithms. Usually, Adam method is widely used in deep learning neural networks for hyper‐parameters updating, and it is ingenious to use Adam and its modified version called RanAdam as hyper‐parameters updating method for SI algorithms. The proposed RanAdam algorithm tries to find actual optimal values for hyper‐parameters near the optimal values given by Adam method through the Controlled Randomness procedure. This research work also compares dementia MRI image classification performance of elephant herding optimization‐based transformation technique with the standard clustering approaches and other transformation approaches. In this research work, 117 subjects (65 non‐dementia and 52 dementia subjects) acquired from the Open Access Series of Imaging Studies (OASIS) database is used. Two cases are analyzed in all the techniques: with and without statistical features. The highest accuracy of 90.6% is achieved by elephant herding optimization (EHO)‐based transformation technique combined with RanAdam for updating hyper‐parameters for the case without statistical features. To verify the efficiency of the proposed technique, a popular Pima diabetic dataset is considered in addition to the OASIS dementia dataset and 88% accuracy is earned for EHO‐based transformation technique combined with RanAdam. |
|---|---|
| AbstractList | The primary objective of this research work is to build a binary classifier for categorizing the input brain magnetic resonanceimaging (MRI) images as either demented or nondemented with high accuracy. A novel hyper‐parameter updating method called Randomized Adam (RanAdam) is proposed for enhancing the dementia classification accuracy of elephant herding optimization algorithm and other swarm intelligence (SI) algorithms. Usually, Adam method is widely used in deep learning neural networks for hyper‐parameters updating, and it is ingenious to use Adam and its modified version called RanAdam as hyper‐parameters updating method for SI algorithms. The proposed RanAdam algorithm tries to find actual optimal values for hyper‐parameters near the optimal values given by Adam method through the Controlled Randomness procedure. This research work also compares dementia MRI image classification performance of elephant herding optimization‐based transformation technique with the standard clustering approaches and other transformation approaches. In this research work, 117 subjects (65 non‐dementia and 52 dementia subjects) acquired from the Open Access Series of Imaging Studies (OASIS) database is used. Two cases are analyzed in all the techniques: with and without statistical features. The highest accuracy of 90.6% is achieved by elephant herding optimization (EHO)‐based transformation technique combined with RanAdam for updating hyper‐parameters for the case without statistical features. To verify the efficiency of the proposed technique, a popular Pima diabetic dataset is considered in addition to the OASIS dementia dataset and 88% accuracy is earned for EHO‐based transformation technique combined with RanAdam. |
| Author | Rajaguru, Harikumar Bharanidharan, N |
| Author_xml | – sequence: 1 givenname: N orcidid: 0000-0001-9064-8238 surname: Bharanidharan fullname: Bharanidharan, N email: bharani2410@gmail.com organization: Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology – sequence: 2 givenname: Harikumar surname: Rajaguru fullname: Rajaguru, Harikumar organization: Bannari Amman Institute of Technology |
| BookMark | eNp9kc1q3DAUhUVIoZM0i76BIKsunEiyPZaWQ_o3kFAIzdpcy1exgi25koYwWfUR-hZ5rzxJNXFXhXYjocN3zkXnnpBj5x0S8p6zC86YuLQTXAhRC3FEVpwpWRyOY7JiUqlCVXXzlpzE-MAY5zWrV-T5I07okgV6c7ul2X2PVI8QozVWQ7Le0V207p6mAC4aH6ZFTKgHZ3_skHYQsadZwhHnAVyiA4b-YPFzspN9WgyPNg30Flzvs5QNmx4mOmEafE9zLN3NfQYPgwakw37G8PLz1wwBMoMhviNvDIwRz_7cp-Tu86fvV1-L629ftleb60IL1YhCsVoaEFI2Wum14ryCdaUbU5peIHZrYUAKiVB2RkG3xkqIquGNrjrR9VLr8pScL7lz8Pl3MbUPfhdcHtmKupasLBVTmfqwUDr4GAOadg65u7BvOWsPe2jzq33dQ2Yv_2K1Ta-d5Ert-D_Hox1x_-_odnuzWRy_AdYsoT0 |
| CitedBy_id | crossref_primary_10_1038_s41598_025_87471_0 crossref_primary_10_3390_biomimetics8060503 crossref_primary_10_1155_2022_9043300 crossref_primary_10_1002_ima_22782 crossref_primary_10_3390_app12189389 |
| Cites_doi | 10.1371/journal.pone.0188746 10.5815/ijmecs.2018.05.06 10.1155/2011/138078 10.1109/ADPRL.2007.368174 10.1016/j.procs.2016.09.366 10.1007/978-3-030-00665-5_95 10.1109/WHISPERS.2016.8071771 10.1109/ICNN.1995.488968 10.1007/s10489-006-8513-8 10.1109/5.726791 10.22146/ijccs.39071 10.1109/SAMI.2018.8324842 10.1109/IGARSS.2009.5418068 10.1016/j.advengsoft.2013.12.007 10.1504/IJBIC.2016.081335 10.1109/CCDC.2013.6561796 10.1016/j.ins.2018.04.080 10.1155/2019/5213759 10.1162/jocn.2007.19.9.1498 10.1142/S0218001420510039 10.1109/TFUZZ.2013.2286993 10.1155/2018/6076475 10.1109/R10-HTC.2018.8629846 10.1002/asmb.2431 10.1002/ima.22365 10.3390/app9183907 10.1109/CESYS.2017.8321288 10.14569/IJARAI.2013.020206 10.1142/S0219519419400025 10.1038/s41598-019-50262-5 10.1515/jisys-2016-0294 |
| ContentType | Journal Article |
| Copyright | 2020 Wiley Periodicals LLC 2021 Wiley Periodicals LLC. |
| Copyright_xml | – notice: 2020 Wiley Periodicals LLC – notice: 2021 Wiley Periodicals LLC. |
| DBID | AAYXX CITATION |
| DOI | 10.1002/ima.22522 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1098-1098 |
| EndPage | 1245 |
| ExternalDocumentID | 10_1002_ima_22522 IMA22522 |
| Genre | article |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HDBZQ HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION |
| ID | FETCH-LOGICAL-c2972-9058fa2887c9c69114a64c7f3fd2eeb62fa828ea3bf9ab6e4224717c4b2bd8cc3 |
| IEDL.DBID | DR2 |
| ISSN | 0899-9457 |
| IngestDate | Wed Aug 06 16:30:44 EDT 2025 Wed Oct 01 02:12:04 EDT 2025 Thu Apr 24 23:00:46 EDT 2025 Wed Jan 22 16:28:10 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2972-9058fa2887c9c69114a64c7f3fd2eeb62fa828ea3bf9ab6e4224717c4b2bd8cc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9064-8238 |
| PQID | 2558033909 |
| PQPubID | 1026352 |
| PageCount | 25 |
| ParticipantIDs | proquest_journals_2558033909 crossref_primary_10_1002_ima_22522 crossref_citationtrail_10_1002_ima_22522 wiley_primary_10_1002_ima_22522_IMA22522 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | September 2021 2021-09-00 20210901 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: New York |
| PublicationTitle | International journal of imaging systems and technology |
| PublicationYear | 2021 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2019; 9 2019; 2019 2013; 3 2018; 454–455 2013; 2 2019; 30 2011 2019; 35 2019; 13 2019; 34 2016; 102 2009 2019; 19 2014; 69 2007 2005 2016; 2016 2011; 12 1992 2002 1995; 4 1998; 86 2018; 27 2014; 22 2018; 2018 2018; 2 2010; 1 2001 2006; 24 2018; 1 2017; 12 2019 2018 2017 2016 2013; 174 2015 2014 2013 2014; 1412 2018; 10 2016; 8 e_1_2_9_31_1 e_1_2_9_52_1 Idoumghar L (e_1_2_9_39_1) 2011 Fymat A (e_1_2_9_3_1) 2018; 1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_14_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_24_1 King FW (e_1_2_9_48_1) 2010 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 Karaboga D. (e_1_2_9_26_1) 2005 e_1_2_9_28_1 Santra D (e_1_2_9_44_1) 2016; 2016 e_1_2_9_47_1 Kingma D (e_1_2_9_33_1) 2014; 1412 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 Tayfe Ayremlou AR (e_1_2_9_17_1) 2013; 3 Olliffe IT (e_1_2_9_49_1) 2002 Duchi J (e_1_2_9_30_1) 2011; 12 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 PJ Karanjekar (e_1_2_9_45_1) 2019 Tuba E (e_1_2_9_46_1) 2018; 2 e_1_2_9_40_1 Kennedy J (e_1_2_9_25_1) 2001 e_1_2_9_21_1 e_1_2_9_23_1 e_1_2_9_7_1 e_1_2_9_5_1 Karegowda AG (e_1_2_9_50_1) 2013; 174 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_29_1 Ding J (e_1_2_9_43_1) 2019; 2019 Foley T (e_1_2_9_2_1) 2014 |
