An Oscillator-Synchronization-Based Off-Line Learning Algorithm, With On-Chip Inference on an Array of Spin Hall Nano-Oscillators
Learning algorithms based on synchronization of oscillators are currently being pursued as an alternative to standard neural-network algorithms for data classification. For such oscillator-based algorithms, while learning can be implemented off-line on a computer, on-chip inference/ testing can be i...
Saved in:
| Published in | IEEE transactions on nanotechnology Vol. 22; pp. 136 - 148 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1536-125X 1941-0085 |
| DOI | 10.1109/TNANO.2023.3250261 |
Cover
| Abstract | Learning algorithms based on synchronization of oscillators are currently being pursued as an alternative to standard neural-network algorithms for data classification. For such oscillator-based algorithms, while learning can be implemented off-line on a computer, on-chip inference/ testing can be implemented on an array of uniform-mode spin Hall nano-oscillators (SHNOs), leading to a scalable and energy-efficient technology. Here, we propose a modification to an existing oscillator-based off-line learning algorithm for binary classification: unlike in the previous version of the algorithm, here the difference between natural frequencies of the output oscillators is kept constant throughout the learning process. This helps in preservation of the shape of the synchronization region and leads to higher classification accuracy, as we show for binary-classification tasks using two popular data sets: Fisher's Iris and MNIST. Next, in this paper, we show how a synchronization pattern obtained after such training, using our proposed algorithm, can be implemented on an array of dipole-coupled uniform-mode SHNOs for on-chip inference. We model the SHNO system through the macro-spin model, which is computationally much less resource-intensive to simulate compared to the micromagnetic model used previously for this kind of study. We also extend our algorithm to multi-class classification and thereby discuss scaling of our system. |
|---|---|
| AbstractList | Learning algorithms based on synchronization of oscillators are currently being pursued as an alternative to standard neural-network algorithms for data classification. For such oscillator-based algorithms, while learning can be implemented off-line on a computer, on-chip inference/ testing can be implemented on an array of uniform-mode spin Hall nano-oscillators (SHNOs), leading to a scalable and energy-efficient technology. Here, we propose a modification to an existing oscillator-based off-line learning algorithm for binary classification: unlike in the previous version of the algorithm, here the difference between natural frequencies of the output oscillators is kept constant throughout the learning process. This helps in preservation of the shape of the synchronization region and leads to higher classification accuracy, as we show for binary-classification tasks using two popular data sets: Fisher's Iris and MNIST. Next, in this paper, we show how a synchronization pattern obtained after such training, using our proposed algorithm, can be implemented on an array of dipole-coupled uniform-mode SHNOs for on-chip inference. We model the SHNO system through the macro-spin model, which is computationally much less resource-intensive to simulate compared to the micromagnetic model used previously for this kind of study. We also extend our algorithm to multi-class classification and thereby discuss scaling of our system. |
| Author | Bhowmik, Debanjan Bhotla, Sri Vasudha Hemadri Garg, Neha Aggarwal, Tanmay Muduli, Pranaba Kishor |
| Author_xml | – sequence: 1 givenname: Sri Vasudha Hemadri surname: Bhotla fullname: Bhotla, Sri Vasudha Hemadri email: srivasuhemadri@gmail.com organization: Department of Physics, Indian Institute of Technology Delhi, New Delhi, India – sequence: 2 givenname: Neha surname: Garg fullname: Garg, Neha email: phz198026@iitd.ac.in organization: Department of Physics, Indian Institute of Technology Delhi, New Delhi, India – sequence: 3 givenname: Tanmay surname: Aggarwal fullname: Aggarwal, Tanmay email: ee1190537@iitd.ac.in organization: Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi, India – sequence: 4 givenname: Pranaba Kishor orcidid: 0000-0002-0061-8455 surname: Muduli fullname: Muduli, Pranaba Kishor email: muduli@physics.iitd.ac.in organization: Department of Physics, Indian Institute of Technology Delhi, New Delhi, India – sequence: 5 givenname: Debanjan orcidid: 0000-0003-1136-8778 surname: Bhowmik fullname: Bhowmik, Debanjan email: debanjan@ee.iitd.ac.in organization: Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, India |
| BookMark | eNp9kD1v2zAQhokiBWon-QNFBwJdS5ekRFoaVSNNAhjWkBTpJlDUMWYgH11SGdwt_zzyB5CiQ6b3gLvnXuCZkjMMCIR8FnwmBC-_36-qVT2TXGazTCoutfhAJqLMBeO8UGfjrDLNhFS_P5FpSk-ci7lWxYS8VEjrZH3fmyFEdrdDu44B_V8z-IDsh0nQ0do5tvQIdAkmosdHWvWPIfphvflGH8agNbLF2m_pLTqIgBZoQGqQVjGaHQ2O3m090hvT93RlMLC3ynRBPjrTJ7g85Tn59fPqfnHDlvX17aJaMitLPTAopeu0tsBbUWRqPpetEZ3pWget65QynWvHvTZFaUvOx4BM59zYXMs2dyI7J1-Pf7cx_HmGNDRP4TniWNnIeaHLQo2mxit5vLIxpBTBNdvoNybuGsGbvermoLrZq25Oqkeo-A-yfjgIHKLx_fvolyPqAeCfLq60LPLsFQF2j-c |
| CODEN | ITNECU |
| CitedBy_id | crossref_primary_10_1088_1361_6528_ad6f18 |
| Cites_doi | 10.1038/s41928-019-0360-9 10.1038/s41586-018-0632-y 10.1109/TMAG.2013.2277582 10.1063/1.3679393 10.1109/jproc.2021.3067593 10.1109/TMAG.2009.2022489 10.1007/978-3-030-45385-5_34 10.1063/1.4899186 10.1103/physreve.90.023203 10.1063/1.5042359 10.1063/9.0000192 10.1038/nature04207 10.1038/srep44772 10.1038/s41598-020-76138-7 10.1038/s42256-019-0097-1 10.1038/s41565-019-0593-9 10.1007/s12043-014-0922-3 10.1109/ISCAS51556.2021.9401560 10.1103/physrevlett.106.036601 10.1103/physrevlett.109.096602 10.1088/2634-4386/ac4a83 10.1088/2634-4386/acbab8 10.3389/fnins.2020.00637 10.1088/2634-4386/ac3258 10.1111/j.1469-1809.1936.tb02137.x 10.1038/s41598-022-15483-1 10.7567/apex.6.103003 10.1063/1.3694270 10.1038/s43588-021-00184-y 10.1109/TNN.2010.2086476 10.1063/1.3057974 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1109/TNANO.2023.3250261 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0085 |
| EndPage | 148 |
| ExternalDocumentID | 10_1109_TNANO_2023_3250261 10056284 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: STARS Program grantid: MoE-STARS/STARS-1/304 – fundername: Ministry of Human Resource Development, India – fundername: Industrial Research and Consultancy Centre funderid: 10.13039/501100011627 – fundername: IMPRINT Program grantid: 7519; 7058 – fundername: Indian Institute of Technology Bombay funderid: 10.13039/501100005808 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| ID | FETCH-LOGICAL-c296t-e92fd66ce0b1835772ba1dadbfebfd55adfbd666a89c900a89e3640ac462b4f13 |
| IEDL.DBID | RIE |
| ISSN | 1536-125X |
| IngestDate | Mon Jun 30 10:12:16 EDT 2025 Wed Oct 01 01:31:36 EDT 2025 Thu Apr 24 23:05:31 EDT 2025 Wed Aug 27 02:49:15 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c296t-e92fd66ce0b1835772ba1dadbfebfd55adfbd666a89c900a89e3640ac462b4f13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0061-8455 0000-0003-1136-8778 |
| PQID | 2786985085 |
| PQPubID | 75729 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1109_TNANO_2023_3250261 proquest_journals_2786985085 crossref_citationtrail_10_1109_TNANO_2023_3250261 ieee_primary_10056284 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20230000 2023-00-00 20230101 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 20230000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on nanotechnology |
| PublicationTitleAbbrev | TNANO |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref31 Vassilieva (ref5) 2011; 22 ref30 ref11 ref33 ref10 Zeng (ref16) 2021; 118 ref1 Tulapurkar (ref29) 2005; 438 ref17 ref18 Lecun (ref14) 1998; 86 Vodenicarevic (ref7) Zahedinejad (ref4) 2020; 15 ref24 Vodenicarevic (ref32) 2017; 7 ref26 ref25 ref22 ref21 ref28 ref27 Grollier (ref3) 2020; 3 ref8 Goldberger (ref20) 2004; 17 ref9 ref6 Romera (ref2) 2018; 469 Taniguchi (ref19) 2014; 50 Amin (ref23) 2009; 45 |
| References_xml | – volume: 3 start-page: 360 year: 2020 ident: ref3 article-title: Neuromorphic spintronics publication-title: Nature Electron. doi: 10.1038/s41928-019-0360-9 – volume: 469 start-page: 230 year: 2018 ident: ref2 article-title: Vowel recognition with four coupled spin-torque nano-oscillators publication-title: Nature doi: 10.1038/s41586-018-0632-y – volume: 50 start-page: 1 issue: 1 year: 2014 ident: ref19 article-title: Theoretical study of spin-torque oscillator with perpendicularly magnetized free layer publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2013.2277582 – ident: ref27 doi: 10.1063/1.3679393 – ident: ref33 doi: 10.1109/jproc.2021.3067593 – volume: 17 start-page: 513 volume-title: Proc. Adv. Neural Info. Process. Syst. year: 2004 ident: ref20 article-title: Neighbourhood components analysis – volume: 45 start-page: 4183 issue: 10 year: 2009 ident: ref23 article-title: Analysis of electromagnetic fields generated by a spin-torque oscillator publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2009.2022489 – ident: ref8 doi: 10.1007/978-3-030-45385-5_34 – volume: 86 start-page: 2278 issue: 11 volume-title: Proc. IEEE year: 1998 ident: ref14 article-title: Gradient-based learning applied to document recognition – ident: ref21 doi: 10.1063/1.4899186 – ident: ref22 doi: 10.1103/physreve.90.023203 – ident: ref6 doi: 10.1063/1.5042359 – ident: ref17 doi: 10.1063/9.0000192 – volume: 438 start-page: 339 year: 2005 ident: ref29 article-title: Spin-torque diode effect in magnetic tunnel junctions publication-title: Nature doi: 10.1038/nature04207 – volume: 7 start-page: 1 year: 2017 ident: ref32 article-title: A nanotechnology-ready computing scheme based on a weakly coupled oscillator network publication-title: Sci. Rep doi: 10.1038/srep44772 – ident: ref11 doi: 10.1038/s41598-020-76138-7 – ident: ref34 doi: 10.1038/s42256-019-0097-1 – volume: 15 start-page: 47 year: 2020 ident: ref4 article-title: Two-dimensional mutually synchronized spin hall nano-oscillator arrays for neuromorphic computing publication-title: Nature Nanotechnol. doi: 10.1038/s41565-019-0593-9 – ident: ref24 doi: 10.1007/s12043-014-0922-3 – ident: ref9 doi: 10.1109/ISCAS51556.2021.9401560 – ident: ref30 doi: 10.1103/physrevlett.106.036601 – ident: ref31 doi: 10.1103/physrevlett.109.096602 – ident: ref1 doi: 10.1088/2634-4386/ac4a83 – ident: ref10 doi: 10.1088/2634-4386/acbab8 – ident: ref12 doi: 10.3389/fnins.2020.00637 – ident: ref15 doi: 10.1088/2634-4386/ac3258 – ident: ref13 doi: 10.1111/j.1469-1809.1936.tb02137.x – ident: ref25 doi: 10.1038/s41598-022-15483-1 – ident: ref28 doi: 10.7567/apex.6.103003 – ident: ref18 doi: 10.1063/1.3694270 – ident: ref35 doi: 10.1038/s43588-021-00184-y – volume: 22 start-page: 84 issue: 1 year: 2011 ident: ref5 article-title: Learning pattern recognition through quasi-synchronization of phase oscillators publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2010.2086476 – ident: ref26 doi: 10.1063/1.3057974 – volume: 118 issue: 222405 year: 2021 ident: ref16 article-title: Synchronization of chiral vortex nano-oscillators publication-title: Appl. Phys. Lett – start-page: 2017 ident: ref7 article-title: Rhythms and oscillations: A vision for nanoelectronics |
| SSID | ssj0017658 |
| Score | 2.3585134 |
| Snippet | Learning algorithms based on synchronization of oscillators are currently being pursued as an alternative to standard neural-network algorithms for data... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 136 |
| SubjectTerms | Algorithms Arrays Classification Classification algorithms Computational modeling Coupled modes Dipoles Inference Inference algorithms Machine learning Mathematical models Neural networks Neuromorphic computing Oscillator-based computing Oscillators Resonant frequencies Spin Hall Nano-Oscillator Synchronism Synchronization Training |
| Title | An Oscillator-Synchronization-Based Off-Line Learning Algorithm, With On-Chip Inference on an Array of Spin Hall Nano-Oscillators |
| URI | https://ieeexplore.ieee.org/document/10056284 https://www.proquest.com/docview/2786985085 |
| Volume | 22 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0085 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017658 issn: 1536-125X databaseCode: RIE dateStart: 20020101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoT3AACkUstJUP3MAhcWw3Pm4rqgWJ3UNbsbfIz3bVxVlts4f21n_O2ElKAYE4OZLt2NLM-Bs_5huE3mktmQakJiJXgjCac6KM8oQqW4A5sbL08Rzy61RMztmXOZ_3weopFsY5lx6fuSx-prt825hNPCoDC49wXbEttHVYiS5Y6_7K4FCkZJxgwTGxDJ8PETK5_Hg2HU9nWUwUnpUA-VQUv6BQSqvyx1qcAObkGZoOU-velVxlm1Zn5vY31sb_nvtz9LR3NfG4040d9MiFF-jJAwLCl-huHPAMQBB0Afbe5PQmmESW28VmkiOAOItn3hPYsjrcc7Fe4PHyolkv2svvH_A3KPAskOPLxQp_HqIHcROwCjD0Wt3gxuPT1SLgiVouMazmDfk55PUuOj_5dHY8IX1SBmKoFC1xknorhHG5htWAg3OuVWGV1d5pbzlX1muoF6qSRuY5FK4ULFeGCaqZL8pXaDs0wb1GWFrwHplSFY21gmtNK-VtHvlnGC_ZCBWDkGrTM5bHxBnLOu1cclknwdZRsHUv2BF6f99n1fF1_LP1bpTUg5adkEZob1CGurfp65qCzskKHFr-5i_d3qLH8e_dCc0e2m7XG7cPPkurD5Ku_gAPHegS |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHIADzyK2FPCBGzg4ie0mx6Wi2kKbPXQr9hb52a7YOqtt9lBu_HPGTlIKCMTJlmzLlmbG3_gx3yD0RqmSKUBqIqgUhGWUE6mlI5k0KZgTy3MX7iGPKzE5ZZ_mfN4Hq8dYGGtt_Hxmk1CNb_mm0ZtwVQYWHuC6YLfRHc4Y41241vWjwZ6I6TjBhkNqGT4fYmRo-X5WjatpElKFJzmAfibSX3AoJlb5YzeOEHPwEFXD4rqfJV-TTasS_e033sb_Xv0j9KB3NvG4047H6Jb1T9D9GxSET9H3scdTgEHQBjh9k5MrryNdbhedST4AyBk8dY7AodXino31DI-XZ8160Z5fvMNfoMBTT_bPFyt8OMQP4sZj6WHqtbzCjcMnq4XHE7lcYtjPG_JzysttdHrwcbY_IX1aBqKzUrTElpkzQmhLFewHHNxzJVMjjXJWOcO5NE5Bu5BFqUtKobC5YFRqJjLFXJo_Q1u-8fY5wqUB_5FJWWShVXClskI6QwMDDeM5G6F0EFKte87ykDpjWcezCy3rKNg6CLbuBTtCb6_HrDrGjn_23g6SutGzE9II7Q7KUPdWfVlne4UoC3Bp-c5fhr1Gdyez46P66LD6_ALdCzN19zW7aKtdb-xL8GBa9Srq7Q9b5Otf |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Oscillator-Synchronization-Based+Off-Line+Learning+Algorithm%2C+With+On-Chip+Inference+on+an+Array+of+Spin+Hall+Nano-Oscillators&rft.jtitle=IEEE+transactions+on+nanotechnology&rft.au=Bhotla%2C+Sri+Vasudha+Hemadri&rft.au=Garg%2C+Neha&rft.au=Aggarwal%2C+Tanmay&rft.au=Muduli%2C+Pranaba+Kishor&rft.date=2023&rft.issn=1536-125X&rft.eissn=1941-0085&rft.volume=22&rft.spage=136&rft.epage=148&rft_id=info:doi/10.1109%2FTNANO.2023.3250261&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNANO_2023_3250261 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-125X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-125X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-125X&client=summon |