Stochastic Heat Kernel Estimation on Sampled Manifolds

The heat kernel is a fundamental geometric object associated to every Riemannian manifold, used across applications in computer vision, graphics, and machine learning. In this article, we propose a novel computational approach to estimating the heat kernel of a statistically sampled manifold (e.g. m...

Full description

Saved in:
Bibliographic Details
Published inComputer graphics forum Vol. 36; no. 5; pp. 131 - 138
Main Authors Aumentado‐Armstrong, T., Siddiqi, K.
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.08.2017
Subjects
Online AccessGet full text
ISSN0167-7055
1467-8659
DOI10.1111/cgf.13251

Cover

Abstract The heat kernel is a fundamental geometric object associated to every Riemannian manifold, used across applications in computer vision, graphics, and machine learning. In this article, we propose a novel computational approach to estimating the heat kernel of a statistically sampled manifold (e.g. meshes or point clouds), using its representation as the transition density function of Brownian motion on the manifold. Our approach first constructs a set of local approximations to the manifold via moving least squares. We then simulate Brownian motion on the manifold by stochastic numerical integration of the associated Ito diffusion system. By accumulating a number of these trajectories, a kernel density estimation method can then be used to approximate the transition density function of the diffusion process, which is equivalent to the heat kernel. We analyse our algorithm on the 2‐sphere, as well as on shapes in 3D. Our approach is readily parallelizable and can handle manifold samples of large size as well as surfaces of high co‐dimension, since all the computations are local. We relate our method to the standard approaches in diffusion geometry and discuss directions for future work.
AbstractList The heat kernel is a fundamental geometric object associated to every Riemannian manifold, used across applications in computer vision, graphics, and machine learning. In this article, we propose a novel computational approach to estimating the heat kernel of a statistically sampled manifold (e.g. meshes or point clouds), using its representation as the transition density function of Brownian motion on the manifold. Our approach first constructs a set of local approximations to the manifold via moving least squares. We then simulate Brownian motion on the manifold by stochastic numerical integration of the associated Ito diffusion system. By accumulating a number of these trajectories, a kernel density estimation method can then be used to approximate the transition density function of the diffusion process, which is equivalent to the heat kernel. We analyse our algorithm on the 2‐sphere, as well as on shapes in 3D. Our approach is readily parallelizable and can handle manifold samples of large size as well as surfaces of high co‐dimension, since all the computations are local. We relate our method to the standard approaches in diffusion geometry and discuss directions for future work.
Author Aumentado‐Armstrong, T.
Siddiqi, K.
Author_xml – sequence: 1
  givenname: T.
  surname: Aumentado‐Armstrong
  fullname: Aumentado‐Armstrong, T.
  organization: McGill University
– sequence: 2
  givenname: K.
  surname: Siddiqi
  fullname: Siddiqi, K.
  organization: McGill University
BookMark eNp9UE1LAzEQDVLBVj34DxY8edg2k83XHqX0Q6x4qJ5DNpvVLdtNTVKk_97YehJ0GJhhePPmzRuhQe96i9AN4DGkmJi3ZgwFYXCGhkC5yCVn5QANMaReYMYu0CiEDcaYCs6GiK-jM-86xNZkS6tj9mh9b7tsliZbHVvXZynXervrbJ096b5tXFeHK3Te6C7Y6596iV7ns5fpMl89Lx6m96vckFJArmmtQZSFbnhlamyTsoZIWUghmCClFcbSilWV1JQSWklmOSey5howgUqY4hLdnnh33n3sbYhq4_a-TycVlEQWggLIhLo7oYx3IXjbqJ1P6v1BAVbftqhkizrakrCTX1jTxuOj0eu2-2_js-3s4W9qNV3MTxtf-ehzqg
CitedBy_id crossref_primary_10_1145_3666087
crossref_primary_10_1111_rssb_12320
Cites_doi 10.1111/j.1467-8659.2009.01515.x
10.1137/09076636X
10.1073/pnas.0710175104
10.1137/120869730
10.1109/TVCG.2007.1041
10.1016/j.cag.2009.03.005
10.1111/j.1467-8659.2009.01517.x
10.1109/CVPR.2010.5539838
10.1073/pnas.0500334102
10.1109/ISBI.2006.1625087
10.1109/TVCG.2011.152
10.1215/kjm/1250518506
10.1016/j.cad.2005.10.011
10.1145/1778765.1778858
10.1215/kjm/1250520656
10.1145/1377676.1377725
10.1111/j.1467-8659.2010.01763.x
10.1090/S0025-5718-1981-0616367-1
10.1111/j.1467-8659.2010.01764.x
10.1090/gsm/038
10.1198/073500102288618397
10.4310/jdg/1214427880
10.1137/1.9781611973068.112
10.1515/mcma.1996.2.2.93
10.1017/CBO9780511623783
10.1162/089976603321780317
10.1007/BF02846028
10.3150/bj/1082380220
10.1215/kjm/1250518401
10.1016/j.cag.2013.05.019
ContentType Journal Article
Copyright 2017 The Author(s) Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2017 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2017 The Author(s) Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2017 The Eurographics Association and John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1111/cgf.13251
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 138
ExternalDocumentID 10_1111_cgf_13251
CGF13251
Genre article
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2971-a4da1793af6bcd0e132f28838775729e7ce4b5bb8a4424b85e6628d6a1021b7c3
IEDL.DBID DR2
ISSN 0167-7055
IngestDate Tue Oct 28 05:49:39 EDT 2025
Wed Oct 01 03:05:05 EDT 2025
Thu Apr 24 23:06:02 EDT 2025
Wed Jan 22 16:47:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2971-a4da1793af6bcd0e132f28838775729e7ce4b5bb8a4424b85e6628d6a1021b7c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1928374118
PQPubID 30877
PageCount 8
ParticipantIDs proquest_journals_1928374118
crossref_primary_10_1111_cgf_13251
crossref_citationtrail_10_1111_cgf_13251
wiley_primary_10_1111_cgf_13251_CGF13251
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2017
2017-08-00
20170801
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: August 2017
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2017
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2002; 38
2010
2006; 38
2009
2008
1997
2003; 15
2006
2014; 24
2008; 105
2012; 18
2011; 12
2003
1996; 36
2007; 13
1955; 4
2009; 28
2004; 10
2009; 33
2013; 37
2010; 48
2002; 20
2010; 29
2013; 35
2005; 102
1967; 1
1997; 37
2007; 9
1962
1981; 37
2017
1996; 2
1987; 27
e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_13_2
e_1_2_7_12_2
e_1_2_7_11_2
e_1_2_7_10_2
e_1_2_7_27_2
e_1_2_7_28_2
Ikeda N. (e_1_2_7_18_2) 2014
e_1_2_7_29_2
Matthew A. (e_1_2_7_26_2) 2017
Oliphant T.E. (e_1_2_7_30_2) 2007; 9
Pedregosa F. (e_1_2_7_33_2) 2011; 12
Avriel M. (e_1_2_7_2_2) 2003
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_35_2
e_1_2_7_36_2
e_1_2_7_37_2
Liang J. (e_1_2_7_21_2)
e_1_2_7_38_2
e_1_2_7_39_2
References_xml – volume: 24
  year: 2014
– volume: 27
  start-page: 417
  issue: 3
  year: 1987
  end-page: 431
  article-title: On a short time expansions of the fundamental solution of heat equations by the method of Wiener functional
  publication-title: Journal of Mathematics of Kyoto University
– start-page: 992
  year: 2006
  end-page: 995
– year: 1962
– volume: 20
  start-page: 297
  issue: 3
