Advanced polymeric systems for colon drug delivery: from experimental models to market applications
In recent years, nano and micro drug delivery systems targeting the colon have gained more attention due to increasing interest in treating colon diseases such as colorectal cancer and inflammatory bowel disease, i.e. , Crohn's disease and ulcerative colitis. Usually, nanocarriers are exploited...
Saved in:
Published in | Soft matter Vol. 21; no. 5; pp. 792 - 818 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
29.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1744-683X 1744-6848 1744-6848 |
DOI | 10.1039/d4sm01222d |
Cover
Abstract | In recent years, nano and micro drug delivery systems targeting the colon have gained more attention due to increasing interest in treating colon diseases such as colorectal cancer and inflammatory bowel disease,
i.e.
, Crohn's disease and ulcerative colitis. Usually, nanocarriers are exploited for their enhanced permeability properties, allowing higher penetration effects and bioavailability, while microcarriers are primarily used for localized and sustained release. In bowel diseases, carriers must go into a delicate environment with a strict balance of gut bacteria (
e.g.
, colon), and natural or biodegradable polymers capable of ensuring lower toxicity are preferred. However, these systems are primarily delivered orally, so the carrier must go through the whole gastrointestinal tract, where it encounters significant pH fluctuations, different mucus layers, several enzymes, and a long transit time. For this reason, various approaches have been explored and evaluated, especially using pH-responsive and time-dependent systems. This review provides an overview of the contemporary methodologies employed in orally administered nano- and microparticles for colon delivery, encompassing both
in vivo
and
in vitro
investigations. It evaluates their strengths, weaknesses, constraints, and potential enhancements, leveraging mathematical and microfluidic models. Furthermore, it focuses explicitly on systems that have already reached the market and are presently employed in treating severe colon diseases.
A diagram illustrating various nano- and micro-particle systems for colon treatment, emphasizing their biocompatibility, controlled drug release, anti-inflammatory action, and high target specificity. Created using
https://BioRender.com
. |
---|---|
AbstractList | In recent years, nano and micro drug delivery systems targeting the colon have gained more attention due to increasing interest in treating colon diseases such as colorectal cancer and inflammatory bowel disease,
i.e.
, Crohn's disease and ulcerative colitis. Usually, nanocarriers are exploited for their enhanced permeability properties, allowing higher penetration effects and bioavailability, while microcarriers are primarily used for localized and sustained release. In bowel diseases, carriers must go into a delicate environment with a strict balance of gut bacteria (
e.g.
, colon), and natural or biodegradable polymers capable of ensuring lower toxicity are preferred. However, these systems are primarily delivered orally, so the carrier must go through the whole gastrointestinal tract, where it encounters significant pH fluctuations, different mucus layers, several enzymes, and a long transit time. For this reason, various approaches have been explored and evaluated, especially using pH-responsive and time-dependent systems. This review provides an overview of the contemporary methodologies employed in orally administered nano- and microparticles for colon delivery, encompassing both
in vivo
and
in vitro
investigations. It evaluates their strengths, weaknesses, constraints, and potential enhancements, leveraging mathematical and microfluidic models. Furthermore, it focuses explicitly on systems that have already reached the market and are presently employed in treating severe colon diseases. In recent years, nano and micro drug delivery systems targeting the colon have gained more attention due to increasing interest in treating colon diseases such as colorectal cancer and inflammatory bowel disease, i.e., Crohn's disease and ulcerative colitis. Usually, nanocarriers are exploited for their enhanced permeability properties, allowing higher penetration effects and bioavailability, while microcarriers are primarily used for localized and sustained release. In bowel diseases, carriers must go into a delicate environment with a strict balance of gut bacteria (e.g., colon), and natural or biodegradable polymers capable of ensuring lower toxicity are preferred. However, these systems are primarily delivered orally, so the carrier must go through the whole gastrointestinal tract, where it encounters significant pH fluctuations, different mucus layers, several enzymes, and a long transit time. For this reason, various approaches have been explored and evaluated, especially using pH-responsive and time-dependent systems. This review provides an overview of the contemporary methodologies employed in orally administered nano- and microparticles for colon delivery, encompassing both in vivo and in vitro investigations. It evaluates their strengths, weaknesses, constraints, and potential enhancements, leveraging mathematical and microfluidic models. Furthermore, it focuses explicitly on systems that have already reached the market and are presently employed in treating severe colon diseases. In recent years, nano and micro drug delivery systems targeting the colon have gained more attention due to increasing interest in treating colon diseases such as colorectal cancer and inflammatory bowel disease, i.e. , Crohn's disease and ulcerative colitis. Usually, nanocarriers are exploited for their enhanced permeability properties, allowing higher penetration effects and bioavailability, while microcarriers are primarily used for localized and sustained release. In bowel diseases, carriers must go into a delicate environment with a strict balance of gut bacteria ( e.g. , colon), and natural or biodegradable polymers capable of ensuring lower toxicity are preferred. However, these systems are primarily delivered orally, so the carrier must go through the whole gastrointestinal tract, where it encounters significant pH fluctuations, different mucus layers, several enzymes, and a long transit time. For this reason, various approaches have been explored and evaluated, especially using pH-responsive and time-dependent systems. This review provides an overview of the contemporary methodologies employed in orally administered nano- and microparticles for colon delivery, encompassing both in vivo and in vitro investigations. It evaluates their strengths, weaknesses, constraints, and potential enhancements, leveraging mathematical and microfluidic models. Furthermore, it focuses explicitly on systems that have already reached the market and are presently employed in treating severe colon diseases. A diagram illustrating various nano- and micro-particle systems for colon treatment, emphasizing their biocompatibility, controlled drug release, anti-inflammatory action, and high target specificity. Created using https://BioRender.com . In recent years, nano and micro drug delivery systems targeting the colon have gained more attention due to increasing interest in treating colon diseases such as colorectal cancer and inflammatory bowel disease, , Crohn's disease and ulcerative colitis. Usually, nanocarriers are exploited for their enhanced permeability properties, allowing higher penetration effects and bioavailability, while microcarriers are primarily used for localized and sustained release. In bowel diseases, carriers must go into a delicate environment with a strict balance of gut bacteria ( , colon), and natural or biodegradable polymers capable of ensuring lower toxicity are preferred. However, these systems are primarily delivered orally, so the carrier must go through the whole gastrointestinal tract, where it encounters significant pH fluctuations, different mucus layers, several enzymes, and a long transit time. For this reason, various approaches have been explored and evaluated, especially using pH-responsive and time-dependent systems. This review provides an overview of the contemporary methodologies employed in orally administered nano- and microparticles for colon delivery, encompassing both and investigations. It evaluates their strengths, weaknesses, constraints, and potential enhancements, leveraging mathematical and microfluidic models. Furthermore, it focuses explicitly on systems that have already reached the market and are presently employed in treating severe colon diseases. In recent years, nano and micro drug delivery systems targeting the colon have gained more attention due to increasing interest in treating colon diseases such as colorectal cancer and inflammatory bowel disease, i.e., Crohn's disease and ulcerative colitis. Usually, nanocarriers are exploited for their enhanced permeability properties, allowing higher penetration effects and bioavailability, while microcarriers are primarily used for localized and sustained release. In bowel diseases, carriers must go into a delicate environment with a strict balance of gut bacteria (e.g., colon), and natural or biodegradable polymers capable of ensuring lower toxicity are preferred. However, these systems are primarily delivered orally, so the carrier must go through the whole gastrointestinal tract, where it encounters significant pH fluctuations, different mucus layers, several enzymes, and a long transit time. For this reason, various approaches have been explored and evaluated, especially using pH-responsive and time-dependent systems. This review provides an overview of the contemporary methodologies employed in orally administered nano- and microparticles for colon delivery, encompassing both in vivo and in vitro investigations. It evaluates their strengths, weaknesses, constraints, and potential enhancements, leveraging mathematical and microfluidic models. Furthermore, it focuses explicitly on systems that have already reached the market and are presently employed in treating severe colon diseases.In recent years, nano and micro drug delivery systems targeting the colon have gained more attention due to increasing interest in treating colon diseases such as colorectal cancer and inflammatory bowel disease, i.e., Crohn's disease and ulcerative colitis. Usually, nanocarriers are exploited for their enhanced permeability properties, allowing higher penetration effects and bioavailability, while microcarriers are primarily used for localized and sustained release. In bowel diseases, carriers must go into a delicate environment with a strict balance of gut bacteria (e.g., colon), and natural or biodegradable polymers capable of ensuring lower toxicity are preferred. However, these systems are primarily delivered orally, so the carrier must go through the whole gastrointestinal tract, where it encounters significant pH fluctuations, different mucus layers, several enzymes, and a long transit time. For this reason, various approaches have been explored and evaluated, especially using pH-responsive and time-dependent systems. This review provides an overview of the contemporary methodologies employed in orally administered nano- and microparticles for colon delivery, encompassing both in vivo and in vitro investigations. It evaluates their strengths, weaknesses, constraints, and potential enhancements, leveraging mathematical and microfluidic models. Furthermore, it focuses explicitly on systems that have already reached the market and are presently employed in treating severe colon diseases. |
Author | La Manna, S Crispino, R Corrado, B Procopio, A Lagreca, E D'Auria, R Di Natale, C Onesto, V |
AuthorAffiliation | University "Magna Graecia" of Catanzaro Interdisciplinary Research Centre on Biomaterials (CRIB) Department of Experimental and Clinical Medicine Istituto Italiano di Tecnologia Department of Chemical Materials and Industrial Production (DICMaPI) Department of Pharmacy University of Naples Federico II Center for Advanced Biomaterials for Health Care (CABHC) |
AuthorAffiliation_xml | – name: Istituto Italiano di Tecnologia – name: Department of Chemical Materials and Industrial Production (DICMaPI) – name: University of Naples Federico II – name: Department of Experimental and Clinical Medicine – name: University "Magna Graecia" of Catanzaro – name: Department of Pharmacy – name: Center for Advanced Biomaterials for Health Care (CABHC) – name: Interdisciplinary Research Centre on Biomaterials (CRIB) |
Author_xml | – sequence: 1 givenname: R surname: Crispino fullname: Crispino, R – sequence: 2 givenname: E surname: Lagreca fullname: Lagreca, E – sequence: 3 givenname: A surname: Procopio fullname: Procopio, A – sequence: 4 givenname: R surname: D'Auria fullname: D'Auria, R – sequence: 5 givenname: B surname: Corrado fullname: Corrado, B – sequence: 6 givenname: S surname: La Manna fullname: La Manna, S – sequence: 7 givenname: V surname: Onesto fullname: Onesto, V – sequence: 8 givenname: C surname: Di Natale fullname: Di Natale, C |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39801430$$D View this record in MEDLINE/PubMed |
BookMark | eNpd0c9L7DAQB_Agir8v3pWAl4ewmmmyaept0fdUUDyo4K2kyVSqTVOTVt7-90ZXV_CUgXwYZua7RVY73yEhe8COgfHixIroGGRZZlfIJuRCTKQSanVZ88cNshXjM2NcCZDrZIMXioHgbJOYmX3TnUFLe9_OHYbG0DiPA7pIax-o8a3vqA3jE7XYNm8Y5qe0Dt5R_N8n7bAbdEudT7-RDp46HV5woLrv28boofFd3CFrtW4j7n692-Th39_7s8vJ9e3F1dnsemKyQg6TyiqlNeQgcwkVFCpnWFRKG86kLWzFNEiGWqqpQCHTyLkttGVcQyY4ZjXfJn8WffvgX0eMQ-maaLBtdYd-jCWHqVCqkFOZ6OEv-uzH0KXpkpIsz4ADJHXwpcbKoS37tK8O8_L7fAkcLYAJPsaA9ZIAKz-yKc_F3c1nNucJ7y9wiGbpfrLj7wOZiyQ |
Cites_doi | 10.3390/polym16182606 10.1016/j.colsurfb.2018.05.012 10.1016/j.cherd.2016.02.006 10.1016/j.jpha.2018.12.001 10.1111/cas.14532 10.1016/j.carbpol.2014.03.056 10.1007/s12257-021-0268-x 10.1038/gt.2016.60 10.1016/j.msec.2017.03.049 10.3390/ijms24065441 10.1039/c3ib40126j 10.1053/j.gastro.2017.05.055 10.1016/j.jddst.2018.05.025 10.1016/j.jconrel.2016.05.004 10.3389/fbioe.2021.660691 10.1016/j.nano.2004.11.009 10.1021/acs.biomac.0c00045 10.1186/s13020-021-00449-8 10.1016/B978-0-12-815799-2.00003-4 10.1021/acsabm.3c00218 10.1016/j.carbpol.2017.03.082 10.1039/c2lc40074j 10.1007/s13346-021-00908-7 10.3389/fbioe.2020.00163 10.1080/10601325.2024.2400510 10.1007/s13399-022-03313-3 10.1039/C7RA01028A 10.1016/j.matchemphys.2011.11.046 10.1016/j.ijpharm.2007.12.037 10.1016/j.xphs.2019.02.001 10.1039/C5RA02672E 10.1111/j.1751-1097.2011.00915.x 10.1016/j.physbeh.2020.113004 10.1053/j.gastro.2011.10.001 10.3390/polym9040137 10.1080/03639045.2017.1291672 10.1016/j.carbpol.2017.11.110 10.1016/j.tips.2021.08.005 10.1007/s40005-022-00572-0 10.1021/acs.chemrev.5b00346 10.1016/j.ijbiomac.2022.08.102 10.1016/j.jconrel.2021.05.028 10.1177/2041731420965318 10.1002/adfm.201904216 10.7150/thno.41225 10.1111/1541-4337.12660 10.1039/C0LC00273A 10.1016/j.jconrel.2023.07.018 10.1016/j.jconrel.2014.03.053 10.1016/j.biomaterials.2009.08.046 10.3390/jpm12050673 10.3390/inventions3030065 10.3390/pharmaceutics14040872 10.1002/adma.201606596 10.1016/j.drudis.2015.03.002 10.1007/s10565-005-0085-6 10.1016/j.colsurfb.2015.07.081 10.1016/j.tiv.2020.104815 10.1098/rsob.210333 10.4103/0250-474X.57303 10.3389/fbioe.2020.00992 10.1016/j.jddst.2018.10.031 10.3389/fphar.2021.618411 10.1016/j.jconrel.2014.06.041 10.3390/pharmaceutics10040263 10.1146/annurev-chembioeng-073009-100847 10.1016/j.mbs.2016.11.010 10.1080/21691401.2021.1907393 10.1163/156856208786140382 10.1016/j.ijbiomac.2024.135102 10.1016/j.foodchem.2017.06.110 10.1016/j.actbio.2019.08.041 10.1016/j.biomaterials.2007.01.005 10.1007/s00216-010-3992-1 10.1016/j.jconrel.2022.12.029 10.1016/j.ijpharm.2017.03.044 10.1016/j.jcmgh.2021.08.015 10.1016/j.ijpharm.2014.07.009 10.1016/j.foodchem.2024.138634 10.1001/jamaoncol.2023.5098 10.1016/j.jddst.2022.103556 10.1016/j.copbio.2011.05.512 10.1016/j.ynstr.2023.100572 10.1016/B978-0-12-814330-8.00004-4 10.1258/jrsm.2008.08k033 10.1016/j.colsurfa.2022.129998 10.1186/s12885-020-06803-7 10.1007/s12272-020-01219-0 10.3109/10611869808997888 10.1016/j.colsurfa.2021.127321 10.1208/s12249-021-01954-7 10.1016/S0140-6736(07)60751-X 10.1016/j.ijpharm.2021.120836 10.1016/j.carbpol.2016.04.041 10.1021/acs.macromol.0c00346 10.1111/jfbc.14386 10.1007/s10439-020-02568-z 10.1039/b717091b 10.1039/D0TB02279A 10.2147/CLEP.S33961 10.3390/pharmaceutics15020484 10.3390/ma13081807 10.1007/s10544-017-0179-y 10.1016/j.tcb.2011.09.005 10.1016/j.ijpharm.2020.119266 10.3322/caac.21660 10.1136/gutjnl-2012-303661 10.3389/fmolb.2020.00033 10.1007/s10544-021-00591-y 10.1109/MetroXRAINE54828.2022.9967446 10.1038/s41467-020-18456-y 10.1186/s12967-024-05662-1 10.1007/978-3-031-58094-9_68 10.1007/s10482-020-01474-7 10.1053/j.gastro.2012.07.090 10.3390/nu10091304 10.1016/j.jddst.2021.102580 10.1016/j.ijpharm.2008.09.004 10.1016/j.ijpharm.2007.05.028 10.1016/j.biomaterials.2019.119396 10.1208/s12249-017-0906-y 10.1080/03639045.2020.1716374 10.1016/j.plantsci.2022.111223 10.3390/pharmaceutics13091412 10.3390/pharmaceutics14020291 10.1016/j.ijpharm.2010.10.037 10.1021/acs.macromol.5b00791 10.1002/app.32259 10.1039/c4ib00157e 10.2147/IJN.S245170 10.1016/j.ijbiomac.2017.12.041 10.1002/bit.26902 10.3322/CA.2007.0018 10.1272/jnms.JNMS.2022_89-310 10.2147/IJN.S157566 10.1016/j.jcmgh.2017.12.010 10.2217/nnm.10.12 10.1016/j.ijpharm.2006.09.038 10.1016/j.ejpb.2017.07.004 10.1016/j.ejpb.2011.08.002 10.1109/EMBC.2015.7318520 10.1093/ajcn/63.5.741 10.1016/j.foodres.2010.03.017 10.1007/s00018-015-1975-2 10.1016/j.ejpb.2013.09.016 10.1038/nature18846 10.1007/s10544-016-0143-2 10.3762/bjoc.19.14 10.1021/ar010110q 10.3390/ijms24043188 10.1073/pnas.1601306113 10.1016/j.foodchem.2020.128900 10.1021/acsnano.1c07121 10.1016/j.mtbio.2019.100027 10.1038/s41467-019-12066-z 10.1016/j.ejps.2021.105812 10.1021/acs.jafc.1c05580 10.3389/fcell.2022.1043117 10.1016/j.addr.2006.09.007 10.1016/j.ijbiomac.2023.123585 10.3390/pharmaceutics12080760 10.1016/j.chemolab.2011.04.004 10.1016/j.xphs.2020.07.001 10.1021/acsami.8b17410 10.3109/03639049509026658 10.1016/j.ijbiomac.2024.134204 10.1016/j.powtec.2011.04.023 10.3390/10010146 10.2147/IJN.S291090 10.1016/j.critrevonc.2023.103961 10.1016/j.jacbts.2019.10.008 10.1016/j.chemosphere.2024.142826 10.1109/LCSYS.2022.3204627 10.1016/j.colsurfb.2012.11.031 10.1016/S0169-409X(03)00118-2 10.1002/bit.27186 10.3390/ijms25137379 10.1007/b137240 10.1016/j.jcis.2019.05.037 10.1016/j.carbpol.2017.03.033 10.1016/j.ejps.2023.106652 10.1007/s40204-020-00139-y 10.1016/j.jsps.2012.03.005 10.3109/03639045.2016.1173052 10.1016/j.jddst.2016.01.007 10.1007/978-3-319-31248-4_7 10.1053/j.gastro.2004.03.063 10.1016/j.carbpol.2007.01.020 10.1016/j.ejps.2017.12.009 10.1016/S0928-0987(01)00095-1 10.3322/caac.21708 10.1016/S0009-9236(96)90177-0 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2025 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2025 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1039/d4sm01222d |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1744-6848 |
EndPage | 818 |
ExternalDocumentID | 39801430 10_1039_D4SM01222D d4sm01222d |
Genre | Journal Article Review |
GroupedDBID | 0-7 0R~ 123 4.4 705 70~ 7~J AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACPRK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRZK AFVBQ AGEGJ AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AZFZN BLAPV BSQNT C6K CS3 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N J3I KZ1 L-8 N9A O9- P2P R7B RAOCF RCNCU RNS RPMJG RSCEA SKA SLH VH6 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c296t-bd88aa1716761b19870e9b8ac306d9db0a160ea6854e46ced7d9ad03a1243e2f3 |
ISSN | 1744-683X 1744-6848 |
IngestDate | Fri Jul 11 00:49:02 EDT 2025 Mon Jun 30 12:01:50 EDT 2025 Thu Aug 28 04:45:59 EDT 2025 Tue Jul 01 04:21:59 EDT 2025 Tue May 27 12:02:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c296t-bd88aa1716761b19870e9b8ac306d9db0a160ea6854e46ced7d9ad03a1243e2f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0009-0008-4600-4142 |
PMID | 39801430 |
PQID | 3160721311 |
PQPubID | 2047495 |
PageCount | 27 |
ParticipantIDs | pubmed_primary_39801430 crossref_primary_10_1039_D4SM01222D proquest_miscellaneous_3154889656 rsc_primary_d4sm01222d proquest_journals_3160721311 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-29 |
PublicationDateYYYYMMDD | 2025-01-29 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Soft matter |
PublicationTitleAlternate | Soft Matter |
PublicationYear | 2025 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Di Natale (D4SM01222D/cit52/1) 2020; 13 Wang (D4SM01222D/cit167/1) 2009; 30 Huh (D4SM01222D/cit179/1) 2011; 21 Kim (D4SM01222D/cit95/1) 2015; 48 D4SM01222D/cit210/1 D4SM01222D/cit233/1 Xiang (D4SM01222D/cit154/1) 2020; 11 Cao (D4SM01222D/cit236/1) 2021; 42 Levin (D4SM01222D/cit3/1) 2008; 58 D4SM01222D/cit197/1 Chen (D4SM01222D/cit55/1) 2018; 169 Baumgart (D4SM01222D/cit10/1) 2007; 369 Webb (D4SM01222D/cit186/1) 2020; 582 Stummer (D4SM01222D/cit58/1) 2010; 43 (D4SM01222D/cit201/1) 2021 Du (D4SM01222D/cit72/1) 2024; 25 Agarwal (D4SM01222D/cit162/1) 2020; 11 Ray (D4SM01222D/cit105/1) 2008; 19 Fedi (D4SM01222D/cit151/1) 2021; 335 D4SM01222D/cit221/1 Pimenta (D4SM01222D/cit155/1) 2022; 13 D4SM01222D/cit229/1 Peppas (D4SM01222D/cit88/1) 2014; 190 Kim (D4SM01222D/cit96/1) 2020; 53 D4SM01222D/cit206/1 Kim (D4SM01222D/cit170/1) 2014; 6 D4SM01222D/cit208/1 Costa (D4SM01222D/cit137/1) 2011; 107 McCoubrey (D4SM01222D/cit188/1) 2023; 353 de Oliveira Cardoso (D4SM01222D/cit132/1) 2021; 628 Sebe (D4SM01222D/cit106/1) 2017; 523 Larson (D4SM01222D/cit13/1) 2004; 126 Bravo-Osuna (D4SM01222D/cit34/1) 2007; 28 Rizwan (D4SM01222D/cit63/1) 2017; 9 Yang (D4SM01222D/cit142/1) 2017; 29 Wen (D4SM01222D/cit92/1) 2017; 169 Singh (D4SM01222D/cit94/1) 2007; 69 Singhvi (D4SM01222D/cit108/1) 2011; 2 Lou (D4SM01222D/cit187/1) 2023; 15 Wang (D4SM01222D/cit131/1) 2010; 117 D4SM01222D/cit211/1 Mandracchia (D4SM01222D/cit76/1) 2018; 181 Fois (D4SM01222D/cit157/1) 2021; 23 D4SM01222D/cit234/1 Politis (D4SM01222D/cit128/1) 2017; 43 D4SM01222D/cit219/1 Shoda (D4SM01222D/cit8/1) 1996; 63 D4SM01222D/cit196/1 Largitte (D4SM01222D/cit109/1) 2016; 109 Vinarov (D4SM01222D/cit16/1) 2021; 162 Thummel (D4SM01222D/cit141/1) 1996; 59 Bhanja (D4SM01222D/cit74/1) 2022; 46 Melero (D4SM01222D/cit40/1) 2017; 119 Vilaça (D4SM01222D/cit115/1) 2017; 7 Nguyen (D4SM01222D/cit138/1) 2023; 6 Prata (D4SM01222D/cit49/1) 2015; 116 Quagliariello (D4SM01222D/cit30/1) 2018; 10 De Gregorio (D4SM01222D/cit184/1) 2020; 8 Mulye (D4SM01222D/cit112/1) 1995; 21 D4SM01222D/cit222/1 Xiao (D4SM01222D/cit57/1) 2015; 135 D4SM01222D/cit207/1 Vecchione (D4SM01222D/cit32/1) 2016; 233 D4SM01222D/cit209/1 Molodecky (D4SM01222D/cit12/1) 2012; 142 Corrado (D4SM01222D/cit182/1) 2019; 116 Kim (D4SM01222D/cit171/1) 2018; 10 Wu (D4SM01222D/cit27/1) 2020; 20 Di Natale (D4SM01222D/cit48/1) 2021; 9 Park (D4SM01222D/cit15/1) 2005; 10 Liu (D4SM01222D/cit90/1) 2007; 332 Coombes (D4SM01222D/cit114/1) 2020; 12 Sambuy (D4SM01222D/cit147/1) 2005; 21 Arifin (D4SM01222D/cit97/1) 2006; 58 Akl (D4SM01222D/cit29/1) 2016; 32 Costa (D4SM01222D/cit107/1) 2001; 13 D4SM01222D/cit212/1 D4SM01222D/cit235/1 Kulthong (D4SM01222D/cit156/1) 2020; 65 Liang (D4SM01222D/cit28/1) 2016; 23 Rajasree (D4SM01222D/cit23/1) 2018; 46 D4SM01222D/cit199/1 Kim (D4SM01222D/cit160/1) 2013; 5 Li (D4SM01222D/cit44/1) 2024; 277 Crispino (D4SM01222D/cit61/1) 2024 Da Silva (D4SM01222D/cit51/1) 2023; 24 Bayat (D4SM01222D/cit37/1) 2008; 356 Jensen (D4SM01222D/cit145/1) 2020; 7 Zhong (D4SM01222D/cit218/1) 2018; 10 Anselmo (D4SM01222D/cit192/1) 2014; 190 D4SM01222D/cit200/1 D4SM01222D/cit223/1 Procopio (D4SM01222D/cit84/1) 2022 Martínez (D4SM01222D/cit120/1) 2022; 220 Hughes (D4SM01222D/cit100/1) 2005; 1 Procopio (D4SM01222D/cit93/1) 2022; 14 Siepmann (D4SM01222D/cit89/1) 2008; 364 Fan (D4SM01222D/cit19/1) 2024; 22 Ng (D4SM01222D/cit11/1) 2013; 62 Blondy (D4SM01222D/cit6/1) 2020; 111 Oshi (D4SM01222D/cit60/1) 2021; 13 Pedersen (D4SM01222D/cit86/1) 2017; 283 Nicolucci (D4SM01222D/cit73/1) 2017; 153 Summer (D4SM01222D/cit18/1) 2024; 363 Beg (D4SM01222D/cit127/1) 2019 Inamdar (D4SM01222D/cit181/1) 2011; 22 Zhou (D4SM01222D/cit54/1) 2019; 108 Gangopadhyay (D4SM01222D/cit189/1) 2022; 74 Sung (D4SM01222D/cit173/1) 2011; 11 Apriyanto (D4SM01222D/cit75/1) 2022; 318 Mahdi (D4SM01222D/cit135/1) 2021; 22 D4SM01222D/cit213/1 Malekjani (D4SM01222D/cit101/1) 2021; 20 Sibilio (D4SM01222D/cit180/1) 2019; 4 D4SM01222D/cit198/1 Mladenovska (D4SM01222D/cit91/1) 2007; 342 Shroff (D4SM01222D/cit183/1) 2022; 12 McDonald (D4SM01222D/cit164/1) 2002; 35 Paul (D4SM01222D/cit104/1) 2011; 418 Saraf (D4SM01222D/cit21/1) 2021; 64 Capeletti (D4SM01222D/cit80/1) 2019; 29 Lautenschläger (D4SM01222D/cit53/1) 2013; 85 D4SM01222D/cit224/1 Xiao (D4SM01222D/cit56/1) 2015; 135 Liang (D4SM01222D/cit46/1) 2022; 70 Jain (D4SM01222D/cit67/1) 2007; 10 Choe (D4SM01222D/cit185/1) 2017; 19 Torino (D4SM01222D/cit153/1) 2018; 3 Sharifi (D4SM01222D/cit38/1) 2021; 49 Kim (D4SM01222D/cit169/1) 2020; 10 Rudzinski (D4SM01222D/cit36/1) 2016; 147 Smitha (D4SM01222D/cit39/1) 2013; 104 Baptista (D4SM01222D/cit148/1) 2022; 10 Zhang (D4SM01222D/cit59/1) 2021; 16 Kapałczyńska (D4SM01222D/cit150/1) 2016; 14 Dash (D4SM01222D/cit102/1) 2010; 67 Nors (D4SM01222D/cit7/1) 2024; 10 Agüero (D4SM01222D/cit66/1) 2017; 168 Bein (D4SM01222D/cit165/1) 2018; 5 García (D4SM01222D/cit190/1) 2022; 14 Abbasi (D4SM01222D/cit133/1) 2023; 233 Siegel (D4SM01222D/cit1/1) 2022; 72 Gao (D4SM01222D/cit26/1) 2021; 16 Alghamdi (D4SM01222D/cit243/1) 2022; 12 Nicolas (D4SM01222D/cit174/1) 2020; 21 D4SM01222D/cit214/1 Kimura (D4SM01222D/cit166/1) 2008; 8 Feng (D4SM01222D/cit121/1) 2019; 552 Bhattacharya (D4SM01222D/cit123/1) 2023; 185 D4SM01222D/cit193/1 Liechty (D4SM01222D/cit62/1) 2010; 1 Sonnenburg (D4SM01222D/cit70/1) 2016; 535 Prezotti (D4SM01222D/cit119/1) 2020; 46 Gommers (D4SM01222D/cit172/1) 2019; 99 Procopio (D4SM01222D/cit82/1) 2021; 49 Hafez Abdellatif (D4SM01222D/cit238/1) 2018; 17 Liu (D4SM01222D/cit45/1) 2024; 444 Lozoya-Agullo (D4SM01222D/cit25/1) 2018; 115 Di Natale (D4SM01222D/cit47/1) 2021; 9 D4SM01222D/cit225/1 Lee (D4SM01222D/cit163/1) 2022; 27 D4SM01222D/cit202/1 Maurer (D4SM01222D/cit161/1) 2019; 220 Kassem (D4SM01222D/cit134/1) 2024; 192 Dandagi (D4SM01222D/cit129/1) 2009; 71 Kim (D4SM01222D/cit159/1) 2012; 12 Beloqui (D4SM01222D/cit20/1) 2014; 473 Mu (D4SM01222D/cit81/1) 2019; 10 Shim (D4SM01222D/cit158/1) 2017; 19 Kučuk (D4SM01222D/cit17/1) 2023; 24 Quagliariello (D4SM01222D/cit31/1) 2020; 15 Sharma (D4SM01222D/cit43/1) 2024; 61 Yamashita (D4SM01222D/cit99/1) 2003; 55 Long (D4SM01222D/cit9/1) 2013 Naeem (D4SM01222D/cit22/1) 2018; 13 Harmsen (D4SM01222D/cit68/1) 2016 D4SM01222D/cit230/1 Montefusco (D4SM01222D/cit83/1) 2023; 7 D4SM01222D/cit215/1 Wabuyele (D4SM01222D/cit242/1) 2010; 398 Cassidy (D4SM01222D/cit130/1) 2011; 87 Ghadi (D4SM01222D/cit35/1) 2014; 5 Costa Lima (D4SM01222D/cit87/1) 2017; 75 Du (D4SM01222D/cit124/1) 2015; 20 Van Norman (D4SM01222D/cit144/1) 2019; 4 Mennini (D4SM01222D/cit136/1) 2012; 80 Kim (D4SM01222D/cit149/1) 2016; 114 D4SM01222D/cit226/1 Chen (D4SM01222D/cit42/1) 2024; 279 Cui (D4SM01222D/cit152/1) 2019; 9 Yang (D4SM01222D/cit65/1) 2024; 16 Le Guen (D4SM01222D/cit176/1) 2015; 72 Lagreca (D4SM01222D/cit50/1) 2020; 9 Cresci (D4SM01222D/cit69/1) 2019 Gomaa (D4SM01222D/cit71/1) 2020; 113 Sung (D4SM01222D/cit2/1) 2021; 71 Bracken (D4SM01222D/cit143/1) 2009; 102 Cai (D4SM01222D/cit24/1) 2021; 606 Kimura-Todani (D4SM01222D/cit78/1) 2020; 223 Yuan (D4SM01222D/cit41/1) 2021; 15 D4SM01222D/cit231/1 Aw (D4SM01222D/cit113/1) 2012; 223 Lagreca (D4SM01222D/cit33/1) 2022; 654 D4SM01222D/cit216/1 Plaza-Oliver (D4SM01222D/cit237/1) 2021; 11 Shinji (D4SM01222D/cit5/1) 2022; 89 Turanlı (D4SM01222D/cit117/1) 2019; 49 Alqahtani (D4SM01222D/cit139/1) 2021; 12 Singh (D4SM01222D/cit111/1) 2018; 108 Das (D4SM01222D/cit103/1) 2015; 5 (D4SM01222D/cit195/1) 2017 D4SM01222D/cit227/1 D4SM01222D/cit204/1 (D4SM01222D/cit203/1) 2023 Cremer (D4SM01222D/cit178/1) 2016; 113 Richfield (D4SM01222D/cit126/1) 2023; 360 Hashim (D4SM01222D/cit241/1) 2022; 14 Youhanna (D4SM01222D/cit146/1) 2021; 110 Woraphatphadung (D4SM01222D/cit64/1) 2018; 19 Ye (D4SM01222D/cit240/1) 2021; 346 D4SM01222D/cit232/1 Lertpairod (D4SM01222D/cit118/1) 2022; 52 Sawlekar (D4SM01222D/cit85/1) 2015 DeLeon (D4SM01222D/cit110/1) 2012; 132 Kinget (D4SM01222D/cit191/1) 1998; 6 Permanadewi (D4SM01222D/cit116/1) 2019; 1295 D4SM01222D/cit217/1 Darling (D4SM01222D/cit175/1) 2020; 8 Naeem (D4SM01222D/cit122/1) 2020; 43 Ashwar (D4SM01222D/cit79/1) 2018; 239 D4SM01222D/cit194/1 Robertson (D4SM01222D/cit4/1) 2012; 143 Tanelian (D4SM01222D/cit77/1) 2023; 27 Ünal (D4SM01222D/cit98/1) 2023; 19 Abdellatif (D4SM01222D/cit239/1) 2016; 42 Kamaly (D4SM01222D/cit125/1) 2016; 116 Gavhane (D4SM01222D/cit140/1) 2012; 20 De Gregorio (D4SM01222D/cit177/1) 2020; 117 D4SM01222D/cit220/1 Geckil (D4SM01222D/cit168/1) 2010; 5 D4SM01222D/cit205/1 D4SM01222D/cit228/1 Nair (D4SM01222D/cit14/1) 2006 |
References_xml | – issn: 2006 volume-title: Polymers as Biomaterials for Tissue Engineering and Controlled Drug Delivery end-page: p 47-90 publication-title: Tissue Engineering I doi: Nair Laurencin – issn: 2022 volume-title: , A combined simulation and machine learning approach to classify severity of infarction patients end-page: p 283-288 publication-title: 2022 IEEE International Conference on Metrology for Extended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE) doi: Procopio Cesarelli De Rosa Donisi Critelli Merola – issn: 2015 volume-title: Biomolecular implementation of a quasi sliding mode feedback controller based on DNA strand displacement reactions end-page: p 949-952 publication-title: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) doi: Sawlekar Montefusco Kulkarni Bates – issn: 2023 – issn: 2019 volume-title: Application of Design of Experiments (DoE) in Pharmaceutical Product and Process Optimization end-page: p 43-64 publication-title: Pharmaceutical Quality by Design doi: Beg Swain Rahman Hasnain Imam – issn: 2024 volume-title: Polymeric Soft Micro-Robots Propelled into a Microfluidic Device for Gut Target Delivery Studies end-page: p 610-622 publication-title: Design Tools and Methods in Industrial Engineering III doi: Crispino Corrado Vecchione Netti – issn: 2017 – issn: 2021 – issn: 2016 volume-title: The Human Gut Microbiota end-page: p 95-108 publication-title: Microbiota of the Human Body doi: Harmsen De Goffau Marcus – issn: 2019 volume-title: Gut Microbiome end-page: p 45-54 publication-title: Adult Short Bowel Syndrome doi: Cresci Izzo – volume: 16 start-page: 2606 issue: 18 year: 2024 ident: D4SM01222D/cit65/1 publication-title: Polymers doi: 10.3390/polym16182606 – volume: 169 start-page: 92 year: 2018 ident: D4SM01222D/cit55/1 publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2018.05.012 – volume: 109 start-page: 495 year: 2016 ident: D4SM01222D/cit109/1 publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2016.02.006 – volume: 9 start-page: 238 issue: 4 year: 2019 ident: D4SM01222D/cit152/1 publication-title: J. Pharm. Anal. doi: 10.1016/j.jpha.2018.12.001 – volume: 111 start-page: 3142 issue: 9 year: 2020 ident: D4SM01222D/cit6/1 publication-title: Cancer Sci. doi: 10.1111/cas.14532 – volume: 116 start-page: 292 year: 2015 ident: D4SM01222D/cit49/1 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2014.03.056 – volume: 27 start-page: 221 issue: 2 year: 2022 ident: D4SM01222D/cit163/1 publication-title: Biotechnol. Bioprocess Eng. doi: 10.1007/s12257-021-0268-x – ident: D4SM01222D/cit194/1 – volume: 23 start-page: 829 issue: 12 year: 2016 ident: D4SM01222D/cit28/1 publication-title: Gene Ther. doi: 10.1038/gt.2016.60 – volume: 75 start-page: 1420 year: 2017 ident: D4SM01222D/cit87/1 publication-title: Mater. Sci. Eng., C doi: 10.1016/j.msec.2017.03.049 – volume: 24 start-page: 5441 issue: 6 year: 2023 ident: D4SM01222D/cit51/1 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms24065441 – volume: 5 start-page: 1130 issue: 9 year: 2013 ident: D4SM01222D/cit160/1 publication-title: Integr. Biol. doi: 10.1039/c3ib40126j – volume: 153 start-page: 711 issue: 3 year: 2017 ident: D4SM01222D/cit73/1 publication-title: Gastroenterology doi: 10.1053/j.gastro.2017.05.055 – ident: D4SM01222D/cit231/1 – volume: 46 start-page: 302 year: 2018 ident: D4SM01222D/cit23/1 publication-title: J. Drug Delivery Sci. Technol. doi: 10.1016/j.jddst.2018.05.025 – volume: 233 start-page: 88 year: 2016 ident: D4SM01222D/cit32/1 publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2016.05.004 – volume: 9 start-page: 660691 year: 2021 ident: D4SM01222D/cit48/1 publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2021.660691 – ident: D4SM01222D/cit200/1 – ident: D4SM01222D/cit214/1 – volume: 1 start-page: 22 issue: 1 year: 2005 ident: D4SM01222D/cit100/1 publication-title: Nanomedicine doi: 10.1016/j.nano.2004.11.009 – volume: 21 start-page: 1968 issue: 6 year: 2020 ident: D4SM01222D/cit174/1 publication-title: Biomacromolecules doi: 10.1021/acs.biomac.0c00045 – ident: D4SM01222D/cit228/1 – volume: 16 start-page: 92 issue: 1 year: 2021 ident: D4SM01222D/cit59/1 publication-title: Chin. Med. doi: 10.1186/s13020-021-00449-8 – start-page: 43 volume-title: Pharmaceutical Quality by Design year: 2019 ident: D4SM01222D/cit127/1 doi: 10.1016/B978-0-12-815799-2.00003-4 – volume: 5 start-page: 156 issue: 3 year: 2014 ident: D4SM01222D/cit35/1 publication-title: Caspian J. Intern. Med. – ident: D4SM01222D/cit233/1 – volume: 6 start-page: 2725 issue: 7 year: 2023 ident: D4SM01222D/cit138/1 publication-title: ACS Appl. Bio Mater. doi: 10.1021/acsabm.3c00218 – volume: 169 start-page: 157 year: 2017 ident: D4SM01222D/cit92/1 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2017.03.082 – volume: 12 start-page: 2165 issue: 12 year: 2012 ident: D4SM01222D/cit159/1 publication-title: Lab Chip doi: 10.1039/c2lc40074j – volume: 114 start-page: 54344 year: 2016 ident: D4SM01222D/cit149/1 publication-title: J. Visualized Exp. – volume: 11 start-page: 471 issue: 2 year: 2021 ident: D4SM01222D/cit237/1 publication-title: Drug Delivery Transl. Res. doi: 10.1007/s13346-021-00908-7 – volume: 8 start-page: 163 year: 2020 ident: D4SM01222D/cit184/1 publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.00163 – volume: 61 start-page: 977 issue: 10 year: 2024 ident: D4SM01222D/cit43/1 publication-title: J. Macromol. Sci., Part A: Pure Appl. Chem. doi: 10.1080/10601325.2024.2400510 – volume: 14 start-page: 13233 year: 2022 ident: D4SM01222D/cit241/1 publication-title: Biomass Convers. Biorefin. doi: 10.1007/s13399-022-03313-3 – volume: 7 start-page: 13104 issue: 22 year: 2017 ident: D4SM01222D/cit115/1 publication-title: RSC Adv. doi: 10.1039/C7RA01028A – volume: 132 start-page: 409 issue: 2–3 year: 2012 ident: D4SM01222D/cit110/1 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2011.11.046 – volume: 356 start-page: 259 issue: 1–2 year: 2008 ident: D4SM01222D/cit37/1 publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2007.12.037 – volume: 108 start-page: 2238 issue: 7 year: 2019 ident: D4SM01222D/cit54/1 publication-title: J. Pharm. Sci. doi: 10.1016/j.xphs.2019.02.001 – ident: D4SM01222D/cit212/1 – volume: 5 start-page: 27481 issue: 35 year: 2015 ident: D4SM01222D/cit103/1 publication-title: RSC Adv. doi: 10.1039/C5RA02672E – volume: 87 start-page: 867 issue: 4 year: 2011 ident: D4SM01222D/cit130/1 publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.2011.00915.x – volume: 223 start-page: 113004 year: 2020 ident: D4SM01222D/cit78/1 publication-title: Physiol. Behav. doi: 10.1016/j.physbeh.2020.113004 – volume: 142 start-page: 46 issue: 1 year: 2012 ident: D4SM01222D/cit12/1 publication-title: Gastroenterology doi: 10.1053/j.gastro.2011.10.001 – volume: 9 start-page: 137 issue: 4 year: 2017 ident: D4SM01222D/cit63/1 publication-title: Polymers doi: 10.3390/polym9040137 – volume: 43 start-page: 889 issue: 6 year: 2017 ident: D4SM01222D/cit128/1 publication-title: Drug Dev. Ind. Pharm. doi: 10.1080/03639045.2017.1291672 – volume: 181 start-page: 570 year: 2018 ident: D4SM01222D/cit76/1 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2017.11.110 – volume: 42 start-page: 957 issue: 11 year: 2021 ident: D4SM01222D/cit236/1 publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2021.08.005 – volume: 52 start-page: 387 issue: 3 year: 2022 ident: D4SM01222D/cit118/1 publication-title: J. Pharm. Invest. doi: 10.1007/s40005-022-00572-0 – volume: 116 start-page: 2602 issue: 4 year: 2016 ident: D4SM01222D/cit125/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00346 – volume: 1295 start-page: 012063 issue: 1 year: 2019 ident: D4SM01222D/cit116/1 publication-title: J. Phys.: Conf. Ser. – volume: 220 start-page: 802 year: 2022 ident: D4SM01222D/cit120/1 publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2022.08.102 – ident: D4SM01222D/cit202/1 – volume: 335 start-page: 247 year: 2021 ident: D4SM01222D/cit151/1 publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2021.05.028 – volume: 11 start-page: 204173142096531 year: 2020 ident: D4SM01222D/cit154/1 publication-title: J. Tissue Eng. doi: 10.1177/2041731420965318 – ident: D4SM01222D/cit196/1 – volume: 29 start-page: 1904216 issue: 48 year: 2019 ident: D4SM01222D/cit80/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201904216 – volume: 10 start-page: 2495 issue: 6 year: 2020 ident: D4SM01222D/cit169/1 publication-title: Theranostics doi: 10.7150/thno.41225 – ident: D4SM01222D/cit224/1 – ident: D4SM01222D/cit221/1 – volume: 20 start-page: 3 issue: 1 year: 2021 ident: D4SM01222D/cit101/1 publication-title: Compr. Rev. Food Sci. Food Saf. doi: 10.1111/1541-4337.12660 – volume: 11 start-page: 389 issue: 3 year: 2011 ident: D4SM01222D/cit173/1 publication-title: Lab Chip doi: 10.1039/C0LC00273A – volume: 360 start-page: 772 year: 2023 ident: D4SM01222D/cit126/1 publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2023.07.018 – ident: D4SM01222D/cit199/1 – ident: D4SM01222D/cit223/1 – volume: 190 start-page: 15 year: 2014 ident: D4SM01222D/cit192/1 publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2014.03.053 – year: 2023 ident: D4SM01222D/cit203/1 – volume: 30 start-page: 6825 issue: 36 year: 2009 ident: D4SM01222D/cit167/1 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.08.046 – volume: 12 start-page: 673 issue: 5 year: 2022 ident: D4SM01222D/cit243/1 publication-title: J. Pers. Med. doi: 10.3390/jpm12050673 – volume: 3 start-page: 65 issue: 3 year: 2018 ident: D4SM01222D/cit153/1 publication-title: Inventions doi: 10.3390/inventions3030065 – volume: 14 start-page: 872 issue: 4 year: 2022 ident: D4SM01222D/cit93/1 publication-title: Pharmaceutics doi: 10.3390/pharmaceutics14040872 – volume: 29 start-page: 1606596 issue: 37 year: 2017 ident: D4SM01222D/cit142/1 publication-title: Adv. Mater. doi: 10.1002/adma.201606596 – volume: 20 start-page: 1004 issue: 8 year: 2015 ident: D4SM01222D/cit124/1 publication-title: Drug Discovery Today doi: 10.1016/j.drudis.2015.03.002 – volume: 10 start-page: 86 issue: 1 year: 2007 ident: D4SM01222D/cit67/1 publication-title: J. Pharm. Pharm. Sci. – volume: 21 start-page: 1 issue: 1 year: 2005 ident: D4SM01222D/cit147/1 publication-title: Cell Biol. Toxicol. doi: 10.1007/s10565-005-0085-6 – volume: 135 start-page: 379 year: 2015 ident: D4SM01222D/cit57/1 publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2015.07.081 – volume: 65 start-page: 104815 year: 2020 ident: D4SM01222D/cit156/1 publication-title: Toxicol. In Vitro doi: 10.1016/j.tiv.2020.104815 – volume: 12 start-page: 210333 issue: 3 year: 2022 ident: D4SM01222D/cit183/1 publication-title: Open Biol. doi: 10.1098/rsob.210333 – ident: D4SM01222D/cit209/1 – volume: 71 start-page: 464 issue: 4 year: 2009 ident: D4SM01222D/cit129/1 publication-title: Indian J. Pharm. Sci. doi: 10.4103/0250-474X.57303 – ident: D4SM01222D/cit222/1 – volume: 8 start-page: 992 year: 2020 ident: D4SM01222D/cit175/1 publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.00992 – volume: 49 start-page: 58 year: 2019 ident: D4SM01222D/cit117/1 publication-title: J. Drug Delivery Sci. Technol. doi: 10.1016/j.jddst.2018.10.031 – volume: 12 start-page: 618411 year: 2021 ident: D4SM01222D/cit139/1 publication-title: Front. Pharmacol. doi: 10.3389/fphar.2021.618411 – volume: 190 start-page: 75 year: 2014 ident: D4SM01222D/cit88/1 publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2014.06.041 – volume: 10 start-page: 263 issue: 4 year: 2018 ident: D4SM01222D/cit218/1 publication-title: Pharmaceutics doi: 10.3390/pharmaceutics10040263 – year: 2021 ident: D4SM01222D/cit201/1 – volume: 1 start-page: 149 issue: 1 year: 2010 ident: D4SM01222D/cit62/1 publication-title: Annu. Rev. Chem. Biomol. Eng. doi: 10.1146/annurev-chembioeng-073009-100847 – volume: 283 start-page: 60 year: 2017 ident: D4SM01222D/cit86/1 publication-title: Math. Biosci. doi: 10.1016/j.mbs.2016.11.010 – year: 2017 ident: D4SM01222D/cit195/1 – volume: 49 start-page: 367 issue: 1 year: 2021 ident: D4SM01222D/cit38/1 publication-title: Artif. Cells, Nanomed., Biotechnol. doi: 10.1080/21691401.2021.1907393 – volume: 19 start-page: 1487 issue: 11 year: 2008 ident: D4SM01222D/cit105/1 publication-title: J. Biomater. Sci., Polym. Ed. doi: 10.1163/156856208786140382 – volume: 279 start-page: 135102 year: 2024 ident: D4SM01222D/cit42/1 publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2024.135102 – volume: 239 start-page: 287 year: 2018 ident: D4SM01222D/cit79/1 publication-title: Food Chem. doi: 10.1016/j.foodchem.2017.06.110 – volume: 99 start-page: 110 year: 2019 ident: D4SM01222D/cit172/1 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2019.08.041 – volume: 28 start-page: 2233 issue: 13 year: 2007 ident: D4SM01222D/cit34/1 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.01.005 – ident: D4SM01222D/cit197/1 – ident: D4SM01222D/cit204/1 – volume: 398 start-page: 729 issue: 2 year: 2010 ident: D4SM01222D/cit242/1 publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-010-3992-1 – volume: 135 start-page: 379 year: 2015 ident: D4SM01222D/cit56/1 publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2015.07.081 – volume: 353 start-page: 1107 year: 2023 ident: D4SM01222D/cit188/1 publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2022.12.029 – volume: 523 start-page: 151 issue: 1 year: 2017 ident: D4SM01222D/cit106/1 publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2017.03.044 – volume: 13 start-page: 351 issue: 2 year: 2022 ident: D4SM01222D/cit155/1 publication-title: Cell. Mol. Gastroenterol. Hepatol. doi: 10.1016/j.jcmgh.2021.08.015 – volume: 473 start-page: 203 issue: 1–2 year: 2014 ident: D4SM01222D/cit20/1 publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2014.07.009 – volume: 444 start-page: 138634 year: 2024 ident: D4SM01222D/cit45/1 publication-title: Food Chem. doi: 10.1016/j.foodchem.2024.138634 – ident: D4SM01222D/cit198/1 – volume: 10 start-page: 54 issue: 1 year: 2024 ident: D4SM01222D/cit7/1 publication-title: JAMA Oncol. doi: 10.1001/jamaoncol.2023.5098 – volume: 74 start-page: 103556 year: 2022 ident: D4SM01222D/cit189/1 publication-title: J. Drug Delivery Sci. Technol. doi: 10.1016/j.jddst.2022.103556 – volume: 22 start-page: 681 issue: 5 year: 2011 ident: D4SM01222D/cit181/1 publication-title: Curr. Opin. Biotechnol doi: 10.1016/j.copbio.2011.05.512 – volume: 27 start-page: 100572 year: 2023 ident: D4SM01222D/cit77/1 publication-title: Neurobiol. Stress doi: 10.1016/j.ynstr.2023.100572 – start-page: 45 volume-title: Adult Short Bowel Syndrome year: 2019 ident: D4SM01222D/cit69/1 doi: 10.1016/B978-0-12-814330-8.00004-4 – volume: 102 start-page: 120 issue: 3 year: 2009 ident: D4SM01222D/cit143/1 publication-title: J. R. Soc. Med. doi: 10.1258/jrsm.2008.08k033 – volume: 654 start-page: 129998 year: 2022 ident: D4SM01222D/cit33/1 publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2022.129998 – volume: 20 start-page: 354 issue: 1 year: 2020 ident: D4SM01222D/cit27/1 publication-title: BMC Cancer doi: 10.1186/s12885-020-06803-7 – ident: D4SM01222D/cit219/1 – volume: 43 start-page: 153 issue: 1 year: 2020 ident: D4SM01222D/cit122/1 publication-title: Arch. Pharmacal Res. doi: 10.1007/s12272-020-01219-0 – volume: 6 start-page: 129 issue: 2 year: 1998 ident: D4SM01222D/cit191/1 publication-title: J. Drug Targeting doi: 10.3109/10611869808997888 – ident: D4SM01222D/cit213/1 – volume: 628 start-page: 127321 year: 2021 ident: D4SM01222D/cit132/1 publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2021.127321 – volume: 22 start-page: 80 issue: 3 year: 2021 ident: D4SM01222D/cit135/1 publication-title: AAPS PharmSciTech doi: 10.1208/s12249-021-01954-7 – volume: 369 start-page: 1641 issue: 9573 year: 2007 ident: D4SM01222D/cit10/1 publication-title: Lancet doi: 10.1016/S0140-6736(07)60751-X – ident: D4SM01222D/cit232/1 – volume: 606 start-page: 120836 year: 2021 ident: D4SM01222D/cit24/1 publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2021.120836 – volume: 147 start-page: 323 year: 2016 ident: D4SM01222D/cit36/1 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2016.04.041 – volume: 53 start-page: 7561 issue: 17 year: 2020 ident: D4SM01222D/cit96/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.0c00346 – volume: 46 start-page: 14386 year: 2022 ident: D4SM01222D/cit74/1 publication-title: J. Food Biochem. doi: 10.1111/jfbc.14386 – volume: 49 start-page: 477 issue: 1 year: 2021 ident: D4SM01222D/cit82/1 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-020-02568-z – ident: D4SM01222D/cit215/1 – volume: 8 start-page: 741 issue: 5 year: 2008 ident: D4SM01222D/cit166/1 publication-title: Lab Chip doi: 10.1039/b717091b – volume: 9 start-page: 392 issue: 2 year: 2021 ident: D4SM01222D/cit47/1 publication-title: J. Mater. Chem. B doi: 10.1039/D0TB02279A – start-page: 237 year: 2013 ident: D4SM01222D/cit9/1 publication-title: Clin. Epidemiol. doi: 10.2147/CLEP.S33961 – volume: 15 start-page: 484 issue: 2 year: 2023 ident: D4SM01222D/cit187/1 publication-title: Pharmaceutics doi: 10.3390/pharmaceutics15020484 – ident: D4SM01222D/cit229/1 – volume: 13 start-page: 1807 issue: 8 year: 2020 ident: D4SM01222D/cit52/1 publication-title: Materials doi: 10.3390/ma13081807 – volume: 19 start-page: 37 issue: 2 year: 2017 ident: D4SM01222D/cit158/1 publication-title: Biomed. Microdevices doi: 10.1007/s10544-017-0179-y – volume: 21 start-page: 745 issue: 12 year: 2011 ident: D4SM01222D/cit179/1 publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2011.09.005 – volume: 582 start-page: 119266 year: 2020 ident: D4SM01222D/cit186/1 publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2020.119266 – volume: 71 start-page: 209 issue: 3 year: 2021 ident: D4SM01222D/cit2/1 publication-title: Ca-Cancer J. Clin. doi: 10.3322/caac.21660 – volume: 62 start-page: 630 issue: 4 year: 2013 ident: D4SM01222D/cit11/1 publication-title: Gut doi: 10.1136/gutjnl-2012-303661 – volume: 7 start-page: 33 year: 2020 ident: D4SM01222D/cit145/1 publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2020.00033 – volume: 23 start-page: 55 issue: 4 year: 2021 ident: D4SM01222D/cit157/1 publication-title: Biomed. Microdevices doi: 10.1007/s10544-021-00591-y – ident: D4SM01222D/cit217/1 – start-page: 283 volume-title: 2022 IEEE International Conference on Metrology for Extended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE) year: 2022 ident: D4SM01222D/cit84/1 doi: 10.1109/MetroXRAINE54828.2022.9967446 – volume: 11 start-page: 4714 issue: 1 year: 2020 ident: D4SM01222D/cit162/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18456-y – volume: 22 start-page: 878 issue: 1 year: 2024 ident: D4SM01222D/cit19/1 publication-title: J. Transl. Med. doi: 10.1186/s12967-024-05662-1 – start-page: 610 volume-title: Design Tools and Methods in Industrial Engineering III year: 2024 ident: D4SM01222D/cit61/1 doi: 10.1007/978-3-031-58094-9_68 – volume: 113 start-page: 2019 issue: 12 year: 2020 ident: D4SM01222D/cit71/1 publication-title: Antonie van Leeuwenhoek doi: 10.1007/s10482-020-01474-7 – volume: 143 start-page: 868 issue: 3 year: 2012 ident: D4SM01222D/cit4/1 publication-title: Gastroenterology doi: 10.1053/j.gastro.2012.07.090 – volume: 10 start-page: 1304 issue: 9 year: 2018 ident: D4SM01222D/cit30/1 publication-title: Nutrients doi: 10.3390/nu10091304 – volume: 64 start-page: 102580 year: 2021 ident: D4SM01222D/cit21/1 publication-title: J. Drug Delivery Sci. Technol. doi: 10.1016/j.jddst.2021.102580 – volume: 364 start-page: 328 issue: 2 year: 2008 ident: D4SM01222D/cit89/1 publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2008.09.004 – volume: 342 start-page: 124 issue: 1–2 year: 2007 ident: D4SM01222D/cit91/1 publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2007.05.028 – volume: 220 start-page: 119396 year: 2019 ident: D4SM01222D/cit161/1 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.119396 – ident: D4SM01222D/cit227/1 – volume: 19 start-page: 991 issue: 3 year: 2018 ident: D4SM01222D/cit64/1 publication-title: AAPS PharmSciTech doi: 10.1208/s12249-017-0906-y – volume: 46 start-page: 236 issue: 2 year: 2020 ident: D4SM01222D/cit119/1 publication-title: Drug Dev. Ind. Pharm. doi: 10.1080/03639045.2020.1716374 – volume: 318 start-page: 111223 year: 2022 ident: D4SM01222D/cit75/1 publication-title: Plant Sci. doi: 10.1016/j.plantsci.2022.111223 – volume: 13 start-page: 1412 issue: 9 year: 2021 ident: D4SM01222D/cit60/1 publication-title: Pharmaceutics doi: 10.3390/pharmaceutics13091412 – volume: 14 start-page: 291 issue: 2 year: 2022 ident: D4SM01222D/cit190/1 publication-title: Pharmaceutics doi: 10.3390/pharmaceutics14020291 – volume: 418 start-page: 13 issue: 1 year: 2011 ident: D4SM01222D/cit104/1 publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2010.10.037 – ident: D4SM01222D/cit230/1 – volume: 48 start-page: 6280 issue: 17 year: 2015 ident: D4SM01222D/cit95/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.5b00791 – volume: 117 start-page: 3001 year: 2010 ident: D4SM01222D/cit131/1 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.32259 – volume: 17 start-page: 513 issue: 2 year: 2018 ident: D4SM01222D/cit238/1 publication-title: Iran. J. Pharm. Res. – ident: D4SM01222D/cit234/1 – volume: 6 start-page: 1122 issue: 12 year: 2014 ident: D4SM01222D/cit170/1 publication-title: Integr. Biol. doi: 10.1039/c4ib00157e – volume: 14 start-page: 910 issue: 4 year: 2016 ident: D4SM01222D/cit150/1 publication-title: Arch. Med. Sci. – volume: 15 start-page: 4859 year: 2020 ident: D4SM01222D/cit31/1 publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S245170 – volume: 108 start-page: 477 year: 2018 ident: D4SM01222D/cit111/1 publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.12.041 – volume: 116 start-page: 1152 issue: 5 year: 2019 ident: D4SM01222D/cit182/1 publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.26902 – volume: 58 start-page: 130 issue: 3 year: 2008 ident: D4SM01222D/cit3/1 publication-title: Ca-Cancer J. Clin. doi: 10.3322/CA.2007.0018 – volume: 89 start-page: 246 issue: 3 year: 2022 ident: D4SM01222D/cit5/1 publication-title: J. Nippon Med. Sch. doi: 10.1272/jnms.JNMS.2022_89-310 – volume: 13 start-page: 1225 year: 2018 ident: D4SM01222D/cit22/1 publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S157566 – volume: 5 start-page: 659 issue: 4 year: 2018 ident: D4SM01222D/cit165/1 publication-title: Cell. Mol. Gastroenterol. Hepatol. doi: 10.1016/j.jcmgh.2017.12.010 – volume: 5 start-page: 469 issue: 3 year: 2010 ident: D4SM01222D/cit168/1 publication-title: Nanomedicine doi: 10.2217/nnm.10.12 – volume: 332 start-page: 115 issue: 1–2 year: 2007 ident: D4SM01222D/cit90/1 publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2006.09.038 – volume: 119 start-page: 361 year: 2017 ident: D4SM01222D/cit40/1 publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2017.07.004 – volume: 80 start-page: 67 issue: 1 year: 2012 ident: D4SM01222D/cit136/1 publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2011.08.002 – start-page: 949 volume-title: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) year: 2015 ident: D4SM01222D/cit85/1 doi: 10.1109/EMBC.2015.7318520 – volume: 63 start-page: 741 issue: 5 year: 1996 ident: D4SM01222D/cit8/1 publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/63.5.741 – ident: D4SM01222D/cit205/1 – volume: 43 start-page: 1312 issue: 5 year: 2010 ident: D4SM01222D/cit58/1 publication-title: Food Res. Int. doi: 10.1016/j.foodres.2010.03.017 – volume: 72 start-page: 3883 issue: 20 year: 2015 ident: D4SM01222D/cit176/1 publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-015-1975-2 – ident: D4SM01222D/cit193/1 – ident: D4SM01222D/cit208/1 – volume: 85 start-page: 578 issue: 3 year: 2013 ident: D4SM01222D/cit53/1 publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2013.09.016 – volume: 535 start-page: 56 issue: 7610 year: 2016 ident: D4SM01222D/cit70/1 publication-title: Nature doi: 10.1038/nature18846 – volume: 19 start-page: 4 issue: 1 year: 2017 ident: D4SM01222D/cit185/1 publication-title: Biomed. Microdevices doi: 10.1007/s10544-016-0143-2 – volume: 19 start-page: 139 year: 2023 ident: D4SM01222D/cit98/1 publication-title: Beilstein J. Org. Chem. doi: 10.3762/bjoc.19.14 – volume: 35 start-page: 491 issue: 7 year: 2002 ident: D4SM01222D/cit164/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar010110q – volume: 24 start-page: 3188 issue: 4 year: 2023 ident: D4SM01222D/cit17/1 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms24043188 – ident: D4SM01222D/cit207/1 – volume: 113 start-page: 11414 issue: 41 year: 2016 ident: D4SM01222D/cit178/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1601306113 – volume: 346 start-page: 128900 year: 2021 ident: D4SM01222D/cit240/1 publication-title: Food Chem. doi: 10.1016/j.foodchem.2020.128900 – volume: 15 start-page: 18794 issue: 12 year: 2021 ident: D4SM01222D/cit41/1 publication-title: ACS Nano doi: 10.1021/acsnano.1c07121 – volume: 4 start-page: 100027 year: 2019 ident: D4SM01222D/cit180/1 publication-title: Mater. Today Bio doi: 10.1016/j.mtbio.2019.100027 – volume: 10 start-page: 4039 issue: 1 year: 2019 ident: D4SM01222D/cit81/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12066-z – volume: 162 start-page: 105812 year: 2021 ident: D4SM01222D/cit16/1 publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2021.105812 – volume: 70 start-page: 124 issue: 1 year: 2022 ident: D4SM01222D/cit46/1 publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.1c05580 – volume: 10 start-page: 1043117 year: 2022 ident: D4SM01222D/cit148/1 publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2022.1043117 – volume: 58 start-page: 1274 issue: 12–13 year: 2006 ident: D4SM01222D/cit97/1 publication-title: Adv. Drug Delivery Rev. doi: 10.1016/j.addr.2006.09.007 – ident: D4SM01222D/cit211/1 – volume: 233 start-page: 123585 