Advanced polymeric systems for colon drug delivery: from experimental models to market applications

In recent years, nano and micro drug delivery systems targeting the colon have gained more attention due to increasing interest in treating colon diseases such as colorectal cancer and inflammatory bowel disease, i.e. , Crohn's disease and ulcerative colitis. Usually, nanocarriers are exploited...

Full description

Saved in:
Bibliographic Details
Published inSoft matter Vol. 21; no. 5; pp. 792 - 818
Main Authors Crispino, R, Lagreca, E, Procopio, A, D'Auria, R, Corrado, B, La Manna, S, Onesto, V, Di Natale, C
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 29.01.2025
Subjects
Online AccessGet full text
ISSN1744-683X
1744-6848
1744-6848
DOI10.1039/d4sm01222d

Cover

Abstract In recent years, nano and micro drug delivery systems targeting the colon have gained more attention due to increasing interest in treating colon diseases such as colorectal cancer and inflammatory bowel disease, i.e. , Crohn's disease and ulcerative colitis. Usually, nanocarriers are exploited for their enhanced permeability properties, allowing higher penetration effects and bioavailability, while microcarriers are primarily used for localized and sustained release. In bowel diseases, carriers must go into a delicate environment with a strict balance of gut bacteria ( e.g. , colon), and natural or biodegradable polymers capable of ensuring lower toxicity are preferred. However, these systems are primarily delivered orally, so the carrier must go through the whole gastrointestinal tract, where it encounters significant pH fluctuations, different mucus layers, several enzymes, and a long transit time. For this reason, various approaches have been explored and evaluated, especially using pH-responsive and time-dependent systems. This review provides an overview of the contemporary methodologies employed in orally administered nano- and microparticles for colon delivery, encompassing both in vivo and in vitro investigations. It evaluates their strengths, weaknesses, constraints, and potential enhancements, leveraging mathematical and microfluidic models. Furthermore, it focuses explicitly on systems that have already reached the market and are presently employed in treating severe colon diseases. A diagram illustrating various nano- and micro-particle systems for colon treatment, emphasizing their biocompatibility, controlled drug release, anti-inflammatory action, and high target specificity. Created using https://BioRender.com .
AbstractList In recent years, nano and micro drug delivery systems targeting the colon have gained more attention due to increasing interest in treating colon diseases such as colorectal cancer and inflammatory bowel disease, i.e. , Crohn's disease and ulcerative colitis. Usually, nanocarriers are exploited for their enhanced permeability properties, allowing higher penetration effects and bioavailability, while microcarriers are primarily used for localized and sustained release. In bowel diseases, carriers must go into a delicate environment with a strict balance of gut bacteria ( e.g. , colon), and natural or biodegradable polymers capable of ensuring lower toxicity are preferred. However, these systems are primarily delivered orally, so the carrier must go through the whole gastrointestinal tract, where it encounters significant pH fluctuations, different mucus layers, several enzymes, and a long transit time. For this reason, various approaches have been explored and evaluated, especially using pH-responsive and time-dependent systems. This review provides an overview of the contemporary methodologies employed in orally administered nano- and microparticles for colon delivery, encompassing both in vivo and in vitro investigations. It evaluates their strengths, weaknesses, constraints, and potential enhancements, leveraging mathematical and microfluidic models. Furthermore, it focuses explicitly on systems that have already reached the market and are presently employed in treating severe colon diseases.
In recent years, nano and micro drug delivery systems targeting the colon have gained more attention due to increasing interest in treating colon diseases such as colorectal cancer and inflammatory bowel disease, i.e., Crohn's disease and ulcerative colitis. Usually, nanocarriers are exploited for their enhanced permeability properties, allowing higher penetration effects and bioavailability, while microcarriers are primarily used for localized and sustained release. In bowel diseases, carriers must go into a delicate environment with a strict balance of gut bacteria (e.g., colon), and natural or biodegradable polymers capable of ensuring lower toxicity are preferred. However, these systems are primarily delivered orally, so the carrier must go through the whole gastrointestinal tract, where it encounters significant pH fluctuations, different mucus layers, several enzymes, and a long transit time. For this reason, various approaches have been explored and evaluated, especially using pH-responsive and time-dependent systems. This review provides an overview of the contemporary methodologies employed in orally administered nano- and microparticles for colon delivery, encompassing both in vivo and in vitro investigations. It evaluates their strengths, weaknesses, constraints, and potential enhancements, leveraging mathematical and microfluidic models. Furthermore, it focuses explicitly on systems that have already reached the market and are presently employed in treating severe colon diseases.
In recent years, nano and micro drug delivery systems targeting the colon have gained more attention due to increasing interest in treating colon diseases such as colorectal cancer and inflammatory bowel disease, i.e. , Crohn's disease and ulcerative colitis. Usually, nanocarriers are exploited for their enhanced permeability properties, allowing higher penetration effects and bioavailability, while microcarriers are primarily used for localized and sustained release. In bowel diseases, carriers must go into a delicate environment with a strict balance of gut bacteria ( e.g. , colon), and natural or biodegradable polymers capable of ensuring lower toxicity are preferred. However, these systems are primarily delivered orally, so the carrier must go through the whole gastrointestinal tract, where it encounters significant pH fluctuations, different mucus layers, several enzymes, and a long transit time. For this reason, various approaches have been explored and evaluated, especially using pH-responsive and time-dependent systems. This review provides an overview of the contemporary methodologies employed in orally administered nano- and microparticles for colon delivery, encompassing both in vivo and in vitro investigations. It evaluates their strengths, weaknesses, constraints, and potential enhancements, leveraging mathematical and microfluidic models. Furthermore, it focuses explicitly on systems that have already reached the market and are presently employed in treating severe colon diseases. A diagram illustrating various nano- and micro-particle systems for colon treatment, emphasizing their biocompatibility, controlled drug release, anti-inflammatory action, and high target specificity. Created using https://BioRender.com .
In recent years, nano and micro drug delivery systems targeting the colon have gained more attention due to increasing interest in treating colon diseases such as colorectal cancer and inflammatory bowel disease, , Crohn's disease and ulcerative colitis. Usually, nanocarriers are exploited for their enhanced permeability properties, allowing higher penetration effects and bioavailability, while microcarriers are primarily used for localized and sustained release. In bowel diseases, carriers must go into a delicate environment with a strict balance of gut bacteria ( , colon), and natural or biodegradable polymers capable of ensuring lower toxicity are preferred. However, these systems are primarily delivered orally, so the carrier must go through the whole gastrointestinal tract, where it encounters significant pH fluctuations, different mucus layers, several enzymes, and a long transit time. For this reason, various approaches have been explored and evaluated, especially using pH-responsive and time-dependent systems. This review provides an overview of the contemporary methodologies employed in orally administered nano- and microparticles for colon delivery, encompassing both and investigations. It evaluates their strengths, weaknesses, constraints, and potential enhancements, leveraging mathematical and microfluidic models. Furthermore, it focuses explicitly on systems that have already reached the market and are presently employed in treating severe colon diseases.
In recent years, nano and micro drug delivery systems targeting the colon have gained more attention due to increasing interest in treating colon diseases such as colorectal cancer and inflammatory bowel disease, i.e., Crohn's disease and ulcerative colitis. Usually, nanocarriers are exploited for their enhanced permeability properties, allowing higher penetration effects and bioavailability, while microcarriers are primarily used for localized and sustained release. In bowel diseases, carriers must go into a delicate environment with a strict balance of gut bacteria (e.g., colon), and natural or biodegradable polymers capable of ensuring lower toxicity are preferred. However, these systems are primarily delivered orally, so the carrier must go through the whole gastrointestinal tract, where it encounters significant pH fluctuations, different mucus layers, several enzymes, and a long transit time. For this reason, various approaches have been explored and evaluated, especially using pH-responsive and time-dependent systems. This review provides an overview of the contemporary methodologies employed in orally administered nano- and microparticles for colon delivery, encompassing both in vivo and in vitro investigations. It evaluates their strengths, weaknesses, constraints, and potential enhancements, leveraging mathematical and microfluidic models. Furthermore, it focuses explicitly on systems that have already reached the market and are presently employed in treating severe colon diseases.In recent years, nano and micro drug delivery systems targeting the colon have gained more attention due to increasing interest in treating colon diseases such as colorectal cancer and inflammatory bowel disease, i.e., Crohn's disease and ulcerative colitis. Usually, nanocarriers are exploited for their enhanced permeability properties, allowing higher penetration effects and bioavailability, while microcarriers are primarily used for localized and sustained release. In bowel diseases, carriers must go into a delicate environment with a strict balance of gut bacteria (e.g., colon), and natural or biodegradable polymers capable of ensuring lower toxicity are preferred. However, these systems are primarily delivered orally, so the carrier must go through the whole gastrointestinal tract, where it encounters significant pH fluctuations, different mucus layers, several enzymes, and a long transit time. For this reason, various approaches have been explored and evaluated, especially using pH-responsive and time-dependent systems. This review provides an overview of the contemporary methodologies employed in orally administered nano- and microparticles for colon delivery, encompassing both in vivo and in vitro investigations. It evaluates their strengths, weaknesses, constraints, and potential enhancements, leveraging mathematical and microfluidic models. Furthermore, it focuses explicitly on systems that have already reached the market and are presently employed in treating severe colon diseases.
Author La Manna, S
Crispino, R
Corrado, B
Procopio, A
Lagreca, E
D'Auria, R
Di Natale, C
Onesto, V
AuthorAffiliation University "Magna Graecia" of Catanzaro
Interdisciplinary Research Centre on Biomaterials (CRIB)
Department of Experimental and Clinical Medicine
Istituto Italiano di Tecnologia
Department of Chemical Materials and Industrial Production (DICMaPI)
Department of Pharmacy
University of Naples Federico II
Center for Advanced Biomaterials for Health Care (CABHC)
AuthorAffiliation_xml – name: Istituto Italiano di Tecnologia
– name: Department of Chemical Materials and Industrial Production (DICMaPI)
– name: University of Naples Federico II
– name: Department of Experimental and Clinical Medicine
– name: University "Magna Graecia" of Catanzaro
– name: Department of Pharmacy
– name: Center for Advanced Biomaterials for Health Care (CABHC)
– name: Interdisciplinary Research Centre on Biomaterials (CRIB)
Author_xml – sequence: 1
  givenname: R
  surname: Crispino
  fullname: Crispino, R
– sequence: 2
  givenname: E
  surname: Lagreca
  fullname: Lagreca, E
– sequence: 3
  givenname: A
  surname: Procopio
  fullname: Procopio, A
– sequence: 4
  givenname: R
  surname: D'Auria
  fullname: D'Auria, R
– sequence: 5
  givenname: B
  surname: Corrado
  fullname: Corrado, B
– sequence: 6
  givenname: S
  surname: La Manna
  fullname: La Manna, S
– sequence: 7
  givenname: V
  surname: Onesto
  fullname: Onesto, V
– sequence: 8
  givenname: C
  surname: Di Natale
  fullname: Di Natale, C
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39801430$$D View this record in MEDLINE/PubMed
BookMark eNpd0c9L7DAQB_Agir8v3pWAl4ewmmmyaept0fdUUDyo4K2kyVSqTVOTVt7-90ZXV_CUgXwYZua7RVY73yEhe8COgfHixIroGGRZZlfIJuRCTKQSanVZ88cNshXjM2NcCZDrZIMXioHgbJOYmX3TnUFLe9_OHYbG0DiPA7pIax-o8a3vqA3jE7XYNm8Y5qe0Dt5R_N8n7bAbdEudT7-RDp46HV5woLrv28boofFd3CFrtW4j7n692-Th39_7s8vJ9e3F1dnsemKyQg6TyiqlNeQgcwkVFCpnWFRKG86kLWzFNEiGWqqpQCHTyLkttGVcQyY4ZjXfJn8WffvgX0eMQ-maaLBtdYd-jCWHqVCqkFOZ6OEv-uzH0KXpkpIsz4ADJHXwpcbKoS37tK8O8_L7fAkcLYAJPsaA9ZIAKz-yKc_F3c1nNucJ7y9wiGbpfrLj7wOZiyQ
Cites_doi 10.3390/polym16182606
10.1016/j.colsurfb.2018.05.012
10.1016/j.cherd.2016.02.006
10.1016/j.jpha.2018.12.001
10.1111/cas.14532
10.1016/j.carbpol.2014.03.056
10.1007/s12257-021-0268-x
10.1038/gt.2016.60
10.1016/j.msec.2017.03.049
10.3390/ijms24065441
10.1039/c3ib40126j
10.1053/j.gastro.2017.05.055
10.1016/j.jddst.2018.05.025
10.1016/j.jconrel.2016.05.004
10.3389/fbioe.2021.660691
10.1016/j.nano.2004.11.009
10.1021/acs.biomac.0c00045
10.1186/s13020-021-00449-8
10.1016/B978-0-12-815799-2.00003-4
10.1021/acsabm.3c00218
10.1016/j.carbpol.2017.03.082
10.1039/c2lc40074j
10.1007/s13346-021-00908-7
10.3389/fbioe.2020.00163
10.1080/10601325.2024.2400510
10.1007/s13399-022-03313-3
10.1039/C7RA01028A
10.1016/j.matchemphys.2011.11.046
10.1016/j.ijpharm.2007.12.037
10.1016/j.xphs.2019.02.001
10.1039/C5RA02672E
10.1111/j.1751-1097.2011.00915.x
10.1016/j.physbeh.2020.113004
10.1053/j.gastro.2011.10.001
10.3390/polym9040137
10.1080/03639045.2017.1291672
10.1016/j.carbpol.2017.11.110
10.1016/j.tips.2021.08.005
10.1007/s40005-022-00572-0
10.1021/acs.chemrev.5b00346
10.1016/j.ijbiomac.2022.08.102
10.1016/j.jconrel.2021.05.028
10.1177/2041731420965318
10.1002/adfm.201904216
10.7150/thno.41225
10.1111/1541-4337.12660
10.1039/C0LC00273A
10.1016/j.jconrel.2023.07.018
10.1016/j.jconrel.2014.03.053
10.1016/j.biomaterials.2009.08.046
10.3390/jpm12050673
10.3390/inventions3030065
10.3390/pharmaceutics14040872
10.1002/adma.201606596
10.1016/j.drudis.2015.03.002
10.1007/s10565-005-0085-6
10.1016/j.colsurfb.2015.07.081
10.1016/j.tiv.2020.104815
10.1098/rsob.210333
10.4103/0250-474X.57303
10.3389/fbioe.2020.00992
10.1016/j.jddst.2018.10.031
10.3389/fphar.2021.618411
10.1016/j.jconrel.2014.06.041
10.3390/pharmaceutics10040263
10.1146/annurev-chembioeng-073009-100847
10.1016/j.mbs.2016.11.010
10.1080/21691401.2021.1907393
10.1163/156856208786140382
10.1016/j.ijbiomac.2024.135102
10.1016/j.foodchem.2017.06.110
10.1016/j.actbio.2019.08.041
10.1016/j.biomaterials.2007.01.005
10.1007/s00216-010-3992-1
10.1016/j.jconrel.2022.12.029
10.1016/j.ijpharm.2017.03.044
10.1016/j.jcmgh.2021.08.015
10.1016/j.ijpharm.2014.07.009
10.1016/j.foodchem.2024.138634
10.1001/jamaoncol.2023.5098
10.1016/j.jddst.2022.103556
10.1016/j.copbio.2011.05.512
10.1016/j.ynstr.2023.100572
10.1016/B978-0-12-814330-8.00004-4
10.1258/jrsm.2008.08k033
10.1016/j.colsurfa.2022.129998
10.1186/s12885-020-06803-7
10.1007/s12272-020-01219-0
10.3109/10611869808997888
10.1016/j.colsurfa.2021.127321
10.1208/s12249-021-01954-7
10.1016/S0140-6736(07)60751-X
10.1016/j.ijpharm.2021.120836
10.1016/j.carbpol.2016.04.041
10.1021/acs.macromol.0c00346
10.1111/jfbc.14386
10.1007/s10439-020-02568-z
10.1039/b717091b
10.1039/D0TB02279A
10.2147/CLEP.S33961
10.3390/pharmaceutics15020484
10.3390/ma13081807
10.1007/s10544-017-0179-y
10.1016/j.tcb.2011.09.005
10.1016/j.ijpharm.2020.119266
10.3322/caac.21660
10.1136/gutjnl-2012-303661
10.3389/fmolb.2020.00033
10.1007/s10544-021-00591-y
10.1109/MetroXRAINE54828.2022.9967446
10.1038/s41467-020-18456-y
10.1186/s12967-024-05662-1
10.1007/978-3-031-58094-9_68
10.1007/s10482-020-01474-7
10.1053/j.gastro.2012.07.090
10.3390/nu10091304
10.1016/j.jddst.2021.102580
10.1016/j.ijpharm.2008.09.004
10.1016/j.ijpharm.2007.05.028
10.1016/j.biomaterials.2019.119396
10.1208/s12249-017-0906-y
10.1080/03639045.2020.1716374
10.1016/j.plantsci.2022.111223
10.3390/pharmaceutics13091412
10.3390/pharmaceutics14020291
10.1016/j.ijpharm.2010.10.037
10.1021/acs.macromol.5b00791
10.1002/app.32259
10.1039/c4ib00157e
10.2147/IJN.S245170
10.1016/j.ijbiomac.2017.12.041
10.1002/bit.26902
10.3322/CA.2007.0018
10.1272/jnms.JNMS.2022_89-310
10.2147/IJN.S157566
10.1016/j.jcmgh.2017.12.010
10.2217/nnm.10.12
10.1016/j.ijpharm.2006.09.038
10.1016/j.ejpb.2017.07.004
10.1016/j.ejpb.2011.08.002
10.1109/EMBC.2015.7318520
10.1093/ajcn/63.5.741
10.1016/j.foodres.2010.03.017
10.1007/s00018-015-1975-2
10.1016/j.ejpb.2013.09.016
10.1038/nature18846
10.1007/s10544-016-0143-2
10.3762/bjoc.19.14
10.1021/ar010110q
10.3390/ijms24043188
10.1073/pnas.1601306113
10.1016/j.foodchem.2020.128900
10.1021/acsnano.1c07121
10.1016/j.mtbio.2019.100027
10.1038/s41467-019-12066-z
10.1016/j.ejps.2021.105812
10.1021/acs.jafc.1c05580
10.3389/fcell.2022.1043117
10.1016/j.addr.2006.09.007
10.1016/j.ijbiomac.2023.123585
10.3390/pharmaceutics12080760
10.1016/j.chemolab.2011.04.004
10.1016/j.xphs.2020.07.001
10.1021/acsami.8b17410
10.3109/03639049509026658
10.1016/j.ijbiomac.2024.134204
10.1016/j.powtec.2011.04.023
10.3390/10010146
10.2147/IJN.S291090
10.1016/j.critrevonc.2023.103961
10.1016/j.jacbts.2019.10.008
10.1016/j.chemosphere.2024.142826
10.1109/LCSYS.2022.3204627
10.1016/j.colsurfb.2012.11.031
10.1016/S0169-409X(03)00118-2
10.1002/bit.27186
10.3390/ijms25137379
10.1007/b137240
10.1016/j.jcis.2019.05.037
10.1016/j.carbpol.2017.03.033
10.1016/j.ejps.2023.106652
10.1007/s40204-020-00139-y
10.1016/j.jsps.2012.03.005
10.3109/03639045.2016.1173052
10.1016/j.jddst.2016.01.007
10.1007/978-3-319-31248-4_7
10.1053/j.gastro.2004.03.063
10.1016/j.carbpol.2007.01.020
10.1016/j.ejps.2017.12.009
10.1016/S0928-0987(01)00095-1
10.3322/caac.21708
10.1016/S0009-9236(96)90177-0
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2025
Copyright_xml – notice: Copyright Royal Society of Chemistry 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1039/d4sm01222d
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1744-6848
EndPage 818
ExternalDocumentID 39801430
10_1039_D4SM01222D
d4sm01222d
Genre Journal Article
Review
GroupedDBID 0-7
0R~
123
4.4
705
70~
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACPRK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AZFZN
BLAPV
BSQNT
C6K
CS3
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
J3I
KZ1
L-8
N9A
O9-
P2P
R7B
RAOCF
RCNCU
RNS
RPMJG
RSCEA
SKA
SLH
VH6
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c296t-bd88aa1716761b19870e9b8ac306d9db0a160ea6854e46ced7d9ad03a1243e2f3
ISSN 1744-683X
1744-6848
IngestDate Fri Jul 11 00:49:02 EDT 2025
Mon Jun 30 12:01:50 EDT 2025
Thu Aug 28 04:45:59 EDT 2025
Tue Jul 01 04:21:59 EDT 2025
Tue May 27 12:02:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c296t-bd88aa1716761b19870e9b8ac306d9db0a160ea6854e46ced7d9ad03a1243e2f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0009-0008-4600-4142
PMID 39801430
PQID 3160721311
PQPubID 2047495
PageCount 27
ParticipantIDs pubmed_primary_39801430
crossref_primary_10_1039_D4SM01222D
proquest_miscellaneous_3154889656
rsc_primary_d4sm01222d
proquest_journals_3160721311
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-29
PublicationDateYYYYMMDD 2025-01-29
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-29
  day: 29
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Soft matter
PublicationTitleAlternate Soft Matter
PublicationYear 2025
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Di Natale (D4SM01222D/cit52/1) 2020; 13
Wang (D4SM01222D/cit167/1) 2009; 30
Huh (D4SM01222D/cit179/1) 2011; 21
Kim (D4SM01222D/cit95/1) 2015; 48
D4SM01222D/cit210/1
D4SM01222D/cit233/1
Xiang (D4SM01222D/cit154/1) 2020; 11
Cao (D4SM01222D/cit236/1) 2021; 42
Levin (D4SM01222D/cit3/1) 2008; 58
D4SM01222D/cit197/1
Chen (D4SM01222D/cit55/1) 2018; 169
Baumgart (D4SM01222D/cit10/1) 2007; 369
Webb (D4SM01222D/cit186/1) 2020; 582
Stummer (D4SM01222D/cit58/1) 2010; 43
(D4SM01222D/cit201/1) 2021
Du (D4SM01222D/cit72/1) 2024; 25
Agarwal (D4SM01222D/cit162/1) 2020; 11
Ray (D4SM01222D/cit105/1) 2008; 19
Fedi (D4SM01222D/cit151/1) 2021; 335
D4SM01222D/cit221/1
Pimenta (D4SM01222D/cit155/1) 2022; 13
D4SM01222D/cit229/1
Peppas (D4SM01222D/cit88/1) 2014; 190
Kim (D4SM01222D/cit96/1) 2020; 53
D4SM01222D/cit206/1
Kim (D4SM01222D/cit170/1) 2014; 6
D4SM01222D/cit208/1
Costa (D4SM01222D/cit137/1) 2011; 107
McCoubrey (D4SM01222D/cit188/1) 2023; 353
de Oliveira Cardoso (D4SM01222D/cit132/1) 2021; 628
Sebe (D4SM01222D/cit106/1) 2017; 523
Larson (D4SM01222D/cit13/1) 2004; 126
Bravo-Osuna (D4SM01222D/cit34/1) 2007; 28
Rizwan (D4SM01222D/cit63/1) 2017; 9
Yang (D4SM01222D/cit142/1) 2017; 29
Wen (D4SM01222D/cit92/1) 2017; 169
Singh (D4SM01222D/cit94/1) 2007; 69
Singhvi (D4SM01222D/cit108/1) 2011; 2
Lou (D4SM01222D/cit187/1) 2023; 15
Wang (D4SM01222D/cit131/1) 2010; 117
D4SM01222D/cit211/1
Mandracchia (D4SM01222D/cit76/1) 2018; 181
Fois (D4SM01222D/cit157/1) 2021; 23
D4SM01222D/cit234/1
Politis (D4SM01222D/cit128/1) 2017; 43
D4SM01222D/cit219/1
Shoda (D4SM01222D/cit8/1) 1996; 63
D4SM01222D/cit196/1
Largitte (D4SM01222D/cit109/1) 2016; 109
Vinarov (D4SM01222D/cit16/1) 2021; 162
Thummel (D4SM01222D/cit141/1) 1996; 59
Bhanja (D4SM01222D/cit74/1) 2022; 46
Melero (D4SM01222D/cit40/1) 2017; 119
Vilaça (D4SM01222D/cit115/1) 2017; 7
Nguyen (D4SM01222D/cit138/1) 2023; 6
Prata (D4SM01222D/cit49/1) 2015; 116
Quagliariello (D4SM01222D/cit30/1) 2018; 10
De Gregorio (D4SM01222D/cit184/1) 2020; 8
Mulye (D4SM01222D/cit112/1) 1995; 21
D4SM01222D/cit222/1
Xiao (D4SM01222D/cit57/1) 2015; 135
D4SM01222D/cit207/1
Vecchione (D4SM01222D/cit32/1) 2016; 233
D4SM01222D/cit209/1
Molodecky (D4SM01222D/cit12/1) 2012; 142
Corrado (D4SM01222D/cit182/1) 2019; 116
Kim (D4SM01222D/cit171/1) 2018; 10
Wu (D4SM01222D/cit27/1) 2020; 20
Di Natale (D4SM01222D/cit48/1) 2021; 9
Park (D4SM01222D/cit15/1) 2005; 10
Liu (D4SM01222D/cit90/1) 2007; 332
Coombes (D4SM01222D/cit114/1) 2020; 12
Sambuy (D4SM01222D/cit147/1) 2005; 21
Arifin (D4SM01222D/cit97/1) 2006; 58
Akl (D4SM01222D/cit29/1) 2016; 32
Costa (D4SM01222D/cit107/1) 2001; 13
D4SM01222D/cit212/1
D4SM01222D/cit235/1
Kulthong (D4SM01222D/cit156/1) 2020; 65
Liang (D4SM01222D/cit28/1) 2016; 23
Rajasree (D4SM01222D/cit23/1) 2018; 46
D4SM01222D/cit199/1
Kim (D4SM01222D/cit160/1) 2013; 5
Li (D4SM01222D/cit44/1) 2024; 277
Crispino (D4SM01222D/cit61/1) 2024
Da Silva (D4SM01222D/cit51/1) 2023; 24
Bayat (D4SM01222D/cit37/1) 2008; 356
Jensen (D4SM01222D/cit145/1) 2020; 7
Zhong (D4SM01222D/cit218/1) 2018; 10
Anselmo (D4SM01222D/cit192/1) 2014; 190
D4SM01222D/cit200/1
D4SM01222D/cit223/1
Procopio (D4SM01222D/cit84/1) 2022
Martínez (D4SM01222D/cit120/1) 2022; 220
Hughes (D4SM01222D/cit100/1) 2005; 1
Procopio (D4SM01222D/cit93/1) 2022; 14
Siepmann (D4SM01222D/cit89/1) 2008; 364
Fan (D4SM01222D/cit19/1) 2024; 22
Ng (D4SM01222D/cit11/1) 2013; 62
Blondy (D4SM01222D/cit6/1) 2020; 111
Oshi (D4SM01222D/cit60/1) 2021; 13
Pedersen (D4SM01222D/cit86/1) 2017; 283
Nicolucci (D4SM01222D/cit73/1) 2017; 153
Summer (D4SM01222D/cit18/1) 2024; 363
Beg (D4SM01222D/cit127/1) 2019
Inamdar (D4SM01222D/cit181/1) 2011; 22
Zhou (D4SM01222D/cit54/1) 2019; 108
Gangopadhyay (D4SM01222D/cit189/1) 2022; 74
Sung (D4SM01222D/cit173/1) 2011; 11
Apriyanto (D4SM01222D/cit75/1) 2022; 318
Mahdi (D4SM01222D/cit135/1) 2021; 22
D4SM01222D/cit213/1
Malekjani (D4SM01222D/cit101/1) 2021; 20
Sibilio (D4SM01222D/cit180/1) 2019; 4
D4SM01222D/cit198/1
Mladenovska (D4SM01222D/cit91/1) 2007; 342
Shroff (D4SM01222D/cit183/1) 2022; 12
McDonald (D4SM01222D/cit164/1) 2002; 35
Paul (D4SM01222D/cit104/1) 2011; 418
Saraf (D4SM01222D/cit21/1) 2021; 64
Capeletti (D4SM01222D/cit80/1) 2019; 29
Lautenschläger (D4SM01222D/cit53/1) 2013; 85
D4SM01222D/cit224/1
Xiao (D4SM01222D/cit56/1) 2015; 135
Liang (D4SM01222D/cit46/1) 2022; 70
Jain (D4SM01222D/cit67/1) 2007; 10
Choe (D4SM01222D/cit185/1) 2017; 19
Torino (D4SM01222D/cit153/1) 2018; 3
Sharifi (D4SM01222D/cit38/1) 2021; 49
Kim (D4SM01222D/cit169/1) 2020; 10
Rudzinski (D4SM01222D/cit36/1) 2016; 147
Smitha (D4SM01222D/cit39/1) 2013; 104
Baptista (D4SM01222D/cit148/1) 2022; 10
Zhang (D4SM01222D/cit59/1) 2021; 16
Kapałczyńska (D4SM01222D/cit150/1) 2016; 14
Dash (D4SM01222D/cit102/1) 2010; 67
Nors (D4SM01222D/cit7/1) 2024; 10
Agüero (D4SM01222D/cit66/1) 2017; 168
Bein (D4SM01222D/cit165/1) 2018; 5
García (D4SM01222D/cit190/1) 2022; 14
Abbasi (D4SM01222D/cit133/1) 2023; 233
Siegel (D4SM01222D/cit1/1) 2022; 72
Gao (D4SM01222D/cit26/1) 2021; 16
Alghamdi (D4SM01222D/cit243/1) 2022; 12
Nicolas (D4SM01222D/cit174/1) 2020; 21
D4SM01222D/cit214/1
Kimura (D4SM01222D/cit166/1) 2008; 8
Feng (D4SM01222D/cit121/1) 2019; 552
Bhattacharya (D4SM01222D/cit123/1) 2023; 185
D4SM01222D/cit193/1
Liechty (D4SM01222D/cit62/1) 2010; 1
Sonnenburg (D4SM01222D/cit70/1) 2016; 535
Prezotti (D4SM01222D/cit119/1) 2020; 46
Gommers (D4SM01222D/cit172/1) 2019; 99
Procopio (D4SM01222D/cit82/1) 2021; 49
Hafez Abdellatif (D4SM01222D/cit238/1) 2018; 17
Liu (D4SM01222D/cit45/1) 2024; 444
Lozoya-Agullo (D4SM01222D/cit25/1) 2018; 115
Di Natale (D4SM01222D/cit47/1) 2021; 9
D4SM01222D/cit225/1
Lee (D4SM01222D/cit163/1) 2022; 27
D4SM01222D/cit202/1
Maurer (D4SM01222D/cit161/1) 2019; 220
Kassem (D4SM01222D/cit134/1) 2024; 192
Dandagi (D4SM01222D/cit129/1) 2009; 71
Kim (D4SM01222D/cit159/1) 2012; 12
Beloqui (D4SM01222D/cit20/1) 2014; 473
Mu (D4SM01222D/cit81/1) 2019; 10
Shim (D4SM01222D/cit158/1) 2017; 19
Kučuk (D4SM01222D/cit17/1) 2023; 24
Quagliariello (D4SM01222D/cit31/1) 2020; 15
Sharma (D4SM01222D/cit43/1) 2024; 61
Yamashita (D4SM01222D/cit99/1) 2003; 55
Long (D4SM01222D/cit9/1) 2013
Naeem (D4SM01222D/cit22/1) 2018; 13
Harmsen (D4SM01222D/cit68/1) 2016
D4SM01222D/cit230/1
Montefusco (D4SM01222D/cit83/1) 2023; 7
D4SM01222D/cit215/1
Wabuyele (D4SM01222D/cit242/1) 2010; 398
Cassidy (D4SM01222D/cit130/1) 2011; 87
Ghadi (D4SM01222D/cit35/1) 2014; 5
Costa Lima (D4SM01222D/cit87/1) 2017; 75
Du (D4SM01222D/cit124/1) 2015; 20
Van Norman (D4SM01222D/cit144/1) 2019; 4
Mennini (D4SM01222D/cit136/1) 2012; 80
Kim (D4SM01222D/cit149/1) 2016; 114
D4SM01222D/cit226/1
Chen (D4SM01222D/cit42/1) 2024; 279
Cui (D4SM01222D/cit152/1) 2019; 9
Yang (D4SM01222D/cit65/1) 2024; 16
Le Guen (D4SM01222D/cit176/1) 2015; 72
Lagreca (D4SM01222D/cit50/1) 2020; 9
Cresci (D4SM01222D/cit69/1) 2019
Gomaa (D4SM01222D/cit71/1) 2020; 113
Sung (D4SM01222D/cit2/1) 2021; 71
Bracken (D4SM01222D/cit143/1) 2009; 102
Cai (D4SM01222D/cit24/1) 2021; 606
Kimura-Todani (D4SM01222D/cit78/1) 2020; 223
Yuan (D4SM01222D/cit41/1) 2021; 15
D4SM01222D/cit231/1
Aw (D4SM01222D/cit113/1) 2012; 223
Lagreca (D4SM01222D/cit33/1) 2022; 654
D4SM01222D/cit216/1
Plaza-Oliver (D4SM01222D/cit237/1) 2021; 11
Shinji (D4SM01222D/cit5/1) 2022; 89
Turanlı (D4SM01222D/cit117/1) 2019; 49
Alqahtani (D4SM01222D/cit139/1) 2021; 12
Singh (D4SM01222D/cit111/1) 2018; 108
Das (D4SM01222D/cit103/1) 2015; 5
(D4SM01222D/cit195/1) 2017
D4SM01222D/cit227/1
D4SM01222D/cit204/1
(D4SM01222D/cit203/1) 2023
Cremer (D4SM01222D/cit178/1) 2016; 113
Richfield (D4SM01222D/cit126/1) 2023; 360
Hashim (D4SM01222D/cit241/1) 2022; 14
Youhanna (D4SM01222D/cit146/1) 2021; 110
Woraphatphadung (D4SM01222D/cit64/1) 2018; 19
Ye (D4SM01222D/cit240/1) 2021; 346
D4SM01222D/cit232/1
Lertpairod (D4SM01222D/cit118/1) 2022; 52
Sawlekar (D4SM01222D/cit85/1) 2015
DeLeon (D4SM01222D/cit110/1) 2012; 132
Kinget (D4SM01222D/cit191/1) 1998; 6
Permanadewi (D4SM01222D/cit116/1) 2019; 1295
D4SM01222D/cit217/1
Darling (D4SM01222D/cit175/1) 2020; 8
Naeem (D4SM01222D/cit122/1) 2020; 43
Ashwar (D4SM01222D/cit79/1) 2018; 239
D4SM01222D/cit194/1
Robertson (D4SM01222D/cit4/1) 2012; 143
Tanelian (D4SM01222D/cit77/1) 2023; 27
Ünal (D4SM01222D/cit98/1) 2023; 19
Abdellatif (D4SM01222D/cit239/1) 2016; 42
Kamaly (D4SM01222D/cit125/1) 2016; 116
Gavhane (D4SM01222D/cit140/1) 2012; 20
De Gregorio (D4SM01222D/cit177/1) 2020; 117
D4SM01222D/cit220/1
Geckil (D4SM01222D/cit168/1) 2010; 5
D4SM01222D/cit205/1
D4SM01222D/cit228/1
Nair (D4SM01222D/cit14/1) 2006
References_xml – issn: 2006
  volume-title: Polymers as Biomaterials for Tissue Engineering and Controlled Drug Delivery
  end-page: p 47-90
  publication-title: Tissue Engineering I
  doi: Nair Laurencin
– issn: 2022
  volume-title: , A combined simulation and machine learning approach to classify severity of infarction patients
  end-page: p 283-288
  publication-title: 2022 IEEE International Conference on Metrology for Extended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE)
  doi: Procopio Cesarelli De Rosa Donisi Critelli Merola
– issn: 2015
  volume-title: Biomolecular implementation of a quasi sliding mode feedback controller based on DNA strand displacement reactions
  end-page: p 949-952
  publication-title: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
  doi: Sawlekar Montefusco Kulkarni Bates
– issn: 2023
– issn: 2019
  volume-title: Application of Design of Experiments (DoE) in Pharmaceutical Product and Process Optimization
  end-page: p 43-64
  publication-title: Pharmaceutical Quality by Design
  doi: Beg Swain Rahman Hasnain Imam
– issn: 2024
  volume-title: Polymeric Soft Micro-Robots Propelled into a Microfluidic Device for Gut Target Delivery Studies
  end-page: p 610-622
  publication-title: Design Tools and Methods in Industrial Engineering III
  doi: Crispino Corrado Vecchione Netti
– issn: 2017
– issn: 2021
– issn: 2016
  volume-title: The Human Gut Microbiota
  end-page: p 95-108
  publication-title: Microbiota of the Human Body
  doi: Harmsen De Goffau Marcus
– issn: 2019
  volume-title: Gut Microbiome
  end-page: p 45-54
  publication-title: Adult Short Bowel Syndrome
  doi: Cresci Izzo
– volume: 16
  start-page: 2606
  issue: 18
  year: 2024
  ident: D4SM01222D/cit65/1
  publication-title: Polymers
  doi: 10.3390/polym16182606
– volume: 169
  start-page: 92
  year: 2018
  ident: D4SM01222D/cit55/1
  publication-title: Colloids Surf., B
  doi: 10.1016/j.colsurfb.2018.05.012
– volume: 109
  start-page: 495
  year: 2016
  ident: D4SM01222D/cit109/1
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2016.02.006
– volume: 9
  start-page: 238
  issue: 4
  year: 2019
  ident: D4SM01222D/cit152/1
  publication-title: J. Pharm. Anal.
  doi: 10.1016/j.jpha.2018.12.001
– volume: 111
  start-page: 3142
  issue: 9
  year: 2020
  ident: D4SM01222D/cit6/1
  publication-title: Cancer Sci.
  doi: 10.1111/cas.14532
– volume: 116
  start-page: 292
  year: 2015
  ident: D4SM01222D/cit49/1
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2014.03.056
– volume: 27
  start-page: 221
  issue: 2
  year: 2022
  ident: D4SM01222D/cit163/1
  publication-title: Biotechnol. Bioprocess Eng.
  doi: 10.1007/s12257-021-0268-x
– ident: D4SM01222D/cit194/1
– volume: 23
  start-page: 829
  issue: 12
  year: 2016
  ident: D4SM01222D/cit28/1
  publication-title: Gene Ther.
  doi: 10.1038/gt.2016.60
– volume: 75
  start-page: 1420
  year: 2017
  ident: D4SM01222D/cit87/1
  publication-title: Mater. Sci. Eng., C
  doi: 10.1016/j.msec.2017.03.049
– volume: 24
  start-page: 5441
  issue: 6
  year: 2023
  ident: D4SM01222D/cit51/1
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms24065441
– volume: 5
  start-page: 1130
  issue: 9
  year: 2013
  ident: D4SM01222D/cit160/1
  publication-title: Integr. Biol.
  doi: 10.1039/c3ib40126j
– volume: 153
  start-page: 711
  issue: 3
  year: 2017
  ident: D4SM01222D/cit73/1
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2017.05.055
– ident: D4SM01222D/cit231/1
– volume: 46
  start-page: 302
  year: 2018
  ident: D4SM01222D/cit23/1
  publication-title: J. Drug Delivery Sci. Technol.
  doi: 10.1016/j.jddst.2018.05.025
– volume: 233
  start-page: 88
  year: 2016
  ident: D4SM01222D/cit32/1
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2016.05.004
– volume: 9
  start-page: 660691
  year: 2021
  ident: D4SM01222D/cit48/1
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2021.660691
– ident: D4SM01222D/cit200/1
– ident: D4SM01222D/cit214/1
– volume: 1
  start-page: 22
  issue: 1
  year: 2005
  ident: D4SM01222D/cit100/1
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2004.11.009
– volume: 21
  start-page: 1968
  issue: 6
  year: 2020
  ident: D4SM01222D/cit174/1
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.0c00045
– ident: D4SM01222D/cit228/1
– volume: 16
  start-page: 92
  issue: 1
  year: 2021
  ident: D4SM01222D/cit59/1
  publication-title: Chin. Med.
  doi: 10.1186/s13020-021-00449-8
– start-page: 43
  volume-title: Pharmaceutical Quality by Design
  year: 2019
  ident: D4SM01222D/cit127/1
  doi: 10.1016/B978-0-12-815799-2.00003-4
– volume: 5
  start-page: 156
  issue: 3
  year: 2014
  ident: D4SM01222D/cit35/1
  publication-title: Caspian J. Intern. Med.
– ident: D4SM01222D/cit233/1
– volume: 6
  start-page: 2725
  issue: 7
  year: 2023
  ident: D4SM01222D/cit138/1
  publication-title: ACS Appl. Bio Mater.
  doi: 10.1021/acsabm.3c00218
– volume: 169
  start-page: 157
  year: 2017
  ident: D4SM01222D/cit92/1
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2017.03.082
– volume: 12
  start-page: 2165
  issue: 12
  year: 2012
  ident: D4SM01222D/cit159/1
  publication-title: Lab Chip
  doi: 10.1039/c2lc40074j
– volume: 114
  start-page: 54344
  year: 2016
  ident: D4SM01222D/cit149/1
  publication-title: J. Visualized Exp.
– volume: 11
  start-page: 471
  issue: 2
  year: 2021
  ident: D4SM01222D/cit237/1
  publication-title: Drug Delivery Transl. Res.
  doi: 10.1007/s13346-021-00908-7
– volume: 8
  start-page: 163
  year: 2020
  ident: D4SM01222D/cit184/1
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.00163
– volume: 61
  start-page: 977
  issue: 10
  year: 2024
  ident: D4SM01222D/cit43/1
  publication-title: J. Macromol. Sci., Part A: Pure Appl. Chem.
  doi: 10.1080/10601325.2024.2400510
– volume: 14
  start-page: 13233
  year: 2022
  ident: D4SM01222D/cit241/1
  publication-title: Biomass Convers. Biorefin.
  doi: 10.1007/s13399-022-03313-3
– volume: 7
  start-page: 13104
  issue: 22
  year: 2017
  ident: D4SM01222D/cit115/1
  publication-title: RSC Adv.
  doi: 10.1039/C7RA01028A
– volume: 132
  start-page: 409
  issue: 2–3
  year: 2012
  ident: D4SM01222D/cit110/1
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2011.11.046
– volume: 356
  start-page: 259
  issue: 1–2
  year: 2008
  ident: D4SM01222D/cit37/1
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2007.12.037
– volume: 108
  start-page: 2238
  issue: 7
  year: 2019
  ident: D4SM01222D/cit54/1
  publication-title: J. Pharm. Sci.
  doi: 10.1016/j.xphs.2019.02.001
– ident: D4SM01222D/cit212/1
– volume: 5
  start-page: 27481
  issue: 35
  year: 2015
  ident: D4SM01222D/cit103/1
  publication-title: RSC Adv.
  doi: 10.1039/C5RA02672E
– volume: 87
  start-page: 867
  issue: 4
  year: 2011
  ident: D4SM01222D/cit130/1
  publication-title: Photochem. Photobiol.
  doi: 10.1111/j.1751-1097.2011.00915.x
– volume: 223
  start-page: 113004
  year: 2020
  ident: D4SM01222D/cit78/1
  publication-title: Physiol. Behav.
  doi: 10.1016/j.physbeh.2020.113004
– volume: 142
  start-page: 46
  issue: 1
  year: 2012
  ident: D4SM01222D/cit12/1
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2011.10.001
– volume: 9
  start-page: 137
  issue: 4
  year: 2017
  ident: D4SM01222D/cit63/1
  publication-title: Polymers
  doi: 10.3390/polym9040137
– volume: 43
  start-page: 889
  issue: 6
  year: 2017
  ident: D4SM01222D/cit128/1
  publication-title: Drug Dev. Ind. Pharm.
  doi: 10.1080/03639045.2017.1291672
– volume: 181
  start-page: 570
  year: 2018
  ident: D4SM01222D/cit76/1
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2017.11.110
– volume: 42
  start-page: 957
  issue: 11
  year: 2021
  ident: D4SM01222D/cit236/1
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2021.08.005
– volume: 52
  start-page: 387
  issue: 3
  year: 2022
  ident: D4SM01222D/cit118/1
  publication-title: J. Pharm. Invest.
  doi: 10.1007/s40005-022-00572-0
– volume: 116
  start-page: 2602
  issue: 4
  year: 2016
  ident: D4SM01222D/cit125/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00346
– volume: 1295
  start-page: 012063
  issue: 1
  year: 2019
  ident: D4SM01222D/cit116/1
  publication-title: J. Phys.: Conf. Ser.
– volume: 220
  start-page: 802
  year: 2022
  ident: D4SM01222D/cit120/1
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2022.08.102
– ident: D4SM01222D/cit202/1
– volume: 335
  start-page: 247
  year: 2021
  ident: D4SM01222D/cit151/1
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2021.05.028
– volume: 11
  start-page: 204173142096531
  year: 2020
  ident: D4SM01222D/cit154/1
  publication-title: J. Tissue Eng.
  doi: 10.1177/2041731420965318
– ident: D4SM01222D/cit196/1
– volume: 29
  start-page: 1904216
  issue: 48
  year: 2019
  ident: D4SM01222D/cit80/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201904216
– volume: 10
  start-page: 2495
  issue: 6
  year: 2020
  ident: D4SM01222D/cit169/1
  publication-title: Theranostics
  doi: 10.7150/thno.41225
– ident: D4SM01222D/cit224/1
– ident: D4SM01222D/cit221/1
– volume: 20
  start-page: 3
  issue: 1
  year: 2021
  ident: D4SM01222D/cit101/1
  publication-title: Compr. Rev. Food Sci. Food Saf.
  doi: 10.1111/1541-4337.12660
– volume: 11
  start-page: 389
  issue: 3
  year: 2011
  ident: D4SM01222D/cit173/1
  publication-title: Lab Chip
  doi: 10.1039/C0LC00273A
– volume: 360
  start-page: 772
  year: 2023
  ident: D4SM01222D/cit126/1
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2023.07.018
– ident: D4SM01222D/cit199/1
– ident: D4SM01222D/cit223/1
– volume: 190
  start-page: 15
  year: 2014
  ident: D4SM01222D/cit192/1
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2014.03.053
– year: 2023
  ident: D4SM01222D/cit203/1
– volume: 30
  start-page: 6825
  issue: 36
  year: 2009
  ident: D4SM01222D/cit167/1
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.08.046
– volume: 12
  start-page: 673
  issue: 5
  year: 2022
  ident: D4SM01222D/cit243/1
  publication-title: J. Pers. Med.
  doi: 10.3390/jpm12050673
– volume: 3
  start-page: 65
  issue: 3
  year: 2018
  ident: D4SM01222D/cit153/1
  publication-title: Inventions
  doi: 10.3390/inventions3030065
– volume: 14
  start-page: 872
  issue: 4
  year: 2022
  ident: D4SM01222D/cit93/1
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics14040872
– volume: 29
  start-page: 1606596
  issue: 37
  year: 2017
  ident: D4SM01222D/cit142/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606596
– volume: 20
  start-page: 1004
  issue: 8
  year: 2015
  ident: D4SM01222D/cit124/1
  publication-title: Drug Discovery Today
  doi: 10.1016/j.drudis.2015.03.002
– volume: 10
  start-page: 86
  issue: 1
  year: 2007
  ident: D4SM01222D/cit67/1
  publication-title: J. Pharm. Pharm. Sci.
– volume: 21
  start-page: 1
  issue: 1
  year: 2005
  ident: D4SM01222D/cit147/1
  publication-title: Cell Biol. Toxicol.
  doi: 10.1007/s10565-005-0085-6
– volume: 135
  start-page: 379
  year: 2015
  ident: D4SM01222D/cit57/1
  publication-title: Colloids Surf., B
  doi: 10.1016/j.colsurfb.2015.07.081
– volume: 65
  start-page: 104815
  year: 2020
  ident: D4SM01222D/cit156/1
  publication-title: Toxicol. In Vitro
  doi: 10.1016/j.tiv.2020.104815
– volume: 12
  start-page: 210333
  issue: 3
  year: 2022
  ident: D4SM01222D/cit183/1
  publication-title: Open Biol.
  doi: 10.1098/rsob.210333
– ident: D4SM01222D/cit209/1
– volume: 71
  start-page: 464
  issue: 4
  year: 2009
  ident: D4SM01222D/cit129/1
  publication-title: Indian J. Pharm. Sci.
  doi: 10.4103/0250-474X.57303
– ident: D4SM01222D/cit222/1
– volume: 8
  start-page: 992
  year: 2020
  ident: D4SM01222D/cit175/1
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.00992
– volume: 49
  start-page: 58
  year: 2019
  ident: D4SM01222D/cit117/1
  publication-title: J. Drug Delivery Sci. Technol.
  doi: 10.1016/j.jddst.2018.10.031
– volume: 12
  start-page: 618411
  year: 2021
  ident: D4SM01222D/cit139/1
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2021.618411
– volume: 190
  start-page: 75
  year: 2014
  ident: D4SM01222D/cit88/1
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2014.06.041
– volume: 10
  start-page: 263
  issue: 4
  year: 2018
  ident: D4SM01222D/cit218/1
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics10040263
– year: 2021
  ident: D4SM01222D/cit201/1
– volume: 1
  start-page: 149
  issue: 1
  year: 2010
  ident: D4SM01222D/cit62/1
  publication-title: Annu. Rev. Chem. Biomol. Eng.
  doi: 10.1146/annurev-chembioeng-073009-100847
– volume: 283
  start-page: 60
  year: 2017
  ident: D4SM01222D/cit86/1
  publication-title: Math. Biosci.
  doi: 10.1016/j.mbs.2016.11.010
– year: 2017
  ident: D4SM01222D/cit195/1
– volume: 49
  start-page: 367
  issue: 1
  year: 2021
  ident: D4SM01222D/cit38/1
  publication-title: Artif. Cells, Nanomed., Biotechnol.
  doi: 10.1080/21691401.2021.1907393
– volume: 19
  start-page: 1487
  issue: 11
  year: 2008
  ident: D4SM01222D/cit105/1
  publication-title: J. Biomater. Sci., Polym. Ed.
  doi: 10.1163/156856208786140382
– volume: 279
  start-page: 135102
  year: 2024
  ident: D4SM01222D/cit42/1
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2024.135102
– volume: 239
  start-page: 287
  year: 2018
  ident: D4SM01222D/cit79/1
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2017.06.110
– volume: 99
  start-page: 110
  year: 2019
  ident: D4SM01222D/cit172/1
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2019.08.041
– volume: 28
  start-page: 2233
  issue: 13
  year: 2007
  ident: D4SM01222D/cit34/1
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.01.005
– ident: D4SM01222D/cit197/1
– ident: D4SM01222D/cit204/1
– volume: 398
  start-page: 729
  issue: 2
  year: 2010
  ident: D4SM01222D/cit242/1
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-010-3992-1
– volume: 135
  start-page: 379
  year: 2015
  ident: D4SM01222D/cit56/1
  publication-title: Colloids Surf., B
  doi: 10.1016/j.colsurfb.2015.07.081
– volume: 353
  start-page: 1107
  year: 2023
  ident: D4SM01222D/cit188/1
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2022.12.029
– volume: 523
  start-page: 151
  issue: 1
  year: 2017
  ident: D4SM01222D/cit106/1
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2017.03.044
– volume: 13
  start-page: 351
  issue: 2
  year: 2022
  ident: D4SM01222D/cit155/1
  publication-title: Cell. Mol. Gastroenterol. Hepatol.
  doi: 10.1016/j.jcmgh.2021.08.015
– volume: 473
  start-page: 203
  issue: 1–2
  year: 2014
  ident: D4SM01222D/cit20/1
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2014.07.009
– volume: 444
  start-page: 138634
  year: 2024
  ident: D4SM01222D/cit45/1
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2024.138634
– ident: D4SM01222D/cit198/1
– volume: 10
  start-page: 54
  issue: 1
  year: 2024
  ident: D4SM01222D/cit7/1
  publication-title: JAMA Oncol.
  doi: 10.1001/jamaoncol.2023.5098
– volume: 74
  start-page: 103556
  year: 2022
  ident: D4SM01222D/cit189/1
  publication-title: J. Drug Delivery Sci. Technol.
  doi: 10.1016/j.jddst.2022.103556
– volume: 22
  start-page: 681
  issue: 5
  year: 2011
  ident: D4SM01222D/cit181/1
  publication-title: Curr. Opin. Biotechnol
  doi: 10.1016/j.copbio.2011.05.512
– volume: 27
  start-page: 100572
  year: 2023
  ident: D4SM01222D/cit77/1
  publication-title: Neurobiol. Stress
  doi: 10.1016/j.ynstr.2023.100572
– start-page: 45
  volume-title: Adult Short Bowel Syndrome
  year: 2019
  ident: D4SM01222D/cit69/1
  doi: 10.1016/B978-0-12-814330-8.00004-4
– volume: 102
  start-page: 120
  issue: 3
  year: 2009
  ident: D4SM01222D/cit143/1
  publication-title: J. R. Soc. Med.
  doi: 10.1258/jrsm.2008.08k033
– volume: 654
  start-page: 129998
  year: 2022
  ident: D4SM01222D/cit33/1
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2022.129998
– volume: 20
  start-page: 354
  issue: 1
  year: 2020
  ident: D4SM01222D/cit27/1
  publication-title: BMC Cancer
  doi: 10.1186/s12885-020-06803-7
– ident: D4SM01222D/cit219/1
– volume: 43
  start-page: 153
  issue: 1
  year: 2020
  ident: D4SM01222D/cit122/1
  publication-title: Arch. Pharmacal Res.
  doi: 10.1007/s12272-020-01219-0
– volume: 6
  start-page: 129
  issue: 2
  year: 1998
  ident: D4SM01222D/cit191/1
  publication-title: J. Drug Targeting
  doi: 10.3109/10611869808997888
– ident: D4SM01222D/cit213/1
– volume: 628
  start-page: 127321
  year: 2021
  ident: D4SM01222D/cit132/1
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2021.127321
– volume: 22
  start-page: 80
  issue: 3
  year: 2021
  ident: D4SM01222D/cit135/1
  publication-title: AAPS PharmSciTech
  doi: 10.1208/s12249-021-01954-7
– volume: 369
  start-page: 1641
  issue: 9573
  year: 2007
  ident: D4SM01222D/cit10/1
  publication-title: Lancet
  doi: 10.1016/S0140-6736(07)60751-X
– ident: D4SM01222D/cit232/1
– volume: 606
  start-page: 120836
  year: 2021
  ident: D4SM01222D/cit24/1
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2021.120836
– volume: 147
  start-page: 323
  year: 2016
  ident: D4SM01222D/cit36/1
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2016.04.041
– volume: 53
  start-page: 7561
  issue: 17
  year: 2020
  ident: D4SM01222D/cit96/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.0c00346
– volume: 46
  start-page: 14386
  year: 2022
  ident: D4SM01222D/cit74/1
  publication-title: J. Food Biochem.
  doi: 10.1111/jfbc.14386
– volume: 49
  start-page: 477
  issue: 1
  year: 2021
  ident: D4SM01222D/cit82/1
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-020-02568-z
– ident: D4SM01222D/cit215/1
– volume: 8
  start-page: 741
  issue: 5
  year: 2008
  ident: D4SM01222D/cit166/1
  publication-title: Lab Chip
  doi: 10.1039/b717091b
– volume: 9
  start-page: 392
  issue: 2
  year: 2021
  ident: D4SM01222D/cit47/1
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D0TB02279A
– start-page: 237
  year: 2013
  ident: D4SM01222D/cit9/1
  publication-title: Clin. Epidemiol.
  doi: 10.2147/CLEP.S33961
– volume: 15
  start-page: 484
  issue: 2
  year: 2023
  ident: D4SM01222D/cit187/1
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics15020484
– ident: D4SM01222D/cit229/1
– volume: 13
  start-page: 1807
  issue: 8
  year: 2020
  ident: D4SM01222D/cit52/1
  publication-title: Materials
  doi: 10.3390/ma13081807
– volume: 19
  start-page: 37
  issue: 2
  year: 2017
  ident: D4SM01222D/cit158/1
  publication-title: Biomed. Microdevices
  doi: 10.1007/s10544-017-0179-y
– volume: 21
  start-page: 745
  issue: 12
  year: 2011
  ident: D4SM01222D/cit179/1
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2011.09.005
– volume: 582
  start-page: 119266
  year: 2020
  ident: D4SM01222D/cit186/1
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2020.119266
– volume: 71
  start-page: 209
  issue: 3
  year: 2021
  ident: D4SM01222D/cit2/1
  publication-title: Ca-Cancer J. Clin.
  doi: 10.3322/caac.21660
– volume: 62
  start-page: 630
  issue: 4
  year: 2013
  ident: D4SM01222D/cit11/1
  publication-title: Gut
  doi: 10.1136/gutjnl-2012-303661
– volume: 7
  start-page: 33
  year: 2020
  ident: D4SM01222D/cit145/1
  publication-title: Front. Mol. Biosci.
  doi: 10.3389/fmolb.2020.00033
– volume: 23
  start-page: 55
  issue: 4
  year: 2021
  ident: D4SM01222D/cit157/1
  publication-title: Biomed. Microdevices
  doi: 10.1007/s10544-021-00591-y
– ident: D4SM01222D/cit217/1
– start-page: 283
  volume-title: 2022 IEEE International Conference on Metrology for Extended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE)
  year: 2022
  ident: D4SM01222D/cit84/1
  doi: 10.1109/MetroXRAINE54828.2022.9967446
– volume: 11
  start-page: 4714
  issue: 1
  year: 2020
  ident: D4SM01222D/cit162/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18456-y
– volume: 22
  start-page: 878
  issue: 1
  year: 2024
  ident: D4SM01222D/cit19/1
  publication-title: J. Transl. Med.
  doi: 10.1186/s12967-024-05662-1
– start-page: 610
  volume-title: Design Tools and Methods in Industrial Engineering III
  year: 2024
  ident: D4SM01222D/cit61/1
  doi: 10.1007/978-3-031-58094-9_68
– volume: 113
  start-page: 2019
  issue: 12
  year: 2020
  ident: D4SM01222D/cit71/1
  publication-title: Antonie van Leeuwenhoek
  doi: 10.1007/s10482-020-01474-7
– volume: 143
  start-page: 868
  issue: 3
  year: 2012
  ident: D4SM01222D/cit4/1
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2012.07.090
– volume: 10
  start-page: 1304
  issue: 9
  year: 2018
  ident: D4SM01222D/cit30/1
  publication-title: Nutrients
  doi: 10.3390/nu10091304
– volume: 64
  start-page: 102580
  year: 2021
  ident: D4SM01222D/cit21/1
  publication-title: J. Drug Delivery Sci. Technol.
  doi: 10.1016/j.jddst.2021.102580
– volume: 364
  start-page: 328
  issue: 2
  year: 2008
  ident: D4SM01222D/cit89/1
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2008.09.004
– volume: 342
  start-page: 124
  issue: 1–2
  year: 2007
  ident: D4SM01222D/cit91/1
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2007.05.028
– volume: 220
  start-page: 119396
  year: 2019
  ident: D4SM01222D/cit161/1
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.119396
– ident: D4SM01222D/cit227/1
– volume: 19
  start-page: 991
  issue: 3
  year: 2018
  ident: D4SM01222D/cit64/1
  publication-title: AAPS PharmSciTech
  doi: 10.1208/s12249-017-0906-y
– volume: 46
  start-page: 236
  issue: 2
  year: 2020
  ident: D4SM01222D/cit119/1
  publication-title: Drug Dev. Ind. Pharm.
  doi: 10.1080/03639045.2020.1716374
– volume: 318
  start-page: 111223
  year: 2022
  ident: D4SM01222D/cit75/1
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2022.111223
– volume: 13
  start-page: 1412
  issue: 9
  year: 2021
  ident: D4SM01222D/cit60/1
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics13091412
– volume: 14
  start-page: 291
  issue: 2
  year: 2022
  ident: D4SM01222D/cit190/1
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics14020291
– volume: 418
  start-page: 13
  issue: 1
  year: 2011
  ident: D4SM01222D/cit104/1
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2010.10.037
– ident: D4SM01222D/cit230/1
– volume: 48
  start-page: 6280
  issue: 17
  year: 2015
  ident: D4SM01222D/cit95/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.5b00791
– volume: 117
  start-page: 3001
  year: 2010
  ident: D4SM01222D/cit131/1
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.32259
– volume: 17
  start-page: 513
  issue: 2
  year: 2018
  ident: D4SM01222D/cit238/1
  publication-title: Iran. J. Pharm. Res.
– ident: D4SM01222D/cit234/1
– volume: 6
  start-page: 1122
  issue: 12
  year: 2014
  ident: D4SM01222D/cit170/1
  publication-title: Integr. Biol.
  doi: 10.1039/c4ib00157e
– volume: 14
  start-page: 910
  issue: 4
  year: 2016
  ident: D4SM01222D/cit150/1
  publication-title: Arch. Med. Sci.
– volume: 15
  start-page: 4859
  year: 2020
  ident: D4SM01222D/cit31/1
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S245170
– volume: 108
  start-page: 477
  year: 2018
  ident: D4SM01222D/cit111/1
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2017.12.041
– volume: 116
  start-page: 1152
  issue: 5
  year: 2019
  ident: D4SM01222D/cit182/1
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.26902
– volume: 58
  start-page: 130
  issue: 3
  year: 2008
  ident: D4SM01222D/cit3/1
  publication-title: Ca-Cancer J. Clin.
  doi: 10.3322/CA.2007.0018
– volume: 89
  start-page: 246
  issue: 3
  year: 2022
  ident: D4SM01222D/cit5/1
  publication-title: J. Nippon Med. Sch.
  doi: 10.1272/jnms.JNMS.2022_89-310
– volume: 13
  start-page: 1225
  year: 2018
  ident: D4SM01222D/cit22/1
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S157566
– volume: 5
  start-page: 659
  issue: 4
  year: 2018
  ident: D4SM01222D/cit165/1
  publication-title: Cell. Mol. Gastroenterol. Hepatol.
  doi: 10.1016/j.jcmgh.2017.12.010
– volume: 5
  start-page: 469
  issue: 3
  year: 2010
  ident: D4SM01222D/cit168/1
  publication-title: Nanomedicine
  doi: 10.2217/nnm.10.12
– volume: 332
  start-page: 115
  issue: 1–2
  year: 2007
  ident: D4SM01222D/cit90/1
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2006.09.038
– volume: 119
  start-page: 361
  year: 2017
  ident: D4SM01222D/cit40/1
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2017.07.004
– volume: 80
  start-page: 67
  issue: 1
  year: 2012
  ident: D4SM01222D/cit136/1
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2011.08.002
– start-page: 949
  volume-title: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
  year: 2015
  ident: D4SM01222D/cit85/1
  doi: 10.1109/EMBC.2015.7318520
– volume: 63
  start-page: 741
  issue: 5
  year: 1996
  ident: D4SM01222D/cit8/1
  publication-title: Am. J. Clin. Nutr.
  doi: 10.1093/ajcn/63.5.741
– ident: D4SM01222D/cit205/1
– volume: 43
  start-page: 1312
  issue: 5
  year: 2010
  ident: D4SM01222D/cit58/1
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2010.03.017
– volume: 72
  start-page: 3883
  issue: 20
  year: 2015
  ident: D4SM01222D/cit176/1
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-015-1975-2
– ident: D4SM01222D/cit193/1
– ident: D4SM01222D/cit208/1
– volume: 85
  start-page: 578
  issue: 3
  year: 2013
  ident: D4SM01222D/cit53/1
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2013.09.016
– volume: 535
  start-page: 56
  issue: 7610
  year: 2016
  ident: D4SM01222D/cit70/1
  publication-title: Nature
  doi: 10.1038/nature18846
– volume: 19
  start-page: 4
  issue: 1
  year: 2017
  ident: D4SM01222D/cit185/1
  publication-title: Biomed. Microdevices
  doi: 10.1007/s10544-016-0143-2
– volume: 19
  start-page: 139
  year: 2023
  ident: D4SM01222D/cit98/1
  publication-title: Beilstein J. Org. Chem.
  doi: 10.3762/bjoc.19.14
– volume: 35
  start-page: 491
  issue: 7
  year: 2002
  ident: D4SM01222D/cit164/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar010110q
– volume: 24
  start-page: 3188
  issue: 4
  year: 2023
  ident: D4SM01222D/cit17/1
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms24043188
– ident: D4SM01222D/cit207/1
– volume: 113
  start-page: 11414
  issue: 41
  year: 2016
  ident: D4SM01222D/cit178/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1601306113
– volume: 346
  start-page: 128900
  year: 2021
  ident: D4SM01222D/cit240/1
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2020.128900
– volume: 15
  start-page: 18794
  issue: 12
  year: 2021
  ident: D4SM01222D/cit41/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c07121
– volume: 4
  start-page: 100027
  year: 2019
  ident: D4SM01222D/cit180/1
  publication-title: Mater. Today Bio
  doi: 10.1016/j.mtbio.2019.100027
– volume: 10
  start-page: 4039
  issue: 1
  year: 2019
  ident: D4SM01222D/cit81/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12066-z
– volume: 162
  start-page: 105812
  year: 2021
  ident: D4SM01222D/cit16/1
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/j.ejps.2021.105812
– volume: 70
  start-page: 124
  issue: 1
  year: 2022
  ident: D4SM01222D/cit46/1
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.1c05580
– volume: 10
  start-page: 1043117
  year: 2022
  ident: D4SM01222D/cit148/1
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2022.1043117
– volume: 58
  start-page: 1274
  issue: 12–13
  year: 2006
  ident: D4SM01222D/cit97/1
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/j.addr.2006.09.007
– ident: D4SM01222D/cit211/1
– volume: 233
  start-page: 123585
  year: 2023
  ident: D4SM01222D/cit133/1
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2023.123585
– volume: 12
  start-page: 760
  issue: 8
  year: 2020
  ident: D4SM01222D/cit114/1
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics12080760
– volume: 107
  start-page: 234
  issue: 2
  year: 2011
  ident: D4SM01222D/cit137/1
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2011.04.004
– volume: 110
  start-page: 50
  issue: 1
  year: 2021
  ident: D4SM01222D/cit146/1
  publication-title: J. Pharm. Sci.
  doi: 10.1016/j.xphs.2020.07.001
– volume: 10
  start-page: 41185
  issue: 48
  year: 2018
  ident: D4SM01222D/cit171/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b17410
– ident: D4SM01222D/cit206/1
– volume: 21
  start-page: 943
  issue: 8
  year: 1995
  ident: D4SM01222D/cit112/1
  publication-title: Drug Dev. Ind. Pharm.
  doi: 10.3109/03639049509026658
– volume: 277
  start-page: 134204
  year: 2024
  ident: D4SM01222D/cit44/1
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2024.134204
– ident: D4SM01222D/cit225/1
– volume: 2
  start-page: 77
  year: 2011
  ident: D4SM01222D/cit108/1
  publication-title: Int. J. Pharm. Stud. Res.
– volume: 223
  start-page: 52
  year: 2012
  ident: D4SM01222D/cit113/1
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2011.04.023
– volume: 10
  start-page: 146
  issue: 1
  year: 2005
  ident: D4SM01222D/cit15/1
  publication-title: Molecules
  doi: 10.3390/10010146
– volume: 16
  start-page: 1405
  year: 2021
  ident: D4SM01222D/cit26/1
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S291090
– volume: 185
  start-page: 103961
  year: 2023
  ident: D4SM01222D/cit123/1
  publication-title: Crit. Rev. Oncol. Hematol.
  doi: 10.1016/j.critrevonc.2023.103961
– volume: 4
  start-page: 845
  issue: 7
  year: 2019
  ident: D4SM01222D/cit144/1
  publication-title: JACC Basic Transl. Sci.
  doi: 10.1016/j.jacbts.2019.10.008
– volume: 363
  start-page: 142826
  year: 2024
  ident: D4SM01222D/cit18/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2024.142826
– ident: D4SM01222D/cit235/1
– volume: 7
  start-page: 583
  year: 2023
  ident: D4SM01222D/cit83/1
  publication-title: IEEE Control Syst. Lett.
  doi: 10.1109/LCSYS.2022.3204627
– volume: 104
  start-page: 245
  year: 2013
  ident: D4SM01222D/cit39/1
  publication-title: Colloids Surf., B
  doi: 10.1016/j.colsurfb.2012.11.031
– volume: 55
  start-page: 1185
  issue: 9
  year: 2003
  ident: D4SM01222D/cit99/1
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/S0169-409X(03)00118-2
– volume: 117
  start-page: 556
  issue: 2
  year: 2020
  ident: D4SM01222D/cit177/1
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.27186
– volume: 25
  start-page: 7379
  issue: 13
  year: 2024
  ident: D4SM01222D/cit72/1
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms25137379
– start-page: 47
  volume-title: Tissue Engineering I
  year: 2006
  ident: D4SM01222D/cit14/1
  doi: 10.1007/b137240
– volume: 552
  start-page: 186
  year: 2019
  ident: D4SM01222D/cit121/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.05.037
– ident: D4SM01222D/cit220/1
– ident: D4SM01222D/cit226/1
– volume: 67
  start-page: 217
  issue: 3
  year: 2010
  ident: D4SM01222D/cit102/1
  publication-title: Acta Pol. Pharm.
– volume: 168
  start-page: 32
  year: 2017
  ident: D4SM01222D/cit66/1
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2017.03.033
– volume: 192
  start-page: 106652
  year: 2024
  ident: D4SM01222D/cit134/1
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/j.ejps.2023.106652
– volume: 9
  start-page: 153
  issue: 4
  year: 2020
  ident: D4SM01222D/cit50/1
  publication-title: Prog. Biomater.
  doi: 10.1007/s40204-020-00139-y
– volume: 20
  start-page: 331
  issue: 4
  year: 2012
  ident: D4SM01222D/cit140/1
  publication-title: Saudi Pharm. J.
  doi: 10.1016/j.jsps.2012.03.005
– volume: 42
  start-page: 1782
  issue: 11
  year: 2016
  ident: D4SM01222D/cit239/1
  publication-title: Drug Dev. Ind. Pharm.
  doi: 10.3109/03639045.2016.1173052
– volume: 32
  start-page: 10
  year: 2016
  ident: D4SM01222D/cit29/1
  publication-title: J. Drug Delivery Sci. Technol.
  doi: 10.1016/j.jddst.2016.01.007
– start-page: 95
  volume-title: Microbiota of the Human Body
  year: 2016
  ident: D4SM01222D/cit68/1
  doi: 10.1007/978-3-319-31248-4_7
– volume: 126
  start-page: 1611
  issue: 6
  year: 2004
  ident: D4SM01222D/cit13/1
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2004.03.063
– volume: 69
  start-page: 631
  issue: 4
  year: 2007
  ident: D4SM01222D/cit94/1
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2007.01.020
– volume: 115
  start-page: 119
  year: 2018
  ident: D4SM01222D/cit25/1
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/j.ejps.2017.12.009
– volume: 13
  start-page: 123
  issue: 2
  year: 2001
  ident: D4SM01222D/cit107/1
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/S0928-0987(01)00095-1
– ident: D4SM01222D/cit210/1
– volume: 72
  start-page: 7
  issue: 1
  year: 2022
  ident: D4SM01222D/cit1/1
  publication-title: Ca-Cancer J. Clin.
  doi: 10.3322/caac.21708
– ident: D4SM01222D/cit216/1
– volume: 59
  start-page: 491
  issue: 5
  year: 1996
  ident: D4SM01222D/cit141/1
  publication-title: Clin. Pharmacol. Ther.
  doi: 10.1016/S0009-9236(96)90177-0
SSID ssj0038416
Score 2.4642975
SecondaryResourceType review_article
Snippet In recent years, nano and micro drug delivery systems targeting the colon have gained more attention due to increasing interest in treating colon diseases such...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Publisher
StartPage 792
SubjectTerms Administration, Oral
Animals
Bioavailability
Biocompatibility
Biodegradation
Cell Line, Tumor
Colitis, Ulcerative - drug therapy
Colon
Colon - drug effects
Colon cancer
Colonic Neoplasms - drug therapy
Colorectal carcinoma
Controlled release
Crohn's disease
Drug Carriers - chemistry
Drug delivery
Drug delivery systems
Drug Delivery Systems - instrumentation
Drug Delivery Systems - methods
Drug Industry
Drug Screening Assays, Antitumor
Gastrointestinal system
Gastrointestinal tract
Humans
Hydrogen-Ion Concentration
In vitro methods and tests
In vivo methods and tests
Inflammatory bowel diseases
Inflammatory Bowel Diseases - drug therapy
Intestine
Mathematical models
Mice
Microfluidics
Microparticles
Oral administration
Polymers
Polymers - chemistry
Sustained release
Time dependence
Toxicity
Transit time
Ulcerative colitis
Title Advanced polymeric systems for colon drug delivery: from experimental models to market applications
URI https://www.ncbi.nlm.nih.gov/pubmed/39801430
https://www.proquest.com/docview/3160721311
https://www.proquest.com/docview/3154889656
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegExIvCAaDwJiMgKfKI4mdD_NWrZ0G6obEUqlvkRM7aNKWVG36AH89Zztf1faw7SWK3MSNfL9c7nx3v0PoSx6IWNI8ILRQnLC8yAhXXBFfMS-KoowKU8V_fhGeLdjPZbDse2ya6pI6O87_3VlX8hipwhjIVVfJPkCy3aQwAOcgXziChOF4LxlP2gD-qrr-a5PiLTOzIVkYa0LqcizX2z9jqa51AoahdzIVJTvM_qYdjqF6uDFF0ONhWHtovl6C0oZr6kFO7wloidWVaeDdJx_OBbjxudipdNAlCdXqqtrZQJ1-9aPJdm0zdn8PtyB8ne1Hmn0KqzUjxkgYW8rMY3XHWKNqbTF0A6lgoDcj2xDvlj53qaZDlWxzo0OAvuy_Wm2k_uJXerqYz9Nktkyeoj0_AhNqhPYms-THvP0kUx1btZWx9planlrKv_Vz71omt9wNMD7WbVMYY3wkL9GLxmvAEwuBV-iJKvfRM5O9m29eo7wFAu6AgBsgYAACNkDAGgi4BcJ3rGGAhzDAFga4rrCFAR7C4A1anM6SkzPSdM8guc_DmmQyjoXQbEhR6GV6b8lVPItFDk6i5DJzhRe6SoRxwBQL4REjyYV0qQCLjyq_oAdoVFaleodwqEQB9wmPScYYvL_KdVURCDB7FBNe5qDP7cqlK0uSkprkBsrTKbs8N-s7ddBhu6hp8xJtUqoJDn3N-eSgT93PoOJ03EqUqtrqa8Ctjjl4Hg56a4XR_Q3lmv6Iug46AOl0w71U399j2g_oeQ_rQzSq11v1EWzNOjtqkPQfcdWDDQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+polymeric+systems+for+colon+drug+delivery%3A+from+experimental+models+to+market+applications&rft.jtitle=Soft+matter&rft.au=Crispino%2C+R&rft.au=Lagreca%2C+E&rft.au=Procopio%2C+A&rft.au=D%27Auria%2C+R&rft.date=2025-01-29&rft.issn=1744-6848&rft.eissn=1744-6848&rft.volume=21&rft.issue=5&rft.spage=792&rft_id=info:doi/10.1039%2Fd4sm01222d&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-683X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-683X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-683X&client=summon