  year: 2002
  end-page: 338
  article-title: Numerical techniques for maximum likelihood estimation of continuous‐time diffusion processes
  publication-title: Journal of Business & Economic Statistics
– volume: 35
  start-page: A1461
  issue: 3
  year: 2013
  end-page: A1486
  article-title: Solving partial differential equations on point clouds
  publication-title: SIAM Journal on Scientific Computing
– year: 2003
– volume: 102
  start-page: 7426
  issue: 21
  year: 2005
  end-page: 7431
  article-title: Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 37
  start-page: 129
  issue: 1
  year: 1997
  end-page: 150
  article-title: High order Itô‐Taylor approximations to heat kernels
  publication-title: Journal of Mathematics of Kyoto University
– start-page: 1375
  year: 2009
  end-page: 1382
– volume: 37
  start-page: 141
  issue: 155
  year: 1981
  end-page: 158
  article-title: Surfaces generated by moving least squares methods
  publication-title: Mathematics of computation
– volume: 4
  start-page: 48
  issue: 1
  year: 1955
  end-page: 90
  article-title: Continuous Markov processes and stochastic equations
  publication-title: Rendiconti del Circolo Matematico di Palermo
– volume: 29
  start-page: 1545
  year: 2010
  end-page: 1554
– volume: 15
  start-page: 1373
  issue: 6
  year: 2003
  end-page: 1396
  article-title: Laplacian eigenmaps for dimensionality reduction and data representation
  publication-title: Neural computation
– start-page: 214
  end-page: 221
– volume: 1
  start-page: 43
  issue: 1
  year: 1967
  end-page: 69
  article-title: Curvature and the eigenvalues of the Laplacian
  publication-title: J. Differential Geometry
– volume: 29
  start-page: 121
  issue: 4
  year: 2010
  article-title: A multiresolution approach to heat kernels on discrete surfaces
  publication-title: ACM Transactions on Graphics (TOG)
– volume: 9
  issue: 3
  year: 2007
  article-title: Python for scientific computing
  publication-title: Computing in Science & Fngineering
– volume: 33
  start-page: 381
  issue: 3
  year: 2009
  end-page: 390
  article-title: Discrete Laplace‐Beltrami operators for shape analysis and segmentation
  publication-title: Computers & Graphics
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  article-title: Scikit‐learn: machine learning in python
  publication-title: Journal of Machine Learning Research
– volume: 28
  start-page: 1405
  year: 2009
  end-page: 1413
– volume: 28
  start-page: 1383
  year: 2009
  end-page: 1392
– start-page: 278
  year: 2008
  end-page: 287
– start-page: 1031
  year: 2009
  end-page: 1040
– start-page: 1704
  year: 2010
  end-page: 1711
– volume: 105
  start-page: 1803
  issue: 6
  year: 2008
  end-page: 1808
  article-title: Manifold parametrizations by eigenfunctions of the Laplacian and heat kernels
  publication-title: Proceedings of the National Academy of Sciences
– volume: 13
  start-page: 902
  issue: 5
  year: 2007
  end-page: 913
  article-title: Calculus of nonrigid surfaces for geometry and texture manipulation
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 37
  start-page: 676
  issue: 6
  year: 2013
  end-page: 686
  article-title: Heat diffusion kernel and distance on surface meshes and point sets
  publication-title: Computers & Graphics
– year: 1997
– volume: 29
  start-page: 1555
  year: 2010
  end-page: 1564
– start-page: 985
  year: 2003
  end-page: 992
– volume: 38
  start-page: 342
  issue: 4
  year: 2006
  end-page: 366
  article-title: Laplace‐Beltrami spectra as “shape‐dna” of surfaces and solids
  publication-title: Computer‐Aided Design
– volume: 18
  start-page: 1693
  issue: 10
  year: 2012
  end-page: 1703
  article-title: Point‐based manifold harmonics
  publication-title: IFFF Transactions on Visualization and Computer Graphics
– year: 2017
– volume: 10
  start-page: 281
  issue: 2
  year: 2004
  end-page: 312
  article-title: Transition density estimation for stochastic differential equations via forward‐reverse representations
  publication-title: Bernoulli
– volume: 48
  start-page: 922
  issue: 3
  year: 2010
  end-page: 952
  article-title: Runge‐Kutta methods for the strong approximation of solutions of stochastic differential equations
  publication-title: SIAM Journal on Numerical Analysis
– volume: 36
  start-page: 499
  issue: 3
  year: 1996
  end-page: 518
  article-title: Donsker's delta functions and approximation of heat kernels by the time discretization methods
  publication-title: Journal of Mathematics of Kyoto University
– volume: 2
  start-page: 93
  issue: 2
  year: 1996
  end-page: 128
  article-title: The law of the Euler scheme for stochastic differential equations: II. convergence rate of the density
  publication-title: Monte Carlo Methods and Applications
– volume: 38
  year: 2002
– ident: e_1_2_7_38_2
  doi: 10.1111/j.1467-8659.2009.01515.x
– ident: e_1_2_7_36_2
  doi: 10.1137/09076636X
– ident: e_1_2_7_19_2
  doi: 10.1073/pnas.0710175104
– ident: e_1_2_7_24_2
  doi: 10.1137/120869730
– ident: e_1_2_7_3_2
  doi: 10.1109/TVCG.2007.1041
– ident: e_1_2_7_34_2
  doi: 10.1016/j.cag.2009.03.005
– ident: e_1_2_7_14_2
  doi: 10.1111/j.1467-8659.2009.01517.x
– ident: e_1_2_7_4_2
  doi: 10.1109/CVPR.2010.5539838
– ident: e_1_2_7_11_2
  doi: 10.1073/pnas.0500334102
– volume-title: Critical fluctuations and coupling of stochastic neural mass models
  year: 2017
  ident: e_1_2_7_26_2
– ident: e_1_2_7_10_2
  doi: 10.1109/ISBI.2006.1625087
– ident: e_1_2_7_22_2
  doi: 10.1109/TVCG.2011.152
– volume-title: Nonlinear Programming: Analysis and Methods
  year: 2003
  ident: e_1_2_7_2_2
– ident: e_1_2_7_16_2
  doi: 10.1215/kjm/1250518506
– ident: e_1_2_7_37_2
  doi: 10.1016/j.cad.2005.10.011
– ident: e_1_2_7_6_2
– ident: e_1_2_7_40_2
  doi: 10.1145/1778765.1778858
– volume-title: Stochastic Differential Equations and Diffusion Processes
  year: 2014
  ident: e_1_2_7_18_2
– volume: 9
  issue: 3
  year: 2007
  ident: e_1_2_7_30_2
  article-title: Python for scientific computing
  publication-title: Computing in Science & Fngineering
– ident: e_1_2_7_39_2
  doi: 10.1215/kjm/1250520656
– ident: e_1_2_7_7_2
  doi: 10.1145/1377676.1377725
– start-page: 214
  volume-title: In Computer Vision and Pattern Recognition (CVPR), 2012 IFFF Conference on (2012)
  ident: e_1_2_7_21_2
– volume: 12
  start-page: 2825
  year: 2011
  ident: e_1_2_7_33_2
  article-title: Scikit‐learn: machine learning in python
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_7_13_2
  doi: 10.1111/j.1467-8659.2010.01763.x
– ident: e_1_2_7_23_2
  doi: 10.1090/S0025-5718-1981-0616367-1
– ident: e_1_2_7_31_2
  doi: 10.1111/j.1467-8659.2010.01764.x
– ident: e_1_2_7_15_2
  doi: 10.1090/gsm/038
– ident: e_1_2_7_29_2
– ident: e_1_2_7_12_2
  doi: 10.1198/073500102288618397
– ident: e_1_2_7_27_2
  doi: 10.4310/jdg/1214427880
– ident: e_1_2_7_8_2
  doi: 10.1137/1.9781611973068.112
– ident: e_1_2_7_9_2
  doi: 10.1515/mcma.1996.2.2.93
– ident: e_1_2_7_35_2
  doi: 10.1017/CBO9780511623783
– ident: e_1_2_7_5_2
  doi: 10.1162/089976603321780317
– ident: e_1_2_7_25_2
  doi: 10.1007/BF02846028
