An Oscillator-Synchronization-Based Off-Line Learning Algorithm, With On-Chip Inference on an Array of Spin Hall Nano-Oscillators

Learning algorithms based on synchronization of oscillators are currently being pursued as an alternative to standard neural-network algorithms for data classification. For such oscillator-based algorithms, while learning can be implemented off-line on a computer, on-chip inference/ testing can be i...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on nanotechnology Vol. 22; pp. 136 - 148
Main Authors Bhotla, Sri Vasudha Hemadri, Garg, Neha, Aggarwal, Tanmay, Muduli, Pranaba Kishor, Bhowmik, Debanjan
Format Journal Article
LanguageEnglish
Published New York IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1536-125X
1941-0085
DOI10.1109/TNANO.2023.3250261

Cover

Abstract Learning algorithms based on synchronization of oscillators are currently being pursued as an alternative to standard neural-network algorithms for data classification. For such oscillator-based algorithms, while learning can be implemented off-line on a computer, on-chip inference/ testing can be implemented on an array of uniform-mode spin Hall nano-oscillators (SHNOs), leading to a scalable and energy-efficient technology. Here, we propose a modification to an existing oscillator-based off-line learning algorithm for binary classification: unlike in the previous version of the algorithm, here the difference between natural frequencies of the output oscillators is kept constant throughout the learning process. This helps in preservation of the shape of the synchronization region and leads to higher classification accuracy, as we show for binary-classification tasks using two popular data sets: Fisher's Iris and MNIST. Next, in this paper, we show how a synchronization pattern obtained after such training, using our proposed algorithm, can be implemented on an array of dipole-coupled uniform-mode SHNOs for on-chip inference. We model the SHNO system through the macro-spin model, which is computationally much less resource-intensive to simulate compared to the micromagnetic model used previously for this kind of study. We also extend our algorithm to multi-class classification and thereby discuss scaling of our system.
AbstractList Learning algorithms based on synchronization of oscillators are currently being pursued as an alternative to standard neural-network algorithms for data classification. For such oscillator-based algorithms, while learning can be implemented off-line on a computer, on-chip inference/ testing can be implemented on an array of uniform-mode spin Hall nano-oscillators (SHNOs), leading to a scalable and energy-efficient technology. Here, we propose a modification to an existing oscillator-based off-line learning algorithm for binary classification: unlike in the previous version of the algorithm, here the difference between natural frequencies of the output oscillators is kept constant throughout the learning process. This helps in preservation of the shape of the synchronization region and leads to higher classification accuracy, as we show for binary-classification tasks using two popular data sets: Fisher's Iris and MNIST. Next, in this paper, we show how a synchronization pattern obtained after such training, using our proposed algorithm, can be implemented on an array of dipole-coupled uniform-mode SHNOs for on-chip inference. We model the SHNO system through the macro-spin model, which is computationally much less resource-intensive to simulate compared to the micromagnetic model used previously for this kind of study. We also extend our algorithm to multi-class classification and thereby discuss scaling of our system.
Author Bhowmik, Debanjan
Bhotla, Sri Vasudha Hemadri
Garg, Neha
Aggarwal, Tanmay
Muduli, Pranaba Kishor
Author_xml – sequence: 1
  givenname: Sri Vasudha Hemadri
  surname: Bhotla
  fullname: Bhotla, Sri Vasudha Hemadri
  email: srivasuhemadri@gmail.com
  organization: Department of Physics, Indian Institute of Technology Delhi, New Delhi, India
– sequence: 2
  givenname: Neha
  surname: Garg
  fullname: Garg, Neha
  email: phz198026@iitd.ac.in
  organization: Department of Physics, Indian Institute of Technology Delhi, New Delhi, India
– sequence: 3
  givenname: Tanmay
  surname: Aggarwal
  fullname: Aggarwal, Tanmay
  email: ee1190537@iitd.ac.in
  organization: Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi, India
– sequence: 4
  givenname: Pranaba Kishor
  orcidid: 0000-0002-0061-8455
  surname: Muduli
  fullname: Muduli, Pranaba Kishor
  email: muduli@physics.iitd.ac.in
  organization: Department of Physics, Indian Institute of Technology Delhi, New Delhi, India
– sequence: 5
  givenname: Debanjan
  orcidid: 0000-0003-1136-8778
  surname: Bhowmik
  fullname: Bhowmik, Debanjan
  email: debanjan@ee.iitd.ac.in
  organization: Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, India
BookMark eNp9kD1v2zAQhokiBWon-QNFBwJdS5ekRFoaVSNNAhjWkBTpJlDUMWYgH11SGdwt_zzyB5CiQ6b3gLvnXuCZkjMMCIR8FnwmBC-_36-qVT2TXGazTCoutfhAJqLMBeO8UGfjrDLNhFS_P5FpSk-ci7lWxYS8VEjrZH3fmyFEdrdDu44B_V8z-IDsh0nQ0do5tvQIdAkmosdHWvWPIfphvflGH8agNbLF2m_pLTqIgBZoQGqQVjGaHQ2O3m090hvT93RlMLC3ynRBPjrTJ7g85Tn59fPqfnHDlvX17aJaMitLPTAopeu0tsBbUWRqPpetEZ3pWget65QynWvHvTZFaUvOx4BM59zYXMs2dyI7J1-Pf7cx_HmGNDRP4TniWNnIeaHLQo2mxit5vLIxpBTBNdvoNybuGsGbvermoLrZq25Oqkeo-A-yfjgIHKLx_fvolyPqAeCfLq60LPLsFQF2j-c
CODEN ITNECU
CitedBy_id crossref_primary_10_1088_1361_6528_ad6f18
Cites_doi 10.1038/s41928-019-0360-9
10.1038/s41586-018-0632-y
10.1109/TMAG.2013.2277582
10.1063/1.3679393
10.1109/jproc.2021.3067593
10.1109/TMAG.2009.2022489
10.1007/978-3-030-45385-5_34
10.1063/1.4899186
10.1103/physreve.90.023203
10.1063/1.5042359
10.1063/9.0000192
10.1038/nature04207
10.1038/srep44772
10.1038/s41598-020-76138-7
10.1038/s42256-019-0097-1
10.1038/s41565-019-0593-9
10.1007/s12043-014-0922-3
10.1109/ISCAS51556.2021.9401560
10.1103/physrevlett.106.036601
10.1103/physrevlett.109.096602
10.1088/2634-4386/ac4a83
10.1088/2634-4386/acbab8
10.3389/fnins.2020.00637
10.1088/2634-4386/ac3258
10.1111/j.1469-1809.1936.tb02137.x
10.1038/s41598-022-15483-1
10.7567/apex.6.103003
10.1063/1.3694270
10.1038/s43588-021-00184-y
10.1109/TNN.2010.2086476
10.1063/1.3057974
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1109/TNANO.2023.3250261
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0085
EndPage 148
ExternalDocumentID 10_1109_TNANO_2023_3250261
10056284
Genre orig-research
GrantInformation_xml – fundername: STARS Program
  grantid: MoE-STARS/STARS-1/304
– fundername: Ministry of Human Resource Development, India
– fundername: Industrial Research and Consultancy Centre
  funderid: 10.13039/501100011627
– fundername: IMPRINT Program
  grantid: 7519; 7058
– fundername: Indian Institute of Technology Bombay
  funderid: 10.13039/501100005808
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c296t-e92fd66ce0b1835772ba1dadbfebfd55adfbd666a89c900a89e3640ac462b4f13
IEDL.DBID RIE
ISSN 1536-125X
IngestDate Mon Jun 30 10:12:16 EDT 2025
Wed Oct 01 01:31:36 EDT 2025
Thu Apr 24 23:05:31 EDT 2025
Wed Aug 27 02:49:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-e92fd66ce0b1835772ba1dadbfebfd55adfbd666a89c900a89e3640ac462b4f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0061-8455
0000-0003-1136-8778
PQID 2786985085
PQPubID 75729
PageCount 13
ParticipantIDs crossref_primary_10_1109_TNANO_2023_3250261
proquest_journals_2786985085
crossref_citationtrail_10_1109_TNANO_2023_3250261
ieee_primary_10056284
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on nanotechnology
PublicationTitleAbbrev TNANO
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref31
Vassilieva (ref5) 2011; 22
ref30
ref11
ref33
ref10
Zeng (ref16) 2021; 118
ref1
Tulapurkar (ref29) 2005; 438
ref17
ref18
Lecun (ref14) 1998; 86
Vodenicarevic (ref7)
Zahedinejad (ref4) 2020; 15
ref24
Vodenicarevic (ref32) 2017; 7
ref26
ref25
ref22
ref21
ref28
ref27
Grollier (ref3) 2020; 3
ref8
Goldberger (ref20) 2004; 17
ref9
ref6
Romera (ref2) 2018; 469
Taniguchi (ref19) 2014; 50
Amin (ref23) 2009; 45
References_xml – volume: 3
  start-page: 360
  year: 2020
  ident: ref3
  article-title: Neuromorphic spintronics
  publication-title: Nature Electron.
  doi: 10.1038/s41928-019-0360-9
– volume: 469
  start-page: 230
  year: 2018
  ident: ref2
  article-title: Vowel recognition with four coupled spin-torque nano-oscillators
  publication-title: Nature
  doi: 10.1038/s41586-018-0632-y
– volume: 50
  start-page: 1
  issue: 1
  year: 2014
  ident: ref19
  article-title: Theoretical study of spin-torque oscillator with perpendicularly magnetized free layer
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2013.2277582
– ident: ref27
  doi: 10.1063/1.3679393
– ident: ref33
  doi: 10.1109/jproc.2021.3067593
– volume: 17
  start-page: 513
  volume-title: Proc. Adv. Neural Info. Process. Syst.
  year: 2004
  ident: ref20
  article-title: Neighbourhood components analysis
– volume: 45
  start-page: 4183
  issue: 10
  year: 2009
  ident: ref23
  article-title: Analysis of electromagnetic fields generated by a spin-torque oscillator
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2009.2022489
– ident: ref8
  doi: 10.1007/978-3-030-45385-5_34
– volume: 86
  start-page: 2278
  issue: 11
  volume-title: Proc. IEEE
  year: 1998
  ident: ref14
  article-title: Gradient-based learning applied to document recognition
– ident: ref21
  doi: 10.1063/1.4899186
– ident: ref22
  doi: 10.1103/physreve.90.023203
– ident: ref6
  doi: 10.1063/1.5042359
– ident: ref17
  doi: 10.1063/9.0000192
– volume: 438
  start-page: 339
  year: 2005
  ident: ref29
  article-title: Spin-torque diode effect in magnetic tunnel junctions
  publication-title: Nature
  doi: 10.1038/nature04207
– volume: 7
  start-page: 1
  year: 2017
  ident: ref32
  article-title: A nanotechnology-ready computing scheme based on a weakly coupled oscillator network
  publication-title: Sci. Rep
  doi: 10.1038/srep44772
– ident: ref11
  doi: 10.1038/s41598-020-76138-7
– ident: ref34
  doi: 10.1038/s42256-019-0097-1
– volume: 15
  start-page: 47
  year: 2020
  ident: ref4
  article-title: Two-dimensional mutually synchronized spin hall nano-oscillator arrays for neuromorphic computing
  publication-title: Nature Nanotechnol.
  doi: 10.1038/s41565-019-0593-9
– ident: ref24
  doi: 10.1007/s12043-014-0922-3
– ident: ref9
  doi: 10.1109/ISCAS51556.2021.9401560
– ident: ref30
  doi: 10.1103/physrevlett.106.036601
– ident: ref31
  doi: 10.1103/physrevlett.109.096602
– ident: ref1
  doi: 10.1088/2634-4386/ac4a83
– ident: ref10
  doi: 10.1088/2634-4386/acbab8
– ident: ref12
  doi: 10.3389/fnins.2020.00637
– ident: ref15
  doi: 10.1088/2634-4386/ac3258
– ident: ref13
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– ident: ref25
  doi: 10.1038/s41598-022-15483-1
– ident: ref28
  doi: 10.7567/apex.6.103003
– ident: ref18
  doi: 10.1063/1.3694270
– ident: ref35
  doi: 10.1038/s43588-021-00184-y
– volume: 22
  start-page: 84
  issue: 1
  year: 2011
  ident: ref5
  article-title: Learning pattern recognition through quasi-synchronization of phase oscillators
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2010.2086476
– ident: ref26
  doi: 10.1063/1.3057974
– volume: 118
  issue: 222405
  year: 2021
  ident: ref16
  article-title: Synchronization of chiral vortex nano-oscillators
  publication-title: Appl. Phys. Lett
– start-page: 2017
  ident: ref7
  article-title: Rhythms and oscillations: A vision for nanoelectronics
SSID ssj0017658
Score 2.3585134
Snippet Learning algorithms based on synchronization of oscillators are currently being pursued as an alternative to standard neural-network algorithms for data...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 136
SubjectTerms Algorithms
Arrays
Classification
Classification algorithms
Computational modeling
Coupled modes
Dipoles
Inference
Inference algorithms
Machine learning
Mathematical models
Neural networks
Neuromorphic computing
Oscillator-based computing
Oscillators
Resonant frequencies
Spin Hall Nano-Oscillator
Synchronism
Synchronization
Training
Title An Oscillator-Synchronization-Based Off-Line Learning Algorithm, With On-Chip Inference on an Array of Spin Hall Nano-Oscillators
URI https://ieeexplore.ieee.org/document/10056284
https://www.proquest.com/docview/2786985085
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0085
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017658
  issn: 1536-125X
  databaseCode: RIE
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoT3AACkUstJUP3MAhcWw3Pm4rqgWJ3UNbsbfIz3bVxVlts4f21n_O2ElKAYE4OZLt2NLM-Bs_5huE3mktmQakJiJXgjCac6KM8oQqW4A5sbL08Rzy61RMztmXOZ_3weopFsY5lx6fuSx-prt825hNPCoDC49wXbEttHVYiS5Y6_7K4FCkZJxgwTGxDJ8PETK5_Hg2HU9nWUwUnpUA-VQUv6BQSqvyx1qcAObkGZoOU-velVxlm1Zn5vY31sb_nvtz9LR3NfG4040d9MiFF-jJAwLCl-huHPAMQBB0Afbe5PQmmESW28VmkiOAOItn3hPYsjrcc7Fe4PHyolkv2svvH_A3KPAskOPLxQp_HqIHcROwCjD0Wt3gxuPT1SLgiVouMazmDfk55PUuOj_5dHY8IX1SBmKoFC1xknorhHG5htWAg3OuVWGV1d5pbzlX1muoF6qSRuY5FK4ULFeGCaqZL8pXaDs0wb1GWFrwHplSFY21gmtNK-VtHvlnGC_ZCBWDkGrTM5bHxBnLOu1cclknwdZRsHUv2BF6f99n1fF1_LP1bpTUg5adkEZob1CGurfp65qCzskKHFr-5i_d3qLH8e_dCc0e2m7XG7cPPkurD5Ku_gAPHegS
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHIADzyK2FPCBGzg4ie0mx6Wi2kKbPXQr9hb52a7YOqtt9lBu_HPGTlIKCMTJlmzLlmbG3_gx3yD0RqmSKUBqIqgUhGWUE6mlI5k0KZgTy3MX7iGPKzE5ZZ_mfN4Hq8dYGGtt_Hxmk1CNb_mm0ZtwVQYWHuC6YLfRHc4Y41241vWjwZ6I6TjBhkNqGT4fYmRo-X5WjatpElKFJzmAfibSX3AoJlb5YzeOEHPwEFXD4rqfJV-TTasS_e033sb_Xv0j9KB3NvG4047H6Jb1T9D9GxSET9H3scdTgEHQBjh9k5MrryNdbhedST4AyBk8dY7AodXino31DI-XZ8160Z5fvMNfoMBTT_bPFyt8OMQP4sZj6WHqtbzCjcMnq4XHE7lcYtjPG_JzysttdHrwcbY_IX1aBqKzUrTElpkzQmhLFewHHNxzJVMjjXJWOcO5NE5Bu5BFqUtKobC5YFRqJjLFXJo_Q1u-8fY5wqUB_5FJWWShVXClskI6QwMDDeM5G6F0EFKte87ykDpjWcezCy3rKNg6CLbuBTtCb6_HrDrGjn_23g6SutGzE9II7Q7KUPdWfVlne4UoC3Bp-c5fhr1Gdyez46P66LD6_ALdCzN19zW7aKtdb-xL8GBa9Srq7Q9b5Otf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Oscillator-Synchronization-Based+Off-Line+Learning+Algorithm%2C+With+On-Chip+Inference+on+an+Array+of+Spin+Hall+Nano-Oscillators&rft.jtitle=IEEE+transactions+on+nanotechnology&rft.au=Bhotla%2C+Sri+Vasudha+Hemadri&rft.au=Garg%2C+Neha&rft.au=Aggarwal%2C+Tanmay&rft.au=Muduli%2C+Pranaba+Kishor&rft.date=2023&rft.issn=1536-125X&rft.eissn=1941-0085&rft.volume=22&rft.spage=136&rft.epage=148&rft_id=info:doi/10.1109%2FTNANO.2023.3250261&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNANO_2023_3250261
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-125X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-125X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-125X&client=summon