Toward Label-Efficient Emotion and Sentiment Analysis
Emotion and sentiment play a central role in various human activities, such as perception, decision-making, social interaction, and logical reasoning. Developing artificial emotional intelligence (AEI) for machines is becoming a bottleneck in human-computer interaction. The first step of AEI is to r...
Saved in:
Published in | Proceedings of the IEEE Vol. 111; no. 10; pp. 1159 - 1197 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9219 1558-2256 |
DOI | 10.1109/JPROC.2023.3309299 |
Cover
Abstract | Emotion and sentiment play a central role in various human activities, such as perception, decision-making, social interaction, and logical reasoning. Developing artificial emotional intelligence (AEI) for machines is becoming a bottleneck in human-computer interaction. The first step of AEI is to recognize the emotion and sentiment that are conveyed in different affective signals. Traditional supervised emotion and sentiment analysis (ESA) methods, especially deep learning-based ones, usually require large-scale labeled training data. However, due to the essential subjectivity, complexity, uncertainty and ambiguity, and subtlety, collecting such annotations is expensive, time-consuming, and difficult in practice. In this article, we introduce label-efficient ESA from the computational perspective. First, we present a hierarchical taxonomy for label-efficient learning based on the availability of sample labels, emotion categories, and data domains during training. Second, for each of the seven paradigms, i.e., unsupervised, semisupervised, weakly supervised, low-shot, incremental, domain-adaptive, and domain-generalizable ESA, we give the definition, summarize existing methods, and present our views on the quantitative and qualitative comparison. Finally, we provide several promising real-world applications, followed by unsolved challenges and potential future directions. |
---|---|
AbstractList | Emotion and sentiment play a central role in various human activities, such as perception, decision-making, social interaction, and logical reasoning. Developing artificial emotional intelligence (AEI) for machines is becoming a bottleneck in human–computer interaction. The first step of AEI is to recognize the emotion and sentiment that are conveyed in different affective signals. Traditional supervised emotion and sentiment analysis (ESA) methods, especially deep learning-based ones, usually require large-scale labeled training data. However, due to the essential subjectivity, complexity, uncertainty and ambiguity, and subtlety, collecting such annotations is expensive, time-consuming, and difficult in practice. In this article, we introduce label-efficient ESA from the computational perspective. First, we present a hierarchical taxonomy for label-efficient learning based on the availability of sample labels, emotion categories, and data domains during training. Second, for each of the seven paradigms, i.e., unsupervised, semisupervised, weakly supervised, low-shot, incremental, domain-adaptive, and domain-generalizable ESA, we give the definition, summarize existing methods, and present our views on the quantitative and qualitative comparison. Finally, we provide several promising real-world applications, followed by unsolved challenges and potential future directions. |
Author | Zhao, Yanyan Hong, Xiaopeng Zhao, Sicheng Ding, Guiguang Yang, Jufeng |
Author_xml | – sequence: 1 givenname: Sicheng orcidid: 0000-0001-5843-6411 surname: Zhao fullname: Zhao, Sicheng email: schzhao@tsinghua.edu.cn organization: Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China – sequence: 2 givenname: Xiaopeng surname: Hong fullname: Hong, Xiaopeng email: hongxiaopeng@hit.edu.cn organization: School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China – sequence: 3 givenname: Jufeng orcidid: 0000-0003-0219-3443 surname: Yang fullname: Yang, Jufeng email: yangjufeng@nankai.edu.cn organization: College of Computer Science, Nankai University, Tianjin, China – sequence: 4 givenname: Yanyan surname: Zhao fullname: Zhao, Yanyan email: yyzhao@ir.hit.edu.cn organization: School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China – sequence: 5 givenname: Guiguang orcidid: 0000-0003-0137-9975 surname: Ding fullname: Ding, Guiguang email: dinggg@tsinghua.edu.cn organization: Beijing National Research Center for Information Science and Technology (BNRist) and the School of Software, Tsinghua University, Beijing, China |
BookMark | eNp9kMtKAzEUhoNUsK2-gLgYcD315DrJspRalUJF6zqkMwmkTCc1mSJ9e2dsF-LC1YGf853LN0KDJjQWoVsME4xBPby8vq1mEwKETigFRZS6QEPMucwJ4WKAhgBY5opgdYVGKW0BgHJBh4ivw5eJVbY0G1vnc-d86W3TZvNdaH1oMtNU2XsX-F2fThtTH5NP1-jSmTrZm3Mdo4_H-Xr2lC9Xi-fZdJmXRIk2Nw6zjbBCbkpWgeRMSqM4sMKAAkkESFVRQakDZoqikryywlmBJRDHSkfoGN2f5u5j-DzY1OptOMTuiKSJLISQmCvVdZFTVxlDStE6vY9-Z-JRY9C9Hv2jR_d69FlPB8k_UOlb0__cRuPr_9G7E-qttb92EU4FZ_QbGPBzJg |
CODEN | IEEPAD |
CitedBy_id | crossref_primary_10_1016_j_inffus_2024_102909 crossref_primary_10_3390_bioengineering11100997 crossref_primary_10_1038_s41598_024_84532_8 crossref_primary_10_1007_s11263_024_02170_z |
Cites_doi | 10.1073/pnas.1322355111 10.1145/2700171.2791022 10.18653/v1/2020.emnlp-main.565 10.1145/3394171.3413718 10.1145/3382507.3418813 10.1075/is.17005.ihm 10.1109/TAFFC.2020.3032373 10.1609/aaai.v32i1.11280 10.1109/CVPR52688.2022.00926 10.1109/ICDM.2008.113 10.26615/978-954-452-072-4_067 10.1109/TNNLS.2020.3028503 10.1016/j.conb.2004.03.010 10.1109/ICCV48922.2021.00951 10.1145/3524499 10.18653/v1/D19-1408 10.18653/v1/2022.emnlp-main.780 10.5220/0010251202050217 10.1109/LSP.2021.3086395 10.1109/TAFFC.2018.2800046 10.1109/TKDE.2022.3178128 10.1016/j.knosys.2022.108346 10.21437/Interspeech.2021-666 10.1016/j.inffus.2020.01.011 10.1109/ICCV48922.2021.00814 10.1007/978-3-642-21616-9_65 10.1609/aaai.v33i01.3301110 10.1109/TMM.2021.3116434 10.1016/j.neunet.2019.03.010 10.1109/TAFFC.2022.3181033 10.1145/3038912.3052611 10.18653/v1/N18-1112 10.1109/TAFFC.2016.2563432 10.1109/TKDE.2011.48 10.1109/IJCNN52387.2021.9533310 10.1145/2337542.2337551 10.1109/ICCV.2017.244 10.1145/3240508.3240633 10.1145/3461702.3462566 10.18653/v1/P18-1233 10.1109/ACIIW.2019.8925021 10.1109/TCYB.2016.2633306 10.1609/aaai.v29i1.9179 10.1016/j.neucom.2019.09.106 10.1016/j.imavis.2011.07.002 10.1007/s10639-022-10943-7 10.1145/2502081.2502282 10.1007/978-3-030-18576-3_47 10.1109/ICABME.2015.7323251 10.1109/TAFFC.2021.3053275 10.1145/3394171.3413716 10.1145/2647868.2654916 10.1109/ICME.2005.1521424 10.1609/aaai.v30i1.10306 10.3115/v1/P14-2071 10.1162/089976698300017467 10.18653/v1/N19-1258 10.21437/Interspeech.2020-0032 10.1109/TPAMI.2016.2547397 10.24963/ijcai.2018/216 10.1016/j.imavis.2012.06.005 10.3115/1609067.1609142 10.1109/ICIP.2014.7026203 10.18653/v1/D18-1383 10.1037/a0014718 10.1109/TMM.2021.3087098 10.1016/j.knosys.2018.04.006 10.1142/S0218001493000339 10.1109/TPAMI.2018.2814042 10.1145/3323873.3325053 10.1109/TAFFC.2017.2667642 10.1109/TAFFC.2017.2714671 10.1145/2488388.2488442 10.1007/978-3-030-58577-8_7 10.1109/TAFFC.2020.2983669 10.1109/ICPR.2010.1132 10.1109/TMM.2019.2902100 10.1109/TASLP.2018.2867099 10.1109/TKDE.2012.103 10.1109/ACCESS.2020.3045225 10.1109/ICCV.2013.368 10.1016/j.inffus.2022.09.025 10.1109/TNN.2010.2091281 10.1016/j.neunet.2022.06.024 10.1609/aaai.v35i1.16169 10.1016/0921-8890(95)00004-Y 10.1109/MC.2018.3620963 10.1109/TCDS.2018.2826840 10.1109/TCSII.2022.3163141 10.1109/FG47880.2020.00110 10.1109/ACIIW52867.2021.9666338 10.1145/3529954 10.1109/TASLP.2019.2955252 10.18653/v1/2022.findings-naacl.58 10.1109/TAFFC.2018.2885474 10.1016/j.imavis.2017.08.003 10.24963/ijcai.2017/311 10.1609/aaai.v34i01.5364 10.1145/3394171.3413579 10.1109/TAFFC.2020.2981446 10.1109/TPAMI.2021.3094362 10.1002/asi.21416 10.1609/aaai.v33i01.33012620 10.1109/JAS.2022.105515 10.21437/Interspeech.2005-446 10.1109/JSTSP.2020.2987728 10.1109/ACCESS.2022.3185132 10.18653/v1/2022.emnlp-main.332 10.1007/978-3-642-42051-1_16 10.1109/ITSC.2015.424 10.1145/1651461.1651470 10.1145/2858036.2858217 10.18653/v1/P16-1029 10.1016/j.future.2020.08.002 10.1145/3136755.3143005 10.1109/TAFFC.2022.3226252 10.1145/3240508.3240591 10.1145/3386252 10.1109/BIBM52615.2021.9669542 10.1109/ICASSP.2016.7472666 10.1016/j.patrec.2020.11.013 10.1037/h0030377 10.18653/v1/D19-1466 10.1109/TASLP.2020.3023632 10.1109/JPROC.2023.3273517 10.1609/aaai.v34i05.6288 10.1109/34.799905 10.1145/3123266.3123367 10.1109/SLT48900.2021.9383534 10.1093/nsr/nwx106 10.1109/TKDE.2017.2756658 10.18653/v1/2020.coling-main.49 10.1109/TITS.2020.2987724 10.1109/TKDE.2021.3136606 10.1145/3240508.3240578 10.1109/TAFFC.2020.2973158 10.1145/1553374.1553517 10.23919/EUSIPCO54536.2021.9616296 10.1145/1873951.1873965 10.1145/3240508.3240528 10.18653/v1/2020.acl-main.341 10.1109/ICIP.2018.8451580 10.1007/978-3-030-58536-5_8 10.3115/v1/P14-1051 10.21437/Interspeech.2018-1832 10.1109/CVPRW.2010.5543262 10.18653/v1/2021.acl-long.269 10.1049/iet-ipr.2019.1270 10.1109/ICDMW.2014.146 10.1186/s40537-019-0197-0 10.1016/j.patrec.2014.01.008 10.1109/TCSS.2022.3153660 10.1609/aaai.v34i03.5651 10.1109/CVPR.2018.00791 10.1136/bmjopen-2017-018815 10.1109/MSP.2021.3119273 10.18653/v1/2021.metanlp-1.9 10.1109/TITS.2010.2070839 10.18653/v1/2021.naacl-main.378 10.18653/v1/2020.acl-main.374 10.3389/fnbot.2018.00078 10.1109/CVPR.2018.00810 10.1007/s11280-021-00992-2 10.18653/v1/2020.acl-main.370 10.1109/TAFFC.2021.3065726 10.1016/j.specom.2019.12.001 10.1109/CVPR.2018.00131 10.1145/3343031.3351032 10.1109/TKDE.2009.191 10.1631/FITEE.1900618 10.3115/v1/D14-1162 10.1007/978-3-030-01216-8_36 10.1109/ICCV.2019.00124 10.1109/CVPR46437.2021.00222 10.1109/ACII.2019.8925513 10.1007/s10994-019-05855-6 10.1109/CVPR.2015.7298687 10.1145/3474085.3475484 10.1016/j.neucom.2021.03.058 10.1109/TPAMI.2020.3046647 10.1609/aaai.v33i01.33015773 10.1109/DASC.2013.103 10.1016/j.neucom.2017.06.084 10.1109/TPAMI.2022.3213473 10.1007/978-3-030-36708-4_3 10.1109/LSP.2017.2672753 10.1109/MSP.2020.2975749 10.1145/3503044 10.1007/978-3-030-04221-9_25 10.1016/j.chb.2021.106855 10.18653/v1/2021.emnlp-main.728 10.1109/ICCVE.2013.6799859 10.1109/TAFFC.2016.2628787 10.1109/TCSS.2021.3130401 10.1007/978-3-030-81465-6_4 10.18653/v1/N19-1036 10.1109/CVPR42600.2020.01312 10.1016/j.neucom.2021.02.048 10.1145/1772690.1772767 10.1007/1-4020-4102-0_1 10.1109/TITS.2011.2168215 10.1109/TCYB.2021.3062750 10.1109/TAFFC.2017.2705696 10.1145/3400066 10.1145/3510030 10.1016/j.neunet.2020.12.003 10.1609/aaai.v35i7.16753 10.1109/ACII52823.2021.9597449 10.1109/AFGR.1998.670949 10.1145/3363560 10.3389/frai.2022.856232 10.1109/TAFFC.2020.2994159 10.1109/TPAMI.2018.2858821 10.18653/v1/2020.emnlp-main.346 10.1109/CVPR.2016.90 10.1016/j.jbusres.2018.10.004 10.1109/TCDS.2020.2999337 10.1145/3485447.3511994 10.1109/TAFFC.2016.2625250 10.1109/ICAICA.2019.8873466 10.18653/v1/2022.acl-long.578 10.1016/j.eswa.2019.112851 10.18653/v1/2022.acl-long.174 10.1007/978-3-030-58598-3_45 10.1109/MSP.2021.3106895 10.1109/ICCVW54120.2021.00463 10.1109/ICCE-TW52618.2021.9603010 10.1145/3173574.3174239 10.1145/3511808.3557365 10.1109/TAFFC.2018.2818685 10.18653/v1/D18-1403 10.1109/TMM.2017.2757769 10.1145/3326335 10.3115/v1/P15-1008 10.1145/2184436.2184437 10.18653/v1/D16-1023 10.1016/j.knosys.2019.105254 10.1609/aaai.v36i1.19873 10.1609/aaai.v27i1.8684 10.3390/sym14040687 10.1023/A:1007379606734 10.1002/widm.1253 10.1609/aaai.v36i10.21318 10.1145/2168752.2168754 10.1109/TAFFC.2020.2970399 10.1145/3388790 10.1037/h0054570 10.1145/3442381.3449981 10.18653/v1/2021.findings-acl.129 10.1109/ICASSP39728.2021.9414930 10.1109/LSP.2014.2324759 10.1145/3462244.3481274 10.1109/TAFFC.2018.2874986 10.1109/TAFFC.2017.2740923 10.1145/3477495.3531984 10.1609/aaai.v32i1.11275 10.1609/aaai.v36i5.20474 10.1016/j.ins.2021.10.005 10.1007/s11063-021-10596-6 10.1109/TASLP.2022.3178232 10.1007/978-3-030-68796-0_49 10.1016/j.eswa.2021.115581 10.18653/v1/2021.emnlp-main.550 10.1109/TAFFC.2022.3184995 10.1109/TCSS.2020.3013938 10.1007/978-3-030-04221-9_36 10.1109/FG52635.2021.9667048 10.1109/CVPR.2011.5995347 10.1109/CVPR52688.2022.01553 10.1109/JPROC.2020.3004555 10.1109/ICPR56361.2022.9956540 10.1109/JIOT.2020.3022427 10.1109/ICPR.2018.8545284 10.1109/TCYB.2019.2914512 10.1007/s11263-018-1131-1 10.3389/fpubh.2022.1045777 10.1109/ICASSP39728.2021.9414496 10.18653/v1/2020.findings-emnlp.101 10.1109/TCSS.2021.3127935 10.1109/TPAMI.2019.2945942 10.1109/TAFFC.2022.3189222 10.18653/v1/D18-1498 10.3389/fpsyg.2021.809459 10.1109/ICCVW.2017.45 10.3115/v1/P15-2123 10.18653/v1/W19-3205 10.3115/v1/D14-1127 10.1109/TKDE.2015.2475761 10.18653/v1/D19-3001 10.1109/MIS.2013.27 10.1073/pnas.1611835114 10.1109/CVPR.2009.5206848 10.1109/IJCNN48605.2020.9206635 10.1073/pnas.1903070116 10.1007/s11063-019-10035-7 10.1109/TPAMI.2021.3131222 10.1109/ICIP.2016.7532430 10.1609/aaai.v30i1.9987 10.1145/1341531.1341561 10.1109/MSP.2014.2347059 10.1109/TAFFC.2022.3210441 10.18653/v1/P18-1104 10.1109/CVPR52688.2022.01519 10.1007/978-3-030-92310-5_24 10.1109/ICCV48922.2021.00934 10.1109/TKDE.2020.2985365 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/JPROC.2023.3309299 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2256 |
EndPage | 1197 |
ExternalDocumentID | 10_1109_JPROC_2023_3309299 10253654 |
Genre | orig-research |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: AUGA5710011522 funderid: 10.13039/501100012226 – fundername: CCF-DiDi GAIA Collaborative Research Funds for Young Scholars – fundername: Natural Science Foundation of Tianjin, China grantid: 20JCJQJC00020 funderid: 10.13039/501100006606 – fundername: National Natural Science Foundation of China grantid: 62076195; 62176078; U1936202 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2018AAA0100400 – fundername: Supercomputing Center of Nankai University (NKSC) funderid: 10.13039/501100004945 |
GroupedDBID | -DZ -~X .DC 0R~ 123 1OL 29P 3EH 4.4 6IK 85S 97E 9M8 AAJGR AAWTH ABAZT ABFSI ABJNI ABQJQ ABVLG ACBEA ACGFS AENEX AETEA AETIX AFOGA AGNAY AGQYO AGSQL AHBIQ AIBXA ALLEH ALMA_UNASSIGNED_HOLDINGS AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD FA8 HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MVM O9- OCL RIA RIE RIU RNS TAE TN5 TWZ UDY UHB UKR UQL VOH WHG XJT XOL YNT ZCA ZXP ZY4 ~02 AAYXX CITATION 7SP 8FD L7M RIG |
ID | FETCH-LOGICAL-c296t-af14b6e68bc4d085488a95047a090826089d3633f04a77d85de6fe61802f4cf23 |
IEDL.DBID | RIE |
ISSN | 0018-9219 |
IngestDate | Fri Jul 25 05:59:42 EDT 2025 Thu Apr 24 23:06:50 EDT 2025 Wed Oct 01 04:31:56 EDT 2025 Wed Aug 27 02:25:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c296t-af14b6e68bc4d085488a95047a090826089d3633f04a77d85de6fe61802f4cf23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0137-9975 0000-0001-5843-6411 0000-0003-0219-3443 |
PQID | 2876681599 |
PQPubID | 85453 |
PageCount | 39 |
ParticipantIDs | crossref_primary_10_1109_JPROC_2023_3309299 proquest_journals_2876681599 crossref_citationtrail_10_1109_JPROC_2023_3309299 ieee_primary_10253654 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Proceedings of the IEEE |
PublicationTitleAbbrev | JPROC |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref207 ref328 ref208 ref329 ref59 ref326 ref58 ref206 ref53 ref203 ref52 ref325 ref55 ref322 ref54 ref202 zheng (ref267) 2018 zheng (ref241) 2016 ref210 ref331 ref211 ref332 ref51 ref330 ref46 ref339 ref45 ref48 ref216 ref337 ref217 clark (ref85) 2019 ref42 ref336 ref44 ref212 ref333 ref213 ref334 ref100 ref221 ref101 ref222 ref343 ref40 ref340 ref220 ref341 ref35 ref306 ref34 ref307 ref37 ref304 ref36 ref305 ref31 ref302 ref30 ref303 ref33 ref301 ref39 zhang (ref49) 2022; 44 ref308 ref309 ref310 chen (ref223) 2012 ref24 ref317 ref23 ref318 ref26 ref315 ref25 ref316 ref20 ref313 ref314 ref22 ref21 ref312 ref28 ref27 gong (ref319) 2012 ref29 li (ref335) 2022 zhang (ref119) 2021 ref320 martin (ref225) 2006 ref128 ref249 ref129 ref97 ref126 ref247 ref368 ref96 ref127 ref248 ref369 ref99 ref124 ref245 ref366 ref125 ref246 ref367 ref93 ref254 ref375 ref134 ref255 ref376 ref131 ref252 ref373 ref94 ref132 ref253 ref374 zhang (ref138) 2022 ref250 ref371 ref130 ref251 ref372 ref91 ref90 ref370 ref89 ref139 ref86 ref137 ref258 ref379 ref259 ref88 ref135 ref256 ref377 ref87 ref136 ref257 ref378 zhang (ref170) 2022 xu (ref142) 2019 sohn (ref115) 2020 koch (ref189) 2015 balaji (ref342) 2018 ref265 ref145 ref266 ref387 ref263 ref384 ref143 ref264 ref385 ben (ref14) 2022; 44 kenton (ref84) 2019 ref140 ref261 ref382 ref141 ref262 ref383 ref380 ref260 ref381 ref108 ref229 ref109 sutskever (ref148) 2014 ref106 ref227 ref348 ref107 ref228 ref349 ref104 ref105 ref226 ref347 ref77 ref102 ref76 ref224 gepperth (ref200) 2016 ref71 ref111 ref232 ref353 ref70 ref233 ref73 ref230 ref351 ref72 ref110 ref231 ref352 ref350 masana (ref47) 2023; 45 ref68 ref67 ref117 ref238 ref69 ref239 ref64 ref236 ref357 ref63 ref116 ref358 ref66 ref113 ref234 ref355 ref65 ref114 ref235 ref356 wang (ref80) 2015 kingma (ref98) 2014 ref60 ref243 ref364 ref123 ref244 ref365 ref62 ref120 ref362 ref242 ref363 ref360 ref361 ref168 ref289 esuli (ref144) 2006 ref290 ref291 volpi (ref344) 2018 ref298 ref299 ref175 ref296 ref176 ref297 ref173 ref294 ruvolo (ref205) 2013 ref174 ref295 ref292 ref172 ref293 peng (ref388) 2020 ref179 kollias (ref158) 2019 zhou (ref56) 2023; 45 stewart (ref178) 2020 ref180 ref181 gretton (ref321) 2012; 13 ref188 ref186 ref184 ref183 ref269 ref149 ref147 ref268 ref390 kollias (ref159) 2021 ref276 ref156 ref277 lamprinidis (ref160) 2021 ref153 ref274 ref154 ref275 jialin pan (ref50) 2010; 22 shorten (ref151) 2019; 6 ref272 ref152 ref273 ref270 ref391 ref150 ref271 ref392 ref157 ref278 ref279 guan (ref133) 2016 ref280 bengio (ref146) 2000; 13 ref287 ruvolo (ref204) 2013 ref167 ref288 ref164 ref285 ref165 ref286 ref283 ref163 ref281 ref161 latif (ref282) 2022 healey (ref177) 2020 esuli (ref75) 2007; 17 grandvalet (ref118) 2004 ref2 ref192 ref190 ref199 andreevskaia (ref74) 2006 sabour (ref219) 2017 ref197 ref198 shi (ref240) 2012 ref195 ref193 chen (ref185) 2018 zhao (ref300) 2018 schuller (ref359) 2008 goldberg (ref95) 2006 ramalho (ref191) 2018 de lange (ref209) 2022; 44 zhao (ref162) 2021 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ganin (ref323) 2016; 17 tarvainen (ref121) 2017 yang (ref41) 2022 bengio (ref38) 2012 zeng (ref79) 2020 van den oord (ref82) 2018 zhang (ref327) 2022 brown (ref81) 2020 ciubotaru (ref155) 2019 fang (ref389) 2023 glorot (ref284) 2011 saganowski (ref32) 2022 feng (ref166) 2021 pourpanah (ref43) 2023; 45 lian (ref103) 2022 snell (ref187) 2017 ke (ref92) 2019 li (ref171) 2021 ke (ref214) 2020 sun (ref311) 2011 zhang (ref169) 2022 shen (ref338) 2022 xu (ref122) 2021 zhang (ref345) 2018 ref13 radford (ref83) 2021 ref12 finn (ref194) 2017 ref15 ref11 ref10 zhao (ref78) 2012 ref17 ref16 ref19 ref18 lang (ref386) 2005 ke (ref218) 2020 ma (ref354) 2017 james (ref201) 2017; 114 minsky (ref1) 1986 sagawa (ref346) 2019 patel (ref196) 2016 hung (ref237) 2019 ekman (ref182) 2004 li (ref112) 2011 jia (ref61) 2022 ke (ref215) 2021 goodfellow (ref324) 2014 |
References_xml | – year: 2004 ident: ref182 publication-title: Micro-expression Training Tool – ident: ref12 doi: 10.1073/pnas.1322355111 – ident: ref208 doi: 10.1145/2700171.2791022 – ident: ref238 doi: 10.18653/v1/2020.emnlp-main.565 – ident: ref212 doi: 10.1145/3394171.3413718 – ident: ref313 doi: 10.1145/3382507.3418813 – ident: ref353 doi: 10.1075/is.17005.ihm – ident: ref26 doi: 10.1109/TAFFC.2020.3032373 – ident: ref69 doi: 10.1609/aaai.v32i1.11280 – ident: ref382 doi: 10.1109/CVPR52688.2022.00926 – ident: ref97 doi: 10.1109/ICDM.2008.113 – ident: ref113 doi: 10.26615/978-954-452-072-4_067 – ident: ref55 doi: 10.1109/TNNLS.2020.3028503 – ident: ref183 doi: 10.1016/j.conb.2004.03.010 – ident: ref380 doi: 10.1109/ICCV48922.2021.00951 – ident: ref33 doi: 10.1145/3524499 – ident: ref176 doi: 10.18653/v1/D19-1408 – start-page: 3719 year: 2016 ident: ref133 article-title: Weakly-supervised deep learning for customer review sentiment classification publication-title: Proc Int Joint Conf Artif Intell – ident: ref90 doi: 10.18653/v1/2022.emnlp-main.780 – ident: ref232 doi: 10.5220/0010251202050217 – start-page: 1195 year: 2017 ident: ref121 article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results publication-title: Proc Adv Neural Inf Process Syst – ident: ref167 doi: 10.1109/LSP.2021.3086395 – ident: ref251 doi: 10.1109/TAFFC.2018.2800046 – ident: ref57 doi: 10.1109/TKDE.2022.3178128 – ident: ref341 doi: 10.1016/j.knosys.2022.108346 – ident: ref293 doi: 10.21437/Interspeech.2021-666 – ident: ref35 doi: 10.1016/j.inffus.2020.01.011 – start-page: 1 year: 2020 ident: ref177 article-title: Sequential dependence and non-linearity in affective responses: A skin conductance example publication-title: Proc Workshop Artif Intell Affective Comput – ident: ref376 doi: 10.1109/ICCV48922.2021.00814 – start-page: 13647 year: 2019 ident: ref237 article-title: Compacting, picking and growing for unforgetting continual learning publication-title: Proc Adv Neural Inf Process Syst – ident: ref358 doi: 10.1007/978-3-642-21616-9_65 – ident: ref367 doi: 10.1609/aaai.v33i01.3301110 – ident: ref227 doi: 10.1109/TMM.2021.3116434 – start-page: 1126 year: 2017 ident: ref194 article-title: Model-agnostic meta-learning for fast adaptation of deep networks publication-title: Proc Int Conf Mach Learn – start-page: 529 year: 2004 ident: ref118 article-title: Semi-supervised learning by entropy minimization publication-title: Proc Adv Neural Inf Process Syst – ident: ref202 doi: 10.1016/j.neunet.2019.03.010 – year: 2020 ident: ref79 article-title: A variational approach to unsupervised sentiment analysis publication-title: arXiv 2008 09394 – ident: ref211 doi: 10.1109/TAFFC.2022.3181033 – ident: ref141 doi: 10.1145/3038912.3052611 – start-page: 2672 year: 2014 ident: ref324 article-title: Generative adversarial nets publication-title: Proc Adv Neural Inf Process Syst – ident: ref333 doi: 10.18653/v1/N18-1112 – ident: ref249 doi: 10.1109/TAFFC.2016.2563432 – start-page: 507 year: 2013 ident: ref204 article-title: ELLA: An efficient lifelong learning algorithm publication-title: Proc Int Conf Mach Learn – ident: ref128 doi: 10.1109/TKDE.2011.48 – ident: ref265 doi: 10.1109/IJCNN52387.2021.9533310 – ident: ref59 doi: 10.1145/2337542.2337551 – ident: ref325 doi: 10.1109/ICCV.2017.244 – ident: ref326 doi: 10.1145/3240508.3240633 – ident: ref392 doi: 10.1145/3461702.3462566 – ident: ref261 doi: 10.18653/v1/P18-1233 – year: 2022 ident: ref327 article-title: Learning disentangled representation for multimodal cross-domain sentiment analysis publication-title: IEEE Trans Neural Netw Learn Syst – ident: ref152 doi: 10.1109/ACIIW.2019.8925021 – ident: ref248 doi: 10.1109/TCYB.2016.2633306 – ident: ref137 doi: 10.1609/aaai.v29i1.9179 – ident: ref315 doi: 10.1016/j.neucom.2019.09.106 – ident: ref331 doi: 10.1016/j.imavis.2011.07.002 – ident: ref375 doi: 10.1007/s10639-022-10943-7 – ident: ref126 doi: 10.1145/2502081.2502282 – ident: ref235 doi: 10.1007/978-3-030-18576-3_47 – ident: ref356 doi: 10.1109/ICABME.2015.7323251 – year: 2018 ident: ref185 article-title: A closer look at few-shot classification publication-title: Proc Int Conf Learn Represent – ident: ref21 doi: 10.1109/TAFFC.2021.3053275 – ident: ref390 doi: 10.1145/3394171.3413716 – ident: ref312 doi: 10.1145/2647868.2654916 – ident: ref330 doi: 10.1109/ICME.2005.1521424 – ident: ref246 doi: 10.1609/aaai.v30i1.10306 – start-page: 45 year: 2006 ident: ref95 article-title: Seeing stars when there aren't many stars: Graph-based semi-supervised learning for sentiment categorization publication-title: Proc 1st Workshop Graph Based Methods Natural Lang Process – ident: ref110 doi: 10.3115/v1/P14-2071 – ident: ref317 doi: 10.1162/089976698300017467 – ident: ref260 doi: 10.18653/v1/N19-1258 – year: 2022 ident: ref32 article-title: Emotion recognition for everyday life using physiological signals from wearables: A systematic literature review publication-title: IEEE Trans Affect Comput – start-page: 2732 year: 2016 ident: ref241 article-title: Personalizing EEG-based affective models with transfer learning publication-title: Proc Int Joint Conf Artif Intell – year: 2022 ident: ref282 article-title: Self supervised adversarial domain adaptation for cross-corpus and cross-language speech emotion recognition publication-title: IEEE Trans Affect Comput – ident: ref350 doi: 10.21437/Interspeech.2020-0032 – ident: ref72 doi: 10.1109/TPAMI.2016.2547397 – ident: ref274 doi: 10.24963/ijcai.2018/216 – ident: ref15 doi: 10.1016/j.imavis.2012.06.005 – ident: ref96 doi: 10.3115/1609067.1609142 – ident: ref357 doi: 10.1109/ICIP.2014.7026203 – ident: ref259 doi: 10.18653/v1/D18-1383 – ident: ref229 doi: 10.1037/a0014718 – ident: ref174 doi: 10.1109/TMM.2021.3087098 – ident: ref132 doi: 10.1016/j.knosys.2018.04.006 – ident: ref188 doi: 10.1142/S0218001493000339 – ident: ref322 doi: 10.1109/TPAMI.2018.2814042 – ident: ref210 doi: 10.1145/3323873.3325053 – year: 2023 ident: ref389 article-title: Source-free unsupervised domain adaptation: A survey publication-title: arXiv 2301 00265 – ident: ref19 doi: 10.1109/TAFFC.2017.2667642 – ident: ref31 doi: 10.1109/TAFFC.2017.2714671 – ident: ref60 doi: 10.1145/2488388.2488442 – year: 2022 ident: ref335 article-title: Benchmarking domain generalization on EEG-based emotion recognition publication-title: arXiv 2204 09016 – ident: ref88 doi: 10.1007/978-3-030-58577-8_7 – ident: ref100 doi: 10.1109/TAFFC.2020.2983669 – ident: ref360 doi: 10.1109/ICPR.2010.1132 – ident: ref343 doi: 10.1109/TMM.2019.2902100 – ident: ref264 doi: 10.1109/TASLP.2018.2867099 – ident: ref304 doi: 10.1109/TKDE.2012.103 – year: 2019 ident: ref158 article-title: Face behavior a la carte: Expressions, affect and action units in a single network publication-title: arXiv 1910 11111 – ident: ref298 doi: 10.1109/ACCESS.2020.3045225 – year: 2013 ident: ref205 article-title: Scalable lifelong learning with active task selection publication-title: Proc AAAI Spring Symp Lifelong Mach Learn – ident: ref247 doi: 10.1109/ICCV.2013.368 – year: 2021 ident: ref166 article-title: Few-shot learning in emotion recognition of spontaneous speech using a Siamese neural network with adaptive sample pair formation publication-title: IEEE Trans Affect Comput – start-page: 3581 year: 2014 ident: ref98 article-title: Semi-supervised learning with deep generative models publication-title: Proc Adv Neural Inf Process Syst – ident: ref36 doi: 10.1016/j.inffus.2022.09.025 – ident: ref318 doi: 10.1109/TNN.2010.2091281 – ident: ref197 doi: 10.1016/j.neunet.2022.06.024 – ident: ref310 doi: 10.1609/aaai.v35i1.16169 – ident: ref203 doi: 10.1016/0921-8890(95)00004-Y – ident: ref2 doi: 10.1109/MC.2018.3620963 – start-page: 11525 year: 2021 ident: ref122 article-title: Dash: Semi-supervised learning with dynamic thresholding publication-title: Proc Int Conf Mach Learn – year: 2022 ident: ref41 article-title: A survey on deep semi-supervised learning publication-title: IEEE Trans Knowl Data Eng – ident: ref239 doi: 10.1109/TCDS.2018.2826840 – volume: 17 start-page: 1 year: 2007 ident: ref75 article-title: SentiWordNet: A high-coverage lexical resource for opinion mining publication-title: EVAluation – ident: ref116 doi: 10.1109/TCSII.2022.3163141 – ident: ref213 doi: 10.1109/FG47880.2020.00110 – ident: ref231 doi: 10.1109/ACIIW52867.2021.9666338 – ident: ref180 doi: 10.1145/3529954 – ident: ref252 doi: 10.1109/TASLP.2019.2955252 – year: 1986 ident: ref1 publication-title: The Society of Mind – start-page: 2378 year: 2015 ident: ref80 article-title: Unsupervised sentiment analysis for social media images publication-title: Proc Int Joint Conf Artif Intell – ident: ref157 doi: 10.18653/v1/2022.findings-naacl.58 – ident: ref275 doi: 10.1109/TAFFC.2018.2885474 – ident: ref34 doi: 10.1016/j.imavis.2017.08.003 – ident: ref266 doi: 10.24963/ijcai.2017/311 – ident: ref381 doi: 10.1609/aaai.v34i01.5364 – start-page: 1 year: 2006 ident: ref225 article-title: The eNTERFACE'05 audio-visual emotion database publication-title: Proc 22nd Int'l Conf Data Eng Workshops (ICDE '06) – ident: ref105 doi: 10.1145/3394171.3413579 – ident: ref16 doi: 10.1109/TAFFC.2020.2981446 – ident: ref5 doi: 10.1109/TPAMI.2021.3094362 – ident: ref145 doi: 10.1002/asi.21416 – start-page: 505 year: 2011 ident: ref311 article-title: A two-stage weighting framework for multi-source domain adaptation publication-title: Proc Adv Neural Inf Process Syst – start-page: 493 year: 2022 ident: ref61 article-title: S2-VER: Semi-supervised visual emotion recognition publication-title: Proc Eur Conf Comput Vis – ident: ref290 doi: 10.1609/aaai.v33i01.33012620 – year: 2021 ident: ref171 article-title: Meta auxiliary learning for facial action unit detection publication-title: IEEE Trans Affect Comput – start-page: 1006 year: 2018 ident: ref342 article-title: MetaReg: Towards domain generalization using meta-regularization publication-title: Proc Adv Neural Inf Process Syst – ident: ref295 doi: 10.1109/JAS.2022.105515 – ident: ref224 doi: 10.21437/Interspeech.2005-446 – ident: ref73 doi: 10.1109/JSTSP.2020.2987728 – ident: ref255 doi: 10.1109/ACCESS.2022.3185132 – ident: ref94 doi: 10.18653/v1/2022.emnlp-main.332 – ident: ref329 doi: 10.1007/978-3-642-42051-1_16 – ident: ref355 doi: 10.1109/ITSC.2015.424 – ident: ref124 doi: 10.1145/1651461.1651470 – ident: ref374 doi: 10.1145/2858036.2858217 – start-page: 8748 year: 2021 ident: ref83 article-title: Learning transferable visual models from natural language supervision publication-title: Proc Int Conf Mach Learn – ident: ref299 doi: 10.18653/v1/P16-1029 – ident: ref233 doi: 10.1016/j.future.2020.08.002 – ident: ref101 doi: 10.1145/3136755.3143005 – start-page: 4171 year: 2019 ident: ref84 article-title: BERT: Pre-training of deep bidirectional transformers for language understanding publication-title: Proc Conf North Amer Chapter Assoc Comput Linguistics Hum Lang Technol – ident: ref30 doi: 10.1109/TAFFC.2022.3226252 – ident: ref289 doi: 10.1145/3240508.3240591 – ident: ref42 doi: 10.1145/3386252 – ident: ref164 doi: 10.1109/BIBM52615.2021.9669542 – ident: ref108 doi: 10.1109/ICASSP.2016.7472666 – ident: ref262 doi: 10.1016/j.patrec.2020.11.013 – start-page: 1275 year: 2012 ident: ref240 article-title: Information-theoretical learning of discriminative clusters for unsupervised domain adaptation publication-title: Proc Int Conf Mach Learn – ident: ref6 doi: 10.1037/h0030377 – ident: ref271 doi: 10.18653/v1/D19-1466 – ident: ref99 doi: 10.1109/TASLP.2020.3023632 – volume: 17 start-page: 2030 year: 2016 ident: ref323 article-title: Domain-adversarial training of neural networks publication-title: J Mach Learn Res – ident: ref3 doi: 10.1109/JPROC.2023.3273517 – ident: ref263 doi: 10.1609/aaai.v34i05.6288 – ident: ref181 doi: 10.1109/34.799905 – year: 2015 ident: ref189 article-title: Siamese neural networks for one-shot image recognition publication-title: Proc ICML Deep Learn Workshop – start-page: 62 year: 2021 ident: ref160 article-title: Universal joy: A data set and results for classifying emotions across languages publication-title: Proc Workshop Comput Approaches Subjectivity Sentiment Social Media Anal – volume: 13 start-page: 932 year: 2000 ident: ref146 article-title: A neural probabilistic language model publication-title: Proc Adv Neural Inf Process Syst – ident: ref253 doi: 10.1145/3123266.3123367 – ident: ref340 doi: 10.1109/SLT48900.2021.9383534 – ident: ref48 doi: 10.1093/nsr/nwx106 – ident: ref150 doi: 10.1109/TKDE.2017.2756658 – ident: ref334 doi: 10.18653/v1/2020.coling-main.49 – ident: ref296 doi: 10.1109/TITS.2020.2987724 – ident: ref292 doi: 10.1109/TKDE.2021.3136606 – ident: ref314 doi: 10.1145/3240508.3240578 – ident: ref221 doi: 10.1109/TAFFC.2020.2973158 – ident: ref228 doi: 10.1145/1553374.1553517 – ident: ref66 doi: 10.23919/EUSIPCO54536.2021.9616296 – start-page: 596 year: 2020 ident: ref115 article-title: FixMatch: Simplifying semi-supervised learning with consistency and confidence publication-title: Proc Adv Neural Inf Process Syst – start-page: 1826 year: 2011 ident: ref112 article-title: Semi-supervised learning for imbalanced sentiment classification publication-title: Proc Int Joint Conf Artif Intell – ident: ref9 doi: 10.1145/1873951.1873965 – ident: ref102 doi: 10.1145/3240508.3240528 – ident: ref91 doi: 10.18653/v1/2020.acl-main.341 – year: 2018 ident: ref82 article-title: Representation learning with contrastive predictive coding publication-title: arXiv 1807 03748 – start-page: 1627 year: 2012 ident: ref223 article-title: Marginalized denoising autoencoders for domain adaptation publication-title: Proc Int Conf Mach Learn – ident: ref377 doi: 10.1109/ICIP.2018.8451580 – year: 2005 ident: ref386 publication-title: International affective picture system (IAPS) Affective ratings of pictures and instruction manual – ident: ref347 doi: 10.1007/978-3-030-58536-5_8 – ident: ref111 doi: 10.3115/v1/P14-1051 – ident: ref193 doi: 10.21437/Interspeech.2018-1832 – start-page: 1877 year: 2020 ident: ref81 article-title: Language models are few-shot learners publication-title: Proc Adv Neural Inf Process Syst – ident: ref220 doi: 10.1109/CVPRW.2010.5543262 – ident: ref351 doi: 10.18653/v1/2021.acl-long.269 – ident: ref28 doi: 10.1049/iet-ipr.2019.1270 – year: 2022 ident: ref138 article-title: Weakly-supervised learning for fine-grained emotion recognition using physiological signals publication-title: IEEE Trans Affect Comput – ident: ref107 doi: 10.1109/ICDMW.2014.146 – volume: 6 start-page: 1 year: 2019 ident: ref151 article-title: A survey on image data augmentation for deep learning publication-title: J Big Data doi: 10.1186/s40537-019-0197-0 – volume: 45 start-page: 4051 year: 2023 ident: ref43 article-title: A review of generalized zero-shot learning methods publication-title: IEEE Trans Pattern Anal Mach Intell – ident: ref37 doi: 10.1016/j.patrec.2014.01.008 – ident: ref303 doi: 10.1109/TCSS.2022.3153660 – ident: ref308 doi: 10.1609/aaai.v34i03.5651 – ident: ref131 doi: 10.1109/CVPR.2018.00791 – ident: ref348 doi: 10.1136/bmjopen-2017-018815 – ident: ref39 doi: 10.1109/MSP.2021.3119273 – ident: ref179 doi: 10.18653/v1/2021.metanlp-1.9 – ident: ref363 doi: 10.1109/TITS.2010.2070839 – start-page: 2066 year: 2012 ident: ref319 article-title: Geodesic flow kernel for unsupervised domain adaptation publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref216 doi: 10.18653/v1/2021.naacl-main.378 – ident: ref93 doi: 10.18653/v1/2020.acl-main.374 – ident: ref230 doi: 10.3389/fnbot.2018.00078 – start-page: 5852 year: 2018 ident: ref267 article-title: Hierarchical attention transfer network for cross-domain sentiment classification publication-title: Proc AAAI Conf Artif Intell – ident: ref234 doi: 10.1109/CVPR.2018.00810 – start-page: 417 year: 2006 ident: ref144 article-title: SentiWordNet: A publicly available lexical resource for opinion mining publication-title: Proc Int Conf Lang Resour Eval – ident: ref368 doi: 10.1007/s11280-021-00992-2 – ident: ref269 doi: 10.18653/v1/2020.acl-main.370 – start-page: 18493 year: 2020 ident: ref218 article-title: Continual learning of a mixed sequence of similar and dissimilar tasks publication-title: Proc Adv Neural Inf Process Syst – year: 2012 ident: ref38 article-title: Unsupervised feature learning and deep learning: A review and new perspectives publication-title: arXiv 1206 5538 – start-page: 1 year: 2008 ident: ref359 article-title: Speaker, noise, and acoustic space adaptation for emotion recognition in the automotive environment publication-title: Proc ITG Conf Voice Commun – year: 2018 ident: ref345 article-title: mixup: Beyond empirical risk minimization publication-title: Proc Int Conf Learn Represent – ident: ref379 doi: 10.1109/TAFFC.2021.3065726 – ident: ref25 doi: 10.1016/j.specom.2019.12.001 – ident: ref190 doi: 10.1109/CVPR.2018.00131 – ident: ref153 doi: 10.1145/3343031.3351032 – start-page: 22443 year: 2021 ident: ref215 article-title: Achieving forgetting prevention and knowledge transfer in continual learning publication-title: Proc Adv Neural Inf Process Syst – volume: 22 start-page: 1345 year: 2010 ident: ref50 article-title: A survey on transfer learning publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2009.191 – ident: ref135 doi: 10.1631/FITEE.1900618 – ident: ref147 doi: 10.3115/v1/D14-1162 – ident: ref140 doi: 10.1007/978-3-030-01216-8_36 – ident: ref65 doi: 10.1109/ICCV.2019.00124 – ident: ref391 doi: 10.1109/CVPR46437.2021.00222 – ident: ref279 doi: 10.1109/ACII.2019.8925513 – ident: ref40 doi: 10.1007/s10994-019-05855-6 – ident: ref10 doi: 10.1109/CVPR.2015.7298687 – ident: ref283 doi: 10.1145/3474085.3475484 – ident: ref195 doi: 10.1016/j.neucom.2021.03.058 – volume: 44 start-page: 5866 year: 2022 ident: ref49 article-title: Weakly supervised object localization and detection: A survey publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2020.3046647 – start-page: 3104 year: 2014 ident: ref148 article-title: Sequence to sequence learning with neural networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref268 doi: 10.1609/aaai.v33i01.33015773 – ident: ref106 doi: 10.1109/DASC.2013.103 – ident: ref45 doi: 10.1016/j.neucom.2017.06.084 – volume: 45 start-page: 5513 year: 2023 ident: ref47 article-title: Class-incremental learning: Survey and performance evaluation on image classification publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2022.3213473 – ident: ref339 doi: 10.1007/978-3-030-36708-4_3 – ident: ref285 doi: 10.1109/LSP.2017.2672753 – ident: ref387 doi: 10.1109/MSP.2020.2975749 – ident: ref23 doi: 10.1145/3503044 – ident: ref280 doi: 10.1007/978-3-030-04221-9_25 – ident: ref373 doi: 10.1016/j.chb.2021.106855 – ident: ref172 doi: 10.18653/v1/2021.emnlp-main.728 – start-page: 8568 year: 2018 ident: ref300 article-title: Adversarial multiple source domain adaptation publication-title: Proc Adv Neural Inf Process Syst – ident: ref362 doi: 10.1109/ICCVE.2013.6799859 – ident: ref383 doi: 10.1109/TAFFC.2016.2628787 – ident: ref173 doi: 10.1109/TCSS.2021.3130401 – ident: ref27 doi: 10.1007/978-3-030-81465-6_4 – ident: ref130 doi: 10.18653/v1/N19-1036 – ident: ref63 doi: 10.1109/CVPR42600.2020.01312 – start-page: 678 year: 2017 ident: ref354 article-title: Automatic detection of a driver's complex mental states publication-title: Proc Int Conf Comput Sci Appl – ident: ref276 doi: 10.1016/j.neucom.2021.02.048 – ident: ref244 doi: 10.1145/1772690.1772767 – ident: ref76 doi: 10.1007/1-4020-4102-0_1 – ident: ref364 doi: 10.1109/TITS.2011.2168215 – ident: ref278 doi: 10.1109/TCYB.2021.3062750 – start-page: 12697 year: 2021 ident: ref162 article-title: Calibrate before use: Improving few-shot performance of language models publication-title: Proc Int Conf Mach Learn – ident: ref250 doi: 10.1109/TAFFC.2017.2705696 – ident: ref53 doi: 10.1145/3400066 – ident: ref44 doi: 10.1145/3510030 – ident: ref46 doi: 10.1016/j.neunet.2020.12.003 – volume: 13 start-page: 723 year: 2012 ident: ref321 article-title: A kernel two-sample test publication-title: J Mach Learn Res – ident: ref114 doi: 10.1609/aaai.v35i7.16753 – ident: ref70 doi: 10.1109/ACII52823.2021.9597449 – start-page: 209 year: 2006 ident: ref74 article-title: Mining WordNet for a fuzzy sentiment: Sentiment tag extraction from WordNet glosses publication-title: Proc Conf Eur Chapter Assoc Comput Linguistics – ident: ref332 doi: 10.1109/AFGR.1998.670949 – ident: ref385 doi: 10.1145/3363560 – ident: ref378 doi: 10.3389/frai.2022.856232 – ident: ref272 doi: 10.1109/TAFFC.2020.2994159 – ident: ref117 doi: 10.1109/TPAMI.2018.2858821 – ident: ref89 doi: 10.18653/v1/2020.emnlp-main.346 – ident: ref226 doi: 10.1109/CVPR.2016.90 – ident: ref372 doi: 10.1016/j.jbusres.2018.10.004 – ident: ref270 doi: 10.1109/TCDS.2020.2999337 – ident: ref154 doi: 10.1145/3485447.3511994 – ident: ref11 doi: 10.1109/TAFFC.2016.2625250 – ident: ref64 doi: 10.1109/ICAICA.2019.8873466 – year: 2020 ident: ref178 article-title: Personalized acute stress classification from physiological signals with neural processes publication-title: arXiv 2002 04176 – ident: ref370 doi: 10.18653/v1/2022.acl-long.578 – ident: ref156 doi: 10.1016/j.eswa.2019.112851 – ident: ref301 doi: 10.18653/v1/2022.acl-long.174 – ident: ref198 doi: 10.1007/978-3-030-58598-3_45 – year: 2022 ident: ref338 article-title: Contrastive learning of subject-invariant EEG representations for cross-subject emotion recognition publication-title: IEEE Trans Affect Comput – ident: ref4 doi: 10.1109/MSP.2021.3106895 – ident: ref199 doi: 10.1109/ICCVW54120.2021.00463 – ident: ref349 doi: 10.1109/ICCE-TW52618.2021.9603010 – ident: ref361 doi: 10.1145/3173574.3174239 – ident: ref384 doi: 10.1145/3511808.3557365 – ident: ref8 doi: 10.1109/TAFFC.2018.2818685 – ident: ref139 doi: 10.18653/v1/D18-1403 – start-page: 160 year: 2012 ident: ref78 article-title: Collocation polarity disambiguation using web-based pseudo contexts publication-title: Proc Joint Conf Empirical Methods Natural Lang Process Comput Natural Lang Learn – year: 2016 ident: ref200 article-title: Incremental learning algorithms and applications publication-title: Proc Eur Symp Artif Neural Netw – ident: ref68 doi: 10.1109/TMM.2017.2757769 – ident: ref136 doi: 10.1145/3326335 – year: 2018 ident: ref191 article-title: Adaptive posterior learning: Few-shot learning with a surprise-based memory module publication-title: Proc Int Conf Learn Represent – ident: ref129 doi: 10.3115/v1/P15-1008 – ident: ref127 doi: 10.1145/2184436.2184437 – ident: ref286 doi: 10.18653/v1/D16-1023 – ident: ref294 doi: 10.1016/j.knosys.2019.105254 – ident: ref175 doi: 10.1609/aaai.v36i1.19873 – ident: ref206 doi: 10.1609/aaai.v27i1.8684 – year: 2022 ident: ref170 article-title: Discriminative few shot learning of facial dynamics in interview videos for autism trait classification publication-title: IEEE Trans Affect Comput – start-page: 18408 year: 2021 ident: ref119 article-title: FlexMatch: Boosting semi-supervised learning with curriculum pseudo labeling publication-title: Proc Adv Neural Inf Process Syst – ident: ref365 doi: 10.3390/sym14040687 – ident: ref192 doi: 10.1023/A:1007379606734 – ident: ref20 doi: 10.1002/widm.1253 – ident: ref163 doi: 10.1609/aaai.v36i10.21318 – volume: 45 start-page: 4396 year: 2023 ident: ref56 article-title: Domain generalization: A survey publication-title: IEEE Trans Pattern Anal Mach Intell – start-page: 513 year: 2011 ident: ref284 article-title: Domain adaptation for large-scale sentiment classification: A deep learning approach publication-title: Proc Int Conf Mach Learn – ident: ref24 doi: 10.1145/2168752.2168754 – ident: ref22 doi: 10.1109/TAFFC.2020.2970399 – ident: ref352 doi: 10.1145/3388790 – ident: ref7 doi: 10.1037/h0054570 – ident: ref307 doi: 10.1145/3442381.3449981 – ident: ref161 doi: 10.18653/v1/2021.findings-acl.129 – ident: ref288 doi: 10.1109/ICASSP39728.2021.9414930 – ident: ref67 doi: 10.1109/LSP.2014.2324759 – ident: ref109 doi: 10.1145/3462244.3481274 – ident: ref29 doi: 10.1109/TAFFC.2018.2874986 – year: 2019 ident: ref346 article-title: Distributionally robust neural networks publication-title: Proc Int Conf Learn Represent – ident: ref328 doi: 10.1109/TAFFC.2017.2740923 – start-page: 2258 year: 2016 ident: ref196 article-title: Selective deep features for micro-expression recognition publication-title: Proc Int Conf Pattern Recognit (ICPR) – ident: ref277 doi: 10.1145/3477495.3531984 – start-page: 2324 year: 2019 ident: ref142 article-title: Bert post-training for review reading comprehension and aspect-based sentiment analysis publication-title: Proc Conf North Amer Chapter Assoc Comput Linguistics Hum Lang Technol – volume: 44 start-page: 5826 year: 2022 ident: ref14 article-title: Video-based facial micro-expression analysis: A survey of datasets, features and algorithms publication-title: IEEE Trans Pattern Anal Mach Intell – ident: ref134 doi: 10.1609/aaai.v32i1.11275 – ident: ref168 doi: 10.1609/aaai.v36i5.20474 – ident: ref17 doi: 10.1016/j.ins.2021.10.005 – start-page: 5339 year: 2018 ident: ref344 article-title: Generalizing to unseen domains via adversarial data augmentation publication-title: Proc Adv Neural Inf Process Syst – ident: ref62 doi: 10.1007/s11063-021-10596-6 – ident: ref306 doi: 10.1109/TASLP.2022.3178232 – ident: ref254 doi: 10.1007/978-3-030-68796-0_49 – ident: ref309 doi: 10.1016/j.eswa.2021.115581 – ident: ref236 doi: 10.18653/v1/2021.emnlp-main.550 – ident: ref18 doi: 10.1109/TAFFC.2022.3184995 – ident: ref297 doi: 10.1109/TCSS.2020.3013938 – ident: ref258 doi: 10.1007/978-3-030-04221-9_36 – ident: ref287 doi: 10.1109/FG52635.2021.9667048 – ident: ref316 doi: 10.1109/CVPR.2011.5995347 – ident: ref58 doi: 10.1109/CVPR52688.2022.01553 – ident: ref51 doi: 10.1109/JPROC.2020.3004555 – ident: ref242 doi: 10.1109/ICPR56361.2022.9956540 – ident: ref165 doi: 10.1109/JIOT.2020.3022427 – year: 2020 ident: ref388 article-title: Federated adversarial domain adaptation publication-title: Proc Int Conf Learn Represent – ident: ref291 doi: 10.1109/ICPR.2018.8545284 – ident: ref320 doi: 10.1109/TCYB.2019.2914512 – ident: ref13 doi: 10.1007/s11263-018-1131-1 – ident: ref371 doi: 10.3389/fpubh.2022.1045777 – ident: ref273 doi: 10.1109/ICASSP39728.2021.9414496 – ident: ref217 doi: 10.18653/v1/2020.findings-emnlp.101 – ident: ref366 doi: 10.1109/TCSS.2021.3127935 – ident: ref54 doi: 10.1109/TPAMI.2019.2945942 – ident: ref256 doi: 10.1109/TAFFC.2022.3189222 – ident: ref305 doi: 10.18653/v1/D18-1498 – ident: ref302 doi: 10.3389/fpsyg.2021.809459 – year: 2019 ident: ref155 article-title: Revisiting few-shot learning for facial expression recognition publication-title: arXiv 1912 02751 – start-page: 3856 year: 2017 ident: ref219 article-title: Dynamic routing between capsules publication-title: Proc Adv Neural Inf Process Syst – ident: ref143 doi: 10.1109/ICCVW.2017.45 – ident: ref207 doi: 10.3115/v1/P15-2123 – ident: ref369 doi: 10.18653/v1/W19-3205 – ident: ref123 doi: 10.3115/v1/D14-1127 – ident: ref245 doi: 10.1109/TKDE.2015.2475761 – ident: ref125 doi: 10.18653/v1/D19-3001 – year: 2022 ident: ref169 article-title: Few-shot learning for fine-grained emotion recognition using physiological signals publication-title: IEEE Trans Multimedia – ident: ref71 doi: 10.1109/MIS.2013.27 – volume: 114 start-page: 3521 year: 2017 ident: ref201 article-title: Overcoming catastrophic forgetting in neural networks publication-title: Proc Nat Acad Sci USA doi: 10.1073/pnas.1611835114 – ident: ref186 doi: 10.1109/CVPR.2009.5206848 – year: 2022 ident: ref103 article-title: SMIN: Semi-supervised multi-modal interaction network for conversational emotion recognition publication-title: IEEE Trans Affect Comput – ident: ref336 doi: 10.1109/IJCNN48605.2020.9206635 – ident: ref184 doi: 10.1073/pnas.1903070116 – ident: ref257 doi: 10.1007/s11063-019-10035-7 – ident: ref281 doi: 10.1109/TPAMI.2021.3131222 – ident: ref149 doi: 10.1109/ICIP.2016.7532430 – start-page: 683 year: 2020 ident: ref214 article-title: Continual learning with knowledge transfer for sentiment classification publication-title: Proc Eur Conf Mach Learn Knowl Discovery Databases – ident: ref222 doi: 10.1609/aaai.v30i1.9987 – ident: ref87 doi: 10.1145/1341531.1341561 – ident: ref52 doi: 10.1109/MSP.2014.2347059 – ident: ref104 doi: 10.1109/TAFFC.2022.3210441 – ident: ref77 doi: 10.18653/v1/P18-1104 – start-page: 4077 year: 2017 ident: ref187 article-title: Prototypical networks for few-shot learning publication-title: Proc Adv Neural Inf Process Syst – ident: ref86 doi: 10.1109/CVPR52688.2022.01519 – ident: ref337 doi: 10.1007/978-3-030-92310-5_24 – ident: ref120 doi: 10.1109/ICCV48922.2021.00934 – ident: ref243 doi: 10.1109/TKDE.2020.2985365 – year: 2021 ident: ref159 article-title: Distribution matching for heterogeneous multi-task learning: A large-scale face study publication-title: arXiv 2105 03790 – year: 2019 ident: ref92 article-title: SentiLARE: Sentiment-aware language representation learning with linguistic knowledge publication-title: arXiv 1911 02493 – volume: 44 start-page: 3366 year: 2022 ident: ref209 article-title: A continual learning survey: Defying forgetting in classification tasks publication-title: IEEE Trans Pattern Anal Mach Intell – start-page: 1 year: 2019 ident: ref85 article-title: Electra: Pre-training text encoders as discriminators rather than generators publication-title: Proc Int Conf Learn Represent |
SSID | ssj0003563 |
Score | 2.49033 |
Snippet | Emotion and sentiment play a central role in various human activities, such as perception, decision-making, social interaction, and logical reasoning.... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1159 |
SubjectTerms | Affective computing Annotations artificial emotional intelligence (AEI) Artificial intelligence Cognition & reasoning Complexity theory Data mining Deep learning emotion and sentiment analysis (ESA) Emotion recognition Emotions Human factors label-efficient learning Labeling Labels Sentiment analysis Social factors Speech recognition Taxonomy Training |
Title | Toward Label-Efficient Emotion and Sentiment Analysis |
URI | https://ieeexplore.ieee.org/document/10253654 https://www.proquest.com/docview/2876681599 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2256 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003563 issn: 0018-9219 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7RTjDwLCJQUAY2lODEj8QjqlpVFSoIWqlb5NjOQpUiSBd-PbaTVAUEYstgn6w7n33n3H0fwLXCcaS15gERxCYopAh4KlFABSaxYA51y1ZbTNl4TiYLumia1V0vjJnois90aD_dv3y1kmv7VGY8PKaYUdKBTpLwullrc-xi2tCmRcaDjR-2HTKI304enx4GoSUKD036bgIC_uUWcrQqP85id8GMDmDaLq2uK3kJ11Ueyo9vqI3_Xvsh7Dehpn9X740j2NHlMextARCeAJ25qln_XuR6GQwdnIQR4w9rch9flMp_tvVEVrjfApj0YD4azgbjoCFSCGTMWRWIIiI50yzNJVEmxjJOKzhFJBHIMp4zlHKFGcYFIiJJVEqVZoVmFhyuILKI8Sl0y1Wpz8BPRSwF0gkhXNludE6oJiK2zXwqL3TqQdQqNpMNyrglu1hmLttAPHPGyKwxssYYHtxs5rzWGBt_ju5Z7W6NrBXrQb81YNb44Xtm8kHGUhOy8fNfpl3ArpVe1-f1oVu9rfWliTOq_Mrtr0_GzMs- |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCBZxGFAhnYUEIethOPqGpVSikIWqmb5djOQpUiSBd-PbaTVAUEYsvgc6w7n32X3H0fwKWMwkApRV3EkUlQUObSRPgu5hEKObGoW6baYkT6EzSY4mnVrG57YbSgLT5Tnnm0__LlXCzMpzLt4SGOCEbrsIF1WhGX7VrLgzfCFXFaoH1Ye2LdI-PT68Hj00PHM1Thnk7gdUhAv9xDlljlx2lsr5jeLozqxZWVJS_eokg98fENt_Hfq9-DnSrYdG7K3bEPayo_gO0VCMJDwGNbN-sMeapmbtcCSuhpnG5J7-PwXDrPpqLITO7UECZNmPS6407fragUXBFSUrg8C1BKFElSgaSOsrTbcop9FHPfcJ4TP6EyIlGU-YjHsUywVCRTxMDDZUhkYXQEjXyeq2NwEh4K7qsYISpNPzpFWCEemnY-mWYqaUFQK5aJCmfc0F3MmM03fMqsMZgxBquM0YKrpcxribLx5-im0e7KyFKxLWjXBmSVJ74znRESkuigjZ78InYBm_3x_ZANb0d3p7Bl3lRW67WhUbwt1JmOOor03O61T6RHzo8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Label-Efficient+Emotion+and+Sentiment+Analysis&rft.jtitle=Proceedings+of+the+IEEE&rft.au=Zhao%2C+Sicheng&rft.au=Hong%2C+Xiaopeng&rft.au=Yang%2C+Jufeng&rft.au=Zhao%2C+Yanyan&rft.date=2023-10-01&rft.issn=0018-9219&rft.eissn=1558-2256&rft.volume=111&rft.issue=10&rft.spage=1159&rft.epage=1197&rft_id=info:doi/10.1109%2FJPROC.2023.3309299&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JPROC_2023_3309299 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9219&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9219&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9219&client=summon |