| References_xml | – volume: 69 start-page: 46 year: 2014 end-page: 61 article-title: Grey wolf optimizer publication-title: Adv Eng Software – volume: 19 issue: 1 year: 2019 article-title: Automation of MR brain image classification for malignancy detection publication-title: J Mech Med Biol – year: 2009 – volume: 102 start-page: 34 year: 2016 end-page: 38 article-title: An overview of soft computing publication-title: Procedia Comp Sci – volume: 86 start-page: 2278 issue: 11 year: 1998 end-page: 2324 article-title: Gradient‐based learning applied to document recognition publication-title: Proc IEEE – volume: 30 start-page: 57 year: 2019 end-page: 74 article-title: Performance enhancement of swarm intelligence techniques in dementia classification using dragonfly‐based hybrid algorithms publication-title: Int J Imag Syst Technol – volume: 12 issue: 12 year: 2017 article-title: Particle swarm optimization‐based automatic parameter selection for deep neural networks and its applications in large‐scale and high‐dimensional data publication-title: PLoS One – year: 2001 – year: 2007 – volume: 3 start-page: 277 issue: 10 year: 2013 end-page: 280 article-title: Moment based thresholding in binary classification publication-title: J Basic Appl Sci Res – volume: 9 start-page: 3907 year: 2019 article-title: Optimization algorithms of neural networks for traditional time‐domain equalizer in optical communications publication-title: Appl Sci – volume: 8 start-page: 394 issue: 6 year: 2016 end-page: 409 article-title: A new metaheuristic optimisation algorithm motivated by elephant herding behaviour publication-title: Int J Bio‐Inspired Comput – year: 2016 – year: 2018 – volume: 174 start-page: 899 year: 2013 end-page: 904 article-title: Improving performance of K‐means clustering by initializing cluster centers using genetic algorithm and entropy based fuzzy clustering for categorization of diabetic patients publication-title: Proc ICAdC AISC – year: 2014 – volume: 2 start-page: 34 issue: 2 year: 2013 end-page: 38 article-title: Comparison of supervised and unsupervised learning algorithms for pattern classification publication-title: Int J Adv Res Artif Intellig – volume: 12 start-page: 2121 issue: Jul year: 2011 end-page: 2159 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J Mach Learn Res – volume: 34 year: 2019 article-title: Performance analysis of different optimizers for deep learning‐based image recognition publication-title: Int J Pattern Recogn Artif Intellig – volume: 2018 year: 2018 article-title: Particle swarm optimization‐based support vector regression for tourist arrivals forecasting publication-title: Comput Intellig Neurosci – volume: 1412 start-page: 1 issue: 6980 year: 2014 end-page: 15 article-title: Adam: a method for stochastic optimization publication-title: arXiv Preprint – volume: 13 start-page: 31 issue: 1 year: 2019 end-page: 42 article-title: Adaptive moment estimation on deep belief network for rupiah currency forecasting publication-title: Indonesian Journal of Computing and Cybernetics Systems – volume: 9 start-page: 13971 year: 2019 article-title: A novel hybrid model for predicting blast‐induced ground vibration based on k‐nearest neighbors and particle swarm optimization publication-title: Sci Rep – start-page: 171 year: 1992 end-page: 176 – volume: 4 start-page: 1942 year: 1995 end-page: 1948 – volume: 24 start-page: 219 year: 2006 end-page: 226 article-title: Adapting k‐means for supervised clustering publication-title: Appl Intell – year: 2002 – volume: 35 start-page: 321 year: 2019 end-page: 329 article-title: Non‐local spatial clustering in automated brain hematoma and edema segmentation publication-title: Appl Stochast Model Business Industry – year: 2005 article-title: An idea based on honey bee swarm for numerical optimization – volume: 2019 year: 2019 article-title: A hybrid particle swarm optimization cuckoo search algorithm and its engineering applications publication-title: Mathemat Probl Eng – volume: 10 start-page: 44 issue: 5 year: 2018 end-page: 53 article-title: Implementation of gray level image transformation techniques publication-title: J Modern Education and Computer Science – volume: 22 start-page: 1229 issue: 5 year: 2014 end-page: 1244 article-title: Accelerating fuzzy‐C means using an estimated subsample size publication-title: IEEE Trans Fuzzy Syst – volume: 2 start-page: 1 year: 2018 end-page: 8 article-title: Combined elephant herding optimization algorithm with K‐means for data clustering publication-title: Proc ICTIS – volume: 1 start-page: 27 year: 2018 end-page: 34 article-title: Dementia—a review publication-title: J Clin Psychiatr Neurosci – volume: 454–455 start-page: 216 year: 2018 end-page: 228 article-title: On using supervised clustering analysis to improve classification performance publication-title: Inform Sci – volume: 2016 start-page: 226 year: 2016 end-page: 230 article-title: Hybrid PSO‐ACO algorithm to solve economic load dispatch problem with transmission loss for small scale power system publication-title: Int Conf Intellig Contr Power Instrument – year: 2017 – volume: 27 start-page: 489 year: 2018 end-page: 506 article-title: A novel hybrid ABC‐PSO algorithm for effort estimation of software projects using agile methodologies publication-title: J Intell Syst – start-page: 985 year: 2018 end-page: 992 – year: 2011 article-title: Hybrid PSO‐SA type algorithms for multimodal function optimization and reducing energy consumption in embedded systems publication-title: Applied Computational Intelligence and Soft Computing – year: 2019 – volume: 1 year: 2010 – year: 2015 – year: 2013 – ident: e_1_2_9_41_1 doi: 10.1371/journal.pone.0188746 – ident: e_1_2_9_47_1 doi: 10.5815/ijmecs.2018.05.06 – volume-title: Swarm Intelligence year: 2001 ident: e_1_2_9_25_1 – start-page: 138078 year: 2011 ident: e_1_2_9_39_1 article-title: Hybrid PSO‐SA type algorithms for multimodal function optimization and reducing energy consumption in embedded systems publication-title: Applied Computational Intelligence and Soft Computing doi: 10.1155/2011/138078 – ident: e_1_2_9_27_1 doi: 10.1109/ADPRL.2007.368174 – ident: e_1_2_9_5_1 doi: 10.1016/j.procs.2016.09.366 – ident: e_1_2_9_9_1 doi: 10.1007/978-3-030-00665-5_95 – ident: e_1_2_9_15_1 doi: 10.1109/WHISPERS.2016.8071771 – ident: e_1_2_9_24_1 doi: 10.1109/ICNN.1995.488968 – ident: e_1_2_9_14_1 doi: 10.1007/s10489-006-8513-8 – volume-title: Principal Component Analysis, Series year: 2002 ident: e_1_2_9_49_1 – ident: e_1_2_9_31_1 doi: 10.1109/5.726791 – ident: e_1_2_9_52_1 – volume-title: Hilbert Transforms year: 2010 ident: e_1_2_9_48_1 – ident: e_1_2_9_35_1 doi: 10.22146/ijccs.39071 – ident: e_1_2_9_23_1 doi: 10.1109/SAMI.2018.8324842 – ident: e_1_2_9_18_1 doi: 10.1109/IGARSS.2009.5418068 – ident: e_1_2_9_7_1 doi: 10.1016/j.advengsoft.2013.12.007 – ident: e_1_2_9_22_1 doi: 10.1504/IJBIC.2016.081335 – ident: e_1_2_9_16_1 doi: 10.1109/CCDC.2013.6561796 – ident: e_1_2_9_13_1 doi: 10.1016/j.ins.2018.04.080 – volume: 174 start-page: 899 year: 2013 ident: e_1_2_9_50_1 article-title: Improving performance of K‐means clustering by initializing cluster centers using genetic algorithm and entropy based fuzzy clustering for categorization of diabetic patients publication-title: Proc ICAdC AISC – volume: 2019 start-page: 5213759 year: 2019 ident: e_1_2_9_43_1 article-title: A hybrid particle swarm optimization cuckoo search algorithm and its engineering applications publication-title: Mathemat Probl Eng doi: 10.1155/2019/5213759 – ident: e_1_2_9_28_1 – ident: e_1_2_9_51_1 doi: 10.1162/jocn.2007.19.9.1498 – ident: e_1_2_9_37_1 doi: 10.1142/S0218001420510039 – ident: e_1_2_9_20_1 doi: 10.1109/TFUZZ.2013.2286993 – ident: e_1_2_9_36_1 – ident: e_1_2_9_38_1 doi: 10.1155/2018/6076475 – ident: e_1_2_9_19_1 – ident: e_1_2_9_10_1 doi: 10.1109/R10-HTC.2018.8629846 – volume-title: Dementia: Diagnosis and Management in General Practice year: 2014 ident: e_1_2_9_2_1 – volume-title: Elephant Herding Algorithm for Clustering year: 2019 ident: e_1_2_9_45_1 – ident: e_1_2_9_32_1 – volume: 3 start-page: 277 issue: 10 year: 2013 ident: e_1_2_9_17_1 article-title: Moment based thresholding in binary classification publication-title: J Basic Appl Sci Res – volume: 1 start-page: 27 year: 2018 ident: e_1_2_9_3_1 article-title: Dementia—a review publication-title: J Clin Psychiatr Neurosci – ident: e_1_2_9_21_1 doi: 10.1002/asmb.2431 – ident: e_1_2_9_11_1 doi: 10.1002/ima.22365 – ident: e_1_2_9_34_1 doi: 10.3390/app9183907 – volume-title: Technical Report‐TR06 year: 2005 ident: e_1_2_9_26_1 – volume: 1412 start-page: 1 issue: 6980 year: 2014 ident: e_1_2_9_33_1 article-title: Adam: a method for stochastic optimization publication-title: arXiv Preprint – volume: 2016 start-page: 226 year: 2016 ident: e_1_2_9_44_1 article-title: Hybrid PSO‐ACO algorithm to solve economic load dispatch problem with transmission loss for small scale power system publication-title: Int Conf Intellig Contr Power Instrument – ident: e_1_2_9_8_1 doi: 10.1109/CESYS.2017.8321288 – ident: e_1_2_9_12_1 – ident: e_1_2_9_6_1 doi: 10.14569/IJARAI.2013.020206 – ident: e_1_2_9_4_1 doi: 10.1142/S0219519419400025 – ident: e_1_2_9_40_1 doi: 10.1038/s41598-019-50262-5 – ident: e_1_2_9_42_1 doi: 10.1515/jisys-2016-0294 – volume: 2 start-page: 1 year: 2018 ident: e_1_2_9_46_1 article-title: Combined elephant herding optimization algorithm with K‐means for data clustering publication-title: Proc ICTIS – ident: e_1_2_9_29_1 – volume: 12 start-page: 2121 year: 2011 ident: e_1_2_9_30_1 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J Mach Learn Res |
| SSID | ssj0011505 |
| Score | 2.305086 |
| Snippet | The primary objective of this research work is to build a binary classifier for categorizing the input brain magnetic resonanceimaging (MRI) images as either... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1221 |
| SubjectTerms | Accuracy Algorithms Clustering Datasets Dementia elephant herding optimization evolutionary algorithms Image classification Machine learning Magnetic resonance imaging Medical imaging MRI Neural networks Optimization Parameter modification Swarm intelligence Transformations |
| Title | Dementia MRI image classification using transformation technique based on elephant herding optimization with Randomized Adam method for updating the hyper‐parameters |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fima.22522 https://www.proquest.com/docview/2558033909 |
| Volume | 31 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1098-1098 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0011505 issn: 0899-9457 databaseCode: ABDBF dateStart: 19890601 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1098-1098 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0011505 issn: 0899-9457 databaseCode: ADMLS dateStart: 19890601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0899-9457 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1098-1098 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011505 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEG5CQNCDxqgYTaQQD14m2enueTQ5LXmQBNbDYiAHYeiu6ckG3QfZ3Ysnf4L_wv_lL7Gq55FNMBByG5rumkdVd33VU_W1EJ_QWcLhZRJZhWmkrbdRrqyJpOGfh4hxbLkaefAlPTnXZxfJxZrYb2than6IbsONZ0ZYr3mCWzffuyENvWLaIEnwgdbfWKUhnBp21FEMdEL6Ys4MlDrJWlahntzrRt72RTcAcxWmBj9z_EJ8a5-wTi_5vrtcuF38eYe88ZGvsCGeN_gT-rXBvBRrfrIpnq2wEm6KJyErFOevxJ_DsHl4ZWEwPAWSc-kBGW5zflFQKXDe_CUsVuAvNXbEsMBOsgRqIu82G5EWgWyE3SVMaa0aN0WgwLvBMLSTckpNNKBf2jHUh1sDiYXljKsw-EYjDyMKna___vrNrOVjzuaZvxbnx0dfD06i5mSHCKXJZGR6SV6RkeQZGkxpvdU21ZhVqiql9y6VlaVI0FvlKmNd6jUBDYo7UTvpyhxRvRHrk-nEvxVgXEKIx2ifYqYJbdqsinNkacpWPq62xOdWxwU2tOd8-saPoiZslgV9vSJoYUt87LrOaq6P_3Xabg2laKb7vKC4LO8pZXqGbhc0fr-A4nTQDxfvHt71vXgqOZcm5LZti_XF9dLvEBhauA_B6v8Bv48KuQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VIkR74FGK2lLAQhy4bJt4vQ9LXCKgSqDpIWqlXtDKnvU2Fc1DTXLpqT-h_4L_xS9hxvtoqKiEuK0s2_uYGc83s-PPAO_RGsLheRSYEONAGWeCNDQ6kJp_HiK224Z3I_eP4u6J-noana7Ax3ovTMkP0STc2DL8es0Gzgnp_VvW0HPmDZKEHx7AQxVTnMKQaNCQRzHU8QWMKXNQqiipeYVacr8Z-qc3uoWYy0DVe5qDp_C9fsaywOTH3mJu9_DqDn3j_77EM3hSQVDRKXXmOay48QasLxETbsAjXxiKsxfw87PPH54b0R_0BM1z5gQy4uYSIy9VwaXzZ2K-hICpseGGFewnc0FN5OCmQxKkIDVhjykmtFyNqn2gghPCYmDG-YSaaEAnNyNRnm8taFqxmPJGDL7R0IkhRc-Xv65vmLh8xAU9s004Ofhy_KkbVIc7BCh1IgPditKC9CRNUGNMS64yscKkCItcOmdjWRgKBp0JbaGNjZ0irEGhJyorbZ4ihi9hdTwZuy0Q2kYEerRyMSaKAKdJinaKPFtoCtcutuFDLeQMK-ZzPoDjIis5m2VGXy_zUtiGd03XaUn38bdOu7WmZJXFzzIKzdJWGOqWptt5kd8_Qdbrd_zFzr93fQuPu8f9w-ywd_TtFaxJLq3xpW67sDq_XLjXhI3m9o03gd9cXg7a |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VIhAceJQiCgVGiAOXbROv92GJS0SIGiAViqjUC1rZXrupIA81yYUTP4F_wf_ilzDjfTQgkBC3lWXPPsbj-ez9_BnguTWacHiZRDq2aSS101EeaxUJxT8Pre12Ne9GHh2nRyfyzWlyugUvm70wlT5Eu-DGkRHGaw5wtyj94aVq6DnrBgnCD1fgqkxUzoS-_rgVj2KoEwiMOWtQyiRrdIU64rBt-ms2uoSYm0A1ZJrBbfjYPGNFMPl0sF6ZA_vlN_nG_32JO3CrhqDYq_rMXdhysx24uSFMuAPXAjHULu_B935YPzzXOBoPkeycObSMuJliFLyKTJ0_w9UGAqbCVhsWOU-WSEWU4BYTciRSN-GMiXMarqb1PlDkBWEc61k5pyJq0Cv1FKvzrZHM4nrBGzH4RhOHE5o9X_z4-o2Fy6dM6Fnuwsng9YdXR1F9uENkhcpEpDpJ7qmf5JlVNqUhV-pU2szHvhTOmVR4TZNBp2PjlTapk4Q1aOpppRGmzK2N78P2bD5zDwCVSQj0KOlSm0kCnDrz3dyytVh71_V78KJxcmFr5XM-gONzUWk2i4K-XhG8sAfP2qqLSu7jT5X2m55S1BG_LGhqlnfiWHUU3S64_O8GiuGoFy4e_nvVp3D9fX9QvBsev30ENwQzawLTbR-2Vxdr95ig0co8CRHwE_GuDl4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dementia+MRI+image+classification+using+transformation+technique+based+on+elephant+herding+optimization+with+Randomized+Adam+method+for+updating+the+hyper%E2%80%90parameters&rft.jtitle=International+journal+of+imaging+systems+and+technology&rft.au=Bharanidharan%2C+N&rft.au=Rajaguru%2C+Harikumar&rft.date=2021-09-01&rft.issn=0899-9457&rft.eissn=1098-1098&rft.volume=31&rft.issue=3&rft.spage=1221&rft.epage=1245&rft_id=info:doi/10.1002%2Fima.22522&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ima_22522 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-9457&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-9457&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-9457&client=summon |