Dementia MRI image classification using transformation technique based on elephant herding optimization with Randomized Adam method for updating the hyper‐parameters

The primary objective of this research work is to build a binary classifier for categorizing the input brain magnetic resonanceimaging (MRI) images as either demented or nondemented with high accuracy. A novel hyper‐parameter updating method called Randomized Adam (RanAdam) is proposed for enhancing...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of imaging systems and technology Vol. 31; no. 3; pp. 1221 - 1245
Main Authors Bharanidharan, N, Rajaguru, Harikumar
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.09.2021
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0899-9457
1098-1098
DOI10.1002/ima.22522

Cover

Abstract The primary objective of this research work is to build a binary classifier for categorizing the input brain magnetic resonanceimaging (MRI) images as either demented or nondemented with high accuracy. A novel hyper‐parameter updating method called Randomized Adam (RanAdam) is proposed for enhancing the dementia classification accuracy of elephant herding optimization algorithm and other swarm intelligence (SI) algorithms. Usually, Adam method is widely used in deep learning neural networks for hyper‐parameters updating, and it is ingenious to use Adam and its modified version called RanAdam as hyper‐parameters updating method for SI algorithms. The proposed RanAdam algorithm tries to find actual optimal values for hyper‐parameters near the optimal values given by Adam method through the Controlled Randomness procedure. This research work also compares dementia MRI image classification performance of elephant herding optimization‐based transformation technique with the standard clustering approaches and other transformation approaches. In this research work, 117 subjects (65 non‐dementia and 52 dementia subjects) acquired from the Open Access Series of Imaging Studies (OASIS) database is used. Two cases are analyzed in all the techniques: with and without statistical features. The highest accuracy of 90.6% is achieved by elephant herding optimization (EHO)‐based transformation technique combined with RanAdam for updating hyper‐parameters for the case without statistical features. To verify the efficiency of the proposed technique, a popular Pima diabetic dataset is considered in addition to the OASIS dementia dataset and 88% accuracy is earned for EHO‐based transformation technique combined with RanAdam.
AbstractList The primary objective of this research work is to build a binary classifier for categorizing the input brain magnetic resonanceimaging (MRI) images as either demented or nondemented with high accuracy. A novel hyper‐parameter updating method called Randomized Adam (RanAdam) is proposed for enhancing the dementia classification accuracy of elephant herding optimization algorithm and other swarm intelligence (SI) algorithms. Usually, Adam method is widely used in deep learning neural networks for hyper‐parameters updating, and it is ingenious to use Adam and its modified version called RanAdam as hyper‐parameters updating method for SI algorithms. The proposed RanAdam algorithm tries to find actual optimal values for hyper‐parameters near the optimal values given by Adam method through the Controlled Randomness procedure. This research work also compares dementia MRI image classification performance of elephant herding optimization‐based transformation technique with the standard clustering approaches and other transformation approaches. In this research work, 117 subjects (65 non‐dementia and 52 dementia subjects) acquired from the Open Access Series of Imaging Studies (OASIS) database is used. Two cases are analyzed in all the techniques: with and without statistical features. The highest accuracy of 90.6% is achieved by elephant herding optimization (EHO)‐based transformation technique combined with RanAdam for updating hyper‐parameters for the case without statistical features. To verify the efficiency of the proposed technique, a popular Pima diabetic dataset is considered in addition to the OASIS dementia dataset and 88% accuracy is earned for EHO‐based transformation technique combined with RanAdam.
