A particle swarm algorithm optimization‐based SVM–KNN algorithm for epileptic EEG recognition

Epilepsy is a disease caused by abnormal discharges in the central nervous system. Automatic detection and accurate identification of epileptic seizures based on electroencephalography (EEG) are significant in the clinical diagnosis and treatment of epilepsy. In this paper, we first decompose the pa...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of intelligent systems Vol. 37; no. 12; pp. 11233 - 11249
Main Authors Wang, Xiaoying, Ling, Yu, Ling, Xiang, Li, Xianghuan, Li, Zhicheng, Hu, Kunpeng, Dai, Min, Zhu, Jia, Du, Yuxiao, Yang, Qintai
Format Journal Article
LanguageEnglish
Published New York John Wiley & Sons, Inc 01.12.2022
Subjects
Online AccessGet full text
ISSN0884-8173
1098-111X
DOI10.1002/int.23040

Cover

Abstract Epilepsy is a disease caused by abnormal discharges in the central nervous system. Automatic detection and accurate identification of epileptic seizures based on electroencephalography (EEG) are significant in the clinical diagnosis and treatment of epilepsy. In this paper, we first decompose the patient's EEG signal into multiple intrinsic modal functions (IMFs) using empirical modal decomposition, then compute the mean, standard deviation, fluctuation index, and sample entropy of IMF1, and finally classify them using a fusion algorithm of support vector machine and K‐nearest neighbor optimized by particle swarm algorithm. The results of validation using the epileptic EEG data set from Bonn University show that the auto‐detection and fast recognition method proposed in this paper can achieve a high seizure accuracy recognition rate (≥95%) with only a small number of training samples, which has a good clinical application value.
AbstractList Epilepsy is a disease caused by abnormal discharges in the central nervous system. Automatic detection and accurate identification of epileptic seizures based on electroencephalography (EEG) are significant in the clinical diagnosis and treatment of epilepsy. In this paper, we first decompose the patient's EEG signal into multiple intrinsic modal functions (IMFs) using empirical modal decomposition, then compute the mean, standard deviation, fluctuation index, and sample entropy of IMF1, and finally classify them using a fusion algorithm of support vector machine and K‐nearest neighbor optimized by particle swarm algorithm. The results of validation using the epileptic EEG data set from Bonn University show that the auto‐detection and fast recognition method proposed in this paper can achieve a high seizure accuracy recognition rate (≥95%) with only a small number of training samples, which has a good clinical application value.
Author Zhu, Jia
Wang, Xiaoying
Ling, Xiang
Li, Zhicheng
Dai, Min
Hu, Kunpeng
Ling, Yu
Yang, Qintai
Du, Yuxiao
Li, Xianghuan
Author_xml – sequence: 1
  givenname: Xiaoying
  orcidid: 0000-0002-9615-5511
  surname: Wang
  fullname: Wang, Xiaoying
  organization: Third Affiliated Hospital of Sun Yat‐sen University
– sequence: 2
  givenname: Yu
  orcidid: 0000-0001-7090-9760
  surname: Ling
  fullname: Ling, Yu
