Computational Performance Enhancement Strategies for Risk-Averse Two-Stage Stochastic Generation and Transmission Network Expansion Planning

This paper proposes a new acceleration technique and a representative day aggregation procedure for the risk-averse two-stage stochastic generation and transmission network expansion planning problem, in which the conditional value-at-risk is used. We use a finite set of scenarios to model uncertain...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power systems Vol. 39; no. 1; pp. 273 - 286
Main Authors Garcia-Cerezo, Alvaro, Garcia-Bertrand, Raquel, Baringo, Luis
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0885-8950
1558-0679
DOI10.1109/TPWRS.2023.3236397

Cover

Abstract This paper proposes a new acceleration technique and a representative day aggregation procedure for the risk-averse two-stage stochastic generation and transmission network expansion planning problem, in which the conditional value-at-risk is used. We use a finite set of scenarios to model uncertainty in the peak demand level of loads, along with the capacity and marginal production cost of generating units. Moreover, we use representative days to model the operational variability of the electrical demand and renewable generation. The combination of scenarios and representative days involves many variables and constraints, which may lead to computationally intractable problems. Therefore, we propose a new relaxed version of the constraint generation-based algorithm that reduces the computational time of the problem. We additionally present a two-stage aggregation procedure that combines the modified maximum dissimilarity algorithm and the priority chronological time-period clustering in order to reduce the resolution of the representative days and to pay attention to extreme conditions. The numerical results of modified versions of the IEEE 24-bus Reliability Test System and the IEEE 118-bus Test System show reductions in the computational time of more than 89% for the relaxed constraint generation-based algorithm, and of more than 94% for the two-stage aggregation procedure.
AbstractList This paper proposes a new acceleration technique and a representative day aggregation procedure for the risk-averse two-stage stochastic generation and transmission network expansion planning problem, in which the conditional value-at-risk is used. We use a finite set of scenarios to model uncertainty in the peak demand level of loads, along with the capacity and marginal production cost of generating units. Moreover, we use representative days to model the operational variability of the electrical demand and renewable generation. The combination of scenarios and representative days involves many variables and constraints, which may lead to computationally intractable problems. Therefore, we propose a new relaxed version of the constraint generation-based algorithm that reduces the computational time of the problem. We additionally present a two-stage aggregation procedure that combines the modified maximum dissimilarity algorithm and the priority chronological time-period clustering in order to reduce the resolution of the representative days and to pay attention to extreme conditions. The numerical results of modified versions of the IEEE 24-bus Reliability Test System and the IEEE 118-bus Test System show reductions in the computational time of more than 89% for the relaxed constraint generation-based algorithm, and of more than 94% for the two-stage aggregation procedure.
Author Baringo, Luis
Garcia-Cerezo, Alvaro
Garcia-Bertrand, Raquel
Author_xml – sequence: 1
  givenname: Alvaro
  orcidid: 0000-0002-2661-046X
  surname: Garcia-Cerezo
  fullname: Garcia-Cerezo, Alvaro
  email: Alvaro.GarciaCerezo@uclm.es