Author Rajaguru, Harikumar
Bharanidharan, N
Author_xml – sequence: 1
  givenname: N
  orcidid: 0000-0001-9064-8238
  surname: Bharanidharan
  fullname: Bharanidharan, N
  email: bharani2410@gmail.com
  organization: Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology
– sequence: 2
  givenname: Harikumar
  surname: Rajaguru
  fullname: Rajaguru, Harikumar
  organization: Bannari Amman Institute of Technology
BookMark eNp9kc1q3DAUhUVIoZM0i76BIKsunEiyPZaWQ_o3kFAIzdpcy1exgi25koYwWfUR-hZ5rzxJNXFXhXYjocN3zkXnnpBj5x0S8p6zC86YuLQTXAhRC3FEVpwpWRyOY7JiUqlCVXXzlpzE-MAY5zWrV-T5I07okgV6c7ul2X2PVI8QozVWQ7Le0V207p6mAC4aH6ZFTKgHZ3_skHYQsadZwhHnAVyiA4b-YPFzspN9WgyPNg30Flzvs5QNmx4mOmEafE9zLN3NfQYPgwakw37G8PLz1wwBMoMhviNvDIwRz_7cp-Tu86fvV1-L629ftleb60IL1YhCsVoaEFI2Wum14ryCdaUbU5peIHZrYUAKiVB2RkG3xkqIquGNrjrR9VLr8pScL7lz8Pl3MbUPfhdcHtmKupasLBVTmfqwUDr4GAOadg65u7BvOWsPe2jzq33dQ2Yv_2K1Ta-d5Ert-D_Hox1x_-_odnuzWRy_AdYsoT0
CitedBy_id crossref_primary_10_1038_s41598_025_87471_0
crossref_primary_10_3390_biomimetics8060503
crossref_primary_10_1155_2022_9043300
crossref_primary_10_1002_ima_22782
crossref_primary_10_3390_app12189389
Cites_doi 10.1371/journal.pone.0188746
10.5815/ijmecs.2018.05.06
10.1155/2011/138078
10.1109/ADPRL.2007.368174
10.1016/j.procs.2016.09.366
10.1007/978-3-030-00665-5_95
10.1109/WHISPERS.2016.8071771
10.1109/ICNN.1995.488968
10.1007/s10489-006-8513-8
10.1109/5.726791
10.22146/ijccs.39071
10.1109/SAMI.2018.8324842
10.1109/IGARSS.2009.5418068
10.1016/j.advengsoft.2013.12.007
10.1504/IJBIC.2016.081335
10.1109/CCDC.2013.6561796
10.1016/j.ins.2018.04.080
10.1155/2019/5213759
10.1162/jocn.2007.19.9.1498
10.1142/S0218001420510039
10.1109/TFUZZ.2013.2286993
10.1155/2018/6076475
10.1109/R10-HTC.2018.8629846
10.1002/asmb.2431
10.1002/ima.22365
10.3390/app9183907
10.1109/CESYS.2017.8321288
10.14569/IJARAI.2013.020206
10.1142/S0219519419400025
10.1038/s41598-019-50262-5
10.1515/jisys-2016-0294
ContentType Journal Article
Copyright 2020 Wiley Periodicals LLC
2021 Wiley Periodicals LLC.
Copyright_xml – notice: 2020 Wiley Periodicals LLC
– notice: 2021 Wiley Periodicals LLC.