– ident: e_1_2_7_17_2
– ident: e_1_2_7_28_2
  doi: 10.3150/bj/1082380220
– ident: e_1_2_7_20_2
  doi: 10.1215/kjm/1250518401
– ident: e_1_2_7_32_2
  doi: 10.1016/j.cag.2013.05.019
SSID ssj0004765
Score 2.1862137
Snippet The heat kernel is a fundamental geometric object associated to every Riemannian manifold, used across applications in computer vision, graphics, and machine...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 131
SubjectTerms Brownian motion
Categories and Subject Descriptors (according to ACM CCS)
Computer simulation
Computer vision
Density
Economic models
G.3 [Mathematics of Computing]: Probability and Statistics—Probabilistic Algorithms
I.3.5 [Computer Graphics]: Computational Geometry and Object Modelling—Geometric Algorithms, Languages, and Systems
Machine learning
Manifolds (mathematics)
Numerical integration
Parallel processing
Riemann manifold
Statistical analysis
Statistical methods
Three dimensional models
Trajectory analysis
Title Stochastic Heat Kernel Estimation on Sampled Manifolds
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.13251
https://www.proquest.com/docview/1928374118
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1467-8659
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: ABDBF
  dateStart: 19980301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0167-7055
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KT3rwLVarBPHgJSVN9pHgSUprUerBWuhBCPtUsaTSphd_vbObpK2iIEIOIWyym8nO7veFmW8QujBJwKmOEx-oF_cxSQj4nAj9KIqYoFgoI22C8-Ce9kf4dkzGNXRV5cIU-hDLH27WM9x6bR2ci_mak8tn0wIq5dKn2xF1dOphJR2FGSWVrrdVjClVhWwUz_LOr3vRCmCuw1S3z_S20VM1wiK85K21yEVLfnwTb_znK-ygrRJ_etfFhNlFNZ3toc01VcJ9RIf5VL5wK-Ds9WGp9u70DHryunClSHT04BhyqyusvAHPXs10ouYHaNTrPnb6fllewZdhwto-x4pb9-SGCqkCDSMxtvZwzBgByK2Z1FgQIWKOcYhFTDSlYawot9XABZPRIapn00wfIU-GLNTECAPUHNMg5klbGQCimgdGcsoa6LIydCpL7XFbAmOSVhwETJE6UzTQ-bLpeyG48VOjZvW10tLn5ilgVWDbGBgTdOfM_vsD0s5Nz50c_73pCdoI7Z7uov-aqJ7PFvoUEEkuztzU-wTyk9ow
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DD-rBb3E6tYgHLx1bm48WvMjYrO7j4DbYRUqSJiqOTrbu4l_vSz-2KQoi9FBK2iSvecnvF_J-D6Er7dc4VZ5vA_XiNiY-AZ8Tju26LhMUi0hLE-Dc7dFgiB9GZFRCN0UsTKYPsdhwM56RztfGwc2G9IqXy2ddBS5l4qfXMQWeYiDR41I8CjNKCmVvoxmT6wqZczyLV7-uRkuIuQpU05WmtYOeijZmB0zeqvNEVOXHN_nG_3ZiF23nENS6zcbMHiqpeB9trQgTHiDaTybyhRsNZyuA2dpqqylUZTXhSRbraMHV50ZaOLK6PH7Vk3E0O0TDVnPQCOw8w4ItHZ_VbY4jbjyUaypkVFPQEm3SD3uMEUDdikmFBRHC4xg7WHhEUep4EeUmIbhg0j1Ca_EkVsfIkg5zFNFCAzvHtOZxvx5pwKKK17TklJXRdWHpUOby4yYLxjgsaAiYIkxNUUaXi6LvmebGT4Uqxe8Kc7ebhQBXgXBjIE1QXWr33z8QNu5a6c3J34teoI1g0O2Enfte-xRtOmaJTw8DVtBaMp2rMwAoiThPx-Ensn3eUQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jguiD3-J0ahEffOmobZq04Itsq9O5Ic7BXqQkaaLi6MbWvfjXe-nHNkVBhD6Ucu2l11zyu3L3O4TOlW8xIj3fhNCLmdj1XfA5bpuO41BOMI-U0AXOnS5p9fHdwB2U0FVRC5PxQ8x_uGnPSNdr7eByHKklLxcvqgaxlK6fXgElnk7oazwuyKMwJW7B7K05Y3JeIZ3HM7_16260gJjLQDXdaYJN9FyMMUswea_NEl4TH9_oG__7EltoI4egxnU2Z7ZRScY7aH2JmHAXkV4yEq9MczgbLVitjbacgCqjCVeyWkcDjh7T1MKR0WHxmxoNo-ke6gfNp3rLzDssmML26aXJcMS0hzJFuIgsCSNRuv2wR6kLqFtSITF3OfcYxjbmnisJsb2IMN0QnFPh7KNyPIrlATKETW3pKq4gOsfE8ph_GSnAopJZSjBCK-iisHQocvpx3QVjGBZhCJgiTE1RQWdz0XHGufGTULX4XGHudtMQ4CoE3BiCJlCX2v33B4T1myA9Ofy76ClafWgE4f1tt32E1my9w6e5gFVUTiYzeQz4JOEn6TT8BIe63dU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+Heat+Kernel+Estimation+on+Sampled+Manifolds&rft.jtitle=Computer+graphics+forum&rft.au=Aumentado-Armstrong%2C+T&rft.au=Siddiqi%2C+K&rft.date=2017-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=36&rft.issue=5&rft.spage=131&rft_id=info:doi/10.1111%2Fcgf.13251&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon