Stochastic Heat Kernel Estimation on Sampled Manifolds
The heat kernel is a fundamental geometric object associated to every Riemannian manifold, used across applications in computer vision, graphics, and machine learning. In this article, we propose a novel computational approach to estimating the heat kernel of a statistically sampled manifold (e.g. m...
Saved in:
| Published in | Computer graphics forum Vol. 36; no. 5; pp. 131 - 138 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Blackwell Publishing Ltd
01.08.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0167-7055 1467-8659 |
| DOI | 10.1111/cgf.13251 |
Cover
| Abstract | The heat kernel is a fundamental geometric object associated to every Riemannian manifold, used across applications in computer vision, graphics, and machine learning. In this article, we propose a novel computational approach to estimating the heat kernel of a statistically sampled manifold (e.g. meshes or point clouds), using its representation as the transition density function of Brownian motion on the manifold. Our approach first constructs a set of local approximations to the manifold via moving least squares. We then simulate Brownian motion on the manifold by stochastic numerical integration of the associated Ito diffusion system. By accumulating a number of these trajectories, a kernel density estimation method can then be used to approximate the transition density function of the diffusion process, which is equivalent to the heat kernel. We analyse our algorithm on the 2‐sphere, as well as on shapes in 3D. Our approach is readily parallelizable and can handle manifold samples of large size as well as surfaces of high co‐dimension, since all the computations are local. We relate our method to the standard approaches in diffusion geometry and discuss directions for future work. |
|---|---|
| AbstractList | The heat kernel is a fundamental geometric object associated to every Riemannian manifold, used across applications in computer vision, graphics, and machine learning. In this article, we propose a novel computational approach to estimating the heat kernel of a statistically sampled manifold (e.g. meshes or point clouds), using its representation as the transition density function of Brownian motion on the manifold. Our approach first constructs a set of local approximations to the manifold via moving least squares. We then simulate Brownian motion on the manifold by stochastic numerical integration of the associated Ito diffusion system. By accumulating a number of these trajectories, a kernel density estimation method can then be used to approximate the transition density function of the diffusion process, which is equivalent to the heat kernel. We analyse our algorithm on the 2‐sphere, as well as on shapes in 3D. Our approach is readily parallelizable and can handle manifold samples of large size as well as surfaces of high co‐dimension, since all the computations are local. We relate our method to the standard approaches in diffusion geometry and discuss directions for future work. |
| Author | Aumentado‐Armstrong, T. Siddiqi, K. |
| Author_xml | – sequence: 1 givenname: T. surname: Aumentado‐Armstrong fullname: Aumentado‐Armstrong, T. organization: McGill University – sequence: 2 givenname: K. surname: Siddiqi fullname: Siddiqi, K. organization: McGill University |
| BookMark | eNp9UE1LAzEQDVLBVj34DxY8edg2k83XHqX0Q6x4qJ5DNpvVLdtNTVKk_97YehJ0GJhhePPmzRuhQe96i9AN4DGkmJi3ZgwFYXCGhkC5yCVn5QANMaReYMYu0CiEDcaYCs6GiK-jM-86xNZkS6tj9mh9b7tsliZbHVvXZynXervrbJ096b5tXFeHK3Te6C7Y6596iV7ns5fpMl89Lx6m96vckFJArmmtQZSFbnhlamyTsoZIWUghmCClFcbSilWV1JQSWklmOSey5howgUqY4hLdnnh33n3sbYhq4_a-TycVlEQWggLIhLo7oYx3IXjbqJ1P6v1BAVbftqhkizrakrCTX1jTxuOj0eu2-2_js-3s4W9qNV3MTxtf-ehzqg |
| CitedBy_id | crossref_primary_10_1145_3666087 crossref_primary_10_1111_rssb_12320 |
| Cites_doi | 10.1111/j.1467-8659.2009.01515.x 10.1137/09076636X 10.1073/pnas.0710175104 10.1137/120869730 10.1109/TVCG.2007.1041 10.1016/j.cag.2009.03.005 10.1111/j.1467-8659.2009.01517.x 10.1109/CVPR.2010.5539838 10.1073/pnas.0500334102 10.1109/ISBI.2006.1625087 10.1109/TVCG.2011.152 10.1215/kjm/1250518506 10.1016/j.cad.2005.10.011 10.1145/1778765.1778858 10.1215/kjm/1250520656 10.1145/1377676.1377725 10.1111/j.1467-8659.2010.01763.x 10.1090/S0025-5718-1981-0616367-1 10.1111/j.1467-8659.2010.01764.x 10.1090/gsm/038 10.1198/073500102288618397 10.4310/jdg/1214427880 10.1137/1.9781611973068.112 10.1515/mcma.1996.2.2.93 10.1017/CBO9780511623783 10.1162/089976603321780317 10.1007/BF02846028 10.3150/bj/1082380220 10.1215/kjm/1250518401 10.1016/j.cag.2013.05.019 |
| ContentType | Journal Article |
| Copyright | 2017 The Author(s) Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. 2017 The Eurographics Association and John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2017 The Author(s) Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. – notice: 2017 The Eurographics Association and John Wiley & Sons Ltd. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1111/cgf.13251 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1467-8659 |
| EndPage | 138 |
| ExternalDocumentID | 10_1111_cgf_13251 CGF13251 |
| Genre | article |
| GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEMOZ AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AHQJS AITYG AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2971-a4da1793af6bcd0e132f28838775729e7ce4b5bb8a4424b85e6628d6a1021b7c3 |
| IEDL.DBID | DR2 |
| ISSN | 0167-7055 |
| IngestDate | Tue Oct 28 05:49:39 EDT 2025 Wed Oct 01 03:05:05 EDT 2025 Thu Apr 24 23:06:02 EDT 2025 Wed Jan 22 16:47:18 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2971-a4da1793af6bcd0e132f28838775729e7ce4b5bb8a4424b85e6628d6a1021b7c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1928374118 |
| PQPubID | 30877 |
| PageCount | 8 |
| ParticipantIDs | proquest_journals_1928374118 crossref_primary_10_1111_cgf_13251 crossref_citationtrail_10_1111_cgf_13251 wiley_primary_10_1111_cgf_13251_CGF13251 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | August 2017 2017-08-00 20170801 |
| PublicationDateYYYYMMDD | 2017-08-01 |
| PublicationDate_xml | – month: 08 year: 2017 text: August 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Computer graphics forum |
| PublicationYear | 2017 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 2002; 38 2010 2006; 38 2009 2008 1997 2003; 15 2006 2014; 24 2008; 105 2012; 18 2011; 12 2003 1996; 36 2007; 13 1955; 4 2009; 28 2004; 10 2009; 33 2013; 37 2010; 48 2002; 20 2010; 29 2013; 35 2005; 102 1967; 1 1997; 37 2007; 9 1962 1981; 37 2017 1996; 2 1987; 27 e_1_2_7_5_2 e_1_2_7_4_2 e_1_2_7_3_2 e_1_2_7_9_2 e_1_2_7_8_2 e_1_2_7_7_2 e_1_2_7_6_2 e_1_2_7_19_2 e_1_2_7_17_2 e_1_2_7_16_2 e_1_2_7_15_2 e_1_2_7_14_2 e_1_2_7_40_2 e_1_2_7_13_2 e_1_2_7_12_2 e_1_2_7_11_2 e_1_2_7_10_2 e_1_2_7_27_2 e_1_2_7_28_2 Ikeda N. (e_1_2_7_18_2) 2014 e_1_2_7_29_2 Matthew A. (e_1_2_7_26_2) 2017 Oliphant T.E. (e_1_2_7_30_2) 2007; 9 Pedregosa F. (e_1_2_7_33_2) 2011; 12 Avriel M. (e_1_2_7_2_2) 2003 e_1_2_7_25_2 e_1_2_7_24_2 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_35_2 e_1_2_7_36_2 e_1_2_7_37_2 Liang J. (e_1_2_7_21_2) e_1_2_7_38_2 e_1_2_7_39_2 |
| References_xml | – volume: 24 year: 2014 – volume: 27 start-page: 417 issue: 3 year: 1987 end-page: 431 article-title: On a short time expansions of the fundamental solution of heat equations by the method of Wiener functional publication-title: Journal of Mathematics of Kyoto University – start-page: 992 year: 2006 end-page: 995 – year: 1962 – volume: 20 start-page: 297 issue: 3 year: 2002 end-page: 338 article-title: Numerical techniques for maximum likelihood estimation of continuous‐time diffusion processes publication-title: Journal of Business & Economic Statistics – volume: 35 start-page: A1461 issue: 3 year: 2013 end-page: A1486 article-title: Solving partial differential equations on point clouds publication-title: SIAM Journal on Scientific Computing – year: 2003 – volume: 102 start-page: 7426 issue: 21 year: 2005 end-page: 7431 article-title: Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 37 start-page: 129 issue: 1 year: 1997 end-page: 150 article-title: High order Itô‐Taylor approximations to heat kernels publication-title: Journal of Mathematics of Kyoto University – start-page: 1375 year: 2009 end-page: 1382 – volume: 37 start-page: 141 issue: 155 year: 1981 end-page: 158 article-title: Surfaces generated by moving least squares methods publication-title: Mathematics of computation – volume: 4 start-page: 48 issue: 1 year: 1955 end-page: 90 article-title: Continuous Markov processes and stochastic equations publication-title: Rendiconti del Circolo Matematico di Palermo – volume: 29 start-page: 1545 year: 2010 end-page: 1554 – volume: 15 start-page: 1373 issue: 6 year: 2003 end-page: 1396 article-title: Laplacian eigenmaps for dimensionality reduction and data representation publication-title: Neural computation – start-page: 214 end-page: 221 – volume: 1 start-page: 43 issue: 1 year: 1967 end-page: 69 article-title: Curvature and the eigenvalues of the Laplacian publication-title: J. Differential Geometry – volume: 29 start-page: 121 issue: 4 year: 2010 article-title: A multiresolution approach to heat kernels on discrete surfaces publication-title: ACM Transactions on Graphics (TOG) – volume: 9 issue: 3 year: 2007 article-title: Python for scientific computing publication-title: Computing in Science & Fngineering – volume: 33 start-page: 381 issue: 3 year: 2009 end-page: 390 article-title: Discrete Laplace‐Beltrami operators for shape analysis and segmentation publication-title: Computers & Graphics – volume: 12 start-page: 2825 year: 2011 end-page: 2830 article-title: Scikit‐learn: machine learning in python publication-title: Journal of Machine Learning Research – volume: 28 start-page: 1405 year: 2009 end-page: 1413 – volume: 28 start-page: 1383 year: 2009 end-page: 1392 – start-page: 278 year: 2008 end-page: 287 – start-page: 1031 year: 2009 end-page: 1040 – start-page: 1704 year: 2010 end-page: 1711 – volume: 105 start-page: 1803 issue: 6 year: 2008 end-page: 1808 article-title: Manifold parametrizations by eigenfunctions of the Laplacian and heat kernels publication-title: Proceedings of the National Academy of Sciences – volume: 13 start-page: 902 issue: 5 year: 2007 end-page: 913 article-title: Calculus of nonrigid surfaces for geometry and texture manipulation publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 37 start-page: 676 issue: 6 year: 2013 end-page: 686 article-title: Heat diffusion kernel and distance on surface meshes and point sets publication-title: Computers & Graphics – year: 1997 – volume: 29 start-page: 1555 year: 2010 end-page: 1564 – start-page: 985 year: 2003 end-page: 992 – volume: 38 start-page: 342 issue: 4 year: 2006 end-page: 366 article-title: Laplace‐Beltrami spectra as “shape‐dna” of surfaces and solids publication-title: Computer‐Aided Design – volume: 18 start-page: 1693 issue: 10 year: 2012 end-page: 1703 article-title: Point‐based manifold harmonics publication-title: IFFF Transactions on Visualization and Computer Graphics – year: 2017 – volume: 10 start-page: 281 issue: 2 year: 2004 end-page: 312 article-title: Transition density estimation for stochastic differential equations via forward‐reverse representations publication-title: Bernoulli – volume: 48 start-page: 922 issue: 3 year: 2010 end-page: 952 article-title: Runge‐Kutta methods for the strong approximation of solutions of stochastic differential equations publication-title: SIAM Journal on Numerical Analysis – volume: 36 start-page: 499 issue: 3 year: 1996 end-page: 518 article-title: Donsker's delta functions and approximation of heat kernels by the time discretization methods publication-title: Journal of Mathematics of Kyoto University – volume: 2 start-page: 93 issue: 2 year: 1996 end-page: 128 article-title: The law of the Euler scheme for stochastic differential equations: II. convergence rate of the density publication-title: Monte Carlo Methods and Applications – volume: 38 year: 2002 – ident: e_1_2_7_38_2 doi: 10.1111/j.1467-8659.2009.01515.x – ident: e_1_2_7_36_2 doi: 10.1137/09076636X – ident: e_1_2_7_19_2 doi: 10.1073/pnas.0710175104 – ident: e_1_2_7_24_2 doi: 10.1137/120869730 – ident: e_1_2_7_3_2 doi: 10.1109/TVCG.2007.1041 – ident: e_1_2_7_34_2 doi: 10.1016/j.cag.2009.03.005 – ident: e_1_2_7_14_2 doi: 10.1111/j.1467-8659.2009.01517.x – ident: e_1_2_7_4_2 doi: 10.1109/CVPR.2010.5539838 – ident: e_1_2_7_11_2 doi: 10.1073/pnas.0500334102 – volume-title: Critical fluctuations and coupling of stochastic neural mass models year: 2017 ident: e_1_2_7_26_2 – ident: e_1_2_7_10_2 doi: 10.1109/ISBI.2006.1625087 – ident: e_1_2_7_22_2 doi: 10.1109/TVCG.2011.152 – volume-title: Nonlinear Programming: Analysis and Methods year: 2003 ident: e_1_2_7_2_2 – ident: e_1_2_7_16_2 doi: 10.1215/kjm/1250518506 – ident: e_1_2_7_37_2 doi: 10.1016/j.cad.2005.10.011 – ident: e_1_2_7_6_2 – ident: e_1_2_7_40_2 doi: 10.1145/1778765.1778858 – volume-title: Stochastic Differential Equations and Diffusion Processes year: 2014 ident: e_1_2_7_18_2 – volume: 9 issue: 3 year: 2007 ident: e_1_2_7_30_2 article-title: Python for scientific computing publication-title: Computing in Science & Fngineering – ident: e_1_2_7_39_2 doi: 10.1215/kjm/1250520656 – ident: e_1_2_7_7_2 doi: 10.1145/1377676.1377725 – start-page: 214 volume-title: In Computer Vision and Pattern Recognition (CVPR), 2012 IFFF Conference on (2012) ident: e_1_2_7_21_2 – volume: 12 start-page: 2825 year: 2011 ident: e_1_2_7_33_2 article-title: Scikit‐learn: machine learning in python publication-title: Journal of Machine Learning Research – ident: e_1_2_7_13_2 doi: 10.1111/j.1467-8659.2010.01763.x – ident: e_1_2_7_23_2 doi: 10.1090/S0025-5718-1981-0616367-1 – ident: e_1_2_7_31_2 doi: 10.1111/j.1467-8659.2010.01764.x – ident: e_1_2_7_15_2 doi: 10.1090/gsm/038 – ident: e_1_2_7_29_2 – ident: e_1_2_7_12_2 doi: 10.1198/073500102288618397 – ident: e_1_2_7_27_2 doi: 10.4310/jdg/1214427880 – ident: e_1_2_7_8_2 doi: 10.1137/1.9781611973068.112 – ident: e_1_2_7_9_2 doi: 10.1515/mcma.1996.2.2.93 – ident: e_1_2_7_35_2 doi: 10.1017/CBO9780511623783 – ident: e_1_2_7_5_2 doi: 10.1162/089976603321780317 – ident: e_1_2_7_25_2 doi: 10.1007/BF02846028 – ident: e_1_2_7_17_2 – ident: e_1_2_7_28_2 doi: 10.3150/bj/1082380220 – ident: e_1_2_7_20_2 doi: 10.1215/kjm/1250518401 – ident: e_1_2_7_32_2 doi: 10.1016/j.cag.2013.05.019 |
| SSID | ssj0004765 |
| Score | 2.1862137 |
| Snippet | The heat kernel is a fundamental geometric object associated to every Riemannian manifold, used across applications in computer vision, graphics, and machine... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 131 |
| SubjectTerms | Brownian motion Categories and Subject Descriptors (according to ACM CCS) Computer simulation Computer vision Density Economic models G.3 [Mathematics of Computing]: Probability and Statistics—Probabilistic Algorithms I.3.5 [Computer Graphics]: Computational Geometry and Object Modelling—Geometric Algorithms, Languages, and Systems Machine learning Manifolds (mathematics) Numerical integration Parallel processing Riemann manifold Statistical analysis Statistical methods Three dimensional models Trajectory analysis |
| Title | Stochastic Heat Kernel Estimation on Sampled Manifolds |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.13251 https://www.proquest.com/docview/1928374118 |
| Volume | 36 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1467-8659 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0004765 issn: 0167-7055 databaseCode: ABDBF dateStart: 19980301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1467-8659 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0004765 issn: 0167-7055 databaseCode: ADMLS dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0167-7055 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1467-8659 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004765 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KT3rwLVarBPHgJSVN9pHgSUprUerBWuhBCPtUsaTSphd_vbObpK2iIEIOIWyym8nO7veFmW8QujBJwKmOEx-oF_cxSQj4nAj9KIqYoFgoI22C8-Ce9kf4dkzGNXRV5cIU-hDLH27WM9x6bR2ci_mak8tn0wIq5dKn2xF1dOphJR2FGSWVrrdVjClVhWwUz_LOr3vRCmCuw1S3z_S20VM1wiK85K21yEVLfnwTb_znK-ygrRJ_etfFhNlFNZ3toc01VcJ9RIf5VL5wK-Ds9WGp9u70DHryunClSHT04BhyqyusvAHPXs10ouYHaNTrPnb6fllewZdhwto-x4pb9-SGCqkCDSMxtvZwzBgByK2Z1FgQIWKOcYhFTDSlYawot9XABZPRIapn00wfIU-GLNTECAPUHNMg5klbGQCimgdGcsoa6LIydCpL7XFbAmOSVhwETJE6UzTQ-bLpeyG48VOjZvW10tLn5ilgVWDbGBgTdOfM_vsD0s5Nz50c_73pCdoI7Z7uov-aqJ7PFvoUEEkuztzU-wTyk9ow |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DD-rBb3E6tYgHLx1bm48WvMjYrO7j4DbYRUqSJiqOTrbu4l_vSz-2KQoi9FBK2iSvecnvF_J-D6Er7dc4VZ5vA_XiNiY-AZ8Tju26LhMUi0hLE-Dc7dFgiB9GZFRCN0UsTKYPsdhwM56RztfGwc2G9IqXy2ddBS5l4qfXMQWeYiDR41I8CjNKCmVvoxmT6wqZczyLV7-uRkuIuQpU05WmtYOeijZmB0zeqvNEVOXHN_nG_3ZiF23nENS6zcbMHiqpeB9trQgTHiDaTybyhRsNZyuA2dpqqylUZTXhSRbraMHV50ZaOLK6PH7Vk3E0O0TDVnPQCOw8w4ItHZ_VbY4jbjyUaypkVFPQEm3SD3uMEUDdikmFBRHC4xg7WHhEUep4EeUmIbhg0j1Ca_EkVsfIkg5zFNFCAzvHtOZxvx5pwKKK17TklJXRdWHpUOby4yYLxjgsaAiYIkxNUUaXi6LvmebGT4Uqxe8Kc7ebhQBXgXBjIE1QXWr33z8QNu5a6c3J34teoI1g0O2Enfte-xRtOmaJTw8DVtBaMp2rMwAoiThPx-Ensn3eUQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jguiD3-J0ahEffOmobZq04Itsq9O5Ic7BXqQkaaLi6MbWvfjXe-nHNkVBhD6Ucu2l11zyu3L3O4TOlW8xIj3fhNCLmdj1XfA5bpuO41BOMI-U0AXOnS5p9fHdwB2U0FVRC5PxQ8x_uGnPSNdr7eByHKklLxcvqgaxlK6fXgElnk7oazwuyKMwJW7B7K05Y3JeIZ3HM7_16260gJjLQDXdaYJN9FyMMUswea_NEl4TH9_oG__7EltoI4egxnU2Z7ZRScY7aH2JmHAXkV4yEq9MczgbLVitjbacgCqjCVeyWkcDjh7T1MKR0WHxmxoNo-ke6gfNp3rLzDssmML26aXJcMS0hzJFuIgsCSNRuv2wR6kLqFtSITF3OfcYxjbmnisJsb2IMN0QnFPh7KNyPIrlATKETW3pKq4gOsfE8ph_GSnAopJZSjBCK-iisHQocvpx3QVjGBZhCJgiTE1RQWdz0XHGufGTULX4XGHudtMQ4CoE3BiCJlCX2v33B4T1myA9Ofy76ClafWgE4f1tt32E1my9w6e5gFVUTiYzeQz4JOEn6TT8BIe63dU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+Heat+Kernel+Estimation+on+Sampled+Manifolds&rft.jtitle=Computer+graphics+forum&rft.au=Aumentado-Armstrong%2C+T&rft.au=Siddiqi%2C+K&rft.date=2017-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=36&rft.issue=5&rft.spage=131&rft_id=info:doi/10.1111%2Fcgf.13251&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |