An Algebraic Solution for the Candecomp/PARAFAC Decomposition with Circulant Factors

The Candecomp/PARAFAC decomposition (CPD) is an important mathematical tool used in several fields of application. Yet, its computation is usually performed with iterative methods which are subject to reaching local minima and to exhibiting slow convergence. In some practical contexts, the data tens...

Full description

Saved in:
Bibliographic Details
Published inSIAM journal on matrix analysis and applications Vol. 35; no. 4; pp. 1543 - 1562
Main Authors Goulart, J. H. de M., Favier, G.
Format Journal Article
LanguageEnglish
Published Society for Industrial and Applied Mathematics 01.01.2014
Subjects
Online AccessGet full text
ISSN0895-4798
1095-7162
DOI10.1137/140955963

Cover

Abstract The Candecomp/PARAFAC decomposition (CPD) is an important mathematical tool used in several fields of application. Yet, its computation is usually performed with iterative methods which are subject to reaching local minima and to exhibiting slow convergence. In some practical contexts, the data tensors of interest admit decompositions constituted by matrix factors with particular structure. Often, such structure can be exploited for devising specialized algorithms with superior properties in comparison with general iterative methods. In this paper, we propose a novel approach for computing a circulant-constrained CPD, i.e., a CPD of a hypercubic tensor whose factors are all circulant (and possibly tall). To this end, we exploit the algebraic structure of such tensor, showing that the elements of its frequency-domain counterpart satisfy homogeneous monomial equations in the eigenvalues of square circulant matrices associated with its factors, which we can therefore estimate by solving these equations. Then, we characterize the sets of solutions admitted by such equations under Kruskal's uniqueness condition. Simulation results are presented, validating our approach and showing that it can help avoiding typical disadvantages of iterative methods.
AbstractList The Candecomp/PARAFAC decomposition (CPD) is an important mathematical tool used in several fields of application. Yet, its computation is usually performed with iterative methods which are subject to reaching local minima and to exhibiting slow convergence. In some practical contexts, the data tensors of interest admit decompositions constituted by matrix factors with particular structure. Often, such structure can be exploited for devising specialized algorithms with superior properties in comparison with general iterative methods. In this paper, we propose a novel approach for computing a circulant-constrained CPD (CCPD), i.e., a CPD of a hypercubic tensor whose factors are all circulant (and possibly tall). To this end, we exploit the algebraic structure of such tensor, showing that the elements of its frequency-domain counterpart satisfy homogeneous monomial equations in the eigenvalues of square circulant matrices associated with its factors, which we can therefore estimate by solving these equations. Then, we characterize the sets of solutions admitted by such equations under Kruskal's uniqueness condition. Simulation results are presented, validating our approach and showing that it can help avoiding typical disadvantages of iterative methods.
The Candecomp/PARAFAC decomposition (CPD) is an important mathematical tool used in several fields of application. Yet, its computation is usually performed with iterative methods which are subject to reaching local minima and to exhibiting slow convergence. In some practical contexts, the data tensors of interest admit decompositions constituted by matrix factors with particular structure. Often, such structure can be exploited for devising specialized algorithms with superior properties in comparison with general iterative methods. In this paper, we propose a novel approach for computing a circulant-constrained CPD, i.e., a CPD of a hypercubic tensor whose factors are all circulant (and possibly tall). To this end, we exploit the algebraic structure of such tensor, showing that the elements of its frequency-domain counterpart satisfy homogeneous monomial equations in the eigenvalues of square circulant matrices associated with its factors, which we can therefore estimate by solving these equations. Then, we characterize the sets of solutions admitted by such equations under Kruskal's uniqueness condition. Simulation results are presented, validating our approach and showing that it can help avoiding typical disadvantages of iterative methods.
Author Goulart, J. H. de M.
Favier, G.
Author_xml – sequence: 1
  givenname: J. H. de M.
  surname: Goulart
  fullname: Goulart, J. H. de M.