year: 2023 ident: D4SM01222D/cit133/1 publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2023.123585 – volume: 12 start-page: 760 issue: 8 year: 2020 ident: D4SM01222D/cit114/1 publication-title: Pharmaceutics doi: 10.3390/pharmaceutics12080760 – volume: 107 start-page: 234 issue: 2 year: 2011 ident: D4SM01222D/cit137/1 publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2011.04.004 – volume: 110 start-page: 50 issue: 1 year: 2021 ident: D4SM01222D/cit146/1 publication-title: J. Pharm. Sci. doi: 10.1016/j.xphs.2020.07.001 – volume: 10 start-page: 41185 issue: 48 year: 2018 ident: D4SM01222D/cit171/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b17410 – ident: D4SM01222D/cit206/1 – volume: 21 start-page: 943 issue: 8 year: 1995 ident: D4SM01222D/cit112/1 publication-title: Drug Dev. Ind. Pharm. doi: 10.3109/03639049509026658 – volume: 277 start-page: 134204 year: 2024 ident: D4SM01222D/cit44/1 publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2024.134204 – ident: D4SM01222D/cit225/1 – volume: 2 start-page: 77 year: 2011 ident: D4SM01222D/cit108/1 publication-title: Int. J. Pharm. Stud. Res. – volume: 223 start-page: 52 year: 2012 ident: D4SM01222D/cit113/1 publication-title: Powder Technol. doi: 10.1016/j.powtec.2011.04.023 – volume: 10 start-page: 146 issue: 1 year: 2005 ident: D4SM01222D/cit15/1 publication-title: Molecules doi: 10.3390/10010146 – volume: 16 start-page: 1405 year: 2021 ident: D4SM01222D/cit26/1 publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S291090 – volume: 185 start-page: 103961 year: 2023 ident: D4SM01222D/cit123/1 publication-title: Crit. Rev. Oncol. Hematol. doi: 10.1016/j.critrevonc.2023.103961 – volume: 4 start-page: 845 issue: 7 year: 2019 ident: D4SM01222D/cit144/1 publication-title: JACC Basic Transl. Sci. doi: 10.1016/j.jacbts.2019.10.008 – volume: 363 start-page: 142826 year: 2024 ident: D4SM01222D/cit18/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2024.142826 – ident: D4SM01222D/cit235/1 – volume: 7 start-page: 583 year: 2023 ident: D4SM01222D/cit83/1 publication-title: IEEE Control Syst. Lett. doi: 10.1109/LCSYS.2022.3204627 – volume: 104 start-page: 245 year: 2013 ident: D4SM01222D/cit39/1 publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2012.11.031 – volume: 55 start-page: 1185 issue: 9 year: 2003 ident: D4SM01222D/cit99/1 publication-title: Adv. Drug Delivery Rev. doi: 10.1016/S0169-409X(03)00118-2 – volume: 117 start-page: 556 issue: 2 year: 2020 ident: D4SM01222D/cit177/1 publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.27186 – volume: 25 start-page: 7379 issue: 13 year: 2024 ident: D4SM01222D/cit72/1 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms25137379 – start-page: 47 volume-title: Tissue Engineering I year: 2006 ident: D4SM01222D/cit14/1 doi: 10.1007/b137240 – volume: 552 start-page: 186 year: 2019 ident: D4SM01222D/cit121/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.05.037 – ident: D4SM01222D/cit220/1 – ident: D4SM01222D/cit226/1 – volume: 67 start-page: 217 issue: 3 year: 2010 ident: D4SM01222D/cit102/1 publication-title: Acta Pol. Pharm. – volume: 168 start-page: 32 year: 2017 ident: D4SM01222D/cit66/1 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2017.03.033 – volume: 192 start-page: 106652 year: 2024 ident: D4SM01222D/cit134/1 publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2023.106652 – volume: 9 start-page: 153 issue: 4 year: 2020 ident: D4SM01222D/cit50/1 publication-title: Prog. Biomater. doi: 10.1007/s40204-020-00139-y – volume: 20 start-page: 331 issue: 4 year: 2012 ident: D4SM01222D/cit140/1 publication-title: Saudi Pharm. J. doi: 10.1016/j.jsps.2012.03.005 – volume: 42 start-page: 1782 issue: 11 year: 2016 ident: D4SM01222D/cit239/1 publication-title: Drug Dev. Ind. Pharm. doi: 10.3109/03639045.2016.1173052 – volume: 32 start-page: 10 year: 2016 ident: D4SM01222D/cit29/1 publication-title: J. Drug Delivery Sci. Technol. doi: 10.1016/j.jddst.2016.01.007 – start-page: 95 volume-title: Microbiota of the Human Body year: 2016 ident: D4SM01222D/cit68/1 doi: 10.1007/978-3-319-31248-4_7 – volume: 126 start-page: 1611 issue: 6 year: 2004 ident: D4SM01222D/cit13/1 publication-title: Gastroenterology doi: 10.1053/j.gastro.2004.03.063 – volume: 69 start-page: 631 issue: 4 year: 2007 ident: D4SM01222D/cit94/1 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2007.01.020 – volume: 115 start-page: 119 year: 2018 ident: D4SM01222D/cit25/1 publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2017.12.009 – volume: 13 start-page: 123 issue: 2 year: 2001 ident: D4SM01222D/cit107/1 publication-title: Eur. J. Pharm. Sci. doi: 10.1016/S0928-0987(01)00095-1 – ident: D4SM01222D/cit210/1 – volume: 72 start-page: 7 issue: 1 year: 2022 ident: D4SM01222D/cit1/1 publication-title: Ca-Cancer J. Clin. doi: 10.3322/caac.21708 – ident: D4SM01222D/cit216/1 – volume: 59 start-page: 491 issue: 5 year: 1996 ident: D4SM01222D/cit141/1 publication-title: Clin. Pharmacol. Ther. doi: 10.1016/S0009-9236(96)90177-0 |
SSID | ssj0038416 |
Score | 2.4642975 |
SecondaryResourceType | review_article |
Snippet | In recent years, nano and micro drug delivery systems targeting the colon have gained more attention due to increasing interest in treating colon diseases such... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 792 |
SubjectTerms | Administration, Oral Animals Bioavailability Biocompatibility Biodegradation Cell Line, Tumor Colitis, Ulcerative - drug therapy Colon Colon - drug effects Colon cancer Colonic Neoplasms - drug therapy Colorectal carcinoma Controlled release Crohn's disease Drug Carriers - chemistry Drug delivery Drug delivery systems Drug Delivery Systems - instrumentation Drug Delivery Systems - methods Drug Industry Drug Screening Assays, Antitumor Gastrointestinal system Gastrointestinal tract Humans Hydrogen-Ion Concentration In vitro methods and tests In vivo methods and tests Inflammatory bowel diseases Inflammatory Bowel Diseases - drug therapy Intestine Mathematical models Mice Microfluidics Microparticles Oral administration Polymers Polymers - chemistry Sustained release Time dependence Toxicity Transit time Ulcerative colitis |
Title | Advanced polymeric systems for colon drug delivery: from experimental models to market applications |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39801430 https://www.proquest.com/docview/3160721311 https://www.proquest.com/docview/3154889656 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegExIvCAaDwJiMgKfKI4mdD_NWrZ0G6obEUqlvkRM7aNKWVG36AH89Zztf1faw7SWK3MSNfL9c7nx3v0PoSx6IWNI8ILRQnLC8yAhXXBFfMS-KoowKU8V_fhGeLdjPZbDse2ya6pI6O87_3VlX8hipwhjIVVfJPkCy3aQwAOcgXziChOF4LxlP2gD-qrr-a5PiLTOzIVkYa0LqcizX2z9jqa51AoahdzIVJTvM_qYdjqF6uDFF0ONhWHtovl6C0oZr6kFO7wloidWVaeDdJx_OBbjxudipdNAlCdXqqtrZQJ1-9aPJdm0zdn8PtyB8ne1Hmn0KqzUjxkgYW8rMY3XHWKNqbTF0A6lgoDcj2xDvlj53qaZDlWxzo0OAvuy_Wm2k_uJXerqYz9Nktkyeoj0_AhNqhPYms-THvP0kUx1btZWx9planlrKv_Vz71omt9wNMD7WbVMYY3wkL9GLxmvAEwuBV-iJKvfRM5O9m29eo7wFAu6AgBsgYAACNkDAGgi4BcJ3rGGAhzDAFga4rrCFAR7C4A1anM6SkzPSdM8guc_DmmQyjoXQbEhR6GV6b8lVPItFDk6i5DJzhRe6SoRxwBQL4REjyYV0qQCLjyq_oAdoVFaleodwqEQB9wmPScYYvL_KdVURCDB7FBNe5qDP7cqlK0uSkprkBsrTKbs8N-s7ddBhu6hp8xJtUqoJDn3N-eSgT93PoOJ03EqUqtrqa8Ctjjl4Hg56a4XR_Q3lmv6Iug46AOl0w71U399j2g_oeQ_rQzSq11v1EWzNOjtqkPQfcdWDDQ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+polymeric+systems+for+colon+drug+delivery%3A+from+experimental+models+to+market+applications&rft.jtitle=Soft+matter&rft.au=Crispino%2C+R&rft.au=Lagreca%2C+E&rft.au=Procopio%2C+A&rft.au=D%27Auria%2C+R&rft.date=2025-01-29&rft.issn=1744-6848&rft.eissn=1744-6848&rft.volume=21&rft.issue=5&rft.spage=792&rft_id=info:doi/10.1039%2Fd4sm01222d&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-683X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-683X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-683X&client=summon |