  organization: Guangdong University of Technology
– sequence: 3
  givenname: Xiang
  orcidid: 0000-0002-7215-3984
  surname: Ling
  fullname: Ling, Xiang
  organization: Third Affiliated Hospital of Sun Yat‐sen University
– sequence: 4
  givenname: Xianghuan
  orcidid: 0000-0002-0952-2492
  surname: Li
  fullname: Li, Xianghuan
  organization: Guangdong University of Technology
– sequence: 5
  givenname: Zhicheng
  orcidid: 0000-0002-5271-3753
  surname: Li
  fullname: Li, Zhicheng
  organization: Third Affiliated Hospital of Sun Yat‐sen University
– sequence: 6
  givenname: Kunpeng
  orcidid: 0000-0001-5407-8135
  surname: Hu
  fullname: Hu, Kunpeng
  organization: Third Affiliated Hospital of Sun Yat‐sen University
– sequence: 7
  givenname: Min
  orcidid: 0000-0001-9505-2556
  surname: Dai
  fullname: Dai, Min
  organization: Third Affiliated Hospital of Sun Yat‐sen University
– sequence: 8
  givenname: Jia
  orcidid: 0000-0002-5959-390X
  surname: Zhu
  fullname: Zhu, Jia
  organization: Zhejiang Normal University
– sequence: 9
  givenname: Yuxiao
  orcidid: 0000-0003-0450-4559
  surname: Du
  fullname: Du, Yuxiao
  email: yuxiaodu@gdut.edu.cn
  organization: Guangdong University of Technology
– sequence: 10
  givenname: Qintai
  orcidid: 0000-0003-3377-737X
  surname: Yang
  fullname: Yang, Qintai
  email: yangqint@mail.sysu.edu.cn
  organization: Third Affiliated Hospital of Sun Yat‐sen University
BookMark eNp9kMFOwjAchxuDiYAefIMmnjwM2m7tuiMhiETEg2i8LV3XYcm2zq6E4IlHMPENeRIHeDAmevpfvu_3T74OaJWmVABcYtTDCJG-Ll2P-ChAJ6CNUcQ9jPFLC7QR54HHceifgU5dLxHCOAxoG4gBrIR1WuYK1mthCyjyhbHavRbQVE4X-l04bcrd9iMRtUrh4_P9bvt5N5v9ADNjoap0rhpBwtFoDK2SZlHqvXkOTjOR1-ri-3bB081oPrz1pg_jyXAw9SSJQuSx1KckEyikScSUYirBScSp5FImjEnCMScRk2FKG4wgyQjLcET9LKQpoiLyu-DquFtZ87ZStYuXZmXL5mVMQhohEgTEb6jrIyWtqWursriyuhB2E2MU7wvGTcH4ULBh-79Yqd2hhrNC5_8Z6ybG5u_peDKbH40vq6eGFw
CitedBy_id crossref_primary_10_1038_s41377_024_01734_5
crossref_primary_10_1007_s10489_024_05506_x
crossref_primary_10_3390_sym16060720
crossref_primary_10_1016_j_seizure_2025_01_021
crossref_primary_10_1111_exsy_13374
crossref_primary_10_3390_bios13100930
crossref_primary_10_1109_ACCESS_2024_3457018
Cites_doi 10.1016/S1474-4422(02)00003-0
10.1016/j.clinph.2009.09.002
10.1109/51.956815
10.1109/ICASSP.2019.8683229
10.1109/IEMENTECH.2017.8076992
10.1109/TNSRE.2016.2552539
10.1016/j.psychres.2011.06.020
10.1177/107385849600200213
10.1109/ICDSP.2017.8096036
10.1016/j.compbiomed.2017.09.017
10.1016/S0013-4694(97)00003-9
10.1109/TEVC.2010.2053935
10.1109/IEMBS.1997.756576
10.1109/LSP.2007.904710
10.1109/SPACES.2018.8316340
10.1109/JBHI.2012.2237409
10.1109/GCIS.2010.278
10.1109/BIBM.2016.7822562
10.1109/ICSPC.2007.4728632
10.1109/ICSESS.2014.6933697
10.1111/j.1528-1157.1982.tb05052.x
10.1109/CISP-BMEI.2016.7852954
10.1007/s11071-011-0281-2
10.1109/ISCO.2015.7282340
10.1109/ASSP.1989.28057
10.1016/j.amc.2006.09.022
10.1109/72.991427
10.1016/j.neucom.2017.03.027
10.1109/TBME.2007.905490
10.1109/INDCON.2011.6139341
10.2174/157340561001140424143814
10.1111/j.1528-1157.1998.tb01430.x
10.1007/BF00994018
10.1109/TIT.1967.1053964
ContentType Journal Article
Copyright 2022 Wiley Periodicals LLC.
Copyright_xml – notice: 2022 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/int.23040
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1098-111X
EndPage 11249
ExternalDocumentID 10_1002_int_23040
INT23040
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 61640213
– fundername: Special Project for Research and Development in Key areas of Guangdong Province
  funderid: No.2020B0101130015
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJEY
AANHP
AAONW
AASGY
AAXRX
AAYOK
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ABTAH
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFZJQ
AI.
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARAPS
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DWQXO
EBS
EDO
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
H.T
H.X
H13
HBH
HCIFZ
HF~
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
K7-
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
M7S
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
PTHSS
Q.N
Q11
QB0
QRW
R.K
RHX
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
WZISG
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2970-6d352fa075b96ee6eb1b985c8ccb66c2818296c7d552f20c626f1953f75d05a93
IEDL.DBID DR2
ISSN 0884-8173
IngestDate Fri Jul 25 12:18:34 EDT 2025
Wed Oct 01 03:27:39 EDT 2025
Thu Apr 24 23:07:44 EDT 2025
Wed Jan 22 16:21:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2970-6d352fa075b96ee6eb1b985c8ccb66c2818296c7d552f20c626f1953f75d05a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9505-2556
0000-0001-5407-8135
0000-0002-5959-390X
0000-0002-7215-3984
0000-0001-7090-9760
0000-0002-0952-2492
0000-0002-5271-3753
0000-0003-0450-4559
0000-0002-9615-5511
0000-0003-3377-737X
PQID 2759024423
PQPubID 1026350
PageCount 17
ParticipantIDs proquest_journals_2759024423
crossref_primary_10_1002_int_23040
crossref_citationtrail_10_1002_int_23040
wiley_primary_10_1002_int_23040_INT23040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of intelligent systems
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 1982; 23
1995; 20
1997; 103
2012; 195
2018; 100
2002; 37
1998; 39
2013; 17
2007; 187
2002; 13
2002; 1
2011; 68
1967; 13
2008; 55
2011; 15
2009; 120
2017; 244
1997; 3
1996; 2
2016; 24
2007; 14
2001; 20
2014; 10
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 1
  start-page: 22
  issue: 1
  year: 2002
  end-page: 30
  article-title: Prediction of epileptic seizures
  publication-title: Lancet Neurol
– volume: 187
  start-page: 1017
  issue: 2
  year: 2007
  end-page: 1026
  article-title: Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform
  publication-title: Appl Math Comput
– volume: 120
  start-page: 1927
  issue: 11
  year: 2009
  end-page: 40
  article-title: Classification of patterns of EEG synchronization for seizure prediction
  publication-title: Clin Neurophysiol
– volume: 10
  start-page: 35
  issue: 1
  year: 2014
  end-page: 47
  article-title: Optimized feature selection for enhanced epileptic seizure detection
  publication-title: Curr Med Imaging Rev
– volume: 23
  start-page: 47
  issue: 1
  year: 1982
  end-page: 60
