Identification of Continuous-Time Dynamic Systems With Uncertainties Measured by Fuzzy Sets Subject to Model Structure Errors

Continuous-time dynamic models are indispensable for many disciplines of science and engineering. This article proposes a new approach for estimating unknown parameters of continuous-time dynamic models. The proposed approach is composed of three main steps: a searching grid of model parameters is f...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on fuzzy systems Vol. 32; no. 5; pp. 3293 - 3300
Main Authors Wang, Jiandong, Xing, Xiaotong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1063-6706
1941-0034
DOI10.1109/TFUZZ.2024.3368998

Cover

Abstract Continuous-time dynamic models are indispensable for many disciplines of science and engineering. This article proposes a new approach for estimating unknown parameters of continuous-time dynamic models. The proposed approach is composed of three main steps: a searching grid of model parameters is formulated in certain step sizes, objective functions of all grid points are calculated, and optimal model parameters are found as the ones corresponding to the minimum value of the objective function. Compared with existing identification approaches, the proposed approach has one new feature that model uncertainties are measured based on the fuzzy set theory by a number of companion model parameters that are associated with objective functions close to the minimum one. The proposed approach does not require a restrictive assumption for existing approaches that the true unknown system must be enclosed by the model set being considered, and provides model uncertainties in the presence of model structure errors. The main obstacle of the grid search is a high computation cost in calculating objective functions for all grid points. This obstacle is overcome to an acceptable level via parallel computation using a number of CPUs in multiple computers. The proposed approach is validated and compared with the existing approach through numerical and experimental examples.
AbstractList Continuous-time dynamic models are indispensable for many disciplines of science and engineering. This article proposes a new approach for estimating unknown parameters of continuous-time dynamic models. The proposed approach is composed of three main steps: a searching grid of model parameters is formulated in certain step sizes, objective functions of all grid points are calculated, and optimal model parameters are found as the ones corresponding to the minimum value of the objective function. Compared with existing identification approaches, the proposed approach has one new feature that model uncertainties are measured based on the fuzzy set theory by a number of companion model parameters that are associated with objective functions close to the minimum one. The proposed approach does not require a restrictive assumption for existing approaches that the true unknown system must be enclosed by the model set being considered, and provides model uncertainties in the presence of model structure errors. The main obstacle of the grid search is a high computation cost in calculating objective functions for all grid points. This obstacle is overcome to an acceptable level via parallel computation using a number of CPUs in multiple computers. The proposed approach is validated and compared with the existing approach through numerical and experimental examples.
Author Wang, Jiandong
Xing, Xiaotong
Author_xml – sequence: 1
  givenname: Jiandong
  orcidid: 0000-0003-2635-8724
  surname: Wang
  fullname: Wang, Jiandong
  email: jiandong@sdust.edu.cn
  organization: College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, China
– sequence: 2
  givenname: Xiaotong
  orcidid: 0000-0003-2426-8223
  surname: Xing
  fullname: Xing, Xiaotong
  email: xingxiaotongi@163.com
  organization: College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, China
BookMark eNp9kE1LAzEQhoNU8PMPiIeA563JbnY3OUptVbB42BahlyWbzGJKu6lJ9rCC_93UehAPzmWG4X1m4DlDo852gNAVJWNKibhdzJar1TglKRtnWcGF4EfolApGE0IyNoozKbKkKElxgs68XxNCWU75Kfp80tAF0xolg7Edti2e2Ljoetv7ZGG2gO-HTm6NwtXgA2w9fjXhDS87BS5IE6Pg8Ryk7x1o3Ax41n98DLiC4HHVN2tQAQeL51bDBlfB9SrEJJ46Z52_QMet3Hi4_OnnaDmbLiaPyfPLw9Pk7jlRqShCojWlUkuZS93qnAJrmlaXpWqoFCmIaIBTlXMhhZCpIG1eAOciZazJqWQpz87RzeHuztn3Hnyo17Z3XXxZZyQnGSljxRQ_pJSz3jtoa2XCt5bgpNnUlNR72fW37Hovu_6RHdH0D7pzZivd8D90fYAMAPwCGGOEiewLwwCQCw
CODEN IEFSEV
CitedBy_id crossref_primary_10_1016_j_compeleceng_2024_109887
crossref_primary_10_1016_j_apm_2025_116001
crossref_primary_10_1109_TFUZZ_2024_3493201
Cites_doi 10.1016/j.rser.2018.05.029
10.1016/j.automatica.2022.110511
10.1109/TFUZZ.2021.3075501
10.1049/ip-cta:20045250
10.1109/TAC.2021.3137788
10.1109/TPDS.2023.3280805
10.1109/TFUZZ.2020.3037961
10.1016/j.jprocont.2018.02.011
10.1109/CAC51589.2020.9326975
10.1111/rssb.12217
10.1007/s12555-019-0499-1
10.1002/047134608X.W1046
10.1016/j.ejc.2012.04.008
10.1016/j.engappai.2017.09.007
10.1016/j.apm.2021.01.023
10.1007/978-1-84800-161-9
10.1016/j.conengprac.2019.104239
10.1109/TAC.2021.3069757
10.1016/j.automatica.2021.110117
10.1109/JAS.2022.105464
10.1016/S0005-1098(01)00269-2
10.1016/j.isatra.2021.04.047
10.1201/9781315368290
10.1109/TAC.2020.3006354
10.1016/j.isatra.2021.07.041
10.1145/3444690
10.1016/j.automatica.2022.110407
10.1109/TFUZZ.2021.3119108
10.1137/22M1498486
10.1016/j.ejcon.2015.04.003
10.1016/j.automatica.2019.06.011
10.1007/978-3-319-72023-4_6
10.1080/00031305.2018.1497537
10.1109/TFUZZ.2023.3250200
10.1016/j.automatica.2018.06.023
10.1007/978-3-540-74972-1_17
10.1109/TFUZZ.2022.3216992
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TFUZZ.2024.3368998
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 3300
ExternalDocumentID 10_1109_TFUZZ_2024_3368998
10444049
Genre orig-research
GrantInformation_xml – fundername: Research Fund for Taishan Scholar Project of Shandong Province in China
– fundername: National Natural Science Foundation of China
  grantid: 62273215
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c296t-dd11adaa5adfd51e4bbfd77cb1a92e911081c589a99a290f56e889244b51a4283
IEDL.DBID RIE
ISSN 1063-6706
IngestDate Sun Jun 29 15:22:09 EDT 2025
Thu Apr 24 22:59:52 EDT 2025
Wed Oct 01 02:37:33 EDT 2025
Wed Aug 27 02:33:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-dd11adaa5adfd51e4bbfd77cb1a92e911081c589a99a290f56e889244b51a4283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2635-8724
0000-0003-2426-8223
PQID 3050307777
PQPubID 85428
PageCount 8
ParticipantIDs proquest_journals_3050307777
ieee_primary_10444049
crossref_citationtrail_10_1109_TFUZZ_2024_3368998
crossref_primary_10_1109_TFUZZ_2024_3368998
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Subrahmanyam (ref6) 2020
Ljung (ref34) 2020
Sderstrm (ref32) 1989
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref5
ref40
References_xml – ident: ref27
  doi: 10.1016/j.rser.2018.05.029
– volume-title: System Identification
  year: 1989
  ident: ref32
– ident: ref16
  doi: 10.1016/j.automatica.2022.110511
– ident: ref2
  doi: 10.1109/TFUZZ.2021.3075501
– ident: ref7
  doi: 10.1049/ip-cta:20045250
– ident: ref15
  doi: 10.1109/TAC.2021.3137788
– ident: ref38
  doi: 10.1109/TPDS.2023.3280805
– ident: ref1
  doi: 10.1109/TFUZZ.2020.3037961
– ident: ref26
  doi: 10.1016/j.jprocont.2018.02.011
– ident: ref30
  doi: 10.1109/CAC51589.2020.9326975
– ident: ref39
  doi: 10.1111/rssb.12217
– ident: ref14
  doi: 10.1007/s12555-019-0499-1
– ident: ref31
  doi: 10.1002/047134608X.W1046
– ident: ref33
  doi: 10.1016/j.ejc.2012.04.008
– ident: ref9
  doi: 10.1016/j.engappai.2017.09.007
– year: 2020
  ident: ref34
  publication-title: System Identification Toolbox: Users Guide
– ident: ref19
  doi: 10.1016/j.apm.2021.01.023
– ident: ref5
  doi: 10.1007/978-1-84800-161-9
– ident: ref11
  doi: 10.1016/j.conengprac.2019.104239
– ident: ref18
  doi: 10.1109/TAC.2021.3069757
– ident: ref29
  doi: 10.1016/j.automatica.2021.110117
– ident: ref21
  doi: 10.1109/JAS.2022.105464
– ident: ref25
  doi: 10.1016/S0005-1098(01)00269-2
– ident: ref23
  doi: 10.1016/j.isatra.2021.04.047
– ident: ref35
  doi: 10.1201/9781315368290
– ident: ref17
  doi: 10.1109/TAC.2020.3006354
– ident: ref22
  doi: 10.1016/j.isatra.2021.07.041
– ident: ref37
  doi: 10.1145/3444690
– ident: ref12
  doi: 10.1016/j.automatica.2022.110407
– ident: ref20
  doi: 10.1109/TFUZZ.2021.3119108
– ident: ref13
  doi: 10.1137/22M1498486
– ident: ref8
  doi: 10.1016/j.ejcon.2015.04.003
– ident: ref10
  doi: 10.1016/j.automatica.2019.06.011
– ident: ref36
  doi: 10.1007/978-3-319-72023-4_6
– ident: ref40
  doi: 10.1080/00031305.2018.1497537
– ident: ref3
  doi: 10.1109/TFUZZ.2023.3250200
– ident: ref4
  doi: 10.1016/j.automatica.2018.06.023
– ident: ref28
  doi: 10.1007/978-3-540-74972-1_17
– ident: ref24
  doi: 10.1109/TFUZZ.2022.3216992
– volume-title: Identification of Continuous-Time Systems Linear and Robust Parameter Estimation
  year: 2020
  ident: ref6
SSID ssj0014518
Score 2.4642148
Snippet Continuous-time dynamic models are indispensable for many disciplines of science and engineering. This article proposes a new approach for estimating unknown...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3293
SubjectTerms Barriers
Computation
Computational modeling
Computers
Continuous time systems
Continuous-time models
Dynamic models
Dynamical systems
Errors
fuzzy set
Fuzzy set theory
Fuzzy sets
grid search
Linear programming
Mathematical models
Measurement uncertainty
model uncertainties
parallel computation
Parallel processing
Parameters
System identification
Uncertainty
Title Identification of Continuous-Time Dynamic Systems With Uncertainties Measured by Fuzzy Sets Subject to Model Structure Errors
URI https://ieeexplore.ieee.org/document/10444049
https://www.proquest.com/docview/3050307777
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-0034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014518
  issn: 1063-6706
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB3RnuBAaSliaUFz4IayxFknjo8VdFUhtZd2RdVL5PhDVFQbtJsculL_ez22UxUQqDn5YFtWxmPPjOe9Afgoja0L40RmjcgzXnqda60oMuOsU7WRughs-6dn1cmCf7ssLxNYPWBhrLUh-cxOqRne8k2nBwqVeQ3nRGcnt2BL1FUEaz08GfCSRdxbNcsqkVcjQiaXny_mi6sr7wsWfDqbVeRh_HYLhbIqf53F4YKZ78DZuLSYV_JzOvTtVG_-YG188tpfwctkauJR3Bu78Mwu92BnLOOASav34MUjTsLXcBehuy7F8rBzSAxW18uhG9YZIUbwa6xij4ntHL9f9z9w4ecK2QXE0IqnMfRosL3F-bDZ3OK57dfojymK-2DfIRVhu8HzQF_re-LxatWt1vuwmB9ffDnJUo2GTBey6jNjGFNGqVIZZ0pmeds6I4RumZKFlQQyYLqspZJSFTJ3ZWXr2vt8vC2ZIrK3N7C97Jb2LaBmhjPtTxipNWfO1ZrmFNqbmN5oVfkE2CizRicCc6qjcdMERyaXTZBzQ3Jukpwn8OlhzK9I3_Hf3vskuEc9o8wmcDjujSap-LqZEZNOLvz37h_DDuA5zR7TIw9h2_9R-96bMH37IWzde7v_76Y
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOFEoRCy3MgVuVJc7aSXxEbVdL6e6lu6LqJXL8EBXVBu0mh67Ef8evVKWIipx8sJ0o47FnxvN9A_CRK11myhSJVkWaUGZ1rtZFliijjSgVl5ln25_O8smCnl6wiwhW91gYrbVPPtND1_R3-aqRnQuVWQ2njs6OP4LHzLZYgGvdXhpQRgLyLR8leZHmPUYm5Z_m48XlpfUGMzocjXLnY_xxDvnCKn_txv6IGe_ArP-4kFnyY9i19VBu7vE2_vfXv4Dn0djEz2F1vIQtvdyFnb6QA0a93oVnd1gJX8GvAN41MZqHjUHHYXW17JpunTjMCB6HOvYY-c7x21X7HRd2Lp9f4DhacRqCjwrrGxx3m80Nnut2jXajcpEfbBt0Zdiu8dwT2NqeeLJaNav1HizGJ_OjSRKrNCQy43mbKEWIUEIwoYxiRNO6NqooZE0EzzR3MAMiWckF5yLjqWG5Lkvr9dGaEeHo3l7D9rJZ6jeAkihKpN1juJSUGFNKN2chrZFpzVaRDoD0MqtkpDB3lTSuK-_KpLzycq6cnKso5wEc3o75GQg8Huy95wR3p2eQ2QD2-7VRRSVfVyPHpZMW9nn7j2Ef4MlkPj2rzr7Mvr6Dp-5NIVlyH7bt39UH1qBp6_d-Gf8Gag7y8w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Continuous-Time+Dynamic+Systems+With+Uncertainties+Measured+by+Fuzzy+Sets+Subject+to+Model+Structure+Errors&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Wang%2C+Jiandong&rft.au=Xing%2C+Xiaotong&rft.date=2024-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=32&rft.issue=5&rft.spage=3293&rft_id=info:doi/10.1109%2FTFUZZ.2024.3368998&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon