Two grid finite element discretization method for semi‐linear hyperbolic integro‐differential equations

In this paper, we will investigate a two grid finite element discretization method for the semi‐linear hyperbolic integro‐differential equations by piecewise continuous finite element method. In order to deal with the semi‐linearity of the model, we use the two grid technique and derive that once th...

Full description

Saved in:
Bibliographic Details
Published inNumerical methods for partial differential equations Vol. 35; no. 5; pp. 1676 - 1693
Main Authors Chen, Luoping, Chen, Yanping, Huang, Yunqing
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.09.2019
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0749-159X
1098-2426
DOI10.1002/num.22370

Cover

Abstract In this paper, we will investigate a two grid finite element discretization method for the semi‐linear hyperbolic integro‐differential equations by piecewise continuous finite element method. In order to deal with the semi‐linearity of the model, we use the two grid technique and derive that once the coarse and fine mesh sizes H, h satisfy the relation h = H2 for the two‐step two grid discretization method, the two grid method achieves the same convergence accuracy as the ordinary finite element method. Both theoretical analysis and numerical experiments are given to verify the results.
AbstractList In this paper, we will investigate a two grid finite element discretization method for the semi‐linear hyperbolic integro‐differential equations by piecewise continuous finite element method. In order to deal with the semi‐linearity of the model, we use the two grid technique and derive that once the coarse and fine mesh sizes H, h satisfy the relation h = H2 for the two‐step two grid discretization method, the two grid method achieves the same convergence accuracy as the ordinary finite element method. Both theoretical analysis and numerical experiments are given to verify the results.
In this paper, we will investigate a two grid finite element discretization method for the semi‐linear hyperbolic integro‐differential equations by piecewise continuous finite element method. In order to deal with the semi‐linearity of the model, we use the two grid technique and derive that once the coarse and fine mesh sizes H , h satisfy the relation h  =  H 2 for the two‐step two grid discretization method, the two grid method achieves the same convergence accuracy as the ordinary finite element method. Both theoretical analysis and numerical experiments are given to verify the results.
Author Chen, Yanping
Chen, Luoping
Huang, Yunqing
Author_xml – sequence: 1
  givenname: Luoping
  orcidid: 0000-0001-7944-500X
  surname: Chen
  fullname: Chen, Luoping
  organization: Southwest Jiaotong University
– sequence: 2
  givenname: Yanping
  surname: Chen
  fullname: Chen, Yanping
  email: yanpingchen@scnu.edu.cn
  organization: South China Normal University
– sequence: 3
  givenname: Yunqing
  surname: Huang
  fullname: Huang, Yunqing
  organization: Xiangtan University
BookMark eNp9kLtOwzAUhi0EEuUy8AaWmBhCbSdO4hEhblKBpZXYItc-BkNiF9tRVSYegWfkSQgtExJMZzjf_x2dfw9tO-8AoSNKTikhbOz67pSxvCJbaESJqDNWsHIbjUhViIxy8bCL9mJ8JoRSTsUIvUyXHj8Gq7GxzibA0EIHLmFtowqQ7JtM1jvcQXryA-QDjtDZz_eP1jqQAT-tFhDmvrUKW5fgMfhhp60xEAaNlS2G137tiAdox8g2wuHP3Eezy4vp-XU2ub-6OT-bZIqJimSS11RqbWqR81JWlSRiXoDQFTOyNqoojKIauCzqWhulc13UtIS54jlQDrzM99HxxrsI_rWHmJpn3wc3nGwY4yIvakHygTrZUCr4GAOYZhFsJ8OqoaT57rIZumzWXQ7s-BerbFo_lYK07X-JpW1h9be6uZvdbhJf7EeM-A
CitedBy_id crossref_primary_10_1016_j_apnum_2024_03_019
crossref_primary_10_1016_j_amc_2021_126596
crossref_primary_10_1016_j_camwa_2020_10_015
Cites_doi 10.4208/cicp.scpde14.46s
10.1137/S0036142995293493
10.1016/j.cam.2008.09.001
10.1002/nme.1775
10.1080/00207160.2017.1322689
10.1137/0732021
10.1016/0362-546X(88)90039-9
10.1002/nme.668
10.1007/BF01436618
10.1007/s10915-016-0187-8
10.1137/0728056
10.1016/j.advwatres.2011.04.010
10.1090/conm/180/01971
10.1016/j.camwa.2015.09.012
10.1137/0915016
10.1007/BF02575943
10.1016/j.cam.2016.10.030
10.1216/jiea/1181075713
10.1007/s11071-016-2843-9
10.1002/(SICI)1098-2426(199905)15:3<317::AID-NUM4>3.0.CO;2-U
10.1137/S0036142992232949
10.1090/S0025-5718-99-01180-1
10.1137/130919921
10.1080/01630569808816876
10.1007/s10915-011-9469-3
10.1216/jiea/1181075664
10.1007/BF02575729
10.1155/2012/391918
10.1016/j.cam.2009.11.043
10.1137/100810241
10.1007/BF02679436
10.1137/0727036
10.1007/BF02576527
ContentType Journal Article
Copyright 2019 Wiley Periodicals, Inc.
Copyright_xml – notice: 2019 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/num.22370
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1098-2426
EndPage 1693
ExternalDocumentID 10_1002_num_22370
NUM22370
Genre article
GrantInformation_xml – fundername: Natural Science Foundation of China
  funderid: 91430213; 11671157; 11426189; 11501473
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
41~
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
AIQQE
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c2970-a581addf89356a77a09b4e9d72fa8fc44fc1de5a488dfcd3d4816ebc53e15e563
IEDL.DBID DR2
ISSN 0749-159X
IngestDate Fri Jul 25 12:17:48 EDT 2025
Wed Oct 01 04:09:16 EDT 2025
Thu Apr 24 22:56:09 EDT 2025
Wed Aug 20 07:26:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2970-a581addf89356a77a09b4e9d72fa8fc44fc1de5a488dfcd3d4816ebc53e15e563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7944-500X
PQID 2259348903
PQPubID 1016406
PageCount 35
ParticipantIDs proquest_journals_2259348903
crossref_primary_10_1002_num_22370
crossref_citationtrail_10_1002_num_22370
wiley_primary_10_1002_num_22370_NUM22370
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2019
2019-09-00
20190901
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: September 2019
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: New York
PublicationTitle Numerical methods for partial differential equations
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2001; 70
2012; 2012
2016; 19
2015; 70
1995; 32
2003; 57
2009
1988; 12
2011; 34
2014; 2014
1993; 180
1989; 26
2017; 315
1996; 33
1991; 28
1998; 19
1974; 22
1990; 27
1988; 25
1999; 15
2010; 233
1993; 30
2016; 85
1994; 16
1994; 15
2018; 95
2002; 93
2014; 52
2009; 228
2011; 49
2016; 69
2007; 69
1992; 4
1998; 35
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
Chen C. (e_1_2_8_36_1) 2014; 2014
e_1_2_8_16_1
e_1_2_8_37_1
Chen Y. (e_1_2_8_12_1) 1994; 16
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – year: 2009
– volume: 26
  start-page: 197
  year: 1989
  end-page: 207
  article-title: Galerkin methods and error estimates for hyperbolic integro‐differential equations
  publication-title: Calcolo
– volume: 69
  start-page: 28
  year: 2016
  end-page: 51
  article-title: error estimates of two‐grid method for miscible displacement problem
  publication-title: J. Sci. Comput.
– volume: 4
  start-page: 533
  year: 1992
  end-page: 584
  article-title: Numerical methods for hyperbolic and parabolic integro‐differential equations
  publication-title: J. Integral Equations Appl.
– volume: 315
  start-page: 195
  year: 2017
  end-page: 207
  article-title: A two‐level stochastic collocation method for semilinear elliptic equations with random coefficients
  publication-title: J. Comput. Appl. Math.
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 6
  article-title: A two‐grid finite element method for a second‐order nonlinear hyperbolic equation
  publication-title: Abstr. Appl. Anal.
– volume: 15
  start-page: 231
  year: 1994
  end-page: 237
  article-title: A novel two‐grid method for semilinear equations
  publication-title: SIAM J. Sci. Comput.
– volume: 69
  start-page: 408
  year: 2007
  end-page: 422
  article-title: Analysis of two‐grid methods for reaction‐diffusion equations by expanded mixed finite element methods
  publication-title: Internat. J. Numer. Methods Eng.
– volume: 70
  start-page: 17
  year: 2001
  end-page: 25
  article-title: A two‐grid discretization scheme for eigenvalue problems
  publication-title: Math. Comp.
– volume: 4
  start-page: 15
  year: 1992
  end-page: 46
  article-title: A survey of numerical methods for solving nonlinear integral equations
  publication-title: J. Integral Equations Appl.
– volume: 25
  start-page: 187
  year: 1988
  end-page: 201
  article-title: Non‐classical H1 projection and Galerkin methods for nonlinear parabolic integro‐differential equations
  publication-title: Calcolo
– volume: 19
  start-page: 1129
  year: 1998
  end-page: 1153
  article-title: The effect of spatial quadrature on finite element Galerkin approximations to hyperbolic integro‐differential equations
  publication-title: Numer. Funct. Anal. Optim.
– volume: 52
  start-page: 2027
  year: 2014
  end-page: 2047
  article-title: Two‐grid methods for Maxwell eigenvalue problems
  publication-title: SIAM J. Numer. Anal.
– volume: 70
  start-page: 2474
  year: 2015
  end-page: 2492
  article-title: A two‐grid mixed finite element method for a nonlinear fourth‐order reaction diffusion problem with time‐fractional derivative
  publication-title: Comput. Math. Appl.
– volume: 34
  start-page: 1113
  year: 2011
  end-page: 1123
  article-title: A two‐grid method for coupled free flow with porous media flow
  publication-title: Adv. Water Resoure
– volume: 57
  start-page: 193
  year: 2003
  end-page: 209
  article-title: A two‐grid method for expanded mixed finite‐element solution of semilinear reaction‐diffusion equations
  publication-title: Internat. J. Numer. Methods Eng.
– volume: 15
  start-page: 317
  year: 1999
  end-page: 332
  article-title: A two‐grid method for mixed finite‐element solution of reaction‐diffusion equations
  publication-title: Numer. Meth. Part. D. E.
– volume: 85
  start-page: 2535
  year: 2016
  end-page: 2548
  article-title: A two‐grid finite element approximation for a nonlinear time‐fractional cable equation
  publication-title: Nonlinear Dyn.
– volume: 22
  start-page: 17
  year: 1974
  end-page: 31
  article-title: Iterative variants of the Nyström method for the numerical solution of integral equations
  publication-title: Numer. Math.
– volume: 28
  start-page: 1047
  year: 1991
  end-page: 1070
  article-title: Ritz–Volterra projections to finite‐element spaces and applications to integrodifferential and related equations
  publication-title: SIAM J. Numer. Anal.
– volume: 12
  start-page: 785
  year: 1988
  end-page: 809
  article-title: Finite element methods for parabolic and hyperbolic partial integro‐differential equations
  publication-title: Nonlinear Anal.
– volume: 30
  start-page: 69
  year: 1993
  end-page: 88
  article-title: Numerical solutions for a class of differential equations in linear viscoelasticity
  publication-title: Calcolo
– volume: 95
  start-page: 1453
  year: 2018
  end-page: 1477
  article-title: Two‐grid methods for miscible displacement problem by Galerkin methods and mixed finite‐element methods
  publication-title: Int. J. Comput. Math.
– volume: 16
  start-page: 23
  year: 1994
  end-page: 26
  article-title: A multilevel method for finite element solutions for singular twopoint boundary value problems
  publication-title: Natur. Sci. J. Xiangtan Univ.
– volume: 49
  start-page: 383
  year: 2011
  end-page: 401
  article-title: Two‐grid method for nonlinear reaction diffusion equations by mixed finite element methods
  publication-title: J. Sci. Comput.
– volume: 228
  start-page: 123
  year: 2009
  end-page: 132
  article-title: Two‐grid methods for finite volume element approximations of nonlinear parabolic equations
  publication-title: J. Comput. Appl. Math.
– volume: 2012
  start-page: 255
  year: 2012
  end-page: 262
  article-title: A two‐grid method for finite element solutions of nonlinear parabolic equations
  publication-title: Abstr. Appl. Anal
– volume: 49
  start-page: 1602
  year: 2011
  end-page: 1624
  article-title: Two‐grid finite element discretization schemes based on shifted‐inverse power method for elliptic eigenvalue problems
  publication-title: SIAM J. Numer. Anal.
– volume: 27
  start-page: 595
  year: 1990
  end-page: 607
  article-title: A priori error estimates for finite‐element methods for nonlinear diffusion equations with memory
  publication-title: SIAM J. Numer. Anal.
– volume: 33
  start-page: 1759
  year: 1996
  end-page: 1777
  article-title: Two‐grid discretization techniques for linear and non‐linear PDEs
  publication-title: SIAM J. Numer. Anal.
– volume: 93
  start-page: 1
  year: 2002
  end-page: 51
  article-title: A fast two‐grid and finite section method for a class of integral equations on the real line with application to an acoustic scattering problem in the half‐plane
  publication-title: Numer. Math.
– volume: 180
  start-page: 191
  year: 1993
  end-page: 203
  article-title: Two‐grid method for mixed finite element approximations of non‐linear parabolic equations
  publication-title: Contemp. Methods
– volume: 32
  start-page: 501
  year: 1995
  end-page: 513
  article-title: A fast multilevel algorithm for integral equations
  publication-title: SIAM J. Numer. Anal.
– volume: 19
  start-page: 1503
  year: 2016
  end-page: 1528
  article-title: Two‐grid method for miscible displacement problem by mixed finite element methods and mixed finite element method of characteristics
  publication-title: Commun. Comput. Phys.
– volume: 35
  start-page: 435
  year: 1998
  end-page: 452
  article-title: A two‐grid finite difference scheme for nonlinear parabolic equations
  publication-title: SIAM J. Numer. Anal.
– volume: 233
  start-page: 2975
  year: 2010
  end-page: 2984
  article-title: A two‐grid method for finite volume element approximations of second‐order nonlinear hyperbolic equations
  publication-title: J. Comput. Appl. Math.
– ident: e_1_2_8_25_1
  doi: 10.4208/cicp.scpde14.46s
– ident: e_1_2_8_29_1
  doi: 10.1137/S0036142995293493
– ident: e_1_2_8_37_1
– ident: e_1_2_8_30_1
  doi: 10.1016/j.cam.2008.09.001
– ident: e_1_2_8_16_1
  doi: 10.1002/nme.1775
– ident: e_1_2_8_27_1
  doi: 10.1080/00207160.2017.1322689
– ident: e_1_2_8_34_1
  doi: 10.1137/0732021
– ident: e_1_2_8_5_1
  doi: 10.1016/0362-546X(88)90039-9
– ident: e_1_2_8_15_1
  doi: 10.1002/nme.668
– ident: e_1_2_8_32_1
  doi: 10.1007/BF01436618
– ident: e_1_2_8_26_1
  doi: 10.1007/s10915-016-0187-8
– ident: e_1_2_8_4_1
  doi: 10.1137/0728056
– ident: e_1_2_8_28_1
  doi: 10.1016/j.advwatres.2011.04.010
– ident: e_1_2_8_13_1
  doi: 10.1090/conm/180/01971
– ident: e_1_2_8_23_1
  doi: 10.1016/j.camwa.2015.09.012
– ident: e_1_2_8_10_1
  doi: 10.1137/0915016
– ident: e_1_2_8_7_1
  doi: 10.1007/BF02575943
– ident: e_1_2_8_22_1
  doi: 10.1016/j.cam.2016.10.030
– volume: 2014
  start-page: 1
  year: 2014
  ident: e_1_2_8_36_1
  article-title: A two‐grid finite element method for a second‐order nonlinear hyperbolic equation
  publication-title: Abstr. Appl. Anal.
– ident: e_1_2_8_3_1
  doi: 10.1216/jiea/1181075713
– ident: e_1_2_8_24_1
  doi: 10.1007/s11071-016-2843-9
– ident: e_1_2_8_14_1
  doi: 10.1002/(SICI)1098-2426(199905)15:3<317::AID-NUM4>3.0.CO;2-U
– ident: e_1_2_8_11_1
  doi: 10.1137/S0036142992232949
– volume: 16
  start-page: 23
  year: 1994
  ident: e_1_2_8_12_1
  article-title: A multilevel method for finite element solutions for singular twopoint boundary value problems
  publication-title: Natur. Sci. J. Xiangtan Univ.
– ident: e_1_2_8_19_1
  doi: 10.1090/S0025-5718-99-01180-1
– ident: e_1_2_8_21_1
  doi: 10.1137/130919921
– ident: e_1_2_8_9_1
  doi: 10.1080/01630569808816876
– ident: e_1_2_8_17_1
  doi: 10.1007/s10915-011-9469-3
– ident: e_1_2_8_33_1
  doi: 10.1216/jiea/1181075664
– ident: e_1_2_8_2_1
  doi: 10.1007/BF02575729
– ident: e_1_2_8_18_1
  doi: 10.1155/2012/391918
– ident: e_1_2_8_31_1
  doi: 10.1016/j.cam.2009.11.043
– ident: e_1_2_8_20_1
  doi: 10.1137/100810241
– ident: e_1_2_8_35_1
  doi: 10.1007/BF02679436
– ident: e_1_2_8_6_1
  doi: 10.1137/0727036
– ident: e_1_2_8_8_1
  doi: 10.1007/BF02576527
SSID ssj0011519
Score 2.2173336
Snippet In this paper, we will investigate a two grid finite element discretization method for the semi‐linear hyperbolic integro‐differential equations by piecewise...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1676
SubjectTerms Differential equations
Discretization
error estimate
Finite element analysis
Finite element method
Grid method
Linearity
Mathematical analysis
Nonlinear programming
semi‐linear hyperbolic integro‐differential equations
two‐grid discretization
Title Two grid finite element discretization method for semi‐linear hyperbolic integro‐differential equations
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnum.22370
https://www.proquest.com/docview/2259348903
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1098-2426
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0011519
  issn: 0749-159X
  databaseCode: ABDBF
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1098-2426
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0011519
  issn: 0749-159X
  databaseCode: AMVHM
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0749-159X
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1098-2426
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011519
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1JS8QwFMeDzEkP7uJOEA9eOtM2O55EFBFmDuLAHITSLNXBWXQ6g-DJj-Bn9JOYNG1dUBBvhaRrkvf-r-T9HgCHDsomkJBBhqkNUBgPA8EpDZwrFpGJJeIud7jdoRddfNkjvTlwXOXCeD5E_cPNrYzCXrsFnsq89QkaOhs2rW9jLl6PEC3CqasaHWWFTlHUw3pIEViX3auoQmHcqs_86os-BOZnmVr4mfMlcFM9od9ect-cTWVTPX-DN_7zFZbBYqk_4YmfMCtgzoxWwUK7hrfma-D--mkMbyd9DbO-U6TQ-C3m0GXwuqRHn7kJffFpaFUvzM2w__by6p4oncA7G9tOpAMOQ0-jGNu2qhKLtSgDaB49YTxfB93zs-vTi6CsyRCoWLAwSAmPrEnMrMwhNGUsDYXERmgWZynPFMaZirQhqbULOlMaacwjaqQiyETEEIo2QGM0HplNAJkKEVHSmgCeYWyYoApzqozWVCHG0BY4qkYnUSWw3NXNGCQetRy7oilJ8f22wEHd9cFTOn7qtFsNcVIu1Ny2EIEwF6G7XTFWv18g6XTbxcH237vugHkrscpdabugMZ3MzJ6VMVO5X8zXd3ic8mQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF5F5QA9QKFUpKSwqjj04sT2_ktcqooo0DgHlEi5VJa9Xpcof9RJhMSJR-AZeRJmvbYJiEqIm6Vd22vPzsw3q5lvEHpjSdkUUamXUw4BipC-pyTnnnXFKjBhSqStHY5GfDChH6Zs2kJv61oYxw_RHLhZzSjttVVweyDd22MN3S274NwEBOwPKIc4xUKijw15FECdsq0H-EjlgdOe1rxCfthrbv3dG_2CmPtAtfQ0_Sfopl6jSzCZd3fbtKu__kHf-L8fcYQeVxAUX7o98xS1zOoZOowa_tbNMZqPv6zxbTHLcD6zoBQbl2WObRGvrXt0xZvY9Z_GAHzxxixnP759t0tKCvwJwtsitZzD2BFSrGGsbsYCRmWBzZ0jGd88R5P-u_HVwKvaMng6VML3EiYDsIo5IB3GEyESX6XUqEyEeSJzTWmug8ywBExDluuMZFQG3KSaERMwwzg5QQer9cq8QFhonzCdghWQOaVGKK6p5NpkGddECNJGF7V4Yl1xltvWGYvYsS2Htm9KXP6_Njpvpn52RB1_m9SpZRxXurqBEaYIlcq3ryuFdf8D4tEkKi9O_33qa_RwMI6G8fD96PolegSIq0pS66CDbbEzZ4BqtumrcvP-BJiD9oU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS9xAFMcHsSD1wda24lprh9KHvmRNMnfwRdRF2-5Sigv7UkIyF13UXd0LBZ_8CH5GP4lnMklqSwXxLTCT68yc859wzu8g9NlD2RRRReQohw2KkHGkJOeRd8UqsWlBpM8d7vb4YZ9-HbDBAtqpc2ECH6L54eZXRmmv_QK3l8ZtP6CGzi_a4NwEbNhfUKakD-jb_9nAo0DqlGU9wEeqCJz2oOYKxel2c-rf3uiPxHwoVEtP03mFftXPGAJMztrzWdHW1__gG5_7Eq_RSiVB8W6YM6towY7eoOVuw2-dvkVnx7_H-GQyNNgNvSjFNkSZY5_E6_MeQ_ImDvWnMQhfPLUXw7ubW_9I-QSfwvZ2UnjmMA5AijG01cVYwKicY3sVIOPTd6jfOTjeO4yqsgyRTpWIo5zJBKyiA6XDeC5EHquCWmVE6nLpNKVOJ8ayHEyDcdoQQ2XCbaEZsQmzjJM1tDgaj-w6wkLHhOkCrIB0lFqhuKaSa2sM10QI0kJf6uHJdMUs96UzzrNAW0593ZSs_H4t9KnpehlAHf_rtFmPcVat1Sm0MEWoVLG_XTlYj18g6_W75cHG07t-REs_9jvZ96Pet_foJQiuKkZtEy3OJnP7AUTNrNgq5-49Tu_2CQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+grid+finite+element+discretization+method+for+semi%E2%80%90linear+hyperbolic+integro%E2%80%90differential+equations&rft.jtitle=Numerical+methods+for+partial+differential+equations&rft.au=Chen%2C+Luoping&rft.au=Chen%2C+Yanping&rft.au=Huang%2C+Yunqing&rft.date=2019-09-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0749-159X&rft.eissn=1098-2426&rft.volume=35&rft.issue=5&rft.spage=1676&rft.epage=1693&rft_id=info:doi/10.1002%2Fnum.22370&rft.externalDBID=10.1002%252Fnum.22370&rft.externalDocID=NUM22370
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-159X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-159X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-159X&client=summon