  article-title: Prediction of spike‐wave bursts in absence epilepsy by EEG power‐spectrum signals
  publication-title: Epilepsia
– volume: 103
  start-page: 356
  year: 1997
  end-page: 36
  article-title: Automatic seizure detection in the newborn: methods and initial evaluation
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 244
  start-page: 81
  year: 2017
  end-page: 89
  article-title: Fusing highly dimensional energy and connectivity features to identify affective states from EEG signals
  publication-title: Neurocomputing
– volume: 2
  start-page: 118
  issue: 2
  year: 1996
  end-page: 126
  article-title: Chaos theory and epilepsy
  publication-title: Neuroscientist
– volume: 39
  start-page: 615
  issue: 6
  year: 1998
  end-page: 627
  article-title: Real‐time automated detection and quantitative analysis of seizures and short‐term prediction of clinical onset
  publication-title: Epilepsia
– volume: 100
  start-page: 270
  year: 2018
  end-page: 278
  article-title: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals
  publication-title: Comput Biol Med
– volume: 24
  start-page: 1159
  issue: 11
  year: 2016
  end-page: 1168
  article-title: EEG sleep stages classification based on time domain features and structural graph similarity
  publication-title: IEEE Trans Neur Sys Reh
– volume: 68
  start-page: 431
  year: 2011
  end-page: 444
  article-title: Entropy measures for biological signal analyses
  publication-title: Nonlinear Dyn
– volume: 17
  start-page: 312
  issue: 2
  year: 2013
  end-page: 318
  article-title: Detection of seizure and epilepsy using higher order statistics in the EMD domain
  publication-title: IEEE J Biomed Health Inform
– volume: 15
  start-page: 405
  issue: 3
  year: 2011
  end-page: 423
  article-title: Stochastic stability analysis of the linear continuous and discrete PSO models
  publication-title: Evol Comput
– volume: 20
  start-page: 21
  issue: 5
  year: 2001
  end-page: 22
  article-title: Digital processing of EEG signals
  publication-title: IEEE Eng Med Biol Mag
– volume: 13
  start-page: 21
  issue: 1
  year: 1967
  end-page: 27
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans Inform Theory
– volume: 37
  start-page: 862
  issue: 6
  year: 2002
  end-page: 871
  article-title: Improved time‐frequency representation of multicomponent signals using exponential kernels
  publication-title: IEEE Trans Acoust Speech Signal Process
– volume: 195
  start-page: 76
  issue: 1
  year: 2012
  end-page: 82
  article-title: Automatic detection of seizure termination during electroconvulsive therapy using sample entropy of the electroencephalogram
  publication-title: Psychiatry Res
– volume: 13
  start-page: 415
  issue: 2
  year: 2002
  end-page: 425
  article-title: A comparison of methods for multiclass support vector machines
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 3
  start-page: 1194
  year: 1997
  end-page: 1197
– volume: 14
  start-page: 936
  issue: 12
  year: 2007
  end-page: 939
  article-title: Bivariate empirical mode decomposition
  publication-title: IEEE Signal Process Lett
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  end-page: 297
  article-title: Support‐vector networks
  publication-title: Mach Learn
– volume: 55
  start-page: 512
  issue: 2
  year: 2008
  end-page: 518
  article-title: Principal component analysis‐enhanced cosine radial basis function neural network for robust epilepsy and seizure detection
  publication-title: IEEE Trans Biomed Eng
– ident: e_1_2_8_3_1
  doi: 10.1016/S1474-4422(02)00003-0
– ident: e_1_2_8_16_1
  doi: 10.1016/j.clinph.2009.09.002
– ident: e_1_2_8_31_1
– ident: e_1_2_8_2_1
  doi: 10.1109/51.956815
– ident: e_1_2_8_21_1
  doi: 10.1109/ICASSP.2019.8683229
– ident: e_1_2_8_39_1
  doi: 10.1109/IEMENTECH.2017.8076992
– ident: e_1_2_8_5_1
  doi: 10.1109/TNSRE.2016.2552539
– ident: e_1_2_8_12_1
  doi: 10.1016/j.psychres.2011.06.020
– ident: e_1_2_8_15_1
  doi: 10.1177/107385849600200213
– ident: e_1_2_8_17_1
– ident: e_1_2_8_36_1
  doi: 10.1109/ICDSP.2017.8096036
– ident: e_1_2_8_24_1
  doi: 10.1016/j.compbiomed.2017.09.017
– ident: e_1_2_8_9_1
  doi: 10.1016/S0013-4694(97)00003-9
– ident: e_1_2_8_33_1
  doi: 10.1109/TEVC.2010.2053935
– ident: e_1_2_8_4_1
  doi: 10.1109/IEMBS.1997.756576
– ident: e_1_2_8_34_1
  doi: 10.1109/LSP.2007.904710
– ident: e_1_2_8_35_1
  doi: 10.1109/SPACES.2018.8316340
– ident: e_1_2_8_23_1
  doi: 10.1109/JBHI.2012.2237409
– ident: e_1_2_8_32_1
– ident: e_1_2_8_29_1
  doi: 10.1109/GCIS.2010.278
– ident: e_1_2_8_22_1
  doi: 10.1109/BIBM.2016.7822562
– ident: e_1_2_8_7_1
– ident: e_1_2_8_11_1
  doi: 10.1109/ICSPC.2007.4728632
– ident: e_1_2_8_28_1
  doi: 10.1109/ICSESS.2014.6933697
– ident: e_1_2_8_14_1
  doi: 10.1111/j.1528-1157.1982.tb05052.x
– ident: e_1_2_8_37_1
  doi: 10.1109/CISP-BMEI.2016.7852954
– ident: e_1_2_8_13_1
  doi: 10.1007/s11071-011-0281-2
– ident: e_1_2_8_30_1
  doi: 10.1109/ISCO.2015.7282340
– ident: e_1_2_8_10_1
  doi: 10.1109/ASSP.1989.28057
– ident: e_1_2_8_8_1
  doi: 10.1016/j.amc.2006.09.022
– ident: e_1_2_8_27_1
  doi: 10.1109/72.991427
– ident: e_1_2_8_20_1
  doi: 10.1016/j.neucom.2017.03.027
– ident: e_1_2_8_6_1
  doi: 10.1109/TBME.2007.905490
– ident: e_1_2_8_38_1
  doi: 10.1109/INDCON.2011.6139341
– ident: e_1_2_8_19_1
  doi: 10.2174/157340561001140424143814
– ident: e_1_2_8_18_1
  doi: 10.1111/j.1528-1157.1998.tb01430.x
– ident: e_1_2_8_25_1
  doi: 10.1007/BF00994018
– ident: e_1_2_8_26_1
  doi: 10.1109/TIT.1967.1053964
SSID ssj0011745
Score 2.387694
Snippet Epilepsy is a disease caused by abnormal discharges in the central nervous system. Automatic detection and accurate identification of epileptic seizures based...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11233
SubjectTerms Algorithms
Central nervous system
Decomposition
Electroencephalography
empirical modal decomposition
Epilepsy
epilepsy EEG recognition
Intelligent systems
K‐nearest neighbor
Optimization
particle swarm optimization algorithm
Recognition
Seizures
support vector machine
Support vector machines
Title A particle swarm algorithm optimization‐based SVM–KNN algorithm for epileptic EEG recognition
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fint.23040
