ON THE PROBLEM OF INSTABILITY IN THE DIMENSIONS OF SPLINE SPACES OVER T-MESHES WITH T-CYCLES

The T-meshes are local modification of rectangular meshes which allow T-junctions. The splines over T-meshes are involved in many fields, such as finite element methods, CAGD etc. The dimension of a spline space is a basic problem for the theories and applications of splines. However, the problem of...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational mathematics Vol. 33; no. 3; pp. 248 - 262
Main Authors Guo, Qing-Jie, Wang, Ren-Hong, Li, Chong-Jun
Format Journal Article
LanguageEnglish
Published Chinese Academy of Mathematices and System Sciences (AMSS) Chinese Academy of Sciences 01.05.2015
Subjects
Online AccessGet full text
ISSN0254-9409
1991-7139
DOI10.4208/jcm.1411-m4419

Cover

Abstract The T-meshes are local modification of rectangular meshes which allow T-junctions. The splines over T-meshes are involved in many fields, such as finite element methods, CAGD etc. The dimension of a spline space is a basic problem for the theories and applications of splines. However, the problem of determining the dimension of a spline space is difficult since it heavily depends on the geometric properties of the partition. In many cases, the dimension is unstable. In this paper, we study the instability in the dimensions of spline spaces over T-meshes by using the smoothing cofactor-conformality method. The modified dimension formulas of spline spaces over T-meshes with T-cycles are also presented. Moreover, some examples are given to illustrate the instability in the dimensions of the spline spaces over some special meshes.
AbstractList The T-meshes are local modification of rectangular meshes which allow T-junctions. The splines over T-meshes are involved in many fields, such as finite element methods, CAGD etc. The dimension of a spline space is a basic problem for the theories and applications of splines. However, the problem of determining the dimension of a spline space is difficult since it heavily depends on the geometric properties of the partition. In many cases, the dimension is unstable. In this paper, we study the instability in the dimensions of spline spaces over T-meshes by using the smoothing cofactor-conformality method. The modified dimension formulas of spline spaces over T-meshes with T-cycles are also presented. Moreover, some examples are given to illustrate the instability in the dimensions of the spline spaces over some special meshes.
Author Qing-Jie Guo Ren-Hong Wang Chong-Jun Li
AuthorAffiliation School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China
Author_xml – sequence: 1
  givenname: Qing-Jie
  surname: Guo
  fullname: Guo, Qing-Jie
– sequence: 2
  givenname: Ren-Hong
  surname: Wang
  fullname: Wang, Ren-Hong
– sequence: 3
  givenname: Chong-Jun
  surname: Li
  fullname: Li, Chong-Jun
BookMark eNp1UEtLw0AYXKSCbfXqOQgeU_eV3e6xjVuzkCaliUpBCEmarSltokku_nu3D0QETzPzfTNzmAHoVXVVAHCL4IhiOH7Y5vsRogjZe0qRuAB9JASyOSKiB_oQO9QWFIorMGjbLYSQYMr74C0MrNiT1mIZTn05t8KZpYIonkyVr-KV4cfvo5rLIFJhEB0M0cJXgTQwcaU5vMilFdtzGXlGvarYM8pdub6MrsGlTndtcXPGIXieydj1bD98Uu7Et3MsWGdrWDDuaJ47mgmkoUZFmq3XDs8gz8cCa2oYwRBlRYrHjGdY5A50REaLlJGCkCGgp968qdu2KXSSl13alXXVNWm5SxBMDgslZqHksFByXMjERn9iH025T5uv_wP3p8C27ermtxsTyBNKmCBjhxvf3bn4va42n2W1-fEy5kAqMBTkG_t6egU
CitedBy_id crossref_primary_10_1016_j_cagd_2015_12_002
ContentType Journal Article
Copyright Copyright 2015 AMSS, Chinese Academy of Sciences
Copyright_xml – notice: Copyright 2015 AMSS, Chinese Academy of Sciences
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
DOI 10.4208/jcm.1411-m4419
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
DocumentTitleAlternate ON THE PROBLEM OF INSTABILITY IN THE DIMENSIONS OF SPLINE SPACES OVER T-MESHES WITH T-CYCLES
EISSN 1991-7139
EndPage 262
ExternalDocumentID 10_4208_jcm_1411_m4419
43693857
665049209
GroupedDBID -01
-0A
-SA
-S~
-~X
.4S
.DC
2RA
5GY
5VR
92L
92M
9D9
9DA
AAHSX
ABBHK
ABDBF
ABJPR
ABXSQ
ACHDO
ACMTB
ACTMH
ADULT
AEHFS
AELPN
AENEX
AEUPB
AFFNX
AFUIB
AFVYC
ALMA_UNASSIGNED_HOLDINGS
ARCSS
B0M
CAJEA
CAJUS
CAQNE
CCEZO
CCVFK
CHBEP
CQIGP
CRVLH
CW9
DQDLB
EAP
EAS
EBS
ECEWR
EDO
EJD
EMI
EMK
EOJEC
EPL
EST
ESX
F5P
FA0
I-F
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
JUIAU
MK~
OBODZ
P09
Q--
Q-0
R-A
REI
RT1
S..
SA0
SJN
T8Q
TUS
U1F
U1G
U5A
U5K
~8M
~L9
~WA
ACUHS
AELHJ
AFOWJ
AGLNM
AIHAF
ALRMG
IPSME
AAYXX
CITATION
ID FETCH-LOGICAL-c296t-f0e675f7c5f691f0f1eabdd57b07c892f47b03201bea2867b29c5059b4ea63e33
ISSN 0254-9409
IngestDate Thu Apr 24 23:04:37 EDT 2025
Sat Oct 25 05:10:44 EDT 2025
Mon May 19 02:50:08 EDT 2025
Wed Feb 14 10:30:14 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c296t-f0e675f7c5f691f0f1eabdd57b07c892f47b03201bea2867b29c5059b4ea63e33
Notes The T-meshes are local modification of rectangular meshes which allow T-junctions. The splines over T-meshes are involved in many fields, such as finite element methods, CAGD etc. The dimension of a spline space is a basic problem for the theories and applications of splines. However, the problem of determining the dimension of a spline space is difficult since it heavily depends on the geometric properties of the partition. In many cases, the dimension is unstable. In this paper, we study the instability in the dimensions of spline spaces over T-meshes by using the smoothing cofactor-conformality method. The modified dimension formulas of spline spaces over T-meshes with T-cycles are also presented. Moreover, some examples are given to illustrate the instability in the dimensions of the spline spaces over some special meshes.
11-2126/O1
Spline space, Smoothing cofactor-conformality method, Instability in the dimension, T-meshes.
PageCount 15
ParticipantIDs crossref_citationtrail_10_4208_jcm_1411_m4419
crossref_primary_10_4208_jcm_1411_m4419
jstor_primary_10_2307_43693857
chongqing_primary_665049209
PublicationCentury 2000
PublicationDate 2015-05-01
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of computational mathematics
PublicationTitleAlternate Journal of Computational Mathematics
PublicationYear 2015
Publisher Chinese Academy of Mathematices and System Sciences (AMSS) Chinese Academy of Sciences
Publisher_xml – name: Chinese Academy of Mathematices and System Sciences (AMSS) Chinese Academy of Sciences
SSID ssj0003247
Score 2.0400186
Snippet The T-meshes are local modification of rectangular meshes which allow T-junctions. The splines over T-meshes are involved in many fields, such as finite...
SourceID crossref
jstor
chongqing
SourceType Enrichment Source
Index Database
Publisher
StartPage 248
SubjectTerms 不稳定性
单车
啮合
尺寸稳定性
局部修改
样条函数空间
矩形网格
计算机辅助几何设计
Title ON THE PROBLEM OF INSTABILITY IN THE DIMENSIONS OF SPLINE SPACES OVER T-MESHES WITH T-CYCLES
URI http://lib.cqvip.com/qk/85761X/201503/665049209.html
https://www.jstor.org/stable/43693857
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate | Ebsco
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1991-7139
  dateEnd: 20230930
  omitProxy: true
  ssIdentifier: ssj0003247
  issn: 0254-9409
  databaseCode: ABDBF
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKd4EDbAO0Mjb5gMQBGZzYcerjPhjTpDJgnbQDUhQ7ttaJpoW2EuOv5zl2PjZt0uASpa5jpX6_vg_7954ResMiLazkEKlKJggHk0IkLyzRQyN0knJaUJc7PPosjs_5yUVy0ev97rCWVkv1Xv-5M6_kf6QKbSBXlyX7D5JtBoUGuAf5whUkDNcHyfjUcxS_-ENhfFYIeHsV3_W6ZjAeuvr9i5rvdjav_MqzeUXFcvzNd2MyMotLE_LcxuTg2jHl7vFadXUKRL2COG2Kvjau-adVtfj6FUzi1aTd-AnL0t9MeTkLxtLRgCZ-yx-arlZldwUiSlq-X1BUEGSChKlXfcYrUseoggBYdjWtL3kREMW6atNX2wwWOPb6-bZyd0QAp9z1FNR7FJEpeHKyNWP11v0t69ZwDiHacSNk8Hzmns-q5x-htRjsAe2jtb39w_2jxoqDo1ml2te_zRf8dCN8uPkGriiHm6afMK83nJsuv7XyVsbr6GkQGN7zmNlAPVNuomch5MBBoS820ZNRK8Hn6PtpieEjDoDCM4s7gMIT_20LKNfBAwp7QGEHKFwDCjtA4RpQL9D50cfxwTEJx28QHUuxJJYaiCZtqhMrZGSpjUyuiiJJFU31UMaWwx0DQCiTx0ORqlhq8Kel4iYXzDD2EvXLWWm2EI4Sw7TIITSm4DWlKhemiAqlcplbxW06QNvNHGZzX2YlExA8cBlTOUCkntVMh8r17gCVH9ndMh2gt03_erD7eu5WQup2c5kRGWdCsmGSvnrwUNvocfvfeI36y18rswP-6lLtBmj9BbtjlCM
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Problem+of+Instability+in+the+Dimensions+of+Spline+Spaces+over+T-Meshes+with+T-Cycles&rft.jtitle=Journal+of+computational+mathematics&rft.au=Guo%2C+Qingjie&rft.au=Wang%2C+Renhong&rft.au=Li%2C+Chongjun&rft.date=2015-05-01&rft.issn=0254-9409&rft.eissn=1991-7139&rft.volume=33&rft.issue=3&rft.spage=248&rft.epage=262&rft_id=info:doi/10.4208%2Fjcm.1411-m4419&rft.externalDBID=n%2Fa&rft.externalDocID=10_4208_jcm_1411_m4419
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85761X%2F85761X.jpg