An Algebraic Solution for the Candecomp/PARAFAC Decomposition with Circulant Factors
The Candecomp/PARAFAC decomposition (CPD) is an important mathematical tool used in several fields of application. Yet, its computation is usually performed with iterative methods which are subject to reaching local minima and to exhibiting slow convergence. In some practical contexts, the data tens...
        Saved in:
      
    
          | Published in | SIAM journal on matrix analysis and applications Vol. 35; no. 4; pp. 1543 - 1562 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Society for Industrial and Applied Mathematics
    
        01.01.2014
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0895-4798 1095-7162  | 
| DOI | 10.1137/140955963 | 
Cover
| Abstract | The Candecomp/PARAFAC decomposition (CPD) is an important mathematical tool used in several fields of application. Yet, its computation is usually performed with iterative methods which are subject to reaching local minima and to exhibiting slow convergence. In some practical contexts, the data tensors of interest admit decompositions constituted by matrix factors with particular structure. Often, such structure can be exploited for devising specialized algorithms with superior properties in comparison with general iterative methods. In this paper, we propose a novel approach for computing a circulant-constrained CPD, i.e., a CPD of a hypercubic tensor whose factors are all circulant (and possibly tall). To this end, we exploit the algebraic structure of such tensor, showing that the elements of its frequency-domain counterpart satisfy homogeneous monomial equations in the eigenvalues of square circulant matrices associated with its factors, which we can therefore estimate by solving these equations. Then, we characterize the sets of solutions admitted by such equations under Kruskal's uniqueness condition. Simulation results are presented, validating our approach and showing that it can help avoiding typical disadvantages of iterative methods. | 
    
|---|---|
| AbstractList | The Candecomp/PARAFAC decomposition (CPD) is an important mathematical tool used in several fields of application. Yet, its computation is usually performed with iterative methods which are subject to reaching local minima and to exhibiting slow convergence. In some practical contexts, the data tensors of interest admit decompositions constituted by matrix factors with particular structure. Often, such structure can be exploited for devising specialized algorithms with superior properties in comparison with general iterative methods. In this paper, we propose a novel approach for computing a circulant-constrained CPD (CCPD), i.e., a CPD of a hypercubic tensor whose factors are all circulant (and possibly tall). To this end, we exploit the algebraic structure of such tensor, showing that the elements of its frequency-domain counterpart satisfy homogeneous monomial equations in the eigenvalues of square circulant matrices associated with its factors, which we can therefore estimate by solving these equations. Then, we characterize the sets of solutions admitted by such equations under Kruskal's uniqueness condition. Simulation results are presented, validating our approach and showing that it can help avoiding typical disadvantages of iterative methods. The Candecomp/PARAFAC decomposition (CPD) is an important mathematical tool used in several fields of application. Yet, its computation is usually performed with iterative methods which are subject to reaching local minima and to exhibiting slow convergence. In some practical contexts, the data tensors of interest admit decompositions constituted by matrix factors with particular structure. Often, such structure can be exploited for devising specialized algorithms with superior properties in comparison with general iterative methods. In this paper, we propose a novel approach for computing a circulant-constrained CPD, i.e., a CPD of a hypercubic tensor whose factors are all circulant (and possibly tall). To this end, we exploit the algebraic structure of such tensor, showing that the elements of its frequency-domain counterpart satisfy homogeneous monomial equations in the eigenvalues of square circulant matrices associated with its factors, which we can therefore estimate by solving these equations. Then, we characterize the sets of solutions admitted by such equations under Kruskal's uniqueness condition. Simulation results are presented, validating our approach and showing that it can help avoiding typical disadvantages of iterative methods.  | 
    
| Author | Goulart, J. H. de M. Favier, G.  | 
    
| Author_xml | – sequence: 1 givenname: J. H. de M. surname: Goulart fullname: Goulart, J. H. de M. – sequence: 2 givenname: G. surname: Favier fullname: Favier, G.  | 
    
| BackLink | https://hal.science/hal-00967263$$DView record in HAL | 
    
| BookMark | eNptkM1OwzAQhC0EEm3hwBvkCIdQO_5JfIwCpUiVQFDOluM41CiNi-2AeHvcFhUJcdrZ1bezqxmD4972GoALBK8RwvkUEcgp5QwfgRGKMs0Ry47BCBZRk5wXp2Ds_RuEiBGORmBZ9knZveraSaOSZ9sNwdg-aa1Lwkonlewbrex6M30sn8pZWSU3u9Z6s-M-TVgllXFq6GQfkplUwTp_Bk5a2Xl9_lMn4GV2u6zm6eLh7r4qF6nKOAtpDVvKWk4UplxKwuqCk6JoMkqzeDTOIIcS66ZGvCEZbxFRDEuZt3WNVCMpnoCrve9KdmLjzFq6L2GlEfNyIbYzCDnLM4Y_sshe7tmNs--D9kGsjVe6i39rO3iBGEWE5pjDX1vlrPdOtwdvBMU2ZXFIObLTP6wyQW6zCTHR7p-Nb3fVfnE | 
    
| CitedBy_id | crossref_primary_10_1016_j_dsp_2015_08_014 crossref_primary_10_1109_JSTSP_2015_2509907 crossref_primary_10_1109_TSP_2017_2695445 crossref_primary_10_1007_s11045_022_00834_y crossref_primary_10_1109_LSP_2018_2810109  | 
    
| Cites_doi | 10.1002/cem.801 10.1016/j.laa.2010.06.046 10.1016/j.sigpro.2010.07.010 10.1561/0100000006 10.1016/j.csda.2004.11.013 10.1137/050644677 10.1137/06066518X 10.1002/acs.1272 10.1109/78.824675 10.1145/2512329 10.1016/0024-3795(77)90069-6 10.1093/bioinformatics/btm210 10.1016/j.sigpro.2007.12.010 10.1137/0111030 10.1016/j.laa.2011.10.044 10.1002/1099-128X(200005/06)14:3<229::AID-CEM587>3.0.CO;2-N 10.1137/07070111X 10.1007/BF02310791 10.1137/060661569 10.1016/S0169-7439(97)00032-4 10.1002/widm.1 10.1007/BF02293596 10.1002/cem.1236 10.1109/TSP.2013.2276416 10.1002/1099-128X(200005/06)14:3<285::AID-CEM584>3.0.CO;2-1 10.1016/j.sigpro.2011.12.017  | 
    
| ContentType | Journal Article | 
    
| Copyright | Distributed under a Creative Commons Attribution 4.0 International License | 
    
| Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License | 
    
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 1XC VOOES  | 
    
| DOI | 10.1137/140955963 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access)  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Mathematics Computer Science  | 
    
| EISSN | 1095-7162 | 
    
| EndPage | 1562 | 
    
| ExternalDocumentID | oai:HAL:hal-00967263v2 10_1137_140955963  | 
    
| GroupedDBID | -~X .4S .DC 123 186 4.4 7WY 7X2 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8G5 8V8 AALVN AASXH AAYXX ABDBF ABDPE ABJCF ABKAD ABMZU ABUWG ACGFO ACGOD ACIWK ACPRK ACUHS ADBBV AEMOZ AENEX AFFNX AFKRA AFRAH AHQJS AKVCP ALMA_UNASSIGNED_HOLDINGS ANXRF ARAPS ARCSS ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BPHCQ CCPQU CITATION CS3 CZ9 D0L D1I D1J D1K DQ2 DU5 DWQXO EAP EBR EBS EBU ECS EDO EJD EMK EST ESX FA8 FRNLG GNUQQ GUQSH H13 HCIFZ H~9 I-F K1G K6- K60 K6V K6~ K7- KB. KC. L6V LK5 LK8 M0C M0K M1Q M2O M2P M7P M7R M7S P1Q P2P P62 PATMY PDBOC PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PTHSS PUEGO PYCSY RJG RNS RSI TH9 TN5 TUS YNT ZKB ZY4 7SC 8FD JQ2 L7M L~C L~D 1XC VOOES  | 
    
| ID | FETCH-LOGICAL-c296t-b0f56f94c359aa46b89488d2552dec59a090a3edb19d429f14c63aa7fbb1cda53 | 
    
| ISSN | 0895-4798 | 
    
| IngestDate | Tue Oct 14 20:50:21 EDT 2025 Thu Sep 04 20:04:38 EDT 2025 Wed Oct 01 02:10:02 EDT 2025 Thu Apr 24 22:54:07 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | homogeneous monomial equations circulant matrices canonical polyadic decomposition Candecomp/PARAFAC decomposition tensor decomposition  | 
    
| Language | English | 
    
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c296t-b0f56f94c359aa46b89488d2552dec59a090a3edb19d429f14c63aa7fbb1cda53 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0003-1812-6229 0000-0002-8882-7410  | 
    
| OpenAccessLink | https://hal.science/hal-00967263 | 
    
| PQID | 1651457390 | 
    
| PQPubID | 23500 | 
    
| PageCount | 20 | 
    
| ParticipantIDs | hal_primary_oai_HAL_hal_00967263v2 proquest_miscellaneous_1651457390 crossref_primary_10_1137_140955963 crossref_citationtrail_10_1137_140955963  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2014-01-01 | 
    
| PublicationDateYYYYMMDD | 2014-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | SIAM journal on matrix analysis and applications | 
    
| PublicationYear | 2014 | 
    
| Publisher | Society for Industrial and Applied Mathematics | 
    
| Publisher_xml | – name: Society for Industrial and Applied Mathematics | 
    
| References | atypb9 atypb8 da Costa J. P. C. L. (atypb11) 2011; 26 atypb26 atypb27 atypb28 atypb29 Kibangou A. Y. (atypb21) 2009 atypb22 atypb23 Comon P. (atypb10) 2010 atypb20 Harshman R. A. (atypb19) 1970; 16 Lebrun J. (atypb24) 2007 atypb15 atypb16 atypb17 atypb18 atypb33 atypb12 atypb34 Bader B. W. (atypb2) 2008 atypb14 atypb1 atypb30 atypb3 atypb31 atypb32 atypb5 atypb4 atypb7 atypb6  | 
    
| References_xml | – ident: atypb5 doi: 10.1002/cem.801 – ident: atypb3 doi: 10.1016/j.laa.2010.06.046 – start-page: 3858 year: 2010 ident: atypb10 publication-title: TX – ident: atypb16 doi: 10.1016/j.sigpro.2010.07.010 – ident: atypb18 doi: 10.1561/0100000006 – ident: atypb34 doi: 10.1016/j.csda.2004.11.013 – ident: atypb33 doi: 10.1137/050644677 – ident: atypb12 doi: 10.1137/06066518X – start-page: 147 year: 2008 ident: atypb2 publication-title: London – ident: atypb15 doi: 10.1002/acs.1272 – ident: atypb30 doi: 10.1109/78.824675 – ident: atypb20 doi: 10.1145/2512329 – ident: atypb23 doi: 10.1016/0024-3795(77)90069-6 – ident: atypb1 doi: 10.1093/bioinformatics/btm210 – ident: atypb17 doi: 10.1016/j.sigpro.2007.12.010 – start-page: 107 year: 2007 ident: atypb24 publication-title: Berlin – ident: atypb26 doi: 10.1137/0111030 – ident: atypb31 doi: 10.1016/j.laa.2011.10.044 – ident: atypb29 doi: 10.1002/1099-128X(200005/06)14:3<229::AID-CEM587>3.0.CO;2-N – volume: 26 start-page: 1 year: 2011 ident: atypb11 publication-title: EURASIP J. Adv. Signal Process. – ident: atypb22 doi: 10.1137/07070111X – ident: atypb6 doi: 10.1007/BF02310791 – volume: 16 start-page: 1 year: 1970 ident: atypb19 publication-title: multi-modal factor analysis, UCLA Working Papers in Phonetics – ident: atypb8 doi: 10.1137/060661569 – ident: atypb4 doi: 10.1016/S0169-7439(97)00032-4 – ident: atypb27 doi: 10.1002/widm.1 – ident: atypb7 doi: 10.1007/BF02293596 – ident: atypb9 doi: 10.1002/cem.1236 – start-page: 691 year: 2009 ident: atypb21 publication-title: UK – ident: atypb32 doi: 10.1109/TSP.2013.2276416 – ident: atypb28 doi: 10.1002/1099-128X(200005/06)14:3<285::AID-CEM584>3.0.CO;2-1 – ident: atypb14 doi: 10.1016/j.sigpro.2011.12.017  | 
    
| SSID | ssj0016491 | 
    
| Score | 2.1031973 | 
    
| Snippet | The Candecomp/PARAFAC decomposition (CPD) is an important mathematical tool used in several fields of application. Yet, its computation is usually performed... | 
    
| SourceID | hal proquest crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 1543 | 
    
| SubjectTerms | Algebra Compounding Compounds Computer Science Decomposition Engineering Sciences Iterative methods Mathematical analysis Mathematical models Signal and Image Processing Tensors  | 
    
| Title | An Algebraic Solution for the Candecomp/PARAFAC Decomposition with Circulant Factors | 
    
| URI | https://www.proquest.com/docview/1651457390 https://hal.science/hal-00967263  | 
    
| Volume | 35 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1095-7162 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0016491 issn: 0895-4798 databaseCode: BENPR dateStart: 19880101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1095-7162 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0016491 issn: 0895-4798 databaseCode: 8FG dateStart: 19880101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfK9gIPfAwQ5WMyiAekKKxJHKd5DGWljK2qtk7aW2Q7iVZppKgfCPEH8ndxFzuuO_Vh8GJVjuU4vuv57nz3O0LeVwIsLlExn2MIFYNhvgxV4scyTCpV8FhxTBQ-G_PRJTu5iq86nT9O1NJ6JT-q3zvzSv6HqtAHdMUs2X-grJ0UOuA30BdaoDC0d6JxVntYpgMM3pny2lfZwMEB-ocxZBxeMMnOs2E28HSHCdQyceezBcaiIkaTrr3j6qsXYOlv0CVq7zsi-v_yRAtl0kC9OnfgLf0KlBawrKWHNbSFzgs6mS_1vbyHqREzHe5toCDxeG589HrEwiT7tw6JgN1ySLjRpk75EVxPq1ifWURa1yHZT2P082lpXGpxDAqgjxhXrrzW8CaGL5kjfEEbjJyDHCzTcPchYWAGGvQ9I163gLhH2UU--TzMT7-Ov20_daIXR9kptNfixkczMAl59BNUgf0QThcsIdIffrG3WZzpyo3tFxqEK1jHkV3Fll507xqjcm8pB43GM31MHhpThWaa756QTlkfkEdtGRBqToUD8sDZ6KdkmtXUMiVtmZICnSiMopYpjwxL0i2WpMiS1LIkNSz5jFwOj6eDkW9Kd_gqTPnKl70q5lXKVBSnQjAu-ymcFAXYryHMCn29tCeispBBWoBGVAVM8UiIpJIyUIWIo-dkr57X5QtCyxRjDlRQgmHBlIiEEkxUSb8C5UsoWXbJh3bjcmVw7bG8yk3e2LdRkts97pJ3dugPDeaycxDsvn2O8OtA6hz7NoTukrctcXKQx3jJJupyvl7mAQcTJE6itPfyLhO9Ivc3_6HXZG-1WJdvQM1dycOGhw7J_qfj8eT8L3qoqwY | 
    
| linkProvider | ProQuest | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+algebraic+solution+for+the+Candecomp%2FPARAFAC+decomposition+with+circulant+factors&rft.jtitle=SIAM+journal+on+matrix+analysis+and+applications&rft.au=de+Morais+Goulart%2C+Jos%C3%A9+Henrique&rft.au=Favier%2C+G%C3%A9rard&rft.date=2014-01-01&rft.pub=Society+for+Industrial+and+Applied+Mathematics&rft.issn=0895-4798&rft.eissn=1095-7162&rft.volume=35&rft.issue=4&rft.spage=1543&rft.epage=1562&rft_id=info:doi/10.1137%2F140955963&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-00967263v2 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-4798&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-4798&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-4798&client=summon |