https://www.proquest.com/docview/2759024423
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1098-111X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011745
  issn: 0884-8173
  databaseCode: ADMLS
  dateStart: 19860301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0884-8173
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1098-111X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011745
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUQXLiwI3ZZiAOXQOwkTiJOFbSs7YFNPSBF3gIImlZtEBInPgGJP-yXMM5GQSAhbjmME8fjGb-xZ54R2jJ1eY7WjqWIUpbLYt_itiMs4dicEMUIF2ZDv9liR1fuSdtrj6G9shYm54eoNtyMZWT-2hg4F4PdT9LQ-yQ1WcyuideJw7Jw6ryijiKAtL0cQbpWQHynZBWy6W7V8uta9AkwR2Fqts40ptFN2cM8veRh5ykVO_LlG3njP39hBk0V-BPX8gkzi8Z0Moemy7sdcGHq84jXcK-YVXjwzPsdzB9vu_379K6Du-BmOkX95vD1zSyECl9cN4ev76et1oggAGKse9A1aCBxvX6Iq3ylbrKArhr1y_0jq7iOwZI09CHIVADWYg4YQ4RMawZeXoSBJwMpBWPS0ErRkElfeSBGbQmhUmwO6WLfU7bHQ2cRjSfdRC8hLKgXEI9LF0CzCyFaqMF3SDsQisQyoHwZbZeKiWTBVW6uzHiMcpZlGsHQRdnQLaPNSrSXE3T8JLRWajcqbHQQUd9Q17iAJ-FzmZp-f0F03LrMHlb-LrqKJqmplchyX9bQeNp_0uuAYFKxgSZqB82zi41syn4AgwvvnA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGGDhjSgUsBADSyBxEieRWBAqlEczQEEsKPIrgKBpVVIhMfETkPiH_BLOeVEQSIgtwzlxbN_5u_PdZ4Q2dV2erZRtSEtKw6GxZzDT5ga3TWZZklqM64B-O6StC-f4yr2qod2yFibnh6gCblozMnutFVwHpHc-WUPvklSnMTvgsI87FPwUDYnOKvIoC7C2m2NIx_Atzy55hUyyUzX9uht9QsxRoJrtNAfT6LrsY55gcr89TPm2eP5G3_jfn5hBUwUExXv5mplFNZXMoenyegdcaPs8Ynu4Xyws_PjEBl3MHm56g7v0tot7YGm6RQnn-8ur3gslPr9sv7-8nYThiCBgYqz60DdoIHCzeYirlKVesoAuDpqd_ZZR3MhgCBJ44GdKwGsxA5jBA6oUBUPPA98VvhCcUqGZpUhAhSddECOmAG8p1ud0sedK02WBvYjGkl6ilhDmxPUtlwkHcLMDXlqgwHwI0-fSioVPWB1tlTMTiYKuXN-a8RDlRMskgqGLsqGro41KtJ9zdPwk1CinNyrU9DEinmavcQBSwueyefr9BdFR2Mkelv8uuo4mWp32aXR6FJ6soEmiSyeyVJgGGksHQ7UKgCbla9m6_QD0afIp
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iIF58i6urBvHgpW6bvsGL6K7vIuqKFyl5VcXdbtntInjyJwj-Q3-Jk758oCDeepi06SQz-SaZ-YLQhqrLM6U0NWEIoVlO5GpUN5nGTJ0ahnAMytSG_mngHLSto2v7egRtl7UwOT9EteGmLCPz18rAZSKixgdr6H2cqjRmCwL2Mcv2PZXQt3dekUcZgLXtHENamme4ZskrpJNG1fTravQBMT8D1WylaU2hm7KPeYLJw9YwZVv86Rt9439_YhpNFhAU7-RzZgaNyHgWTZXXO-DC2ucQ3cFJMbHw4JH2u5h2bnv9-_Sui3vgabpFCefb84taCwW-uDp9e349DoJPgoCJsUygb9CA42ZzH1cpS714HrVbzcvdA624kUHjxHchzhSA1yIKMIP5jpQOOHoGiuce58xxuGKWIr7DXWGDGNE5REuROqeLXFvoNvXNBTQa92K5iDAjtmfYlFuAmy2I0nwJ7oPrHhNGxD1Ca2izHJmQF3Tl6taMTpgTLZMQVBdmqquh9Uo0yTk6fhKql8MbFmY6CImr2GssgJTwuWycfn9BeBhcZg9LfxddQ-Nne63w5DA4XkYTRFVOZJkwdTSa9odyBfBMylazafsOr8XxrQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+particle+swarm+algorithm+optimization%E2%80%90based+SVM%E2%80%93KNN+algorithm+for+epileptic+EEG+recognition&rft.jtitle=International+journal+of+intelligent+systems&rft.au=Wang%2C+Xiaoying&rft.au=Ling%2C+Yu&rft.au=Ling%2C+Xiang&rft.au=Li%2C+Xianghuan&rft.date=2022-12-01&rft.issn=0884-8173&rft.eissn=1098-111X&rft.volume=37&rft.issue=12&rft.spage=11233&rft.epage=11249&rft_id=info:doi/10.1002%2Fint.23040&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_int_23040
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-8173&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-8173&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-8173&client=summon