A MODIFIED WEAK GALERKIN FINITE ELEMENT METHOD FOR SOBOLEV EQUATION

For Sobolev equation, we present a new numerical scheme based on a modified weak Galerkin finite element method, in which differential operators are approximated by weak forms through the usual integration by parts. In particular, the numerical method allows the use of discontinuous finite element f...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational mathematics Vol. 33; no. 3; pp. 307 - 322
Main Authors Gao, Fuzheng, Wang, Xiaoshen
Format Journal Article
LanguageEnglish
Published Chinese Academy of Mathematices and System Sciences (AMSS) Chinese Academy of Sciences 01.05.2015
Subjects
Online AccessGet full text
ISSN0254-9409
1991-7139
DOI10.4208/jcm.1502-m4509

Cover

Abstract For Sobolev equation, we present a new numerical scheme based on a modified weak Galerkin finite element method, in which differential operators are approximated by weak forms through the usual integration by parts. In particular, the numerical method allows the use of discontinuous finite element functions and arbitrary shape of element. Optimal order error estimates in discrete H^1 and L^2 norms are established for the corresponding modified weak Galerkin finite element solutions. Finally, some numerical results are given to verify theoretical results.
AbstractList For Sobolev equation, we present a new numerical scheme based on a modified weak Galerkin finite element method, in which differential operators are approximated by weak forms through the usual integration by parts. In particular, the numerical method allows the use of discontinuous finite element functions and arbitrary shape of element. Optimal order error estimates in discrete H¹ and L² norms are established for the corresponding modified weak Galerkin finite element solutions. Finally, some numerical results are given to verify theoretical results.
For Sobolev equation, we present a new numerical scheme based on a modified weak Galerkin finite element method, in which differential operators are approximated by weak forms through the usual integration by parts. In particular, the numerical method allows the use of discontinuous finite element functions and arbitrary shape of element. Optimal order error estimates in discrete H^1 and L^2 norms are established for the corresponding modified weak Galerkin finite element solutions. Finally, some numerical results are given to verify theoretical results.
Author Fuzheng Gao Xiaoshen Wang
AuthorAffiliation School of Mathematics, Shandong University, Jinan, Shandong 250100, China School of Materials Science and Engineering, Shandong University, Jinan, Shandong, China Department of Mathematics, University of Arkansas at Little Rock, 2801 S. University Avenue, Little Rock, AR 72204, USA.
Author_xml – sequence: 1
  givenname: Fuzheng
  surname: Gao
  fullname: Gao, Fuzheng
– sequence: 2
  givenname: Xiaoshen
  surname: Wang
  fullname: Wang, Xiaoshen
BookMark eNp1kEtPwkAURicGEwHdup6YuCzeeXU6ywpTaChtxKLLZigtlkCrbTf-e4sQY0xc3cU951ucAeqVVZkhdEtgxCk4D7v0MCICqHXgAtQF6hOliCUJUz3UByq4pTioKzRomh0AMMplH41dvIgmvufrCX7V7hxP3UAv536IPT_0Y411oBc6jPFCx7Nogr1oiZ-jxyjQL1g_rdzYj8JrdJmbfZPdnO8QrTwdj2dWEE39sRtYKVV2a23sjSMNh8wWwt4YQTMnY0pIumYsBaDdT4mUUKNyzolhOd8oI7lZg5RAOGdDxE-7aV01TZ3lSVq0pi2qsq1NsU8IJMcQSRciOYZIvkN02uiP9l4XB1N__i_cn4Rd01b1b5oykAlntmKOTTru7jz8VpXbj6Lc_rC2LYArShj7Agunci8
CitedBy_id crossref_primary_10_1016_j_camwa_2022_09_018
crossref_primary_10_1108_HFF_09_2021_0598
crossref_primary_10_1016_j_cam_2022_114979
crossref_primary_10_1016_j_camwa_2022_04_017
crossref_primary_10_1016_j_camwa_2025_01_013
crossref_primary_10_3934_dcdss_2024110
crossref_primary_10_1016_j_cam_2016_11_047
crossref_primary_10_1016_j_padiff_2020_100016
crossref_primary_10_1016_j_cnsns_2023_107440
crossref_primary_10_1016_j_apnum_2022_03_006
crossref_primary_10_1007_s10915_022_01997_3
crossref_primary_10_1002_mma_8579
crossref_primary_10_1016_j_aml_2023_108806
crossref_primary_10_1016_j_apnum_2020_08_010
crossref_primary_10_1002_num_22960
crossref_primary_10_1007_s13370_018_0626_9
crossref_primary_10_1016_j_apnum_2021_05_018
crossref_primary_10_1016_j_camwa_2018_09_058
crossref_primary_10_1515_jnma_2021_0012
ContentType Journal Article
Copyright Copyright 2015 AMSS, Chinese Academy of Sciences
Copyright_xml – notice: Copyright 2015 AMSS, Chinese Academy of Sciences
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
DOI 10.4208/jcm.1502-m4509
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
DocumentTitleAlternate A MODIFIED WEAK GALERKIN FINITE ELEMENT METHOD FOR SOBOLEV EQUATION
EISSN 1991-7139
EndPage 322
ExternalDocumentID 10_4208_jcm_1502_m4509
43693861
665049213
GroupedDBID -01
-0A
-SA
-S~
-~X
.4S
.DC
2RA
5GY
5VR
92L
92M
9D9
9DA
AAHSX
ABBHK
ABDBF
ABJPR
ABXSQ
ACHDO
ACMTB
ACTMH
ADULT
AEHFS
AELPN
AENEX
AEUPB
AFFNX
AFUIB
AFVYC
ALMA_UNASSIGNED_HOLDINGS
ARCSS
B0M
CAJEA
CAJUS
CAQNE
CCEZO
CCVFK
CHBEP
CQIGP
CRVLH
CW9
DQDLB
EAP
EAS
EBS
ECEWR
EDO
EJD
EMI
EMK
EOJEC
EPL
EST
ESX
F5P
FA0
I-F
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
JUIAU
MK~
OBODZ
P09
Q--
Q-0
R-A
REI
RT1
S..
SA0
SJN
T8Q
TUS
U1F
U1G
U5A
U5K
~8M
~L9
~WA
ACUHS
AELHJ
AFOWJ
AGLNM
AIHAF
ALRMG
IPSME
AAYXX
CITATION
ID FETCH-LOGICAL-c296t-d6d87a40e6556da52e8e39572b33c0027a495c12a9f441a3f4d9a74ab07701443
ISSN 0254-9409
IngestDate Sat Oct 25 05:10:44 EDT 2025
Thu Apr 24 23:07:52 EDT 2025
Mon May 19 02:50:09 EDT 2025
Wed Feb 14 10:30:14 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c296t-d6d87a40e6556da52e8e39572b33c0027a495c12a9f441a3f4d9a74ab07701443
Notes 11-2126/O1
Galerkin FEMs, Sobolev equation, Discrete weak gradient, Modified weak Galerkin, Error estimate
For Sobolev equation, we present a new numerical scheme based on a modified weak Galerkin finite element method, in which differential operators are approximated by weak forms through the usual integration by parts. In particular, the numerical method allows the use of discontinuous finite element functions and arbitrary shape of element. Optimal order error estimates in discrete H^1 and L^2 norms are established for the corresponding modified weak Galerkin finite element solutions. Finally, some numerical results are given to verify theoretical results.
PageCount 16
ParticipantIDs crossref_citationtrail_10_4208_jcm_1502_m4509
crossref_primary_10_4208_jcm_1502_m4509
jstor_primary_10_2307_43693861
chongqing_primary_665049213
PublicationCentury 2000
PublicationDate 2015-05-01
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of computational mathematics
PublicationTitleAlternate Journal of Computational Mathematics
PublicationYear 2015
Publisher Chinese Academy of Mathematices and System Sciences (AMSS) Chinese Academy of Sciences
Publisher_xml – name: Chinese Academy of Mathematices and System Sciences (AMSS) Chinese Academy of Sciences
SSID ssj0003247
Score 2.1663625
Snippet For Sobolev equation, we present a new numerical scheme based on a modified weak Galerkin finite element method, in which differential operators are...
SourceID crossref
jstor
chongqing
SourceType Enrichment Source
Index Database
Publisher
StartPage 307
SubjectTerms Galerkin有限元法
Sobolev方程
任意形状
微分算子
数值方法
最优误差估计
索伯列夫方程
间断有限元
Title A MODIFIED WEAK GALERKIN FINITE ELEMENT METHOD FOR SOBOLEV EQUATION
URI http://lib.cqvip.com/qk/85761X/201503/665049213.html
https://www.jstor.org/stable/43693861
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1991-7139
  dateEnd: 20230930
  omitProxy: true
  ssIdentifier: ssj0003247
  issn: 0254-9409
  databaseCode: ABDBF
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbQ9gIP_BggymDyAxYPUUYSO078mLQuLbSrBB3rW-Q4yYbEWqDdy_56zomTtggQ8BIl0eVk3Wedv3N8dwi9Mv2QSi8vXJbz2GWh1q6qIt_VpQ5pVcAaV9QHZM_46Jy9W4SLbYPFOrtkk5_q21_mlfwPqvAOcDVZsv-AbKcUXsA94AtXQBiuf4Vx4kxng_FwLAfOhUzeO2-TifwA8bgzHJ-BS3LkpK7V70zlfDQbOBDwOR9n6WwiPzkSqGy3O2XJKZExSSRJfCIjcyMiIjkRIUk9IkOSDEjCiRyStE9EYoTjlKR-LcNJHJmvYkHi7nDs8Ob2qjT7W2rlLD6r1RqenAtl10q71eCH24N91iNBNOkK5omdiUF3vB9tGtjahZQ2Ccc_-2jzP9_4aH19CmQ0cK9ZaBXu173mwB2ZCExH4sMAXLZ3gA6TdJAOu4UWuGCdDd-OqqnJafS_2ddu6mZcrZaX34AN7PGP3SOoNaGYP0T3bSSAkwbWR-hOuTxCD2xUgK3PXR-he9Ousu76MeonuMUcG8xxizluMMcWc9xgjgFzbDHHLeZP0PlQzvsj1zbCcHUg-MYteBFHinklD0NeqDAo49L8Xw1ySrXZWFAQ5mo_UKICdqtoxQqhIqZyL4pMxEyfooPlalk-Q7gKKkPqlaA0Z5TruOQszIuo8L1Cs7jsoePOVNnXpuBJ1kHRQ25rvEzbGvKmlcmXDGJJY_gMDJ8Zw2e14XvodSffKvud5EmNxa6YyVHIYJCCxtx__seBHaO72wn7Ah1svt-UL4EtbvITO2t-AOLnUHI
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+MODIFIED+WEAK+GALERKIN+FINITE+ELEMENT+METHOD+FOR+SOBOLEV+EQUATION&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%95%B0%E5%AD%A6%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Fuzheng+Gao+Xiaoshen+Wang&rft.date=2015-05-01&rft.issn=0254-9409&rft.issue=3&rft.spage=307&rft.epage=322&rft_id=info:doi/10.4208%2Fjcm.1502-m4509&rft.externalDocID=665049213
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85761X%2F85761X.jpg