DBID AAYXX
CITATION
DOI 10.1002/ima.22522
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1098-1098
EndPage 1245
ExternalDocumentID 10_1002_ima_22522
IMA22522
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HDBZQ
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
ID FETCH-LOGICAL-c2972-9058fa2887c9c69114a64c7f3fd2eeb62fa828ea3bf9ab6e4224717c4b2bd8cc3
IEDL.DBID DR2
ISSN 0899-9457
IngestDate Wed Aug 06 16:30:44 EDT 2025
Wed Oct 01 02:12:04 EDT 2025
Thu Apr 24 23:00:46 EDT 2025
Wed Jan 22 16:28:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2972-9058fa2887c9c69114a64c7f3fd2eeb62fa828ea3bf9ab6e4224717c4b2bd8cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9064-8238
PQID 2558033909
PQPubID 1026352
PageCount 25
ParticipantIDs proquest_journals_2558033909
crossref_primary_10_1002_ima_22522
crossref_citationtrail_10_1002_ima_22522
wiley_primary_10_1002_ima_22522_IMA22522
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
20210901
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: New York
PublicationTitle International journal of imaging systems and technology
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2019; 9
2019; 2019
2013; 3
2018; 454–455
2013; 2
2019; 30
2011
2019; 35
2019; 13
2019; 34
2016; 102
2009
2019; 19
2014; 69
2007
2005
2016; 2016
2011; 12
1992
2002
1995; 4
1998; 86
2018; 27
2014; 22
2018; 2018
2018; 2
2010; 1
2001
2006; 24
2018; 1
2017; 12
2019
2018
2017
2016
2013; 174
2015
2014
2013
2014; 1412
2018; 10
2016; 8
e_1_2_9_31_1
e_1_2_9_52_1
Idoumghar L (e_1_2_9_39_1) 2011
Fymat A (e_1_2_9_3_1) 2018; 1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_14_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_24_1
King FW (e_1_2_9_48_1) 2010
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
Karaboga D. (e_1_2_9_26_1) 2005
e_1_2_9_28_1
Santra D (e_1_2_9_44_1) 2016; 2016
e_1_2_9_47_1
Kingma D (e_1_2_9_33_1) 2014; 1412
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
Tayfe Ayremlou AR (e_1_2_9_17_1) 2013; 3
Olliffe IT (e_1_2_9_49_1) 2002
Duchi J (e_1_2_9_30_1) 2011; 12
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
PJ Karanjekar (e_1_2_9_45_1) 2019
Tuba E (e_1_2_9_46_1) 2018; 2
e_1_2_9_40_1
Kennedy J (e_1_2_9_25_1) 2001
e_1_2_9_21_1
e_1_2_9_23_1
e_1_2_9_7_1
e_1_2_9_5_1
Karegowda AG (e_1_2_9_50_1) 2013; 174
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_29_1
Ding J (e_1_2_9_43_1) 2019; 2019
Foley T (e_1_2_9_2_1) 2014
References_xml – volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  article-title: Grey wolf optimizer
  publication-title: Adv Eng Software
– volume: 19
  issue: 1
  year: 2019
  article-title: Automation of MR brain image classification for malignancy detection
  publication-title: J Mech Med Biol
– year: 2009
– volume: 102
  start-page: 34
  year: 2016
  end-page: 38
  article-title: An overview of soft computing
  publication-title: Procedia Comp Sci
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  end-page: 2324
  article-title: Gradient‐based learning applied to document recognition
  publication-title: Proc IEEE
– volume: 30
  start-page: 57
  year: 2019
  end-page: 74
  article-title: Performance enhancement of swarm intelligence techniques in dementia classification using dragonfly‐based hybrid algorithms
  publication-title: Int J Imag Syst Technol
– volume: 12
  issue: 12
  year: 2017
  article-title: Particle swarm optimization‐based automatic parameter selection for deep neural networks and its applications in large‐scale and high‐dimensional data
  publication-title: PLoS One
– year: 2001
– year: 2007
– volume: 3
  start-page: 277
  issue: 10
  year: 2013
  end-page: 280
  article-title: Moment based thresholding in binary classification
  publication-title: J Basic Appl Sci Res
– volume: 9
  start-page: 3907
  year: 2019
  article-title: Optimization algorithms of neural networks for traditional time‐domain equalizer in optical communications
  publication-title: Appl Sci
– volume: 8
  start-page: 394
  issue: 6
  year: 2016
  end-page: 409
  article-title: A new metaheuristic optimisation algorithm motivated by elephant herding behaviour
  publication-title: Int J Bio‐Inspired Comput
– year: 2016
– year: 2018
– volume: 174
  start-page: 899
  year: 2013
  end-page: 904
  article-title: Improving performance of K‐means clustering by initializing cluster centers using genetic algorithm and entropy based fuzzy clustering for categorization of diabetic patients
  publication-title: Proc ICAdC AISC
– year: 2014
– volume: 2
  start-page: 34
  issue: 2
  year: 2013
  end-page: 38
  article-title: Comparison of supervised and unsupervised learning algorithms for pattern classification
  publication-title: Int J Adv Res Artif Intellig
– volume: 12
  start-page: 2121
  issue: Jul
  year: 2011
  end-page: 2159
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J Mach Learn Res
– volume: 34
  year: 2019
  article-title: Performance analysis of different optimizers for deep learning‐based image recognition
  publication-title: Int J Pattern Recogn Artif Intellig
– volume: 2018
  year: 2018
  article-title: Particle swarm optimization‐based support vector regression for tourist arrivals forecasting
  publication-title: Comput Intellig Neurosci
– volume: 1412
  start-page: 1
  issue: 6980
  year: 2014
  end-page: 15
  article-title: Adam: a method for stochastic optimization
  publication-title: arXiv Preprint
– volume: 13
  start-page: 31
  issue: 1
  year: 2019
  end-page: 42
  article-title: Adaptive moment estimation on deep belief network for rupiah currency forecasting
  publication-title: Indonesian Journal of Computing and Cybernetics Systems
– volume: 9
  start-page: 13971
  year: 2019
  article-title: A novel hybrid model for predicting blast‐induced ground vibration based on k‐nearest neighbors and particle swarm optimization
  publication-title: Sci Rep
– start-page: 171
  year: 1992
  end-page: 176
– volume: 4
  start-page: 1942
  year: 1995
  end-page: 1948
– volume: 24
  start-page: 219
  year: 2006
  end-page: 226
  article-title: Adapting k‐means for supervised clustering
  publication-title: Appl Intell
– year: 2002
– volume: 35
  start-page: 321
  year: 2019
  end-page: 329
  article-title: Non‐local spatial clustering in automated brain hematoma and edema segmentation
  publication-title: Appl Stochast Model Business Industry
– year: 2005
  article-title: An idea based on honey bee swarm for numerical optimization
– volume: 2019
  year: 2019
  article-title: A hybrid particle swarm optimization cuckoo search algorithm and its engineering applications
  publication-title: Mathemat Probl Eng
– volume: 10
  start-page: 44
  issue: 5
  year: 2018
  end-page: 53
  article-title: Implementation of gray level image transformation techniques
  publication-title: J Modern Education and Computer Science
– volume: 22
  start-page: 1229
  issue: 5
  year: 2014
  end-page: 1244
  article-title: Accelerating fuzzy‐C means using an estimated subsample size
  publication-title: IEEE Trans Fuzzy Syst
– volume: 2
  start-page: 1
  year: 2018
  end-page: 8
  article-title: Combined elephant herding optimization algorithm with K‐means for data clustering
  publication-title: Proc ICTIS
– volume: 1
  start-page: 27
  year: 2018
  end-page: 34
  article-title: Dementia—a review
  publication-title: J Clin Psychiatr Neurosci
– volume: 454–455
  start-page: 216
  year: 2018
  end-page: 228
  article-title: On using supervised clustering analysis to improve classification performance
  publication-title: Inform Sci
– volume: 2016
  start-page: 226
  year: 2016
  end-page: 230
  article-title: Hybrid PSO‐ACO algorithm to solve economic load dispatch problem with transmission loss for small scale power system
  publication-title: Int Conf Intellig Contr Power Instrument
– year: 2017
– volume: 27
  start-page: 489
  year: 2018
  end-page: 506
  article-title: A novel hybrid ABC‐PSO algorithm for effort estimation of software projects using agile methodologies
  publication-title: J Intell Syst
– start-page: 985
  year: 2018
  end-page: 992
– year: 2011
  article-title: Hybrid PSO‐SA type algorithms for multimodal function optimization and reducing energy consumption in embedded systems
  publication-title: Applied Computational Intelligence and Soft Computing
– year: 2019
– volume: 1
  year: 2010
– year: 2015
– year: 2013
– ident: e_1_2_9_41_1
  doi: 10.1371/journal.pone.0188746
– ident: e_1_2_9_47_1
  doi: 10.5815/ijmecs.2018.05.06
– volume-title: Swarm Intelligence
  year: 2001
  ident: e_1_2_9_25_1
– start-page: 138078
  year: 2011
  ident: e_1_2_9_39_1
  article-title: Hybrid PSO‐SA type algorithms for multimodal function optimization and reducing energy consumption in embedded systems
  publication-title: Applied Computational Intelligence and Soft Computing
  doi: 10.1155/2011/138078
– ident: e_1_2_9_27_1
  doi: 10.1109/ADPRL.2007.368174
– ident: e_1_2_9_5_1
  doi: 10.1016/j.procs.2016.09.366
– ident: e_1_2_9_9_1
  doi: 10.1007/978-3-030-00665-5_95
– ident: e_1_2_9_15_1
  doi: 10.1109/WHISPERS.2016.8071771
– ident: e_1_2_9_24_1
  doi: 10.1109/ICNN.1995.488968
– ident: e_1_2_9_14_1
  doi: 10.1007/s10489-006-8513-8
– volume-title: Principal Component Analysis, Series
  year: 2002
  ident: e_1_2_9_49_1
– ident: e_1_2_9_31_1
  doi: 10.1109/5.726791
– ident: e_1_2_9_52_1
– volume-title: Hilbert Transforms
  year: 2010
  ident: e_1_2_9_48_1
– ident: e_1_2_9_35_1
  doi: 10.22146/ijccs.39071
– ident: e_1_2_9_23_1
  doi: 10.1109/SAMI.2018.8324842
– ident: e_1_2_9_18_1
  doi: 10.1109/IGARSS.2009.5418068
– ident: e_1_2_9_7_1
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: e_1_2_9_22_1
  doi: 10.1504/IJBIC.2016.081335
– ident: e_1_2_9_16_1
  doi: 10.1109/CCDC.2013.6561796
– ident: e_1_2_9_13_1
  doi: 10.1016/j.ins.2018.04.080
– volume: 174
  start-page: 899
  year: 2013
  ident: e_1_2_9_50_1
  article-title: Improving performance of K‐means clustering by initializing cluster centers using genetic algorithm and entropy based fuzzy clustering for categorization of diabetic patients
  publication-title: Proc ICAdC AISC
– volume: 2019
  start-page: 5213759