– sequence: 2
  givenname: G.
  surname: Favier
  fullname: Favier, G.
BackLink https://hal.science/hal-00967263$$DView record in HAL
BookMark eNptkM1OwzAQhC0EEm3hwBvkCIdQO_5JfIwCpUiVQFDOluM41CiNi-2AeHvcFhUJcdrZ1bezqxmD4972GoALBK8RwvkUEcgp5QwfgRGKMs0Ry47BCBZRk5wXp2Ds_RuEiBGORmBZ9knZveraSaOSZ9sNwdg-aa1Lwkonlewbrex6M30sn8pZWSU3u9Z6s-M-TVgllXFq6GQfkplUwTp_Bk5a2Xl9_lMn4GV2u6zm6eLh7r4qF6nKOAtpDVvKWk4UplxKwuqCk6JoMkqzeDTOIIcS66ZGvCEZbxFRDEuZt3WNVCMpnoCrve9KdmLjzFq6L2GlEfNyIbYzCDnLM4Y_sshe7tmNs--D9kGsjVe6i39rO3iBGEWE5pjDX1vlrPdOtwdvBMU2ZXFIObLTP6wyQW6zCTHR7p-Nb3fVfnE
CitedBy_id crossref_primary_10_1016_j_dsp_2015_08_014
crossref_primary_10_1109_JSTSP_2015_2509907
crossref_primary_10_1109_TSP_2017_2695445
crossref_primary_10_1007_s11045_022_00834_y
crossref_primary_10_1109_LSP_2018_2810109
Cites_doi 10.1002/cem.801
10.1016/j.laa.2010.06.046
10.1016/j.sigpro.2010.07.010
10.1561/0100000006
10.1016/j.csda.2004.11.013
10.1137/050644677
10.1137/06066518X
10.1002/acs.1272
10.1109/78.824675
10.1145/2512329
10.1016/0024-3795(77)90069-6
10.1093/bioinformatics/btm210
10.1016/j.sigpro.2007.12.010
10.1137/0111030
10.1016/j.laa.2011.10.044
10.1002/1099-128X(200005/06)14:3<229::AID-CEM587>3.0.CO;2-N
10.1137/07070111X
10.1007/BF02310791
10.1137/060661569
10.1016/S0169-7439(97)00032-4
10.1002/widm.1
10.1007/BF02293596
10.1002/cem.1236
10.1109/TSP.2013.2276416
10.1002/1099-128X(200005/06)14:3<285::AID-CEM584>3.0.CO;2-1
10.1016/j.sigpro.2011.12.017
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
DOI 10.1137/140955963
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1095-7162
EndPage 1562
ExternalDocumentID oai:HAL:hal-00967263v2
10_1137_140955963
GroupedDBID -~X
.4S
.DC
123
186
4.4
7WY
7X2
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8G5
8V8
AALVN
AASXH
AAYXX
ABDBF
ABDPE
ABJCF
ABKAD
ABMZU
ABUWG
ACGFO
ACGOD
ACIWK
ACPRK
ACUHS
ADBBV
AEMOZ
AENEX
AFFNX
AFKRA
AFRAH
AHQJS
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ANXRF
ARAPS
ARCSS
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BPHCQ
CCPQU
CITATION
CS3
CZ9
D0L
D1I
D1J
D1K
DQ2
DU5
DWQXO
EAP
EBR
EBS
EBU
ECS
EDO
EJD
EMK
EST
ESX
FA8
FRNLG
GNUQQ
GUQSH
H13
HCIFZ
H~9
I-F
K1G
K6-
K60
K6V
K6~
K7-
KB.
KC.
L6V
LK5
LK8
M0C
M0K
M1Q
M2O
M2P
M7P
M7R
M7S
P1Q
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PTHSS
PUEGO
PYCSY
RJG
RNS
RSI
TH9
TN5
TUS
YNT
ZKB
ZY4
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c296t-b0f56f94c359aa46b89488d2552dec59a090a3edb19d429f14c63aa7fbb1cda53
ISSN 0895-4798
IngestDate Tue Oct 14 20:50:21 EDT 2025
Thu Sep 04 20:04:38 EDT 2025
Wed Oct 01 02:10:02 EDT 2025
Thu Apr 24 22:54:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords homogeneous monomial equations
circulant matrices
canonical polyadic decomposition
Candecomp/PARAFAC decomposition
tensor decomposition
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c296t-b0f56f94c359aa46b89488d2552dec59a090a3edb19d429f14c63aa7fbb1cda53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1812-6229
0000-0002-8882-7410
OpenAccessLink https://hal.science/hal-00967263
PQID 1651457390
PQPubID 23500
PageCount 20
ParticipantIDs hal_primary_oai_HAL_hal_00967263v2
proquest_miscellaneous_1651457390
crossref_primary_10_1137_140955963
crossref_citationtrail_10_1137_140955963
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-01-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-01
  day: 01
PublicationDecade 2010
PublicationTitle SIAM journal on matrix analysis and applications
PublicationYear 2014
Publisher Society for Industrial and Applied Mathematics
Publisher_xml – name: Society for Industrial and Applied Mathematics
References atypb9
atypb8
da Costa J. P. C. L. (atypb11) 2011; 26
atypb26
atypb27
atypb28
atypb29
Kibangou A. Y. (atypb21) 2009
atypb22
atypb23
Comon P. (atypb10) 2010
atypb20
Harshman R. A. (atypb19) 1970; 16
Lebrun J. (atypb24) 2007
atypb15
atypb16
atypb17
atypb18
atypb33
atypb12
atypb34
Bader B. W. (atypb2) 2008
atypb14
atypb1
atypb30
atypb3
atypb31
atypb32
atypb5
atypb4
atypb7
atypb6
References_xml – ident: atypb5
  doi: 10.1002/cem.801
– ident: atypb3
  doi: 10.1016/j.laa.2010.06.046
– start-page: 3858
  year: 2010
  ident: atypb10
  publication-title: TX
– ident: atypb16
  doi: 10.1016/j.sigpro.2010.07.010
– ident: atypb18
  doi: 10.1561/0100000006
– ident: atypb34
  doi: 10.1016/j.csda.2004.11.013
– ident: atypb33
  doi: 10.1137/050644677
– ident: atypb12
  doi: 10.1137/06066518X
– start-page: 147
  year: 2008
  ident: atypb2
  publication-title: London
– ident: atypb15
  doi: 10.1002/acs.1272
– ident: atypb30
  doi: 10.1109/78.824675
– ident: atypb20
  doi: 10.1145/2512329
– ident: atypb23
  doi: 10.1016/0024-3795(77)90069-6
– ident: atypb1
  doi: 10.1093/bioinformatics/btm210
– ident: atypb17
  doi: 10.1016/j.sigpro.2007.12.010
– start-page: 107
  year: 2007
  ident: atypb24
  publication-title: Berlin
– ident: atypb26
  doi: 10.1137/0111030
– ident: atypb31
  doi: 10.1016/j.laa.2011.10.044
– ident: atypb29
  doi: 10.1002/1099-128X(200005/06)14:3<229::AID-CEM587>3.0.CO;2-N
– volume: 26
  start-page: 1
  year: 2011
  ident: atypb11
  publication-title: EURASIP J. Adv. Signal Process.
– ident: atypb22
  doi: 10.1137/07070111X
– ident: atypb6
  doi: 10.1007/BF02310791
– volume: 16
  start-page: 1
  year: 1970
  ident: atypb19
  publication-title: multi-modal factor analysis, UCLA Working Papers in Phonetics
– ident: atypb8
  doi: 10.1137/060661569
– ident: atypb4
  doi: 10.1016/S0169-7439(97)00032-4
– ident: atypb27
  doi: 10.1002/widm.1
– ident: atypb7
  doi: 10.1007/BF02293596
– ident: atypb9
  doi: 10.1002/cem.1236
– start-page: 691
  year: 2009
  ident: atypb21
  publication-title: UK
– ident: atypb32
  doi: 10.1109/TSP.2013.2276416
– ident: atypb28
  doi: 10.1002/1099-128X(200005/06)14:3<285::AID-CEM584>3.0.CO;2-1
– ident: atypb14
  doi: 10.1016/j.sigpro.2011.12.017
SSID ssj0016491
Score 2.1031973
Snippet The Candecomp/PARAFAC decomposition (CPD) is an important mathematical tool used in several fields of application. Yet, its computation is usually performed...
SourceID hal
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1543
SubjectTerms Algebra
Compounding
Compounds
Computer Science
Decomposition
Engineering Sciences
Iterative methods
Mathematical analysis
Mathematical models
Signal and Image Processing
Tensors
Title An Algebraic Solution for the Candecomp/PARAFAC Decomposition with Circulant Factors
URI https://www.proquest.com/docview/1651457390
https://hal.science/hal-00967263
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1095-7162
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0016491
  issn: 0895-4798
  databaseCode: BENPR
  dateStart: 19880101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1095-7162
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0016491
  issn: 0895-4798
  databaseCode: 8FG
  dateStart: 19880101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfK9gIPfAwQ5WMyiAekKKxJHKd5DGWljK2qtk7aW2Q7iVZppKgfCPEH8ndxFzuuO_Vh8GJVjuU4vuv57nz3O0LeVwIsLlExn2MIFYNhvgxV4scyTCpV8FhxTBQ-G_PRJTu5iq86nT9O1NJ6JT-q3zvzSv6HqtAHdMUs2X-grJ0UOuA30BdaoDC0d6JxVntYpgMM3pny2lfZwMEB-ocxZBxeMMnOs2E28HSHCdQyceezBcaiIkaTrr3j6qsXYOlv0CVq7zsi-v_yRAtl0kC9OnfgLf0KlBawrKWHNbSFzgs6mS_1vbyHqREzHe5toCDxeG589HrEwiT7tw6JgN1ySLjRpk75EVxPq1ifWURa1yHZT2P082lpXGpxDAqgjxhXrrzW8CaGL5kjfEEbjJyDHCzTcPchYWAGGvQ9I163gLhH2UU--TzMT7-Ov20_daIXR9kptNfixkczMAl59BNUgf0QThcsIdIffrG3WZzpyo3tFxqEK1jHkV3Fll507xqjcm8pB43GM31MHhpThWaa756QTlkfkEdtGRBqToUD8sDZ6KdkmtXUMiVtmZICnSiMopYpjwxL0i2WpMiS1LIkNSz5jFwOj6eDkW9Kd_gqTPnKl70q5lXKVBSnQjAu-ymcFAXYryHMCn29tCeispBBWoBGVAVM8UiIpJIyUIWIo-dkr57X5QtCyxRjDlRQgmHBlIiEEkxUSb8C5UsoWXbJh3bjcmVw7bG8yk3e2LdRkts97pJ3dugPDeaycxDsvn2O8OtA6hz7NoTukrctcXKQx3jJJupyvl7mAQcTJE6itPfyLhO9Ivc3_6HXZG-1WJdvQM1dycOGhw7J_qfj8eT8L3qoqwY
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+algebraic+solution+for+the+Candecomp%2FPARAFAC+decomposition+with+circulant+factors&rft.jtitle=SIAM+journal+on+matrix+analysis+and+applications&rft.au=de+Morais+Goulart%2C+Jos%C3%A9+Henrique&rft.au=Favier%2C+G%C3%A9rard&rft.date=2014-01-01&rft.pub=Society+for+Industrial+and+Applied+Mathematics&rft.issn=0895-4798&rft.eissn=1095-7162&rft.volume=35&rft.issue=4&rft.spage=1543&rft.epage=1562&rft_id=info:doi/10.1137%2F140955963&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-00967263v2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-4798&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-4798&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-4798&client=summon