Efficient and Stable Simulation of Inextensible Cosserat Rods by a Compact Representation

Piecewise linear inextensible Cosserat rods are usually represented by Cartesian coordinates of vertices and quaternions on the segments. Such representations use excessive degrees of freedom (DOFs), and need many additional constraints, which causes unnecessary numerical difficulties and computatio...

Full description

Saved in:
Bibliographic Details
Published inComputer graphics forum Vol. 41; no. 7; pp. 567 - 578
Main Authors Zhao, Chongyao, Lin, Jinkeng, Wang, Tianyu, Bao, Hujun, Huang, Jin
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.10.2022
Subjects
Online AccessGet full text
ISSN0167-7055
1467-8659
DOI10.1111/cgf.14701

Cover

More Information
Summary:Piecewise linear inextensible Cosserat rods are usually represented by Cartesian coordinates of vertices and quaternions on the segments. Such representations use excessive degrees of freedom (DOFs), and need many additional constraints, which causes unnecessary numerical difficulties and computational burden for simulation. We propose a simple yet compact representation that exactly matches the intrinsic DOFs and naturally satisfies all such constraints. Specifically, viewing a rod as a chain of rigid segments, we encode its shape as the Cartesian coordinates of its root vertex, and use axis‐angle representation for the material frame on each segment. Under our representation, the Hessian of the implicit time‐stepping has special non‐zero patterns. Exploiting such specialties, we can solve the associated linear equations in nearly linear complexity. Furthermore, we carefully designed a preconditioner, which is proved to be always symmetric positive‐definite and accelerates the PCG solver in one or two orders of magnitude compared with the widely used block‐diagonal one. Compared with other technical choices including Super‐Helices, a specially designed compact representation for inextensible Cosserat rods, our method achieves better performance and stability, and can simulate an inextensible Cosserat rod with hundreds of vertices and tens of collisions in real time under relatively large time steps.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.14701