  year: 2019
  ident: e_1_2_9_43_1
  article-title: A hybrid particle swarm optimization cuckoo search algorithm and its engineering applications
  publication-title: Mathemat Probl Eng
  doi: 10.1155/2019/5213759
– ident: e_1_2_9_28_1
– ident: e_1_2_9_51_1
  doi: 10.1162/jocn.2007.19.9.1498
– ident: e_1_2_9_37_1
  doi: 10.1142/S0218001420510039
– ident: e_1_2_9_20_1
  doi: 10.1109/TFUZZ.2013.2286993
– ident: e_1_2_9_36_1
– ident: e_1_2_9_38_1
  doi: 10.1155/2018/6076475
– ident: e_1_2_9_19_1
– ident: e_1_2_9_10_1
  doi: 10.1109/R10-HTC.2018.8629846
– volume-title: Dementia: Diagnosis and Management in General Practice
  year: 2014
  ident: e_1_2_9_2_1
– volume-title: Elephant Herding Algorithm for Clustering
  year: 2019
  ident: e_1_2_9_45_1
– ident: e_1_2_9_32_1
– volume: 3
  start-page: 277
  issue: 10
  year: 2013
  ident: e_1_2_9_17_1
  article-title: Moment based thresholding in binary classification
  publication-title: J Basic Appl Sci Res
– volume: 1
  start-page: 27
  year: 2018
  ident: e_1_2_9_3_1
  article-title: Dementia—a review
  publication-title: J Clin Psychiatr Neurosci
– ident: e_1_2_9_21_1
  doi: 10.1002/asmb.2431
– ident: e_1_2_9_11_1
  doi: 10.1002/ima.22365
– ident: e_1_2_9_34_1
  doi: 10.3390/app9183907
– volume-title: Technical Report‐TR06
  year: 2005
  ident: e_1_2_9_26_1
– volume: 1412
  start-page: 1
  issue: 6980
  year: 2014
  ident: e_1_2_9_33_1
  article-title: Adam: a method for stochastic optimization
  publication-title: arXiv Preprint
– volume: 2016
  start-page: 226
  year: 2016
  ident: e_1_2_9_44_1
  article-title: Hybrid PSO‐ACO algorithm to solve economic load dispatch problem with transmission loss for small scale power system
  publication-title: Int Conf Intellig Contr Power Instrument
– ident: e_1_2_9_8_1
  doi: 10.1109/CESYS.2017.8321288
– ident: e_1_2_9_12_1
– ident: e_1_2_9_6_1
  doi: 10.14569/IJARAI.2013.020206
– ident: e_1_2_9_4_1
  doi: 10.1142/S0219519419400025
– ident: e_1_2_9_40_1
  doi: 10.1038/s41598-019-50262-5
– ident: e_1_2_9_42_1
  doi: 10.1515/jisys-2016-0294
– volume: 2
  start-page: 1
  year: 2018
  ident: e_1_2_9_46_1
  article-title: Combined elephant herding optimization algorithm with K‐means for data clustering
  publication-title: Proc ICTIS
– ident: e_1_2_9_29_1
– volume: 12
  start-page: 2121
  year: 2011
  ident: e_1_2_9_30_1
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J Mach Learn Res
SSID ssj0011505
Score 2.305086
Snippet The primary objective of this research work is to build a binary classifier for categorizing the input brain magnetic resonanceimaging (MRI) images as either...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1221
SubjectTerms Accuracy
Algorithms
Clustering
Datasets
Dementia
elephant herding optimization
evolutionary algorithms
Image classification
Machine learning
Magnetic resonance imaging
Medical imaging
MRI
Neural networks
Optimization
Parameter modification
Swarm intelligence
Transformations
Title Dementia MRI image classification using transformation technique based on elephant herding optimization with Randomized Adam method for updating the hyper‐parameters
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fima.22522
https://www.proquest.com/docview/2558033909
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1098-1098
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0011505
  issn: 0899-9457
  databaseCode: ABDBF
  dateStart: 19890601
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1098-1098
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0011505
  issn: 0899-9457
  databaseCode: ADMLS
  dateStart: 19890601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0899-9457
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1098-1098
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011505
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEG5CQNCDxqgYTaQQD14m2enueTQ5LXmQBNbDYiAHYeiu6ckG3QfZ3Ysnf4L_wv_lL7Gq55FNMBByG5rumkdVd33VU_W1EJ_QWcLhZRJZhWmkrbdRrqyJpOGfh4hxbLkaefAlPTnXZxfJxZrYb2than6IbsONZ0ZYr3mCWzffuyENvWLaIEnwgdbfWKUhnBp21FEMdEL6Ys4MlDrJWlahntzrRt72RTcAcxWmBj9z_EJ8a5-wTi_5vrtcuF38eYe88ZGvsCGeN_gT-rXBvBRrfrIpnq2wEm6KJyErFOevxJ_DsHl4ZWEwPAWSc-kBGW5zflFQKXDe_CUsVuAvNXbEsMBOsgRqIu82G5EWgWyE3SVMaa0aN0WgwLvBMLSTckpNNKBf2jHUh1sDiYXljKsw-EYjDyMKna___vrNrOVjzuaZvxbnx0dfD06i5mSHCKXJZGR6SV6RkeQZGkxpvdU21ZhVqiql9y6VlaVI0FvlKmNd6jUBDYo7UTvpyhxRvRHrk-nEvxVgXEKIx2ifYqYJbdqsinNkacpWPq62xOdWxwU2tOd8-saPoiZslgV9vSJoYUt87LrOaq6P_3Xabg2laKb7vKC4LO8pZXqGbhc0fr-A4nTQDxfvHt71vXgqOZcm5LZti_XF9dLvEBhauA_B6v8Bv48KuQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VIkR74FGK2lLAQhy4bJt4vQ9LXCKgSqDpIWqlXtDKnvU2Fc1DTXLpqT-h_4L_xS9hxvtoqKiEuK0s2_uYGc83s-PPAO_RGsLheRSYEONAGWeCNDQ6kJp_HiK224Z3I_eP4u6J-noana7Ax3ovTMkP0STc2DL8es0Gzgnp_VvW0HPmDZKEHx7AQxVTnMKQaNCQRzHU8QWMKXNQqiipeYVacr8Z-qc3uoWYy0DVe5qDp_C9fsaywOTH3mJu9_DqDn3j_77EM3hSQVDRKXXmOay48QasLxETbsAjXxiKsxfw87PPH54b0R_0BM1z5gQy4uYSIy9VwaXzZ2K-hICpseGGFewnc0FN5OCmQxKkIDVhjykmtFyNqn2gghPCYmDG-YSaaEAnNyNRnm8taFqxmPJGDL7R0IkhRc-Xv65vmLh8xAU9s004Ofhy_KkbVIc7BCh1IgPditKC9CRNUGNMS64yscKkCItcOmdjWRgKBp0JbaGNjZ0irEGhJyorbZ4ihi9hdTwZuy0Q2kYEerRyMSaKAKdJinaKPFtoCtcutuFDLeQMK-ZzPoDjIis5m2VGXy_zUtiGd03XaUn38bdOu7WmZJXFzzIKzdJWGOqWptt5kd8_Qdbrd_zFzr93fQuPu8f9w-ywd_TtFaxJLq3xpW67sDq_XLjXhI3m9o03gd9cXg7a
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VIhAceJQiCgVGiAOXbROv92GJS0SIGiAViqjUC1rZXrupIA81yYUTP4F_wf_ilzDjfTQgkBC3lWXPPsbj-ez9_BnguTWacHiZRDq2aSS101EeaxUJxT8Pre12Ne9GHh2nRyfyzWlyugUvm70wlT5Eu-DGkRHGaw5wtyj94aVq6DnrBgnCD1fgqkxUzoS-_rgVj2KoEwiMOWtQyiRrdIU64rBt-ms2uoSYm0A1ZJrBbfjYPGNFMPl0sF6ZA_vlN_nG_32JO3CrhqDYq_rMXdhysx24uSFMuAPXAjHULu_B935YPzzXOBoPkeycObSMuJliFLyKTJ0_w9UGAqbCVhsWOU-WSEWU4BYTciRSN-GMiXMarqb1PlDkBWEc61k5pyJq0Cv1FKvzrZHM4nrBGzH4RhOHE5o9X_z4-o2Fy6dM6Fnuwsng9YdXR1F9uENkhcpEpDpJ7qmf5JlVNqUhV-pU2szHvhTOmVR4TZNBp2PjlTapk4Q1aOpppRGmzK2N78P2bD5zDwCVSQj0KOlSm0kCnDrz3dyytVh71_V78KJxcmFr5XM-gONzUWk2i4K-XhG8sAfP2qqLSu7jT5X2m55S1BG_LGhqlnfiWHUU3S64_O8GiuGoFy4e_nvVp3D9fX9QvBsev30ENwQzawLTbR-2Vxdr95ig0co8CRHwE_GuDl4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dementia+MRI+image+classification+using+transformation+technique+based+on+elephant+herding+optimization+with+Randomized+Adam+method+for+updating+the+hyper%E2%80%90parameters&rft.jtitle=International+journal+of+imaging+systems+and+technology&rft.au=Bharanidharan%2C+N&rft.au=Rajaguru%2C+Harikumar&rft.date=2021-09-01&rft.issn=0899-9457&rft.eissn=1098-1098&rft.volume=31&rft.issue=3&rft.spage=1221&rft.epage=1245&rft_id=info:doi/10.1002%2Fima.22522&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ima_22522
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-9457&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-9457&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-9457&client=summon