Modified neural network algorithm based robust design of AVR system using the Kharitonov theorem
This paper proposes a new control law for designing an optimal proportional‐integral‐derivative (PID) controller for flexible automatic voltage regulator (AVR) system using modified neural network algorithm (MNNA). First, the exploration capability of neural network algorithm (NNA) is enhanced by ad...
        Saved in:
      
    
          | Published in | International journal of intelligent systems Vol. 37; no. 2; pp. 1339 - 1370 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          John Wiley & Sons, Inc
    
        01.02.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0884-8173 1098-111X  | 
| DOI | 10.1002/int.22672 | 
Cover
| Abstract | This paper proposes a new control law for designing an optimal proportional‐integral‐derivative (PID) controller for flexible automatic voltage regulator (AVR) system using modified neural network algorithm (MNNA). First, the exploration capability of neural network algorithm (NNA) is enhanced by addition of a learning factor, α in MNNA. Then, to evaluate the performance of MNNA in terms of its exploration and exploitation capabilities, extensive statistical analysis has been carried out on 23 benchmark functions consisting of unimodal, multimodal and fixed dimension multimodal functions against 12 state of the art algorithms. The results are encouraging and marks the superiority of MNNA against NNA as well as 11 other state of the art techniques. It is followed by application of Kharitonov theorem as a design tool to derive the Interval AVR system. Next, NNA and MNNA have been used for tuning of PID controller parameters in such a way that maximum value of the closed loop eigen values of K‐extreme polynomials is minimized. Further to show the robustness of the proposed methods, the results are taken on set point tracking, noise suppression, load disturbance rejection, and minimum controller effort utilized by these controllers and compared against seven state of the art techniques namely PSO, GA, ABC, MOEO, NSGA‐II, FSA and variants of constrained GA. The results demonstrate the high performance of the PID controller optimized using MNNA for control of I‐AVR and guarantees stability for a wider range of system parameter uncertainty. | 
    
|---|---|
| AbstractList | This paper proposes a new control law for designing an optimal proportional‐integral‐derivative (PID) controller for flexible automatic voltage regulator (AVR) system using modified neural network algorithm (MNNA). First, the exploration capability of neural network algorithm (NNA) is enhanced by addition of a learning factor, α in MNNA. Then, to evaluate the performance of MNNA in terms of its exploration and exploitation capabilities, extensive statistical analysis has been carried out on 23 benchmark functions consisting of unimodal, multimodal and fixed dimension multimodal functions against 12 state of the art algorithms. The results are encouraging and marks the superiority of MNNA against NNA as well as 11 other state of the art techniques. It is followed by application of Kharitonov theorem as a design tool to derive the Interval AVR system. Next, NNA and MNNA have been used for tuning of PID controller parameters in such a way that maximum value of the closed loop eigen values of K‐extreme polynomials is minimized. Further to show the robustness of the proposed methods, the results are taken on set point tracking, noise suppression, load disturbance rejection, and minimum controller effort utilized by these controllers and compared against seven state of the art techniques namely PSO, GA, ABC, MOEO, NSGA‐II, FSA and variants of constrained GA. The results demonstrate the high performance of the PID controller optimized using MNNA for control of I‐AVR and guarantees stability for a wider range of system parameter uncertainty. | 
    
| Author | Bhullar, Amrit K. Kaur, Ranjit Sondhi, Swati  | 
    
| Author_xml | – sequence: 1 givenname: Amrit K. orcidid: 0000-0001-9082-246X surname: Bhullar fullname: Bhullar, Amrit K. email: amritbhullar@pbi.ac.in, amritameek@gmail.com organization: Punjabi University – sequence: 2 givenname: Ranjit orcidid: 0000-0002-6524-1353 surname: Kaur fullname: Kaur, Ranjit organization: Punjabi University – sequence: 3 givenname: Swati orcidid: 0000-0002-0784-1166 surname: Sondhi fullname: Sondhi, Swati organization: Thapar University  | 
    
| BookMark | eNp1kEtPwzAQhC1UJNrCgX9giROHtH4kcXKsKh4VBSRUELfgJHbrktjFdqj673EpJwSn0Wq_mdXOAPS00QKAc4xGGCEyVtqPCEkZOQJ9jPIswhi_9kAfZVkcZZjREzBwbo0QxixO-uDt3tRKKlFDLTrLmyB-a-w75M3SWOVXLSy5C2trys55WAunlhoaCScvT9DtnBct7JzSS-hXAt6teDAZbT73o7GiPQXHkjdOnP3oEDxfXy2mt9H88WY2ncyjiuSMREkiOCGM8ZilXFS0TCjJaZXWVNZJHpeMxSVmHNFUxlmOcUUylrBKUixkhXNJh-DikLux5qMTzhdr01kdThYkxXHKwssoUOMDVVnjnBWyqJTnXhntLVdNgVGxr7EINRbfNQbH5S_HxqqW292f7E_6VjVi9z9YzB4WB8cXJ6aEWg | 
    
| CitedBy_id | crossref_primary_10_1016_j_engappai_2024_109122 crossref_primary_10_1371_journal_pone_0299009 crossref_primary_10_3390_en15238973 crossref_primary_10_1155_2022_3047761 crossref_primary_10_1155_2023_7626478 crossref_primary_10_1049_gtd2_12983 crossref_primary_10_1109_ACCESS_2023_3346533  | 
    
| Cites_doi | 10.1155/2015/931629 10.1016/j.procs.2016.05.022 10.1093/ietfec/e89-a.9.2363 10.1109/TEC.2003.821821 10.1016/j.jfranklin.2011.05.012 10.2991/ijcis.2011.4.5.9 10.1080/00207720500389592 10.1049/cce:20000205 10.1016/S1874-1029(14)60010-0 10.1016/S0019-0578(00)00026-4 10.1007/s00500-019-04640-w 10.1016/j.asoc.2018.07.039 10.1080/00207170150202643 10.1002/er.4809 10.1016/j.conengprac.2009.07.005 10.1016/j.ijepes.2015.11.103 10.1016/B978-0-08-042230-5.50016-5 10.18178/joace.4.5.347-352 10.1109/ICEDSS.2017.8073680 10.1016/j.neucom.2015.02.051 10.1109/21.260670 10.1016/j.ijepes.2012.06.034 10.1002/9780470640425.app1 10.1109/ICEEE2.2018.8391320 10.1016/j.isatra.2020.09.003 10.1109/ICMA.2012.6282878 10.1016/j.ifacol.2016.03.096 10.1109/CACSD.2004.1393896 10.1002/asjc.2248 10.1109/9.256326 10.23919/ACC.2004.1383780 10.1080/03772063.2020.1782779 10.1016/0005-1098(92)90058-N 10.1016/S0967-0661(02)00081-3 10.1111/j.1934-6093.2002.tb00084.x 10.1109/ICEE-B.2017.8192194 10.1109/TSMCB.2004.826396 10.1109/ICSMC.2005.1571495 10.1155/2012/536326  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 Wiley Periodicals LLC | 
    
| Copyright_xml | – notice: 2021 Wiley Periodicals LLC | 
    
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1002/int.22672 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1098-111X | 
    
| EndPage | 1370 | 
    
| ExternalDocumentID | 10_1002_int_22672 INT22672  | 
    
| Genre | article | 
    
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJEY AANHP AAONW AASGY AAXRX AAYOK AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJCF ABJNI ABPVW ABTAH ABUWG ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFZJQ AI. AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DWQXO EBS EDO EJD F00 F01 F04 FEDTE G-S G.N GNP GNUQQ GODZA H.T H.X H13 HBH HCIFZ HF~ HHY HVGLF HZ~ I-F IX1 J0M JPC K7- KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 M7S MK4 MK~ MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PIMPY PQQKQ PTHSS Q.N Q11 QB0 QRW R.K RHX RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TN5 TUS UB1 V2E VH1 W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WRC WWI WXSBR WYISQ WZISG XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AGQPQ AGXDD AIDQK AIDYY AIQQE CITATION PHGZM PHGZT PQGLB PUEGO 7SC 8FD JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c2972-55ea2277a476aec3b53293c6d3fd594b774b17a036f48911c28757cf31efc19f3 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 0884-8173 | 
    
| IngestDate | Fri Jul 25 12:13:13 EDT 2025 Wed Oct 01 03:27:36 EDT 2025 Thu Apr 24 22:53:16 EDT 2025 Wed Jan 22 16:28:09 EST 2025  | 
    
| IsDoiOpenAccess | false | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c2972-55ea2277a476aec3b53293c6d3fd594b774b17a036f48911c28757cf31efc19f3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-0784-1166 0000-0002-6524-1353 0000-0001-9082-246X  | 
    
| PQID | 2614670010 | 
    
| PQPubID | 1026350 | 
    
| PageCount | 32 | 
    
| ParticipantIDs | proquest_journals_2614670010 crossref_citationtrail_10_1002_int_22672 crossref_primary_10_1002_int_22672 wiley_primary_10_1002_int_22672_INT22672  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | February 2022 2022-02-00 20220201  | 
    
| PublicationDateYYYYMMDD | 2022-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2022 text: February 2022  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | International journal of intelligent systems | 
    
| PublicationYear | 2022 | 
    
| Publisher | John Wiley & Sons, Inc | 
    
| Publisher_xml | – name: John Wiley & Sons, Inc | 
    
| References | 2015; 160 1993; 23 2021; 23 1979; 14 2012 2010 2002; 10 2021; 108 1995 2005 2004 1992; 37 2008; 4 2006; E89‐A 2011; 4 2014; 40 2007; 14 2016; 78 2016; 4 2000; 39 2011; 348 2004; 19 2020 2000; 11 2004; 34 1992; 28 2019 2018 2010b 2017 2016 2015 2018; 71 2016; 49 2007; 23 2012; 43 2001; 74 1989 2005; 36 2009; 17 e_1_2_10_46_1 Kharitonov VL (e_1_2_10_8_1) 1979; 14 e_1_2_10_21_1 Xi M (e_1_2_10_38_1) 2007; 14 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_13_1 e_1_2_10_11_1 e_1_2_10_32_1 Khalilpourazari S (e_1_2_10_51_1) e_1_2_10_30_1 Fister D (e_1_2_10_24_1) 2016 e_1_2_10_29_1 e_1_2_10_27_1 Yourui H (e_1_2_10_22_1) 2005 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_45_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 Molga M (e_1_2_10_52_1) 2005 Elsisi M (e_1_2_10_40_1) 2020 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_5_1 e_1_2_10_17_1 Bagis A (e_1_2_10_33_1) 2007; 23 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 Rajan PK (e_1_2_10_9_1) 1989 e_1_2_10_10_1 Yang XS (e_1_2_10_54_1) 2010 Liu Y (e_1_2_10_23_1) 2004 e_1_2_10_31_1 e_1_2_10_50_1 Zirkohi MM (e_1_2_10_34_1) 2015 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1  | 
    
| References_xml | – start-page: 1 year: 2020 end-page: 18 article-title: Optimization of fractional order controllers for AVR system using distance and levy‐flight based crow search algorithm publication-title: IETE J Res – volume: 23 start-page: 1469 issue: 5 year: 2007 end-page: 1480 article-title: Determination of the PID controller parameters by modified genetic algorithm for improved performance publication-title: J Inform Sci Eng – start-page: 101 year: 2005 publication-title: Test Functions for Optimization Needs – year: 2005 – volume: 36 start-page: 961 issue: 15 year: 2005 end-page: 973 article-title: Robust stability conditions for polytopic systems publication-title: Int J Syst Sci – volume: 71 start-page: 747 year: 2018 end-page: 782 article-title: A dynamic metaheuristic optimization model inspired by biological nervous systems: neural network algorithm publication-title: Appl Soft Comput – volume: 160 start-page: 173 year: 2015 end-page: 184 article-title: Design of fractional order PID controller for automatic regulator voltage system based on multi‐objective extremal optimization publication-title: Neurocomputing – volume: 40 start-page: 973 issue: 5 year: 2014 end-page: 979 article-title: Optimum design of fractional order PID controller for an AVR system using an improved artificial bee colony algorithm publication-title: Acta Autom Sinica – volume: 14 start-page: 603 issue: S2 year: 2007 end-page: 607 article-title: Parameter optimization of PID controller based on quantum‐behaved particle swarm optimization algorithm. Complex systems and applications‐modelling publication-title: Control Simul – year: 2018 – volume: 4 start-page: 347 issue: 5 year: 2016 end-page: 352 article-title: PID parameter tuning using modified BAT algorithm publication-title: J Autom Control Eng – year: 2015 article-title: Data normalization to accelerate training for linear neural net to predict tropical cyclone publication-title: Math Prob Eng – volume: 108 start-page: 257 year: 2021 end-page: 268 article-title: Optimal design of robust resilient automatic voltage regulators publication-title: ISA Trans – start-page: 1 year: 2012 end-page: 7 article-title: Tuning PID controller using multiobjective ant colony optimization publication-title: Applied Computational Intelligence and Soft Computing – year: 2004 – volume: 37 start-page: 707 issue: 6 year: 1992 end-page: 714 article-title: Extreme point results for robust stabilization of interval plants with first order compensators publication-title: IEEE Trans Automat Contr. – volume: 39 start-page: 419 issue: 4 year: 2000 end-page: 431 article-title: PID tuning strategy for uncertain plants based on the Kharitonov theorem publication-title: ISA Trans. – start-page: 2419 year: 2004 end-page: 2422 article-title: Optimization design based on PSO algorithm for PID controller publication-title: Intelligent Control and Automation, WCICA – volume: 34 start-page: 1609 issue: 3 year: 2004 end-page: 1617 article-title: Design of optimal controller for interval plant from signal energy point of view via evolutionary approaches publication-title: IEEE Trans Syst Man Cybern Part B – volume: 19 start-page: 384 issue: 2 year: 2004 end-page: 391 article-title: A particle swarm optimization approach for optimum design of PID controller in AVR system publication-title: IEEE Trans Energy Conversion – article-title: An efficient hybrid algorithm based on water cycle and moth‐flame optimization algorithms for solving numerical and constrained engineering optimization problems publication-title: Soft Comput – volume: 78 start-page: 884 year: 2016 end-page: 896 article-title: Fractional order PID controller for perturbed load frequency control using Kharitonov's theorem publication-title: Electrical Power Energy Syst. – volume: 23 start-page: 1392 year: 1993 end-page: 1398 article-title: Fuzzy gain scheduling of PID controllers publication-title: IEEE Trans Syst Man Cybern – volume: 39 start-page: 419 year: 2000 end-page: 431 article-title: PID tuning strategy for uncertain plants based on the Kharitonov theorem publication-title: ISA Trans – year: 2010b – year: 2020 article-title: Enhanced crow search algorithm for AVR optimization publication-title: Soft Comput – start-page: 1 year: 2020 end-page: 22 article-title: Optimal design of nonlinear model predictive controller based on new modified multitracker optimization algorithm publication-title: Int J Intell Syst – year: 2016 – volume: 4 start-page: 826 issue: 5 year: 2011 end-page: 836 article-title: Automatic design of robust optimal controller for interval plants using genetic programming and Kharitonov theorem publication-title: Int J Computat Intell Syst – volume: 28 start-page: 1169 issue: 6 year: 1992 end-page: 1180 article-title: Extreme point results for robust stability of interval plants: beyond first order compensators publication-title: Automatica – volume: 74 start-page: 1 issue: 1 year: 2001 end-page: 9 article-title: Low‐order robust controller design for interval plants publication-title: Int J Control – year: 2010 – year: 2012 – volume: 17 start-page: 1380 year: 2009 end-page: 1387 article-title: An optimal fractional order controller for an AVR system using particle swarm optimization algorithm publication-title: Control Eng Pract – volume: 11 start-page: 91 issue: 2 year: 2000 end-page: 101 article-title: Stability and performance analysis in an uncertain world publication-title: Comput. Control Eng J. – volume: 49 start-page: 456 issue: 1 year: 2016 end-page: 461 article-title: Implementation of fractional order PID controller for an AVR system using GA and ACO optimization techniques publication-title: IFAC‐PapersOnline – volume: 10 start-page: 1223 issue: 11 year: 2002 end-page: 1241 article-title: Evolutionary algorithms in control systems engineering: a survey publication-title: Control Eng Pract – start-page: 179 year: 2015 end-page: 185 article-title: Optimal PID controller design using adaptive VURPSO algorithm publication-title: DE Gruyter – volume: 348 start-page: 1927 year: 2011 end-page: 1946 article-title: Comparative performance analysis of artificial bee colony algorithm for automatic voltage regulator system publication-title: J Frankl Inst. – volume: 11 start-page: 91 issue: 2 year: 2000 end-page: 101 article-title: Stability and performance analysis in an uncertain world publication-title: Comput Control Eng J. – volume: 43 start-page: 393 year: 2012 end-page: 407 article-title: Chaotic multi‐objective optimization based design of fractional order PIλDμ controller in AVR system publication-title: Int J Electr Power Energy Syst. – volume: 23 start-page: 729 year: 2021 end-page: 738 article-title: Optimal design of non‐fragile PID controller publication-title: Asian J Control – year: 1995 – start-page: 859 year: 2005 end-page: 861 article-title: Application of iterative learning genetic algorithm for PID parameters auto‐optimization publication-title: Neural Networks Brain, ICNN&B – volume: E89‐A start-page: 2363 issue: 9 year: 2006 end-page: 2373 article-title: Multiobjective evolutionary approach to the design of optimal controllers for interval plants via parallel computation publication-title: IEICE Trans Fund Electron Comn Comput Sci – start-page: 109 year: 2016 end-page: 116 article-title: Parameter tuning of PI controller with Bat algorithm publication-title: Informatica – year: 2019 article-title: Effective methodology based on neural network optimizer for extracting model parameters of PEM fuel cells publication-title: Int J Energy Res – volume: 4 start-page: 433 issue: 4 year: 2008 end-page: 438 article-title: A novel robust PID controllers design by fuzzy neural network publication-title: Asian J Control – year: 2017 – start-page: 1784 year: 1989 end-page: 1787 article-title: An alternate circuit theoretic proof for Kharitonov's stability criterion publication-title: IEEE – volume: 14 start-page: 1483 year: 1979 end-page: 1485 article-title: Asymptotic stability of an equilibrium position of a family of systems of linear differential equations publication-title: Different Equat. – ident: e_1_2_10_50_1 doi: 10.1155/2015/931629 – ident: e_1_2_10_39_1 doi: 10.1016/j.procs.2016.05.022 – ident: e_1_2_10_41_1 doi: 10.1093/ietfec/e89-a.9.2363 – ident: e_1_2_10_20_1 doi: 10.1109/TEC.2003.821821 – ident: e_1_2_10_21_1 doi: 10.1016/j.jfranklin.2011.05.012 – ident: e_1_2_10_43_1 doi: 10.2991/ijcis.2011.4.5.9 – ident: e_1_2_10_7_1 doi: 10.1080/00207720500389592 – ident: e_1_2_10_49_1 – start-page: 101 year: 2005 ident: e_1_2_10_52_1 publication-title: Test Functions for Optimization Needs – ident: e_1_2_10_55_1 doi: 10.1049/cce:20000205 – ident: e_1_2_10_32_1 doi: 10.1016/S1874-1029(14)60010-0 – ident: e_1_2_10_44_1 doi: 10.1016/S0019-0578(00)00026-4 – ident: e_1_2_10_6_1 doi: 10.1049/cce:20000205 – start-page: 109 year: 2016 ident: e_1_2_10_24_1 article-title: Parameter tuning of PI controller with Bat algorithm publication-title: Informatica – ident: e_1_2_10_36_1 doi: 10.1007/s00500-019-04640-w – ident: e_1_2_10_47_1 doi: 10.1016/j.asoc.2018.07.039 – ident: e_1_2_10_5_1 doi: 10.1080/00207170150202643 – ident: e_1_2_10_48_1 doi: 10.1002/er.4809 – ident: e_1_2_10_13_1 doi: 10.1016/j.conengprac.2009.07.005 – ident: e_1_2_10_10_1 doi: 10.1016/j.ijepes.2015.11.103 – ident: e_1_2_10_4_1 doi: 10.1016/B978-0-08-042230-5.50016-5 – ident: e_1_2_10_11_1 doi: 10.1016/S0019-0578(00)00026-4 – ident: e_1_2_10_35_1 doi: 10.18178/joace.4.5.347-352 – ident: e_1_2_10_15_1 doi: 10.1109/ICEDSS.2017.8073680 – ident: e_1_2_10_18_1 doi: 10.1016/j.neucom.2015.02.051 – ident: e_1_2_10_31_1 doi: 10.1109/21.260670 – ident: e_1_2_10_16_1 doi: 10.1016/j.ijepes.2012.06.034 – ident: e_1_2_10_53_1 doi: 10.1002/9780470640425.app1 – ident: e_1_2_10_19_1 doi: 10.1109/ICEEE2.2018.8391320 – ident: e_1_2_10_45_1 doi: 10.1016/j.isatra.2020.09.003 – ident: e_1_2_10_25_1 doi: 10.1109/ICMA.2012.6282878 – volume-title: Nature‐Inspired Metaheuristic Algorithms year: 2010 ident: e_1_2_10_54_1 – ident: e_1_2_10_14_1 doi: 10.1016/j.ifacol.2016.03.096 – start-page: 1 year: 2020 ident: e_1_2_10_40_1 article-title: Optimal design of nonlinear model predictive controller based on new modified multitracker optimization algorithm publication-title: Int J Intell Syst – start-page: 1784 year: 1989 ident: e_1_2_10_9_1 article-title: An alternate circuit theoretic proof for Kharitonov's stability criterion publication-title: IEEE – ident: e_1_2_10_27_1 doi: 10.1109/CACSD.2004.1393896 – volume: 23 start-page: 1469 issue: 5 year: 2007 ident: e_1_2_10_33_1 article-title: Determination of the PID controller parameters by modified genetic algorithm for improved performance publication-title: J Inform Sci Eng – ident: e_1_2_10_46_1 doi: 10.1002/asjc.2248 – ident: e_1_2_10_2_1 doi: 10.1109/9.256326 – volume: 14 start-page: 1483 year: 1979 ident: e_1_2_10_8_1 article-title: Asymptotic stability of an equilibrium position of a family of systems of linear differential equations publication-title: Different Equat. – ident: e_1_2_10_26_1 doi: 10.23919/ACC.2004.1383780 – start-page: 859 year: 2005 ident: e_1_2_10_22_1 article-title: Application of iterative learning genetic algorithm for PID parameters auto‐optimization publication-title: Neural Networks Brain, ICNN&B – ident: e_1_2_10_37_1 doi: 10.1080/03772063.2020.1782779 – ident: e_1_2_10_51_1 article-title: An efficient hybrid algorithm based on water cycle and moth‐flame optimization algorithms for solving numerical and constrained engineering optimization problems publication-title: Soft Comput – ident: e_1_2_10_3_1 doi: 10.1016/0005-1098(92)90058-N – ident: e_1_2_10_12_1 doi: 10.1016/S0967-0661(02)00081-3 – ident: e_1_2_10_30_1 doi: 10.1111/j.1934-6093.2002.tb00084.x – ident: e_1_2_10_17_1 doi: 10.1109/ICEE-B.2017.8192194 – ident: e_1_2_10_42_1 doi: 10.1109/TSMCB.2004.826396 – start-page: 179 year: 2015 ident: e_1_2_10_34_1 article-title: Optimal PID controller design using adaptive VURPSO algorithm publication-title: DE Gruyter – ident: e_1_2_10_28_1 doi: 10.1109/ICSMC.2005.1571495 – start-page: 2419 year: 2004 ident: e_1_2_10_23_1 article-title: Optimization design based on PSO algorithm for PID controller publication-title: Intelligent Control and Automation, WCICA – volume: 14 start-page: 603 issue: 2 year: 2007 ident: e_1_2_10_38_1 article-title: Parameter optimization of PID controller based on quantum‐behaved particle swarm optimization algorithm. Complex systems and applications‐modelling publication-title: Control Simul – ident: e_1_2_10_29_1 doi: 10.1155/2012/536326  | 
    
| SSID | ssj0011745 | 
    
| Score | 2.3817675 | 
    
| Snippet | This paper proposes a new control law for designing an optimal proportional‐integral‐derivative (PID) controller for flexible automatic voltage regulator (AVR)... | 
    
| SourceID | proquest crossref wiley  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1339 | 
    
| SubjectTerms | Algorithms Art techniques automatic voltage regulator Closed loops Control stability Control theory Controllers Design modifications Intelligent systems Machine learning Mathematical analysis modified neural network algorithm Kharitonov theorem neural network algorithm Neural networks Noise reduction Parameter uncertainty Performance evaluation Polynomials Proportional integral derivative proportional‐integral‐derivative controller Robust design Statistical analysis Theorems Voltage regulators  | 
    
| Title | Modified neural network algorithm based robust design of AVR system using the Kharitonov theorem | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fint.22672 https://www.proquest.com/docview/2614670010  | 
    
| Volume | 37 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1098-111X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011745 issn: 0884-8173 databaseCode: ADMLS dateStart: 19860301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0884-8173 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1098-111X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011745 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQXLiUAq2AArIqDlyyrF9xIk4rHqK8DhQqDpVSP2JYAQnazXLg1zO2k6WtWglxy8HOw_bMfBN98w1CW4pbpw3LPXuKJ5xSnejUmsTolClIx4xUgeV7nh5d8eNrcT2DdrtamKgPMf3h5i0j-Gtv4EqPd15FQ4dV0wPsIL3_JSwN6dTFVDqKANIWEUHyJCOSdapCfboznflnLHoFmL_D1BBnDhfQz-4NI73krjdpdM88_yXe-M5P-Ig-tPgTD-KBWUQzZbWEFrreDrg19WX066y2Qwf4FHvFS5hRRb44Vvc39WjY3D5gHwAtHtV6Mm6wDUwQXDs8-HGBoz409qT6GwwQE5_cQk4OMLN-wrF08uETujo8uNw7StpuDImhuYSMVZSKUikVl6kqDdOCAVQwqWXOipxrwJGaSAUR0fEMXKihXivfOEZKZ0ju2Gc0W9VVuYJwLiQpRd_mJhNcW5E5QSztQ7acZlnp7Cra7valMK1Uue-YcV9EkWVawMoVYeVW0dfp0Meoz_GvQevd5hatiY4LSB25r1EifXhc2KX_36D4dn4ZLtbePvQLmqe-VCIwvNfRbDOalBsAYBq9ieYG-2en3zfDiX0BMTPuRg | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQDLDwRryxEANLSuPYcSKxIAQqrw6oIBYUYjsuFTRBbcrAr-dsJ-UhkBBbBttJfD7fd9Z3nxHaS6nSQgaxYU9RjxIiPBEq6UkRBimkY5KnluXbDls39PyO3U2gw7oWxulDjA_cjGfY_do4uDmQPvhQDe3lZQPAA4cNeIqGkKcYSHQ9Fo_yAWszhyGpF_k8qHWFmuRg3PVrNPqAmJ-Bqo00p3Povv5GRzB5aoxK0ZBv3-Qb__sT82i2gqD4yK2ZBTSR5Ytorr7eAVfevoQergrV0wBRsRG9hB65o4zj9LlbDHrlYx-bGKjwoBCjYYmVJYPgQuOj22vsJKKx4dV3MaBMfPEIaTkgzeIVu-rJ_jK6OT3pHLe86kIGT5KYQ9LKspQQzlPKwzSTgWABoAUZqkArFlMBUFL4PIWgqGkEu6gkRi5f6sDPtPRjHaygybzIs1WEY8b9jDVVLCNGhWKRZr4iTUiYwyjKtFpD-7VhElmplZtLM54Tp7NMEpi5xM7cGtodN31xEh0_NdqsrZtUXjpMIHukpkzJb8LrrJl-HyA5a3fsw_rfm-6g6Vbn6jK5PGtfbKAZYionLOF7E02Wg1G2BXimFNt22b4DnR_w0w | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZWIFVcCrSg8ihYVQ9csmwcO04kLohltUC7QggqLlUav2DFboKWLAd-fcd2slsQSBW3HOw8bM_MN9E33yD0PafKCBmllj1FA0qICESsZCBFHOWQjkmeO5bvIO5f0dNrdt1CB00tjNeHmP1ws5bh_LU1cH2vzP5cNXRYVG0ADxwc8CJlaWIJfd2LmXhUCFibeQxJgyTkUaMr1CH7s6nPo9EcYv4LVF2k6S2j3807eoLJXXtaibZ8eiHf-N6PWEEfawiKD_2ZWUUtXXxCy017B1xb-2f052ephgYgKrailzCj8JRxnI9uysmwuh1jGwMVnpRi-lBh5cgguDT48NcF9hLR2PLqbzCgTHx2C2k5IM3yEfvqyfEauuodXx71g7ohQyBJyiFpZTonhPOc8jjXMhIsArQgYxUZxVIqAEqKkOcQFA1NwItKYuXypYlCbWSYmmgdLRRlob8gnDIeatZRqUwYFYolhoWKdCBhjpNEG7WB9pqNyWStVm6bZowyr7NMMli5zK3cBvo2G3rvJTpeG7Td7G5WW-lDBtkjtWVKYQce57bp7RtkJ4NLd7H5_0N30Yfzbi_7cTI420JLxBZOOL73NlqoJlP9FeBMJXbcqf0LWfDwVw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modified+neural+network+algorithm+based+robust+design+of+AVR+system+using+the+Kharitonov+theorem&rft.jtitle=International+journal+of+intelligent+systems&rft.au=Bhullar%2C+Amrit+K.&rft.au=Kaur%2C+Ranjit&rft.au=Sondhi%2C+Swati&rft.date=2022-02-01&rft.issn=0884-8173&rft.eissn=1098-111X&rft.volume=37&rft.issue=2&rft.spage=1339&rft.epage=1370&rft_id=info:doi/10.1002%2Fint.22672&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_int_22672 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-8173&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-8173&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-8173&client=summon |