  organization: Departamento de Ingeniería Eléctrica, Electrónica, Automática y Comunicaciones, E.T.S. Ingeniería Industrial, Universidad de Castilla-La Mancha, Ciudad Real, Spain
– sequence: 2
  givenname: Raquel
  orcidid: 0000-0002-4981-3796
  surname: Garcia-Bertrand
  fullname: Garcia-Bertrand, Raquel
  email: raquel.garcia@uclm.es
  organization: Departamento de Ingeniería Eléctrica, Electrónica, Automática y Comunicaciones, E.T.S. Ingeniería Industrial, Universidad de Castilla-La Mancha, Ciudad Real, Spain
– sequence: 3
  givenname: Luis
  orcidid: 0000-0002-8678-3258
  surname: Baringo
  fullname: Baringo, Luis
  email: luis.baringo@uclm.es
  organization: Departamento de Ingeniería Eléctrica, Electrónica, Automática y Comunicaciones, E.T.S. Ingeniería Industrial, Universidad de Castilla-La Mancha, Ciudad Real, Spain
BookMark eNp9kMtKAzEUhoMoWC8vIC4Crqdmkkkms5RSLyBabMXlkKZnarST1CT18g4-tJm2C3EhWRz4L-eQ7wDtWmcBoZOc9POcVOeT0dPDuE8JZX1GmWBVuYN6OecyI6KsdlGPSMkzWXGyjw5CeCGEiGT00PfAtctVVNE4qxZ4BL5xvlVWAx7a5262YCMeR68izA0EnHz8YMJrdvEOPgCefLhsHNUcUsjpZxWi0fgKLPj1UqzsDE-8sqE1IXTCHcQP51_x8HOZ1E4ZLZS1xs6P0F6jFgGOt_MQPV4OJ4Pr7Pb-6mZwcZtpWomYNQUTtJoyWUrIpWhKTacFEUSCbopkclVozVV6TBdQUk0LmE0Vn6kmnykg7BCdbfYuvXtbQYj1i1v59P9Q04oIXrGEJ6XoJqW9C8FDUy-9aZX_qnNSd9TrNfW6o15vqaeS_FPSZkM3ETSL_6unm6oBgF-3SM5LUbIflgSWjg
CODEN ITPSEG
CitedBy_id crossref_primary_10_1016_j_apenergy_2023_121653
crossref_primary_10_1016_j_ijepes_2024_110444
crossref_primary_10_1109_OAJPE_2025_3548911
crossref_primary_10_1016_j_epsr_2024_111401
Cites_doi 10.1109/TPWRS.2018.2842093
10.1093/oso/9780195100563.001.0001
10.1007/978-1-4614-0237-4
10.1109/TPWRS.2017.2717944
10.1007/BF01386316
10.1007/s12667-018-00321-z
10.1016/j.ejor.2020.05.064
10.1109/TPWRS.2020.3020730
10.21314/JOR.2000.038
10.1109/MPE.2017.2708858
10.1023/A:1021805924152
10.1016/j.ijepes.2015.05.003
10.1109/TPWRS.2020.3007974
10.1016/j.ijepes.2012.08.033
10.3390/en13030641
10.1016/j.eneco.2019.02.013
10.1109/TPWRS.2022.3151062
10.1109/59.780914
10.1109/TPWRS.2021.3067148
10.1016/j.eneco.2019.07.017
10.1109/TPWRS.2017.2695963
10.1016/j.apenergy.2019.113843
10.1016/j.apenergy.2020.115224
10.1080/01621459.1963.10500845
10.1007/978-3-319-29501-5
10.1111/1467-9965.00068
10.1016/S0378-4266(02)00271-6
10.1109/tpwrs.2023.3236397
10.1023/A:1007978820465
10.1007/s11081-012-9201-7
10.1049/iet-gtd.2009.0376
10.1109/PTC.2019.8810864
10.1016/j.epsr.2018.01.024
10.1109/59.918292
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1109/TPWRS.2023.3236397
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0679
EndPage 286
ExternalDocumentID 10_1109_TPWRS_2023_3236397
10015767
Genre orig-research
GrantInformation_xml – fundername: ERDF A way of making Europe
  grantid: SBPLY/21/180501/000154
– fundername: Spanish Ministry of Science and Innovation MCIN/AEI/10.13039/501100011033
  grantid: RTI2018-096108-A-I00; PID2021-126566OB-I00
– fundername: ERDF
– fundername: European Union
– fundername: Junta de Comunidades de Castilla-La Mancha
  funderid: 10.13039/501100011698
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c296t-f43629b3878e186f7c2b40608ecf4f435a4cc5a5a53c4e72c24edba5daf1dae03
IEDL.DBID RIE
ISSN 0885-8950
IngestDate Fri Jul 25 18:54:37 EDT 2025
Wed Oct 01 02:20:58 EDT 2025
Thu Apr 24 23:00:14 EDT 2025
Wed Aug 27 03:05:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-f43629b3878e186f7c2b40608ecf4f435a4cc5a5a53c4e72c24edba5daf1dae03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2661-046X
0000-0002-4981-3796
0000-0002-8678-3258
PQID 2906593006
PQPubID 85441
PageCount 14
ParticipantIDs crossref_primary_10_1109_TPWRS_2023_3236397
proquest_journals_2906593006
ieee_primary_10015767
crossref_citationtrail_10_1109_TPWRS_2023_3236397
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-Jan.
2024-1-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on power systems
PublicationTitleAbbrev TPWRS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref36
ref31
ref11
ref33
ref32
ref1
(ref2) 2023
ref16
ref19
ref18
ref24
ref23
Heitsch (ref17) 2003; 24
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
Pritsker (ref10) 1997; 12
ref7
(ref30) 2023
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref28
  doi: 10.1109/TPWRS.2018.2842093
– ident: ref32
  doi: 10.1093/oso/9780195100563.001.0001
– ident: ref7
  doi: 10.1007/978-1-4614-0237-4
– volume-title: Gestionnaire du eseau de transport dElectricit
  year: 2023
  ident: ref30
  article-title: eCO2mix - all of frances electricity data in real time
– ident: ref25
  doi: 10.1109/TPWRS.2017.2717944
– ident: ref19
  doi: 10.1007/BF01386316
– ident: ref3
  doi: 10.1007/s12667-018-00321-z
– ident: ref21
  doi: 10.1016/j.ejor.2020.05.064
– ident: ref5
  doi: 10.1109/TPWRS.2020.3020730
– year: 2023
  ident: ref2
  article-title: 2050 long-term strategy
– ident: ref12
  doi: 10.21314/JOR.2000.038
– ident: ref4
  doi: 10.1109/MPE.2017.2708858
– volume: 24
  start-page: 187
  issue: 2
  year: 2003
  ident: ref17
  article-title: Scenario reduction algorithms in stochastic programming
  publication-title: Comput. Optim. Appl.
  doi: 10.1023/A:1021805924152
– ident: ref15
  doi: 10.1016/j.ijepes.2015.05.003
– ident: ref16
  doi: 10.1109/TPWRS.2020.3007974
– ident: ref14
  doi: 10.1016/j.ijepes.2012.08.033
– ident: ref24
  doi: 10.3390/en13030641
– ident: ref8
  doi: 10.1016/j.eneco.2019.02.013
– ident: ref29
  doi: 10.1109/TPWRS.2022.3151062
– ident: ref35
  doi: 10.1109/59.780914
– ident: ref27
  doi: 10.1109/TPWRS.2021.3067148
– ident: ref9
  doi: 10.1016/j.eneco.2019.07.017
– ident: ref36
  doi: 10.1109/TPWRS.2017.2695963
– ident: ref6
  doi: 10.1016/j.apenergy.2019.113843
– ident: ref26
  doi: 10.1016/j.apenergy.2020.115224
– ident: ref31
  doi: 10.1080/01621459.1963.10500845
– ident: ref1
  doi: 10.1007/978-3-319-29501-5
– ident: ref11
  doi: 10.1111/1467-9965.00068
– ident: ref13
  doi: 10.1016/S0378-4266(02)00271-6
– ident: ref34
  doi: 10.1109/tpwrs.2023.3236397
– volume: 12
  start-page: 201
  issue: 2
  year: 1997
  ident: ref10
  article-title: Evaluating value at risk methodologies: Accuracy versus computational time
  publication-title: J. Financial Serv. Res.
  doi: 10.1023/A:1007978820465
– ident: ref20
  doi: 10.1007/s11081-012-9201-7
– ident: ref18
  doi: 10.1049/iet-gtd.2009.0376
– ident: ref23
  doi: 10.1109/PTC.2019.8810864
– ident: ref22
  doi: 10.1016/j.epsr.2018.01.024
– ident: ref33
  doi: 10.1109/59.918292
SSID ssj0006679
Score 2.471004
Snippet This paper proposes a new acceleration technique and a representative day aggregation procedure for the risk-averse two-stage stochastic generation and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 273
SubjectTerms Algorithms
Clustering
Computational complexity
Computational efficiency
Computing time
Constraint generation-based algorithm
generation and transmission network expansion planning
Investment
operational variability
Power system planning
Power systems
Production costs
Reactive power
representative days
Risk
risk aversion
Stochastic processes
Test systems
two- stage stochastic programming
Uncertainty
Title Computational Performance Enhancement Strategies for Risk-Averse Two-Stage Stochastic Generation and Transmission Network Expansion Planning
URI https://ieeexplore.ieee.org/document/10015767
https://www.proquest.com/docview/2906593006
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0679
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006679
  issn: 0885-8950
  databaseCode: RIE
  dateStart: 19860101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYKp3Ioj1J1Yal84IYckth5-LhCi1AlVmjZVblFfkwAgbJVd1cgfgM_mrGdAC0qQjkkih-yNOOZ8XjmG0L2Uclpo2LNJEjFhOTANBQoDPE0URvcfYlyCc6no_xkKn5eZBdtsrrPhQEAH3wGkfv0d_l2ZpbOVXbo8ILQPi5WyEpR5iFZ61ns5nkA1ivLjJUyi7sMmVgeTs5-jc8jVyg84il3V1l_aSFfVuWNLPYK5nidjLqlhbiSm2i50JF5-Ae18cNr3yBfWlOTDgJvbJJP0GyRtVcAhF_JYyjq0DoE6dlLFgEdNlfu7WalHYQtzCm20_H1_IYNXDwH0MndjKHBegnYaWaulIN9pgHL2k1KVWOp14fIT84xR0ch7pwO71EO-T9d3aRtMj0eTo5OWFufgZlU5gtWC9R-UvOyKCEp87owqUb7IC7B1AIbMyWMyRQ-3AgoUpMKsFplVtWJVRDzb2S1mTXwnVBuU50Dt7oGJfI61anFo441Ruok0zH0SNLRqzIteLmroXFb-UNMLCtP48rRuGpp3CMHz2N-B-iOd3tvO6K96hno1SP9ji-qdnvPK4eRn0mOTLfzn2G75DPOLoKzpk9WF3-WsIfmy0L_8Gz7BFxz7_Y
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOQAHnkUsFPCBG3KaxHYSHyu01QLtqipb0Vvkx4SioixidwXiN_CjGdtJKSAQyiFR7DiWZjwzHs98A_CclJx1JrdcozZcaoHcYk3CkHYTnaPVV5iQ4Hw4r2Yn8vWpOh2S1WMuDCLG4DPMwmM8y_dLtwmust2AF0T2cX0VrikppUrpWheCt6oStF7TKN5olY85MrneXRy9O36bhVLhmShFOMz6RQ_Fwip_SOOoYvZvw3ycXIosOc82a5u5b7_hNv737O_ArcHYZHuJO-7CFezvwc1LEIT34Xsq6zC4BNnRzzwCNu3Pwj2MykYQW1wxamfHH1bnfC9EdCBbfFlyMlnfI3VaujMTgJ9ZQrMOgzLTexY1InFUcM2xeYo8Z9OvJInim7Fy0jac7E8XL2d8qNDAXamrNe8k6T9tRVM3WDRVV7vSkoWQN-g6SY3KSOeUoUs4iXXpSoneGuVNV3iDuXgAW_2yx4fAhC9thcLbDo2sutKWnjY73jltC2VznEAx0qt1A3x5qKLxsY3bmFy3kcZtoHE70HgCLy6--ZTAO_7ZezsQ7VLPRK8J7Ix80Q4LfNUGlHylBTHdo7989gyuzxaHB-3Bq_mbx3CD_iST62YHttafN_iEjJm1fRpZ-AcMJPND
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+Performance+Enhancement+Strategies+for+Risk-Averse+Two-Stage+Stochastic+Generation+and+Transmission+Network+Expansion+Planning&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Garcia-Cerezo%2C+Alvaro&rft.au=Garcia-Bertrand%2C+Raquel&rft.au=Baringo%2C+Luis&rft.date=2024-01-01&rft.pub=IEEE&rft.issn=0885-8950&rft.volume=39&rft.issue=1&rft.spage=273&rft.epage=286&rft_id=info:doi/10.1109%2FTPWRS.2023.3236397&rft.externalDocID=10015767
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon