Toward Label-Efficient Emotion and Sentiment Analysis

Emotion and sentiment play a central role in various human activities, such as perception, decision-making, social interaction, and logical reasoning. Developing artificial emotional intelligence (AEI) for machines is becoming a bottleneck in human-computer interaction. The first step of AEI is to r...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the IEEE Vol. 111; no. 10; pp. 1159 - 1197
Main Authors Zhao, Sicheng, Hong, Xiaopeng, Yang, Jufeng, Zhao, Yanyan, Ding, Guiguang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9219
1558-2256
DOI10.1109/JPROC.2023.3309299

Cover

Abstract Emotion and sentiment play a central role in various human activities, such as perception, decision-making, social interaction, and logical reasoning. Developing artificial emotional intelligence (AEI) for machines is becoming a bottleneck in human-computer interaction. The first step of AEI is to recognize the emotion and sentiment that are conveyed in different affective signals. Traditional supervised emotion and sentiment analysis (ESA) methods, especially deep learning-based ones, usually require large-scale labeled training data. However, due to the essential subjectivity, complexity, uncertainty and ambiguity, and subtlety, collecting such annotations is expensive, time-consuming, and difficult in practice. In this article, we introduce label-efficient ESA from the computational perspective. First, we present a hierarchical taxonomy for label-efficient learning based on the availability of sample labels, emotion categories, and data domains during training. Second, for each of the seven paradigms, i.e., unsupervised, semisupervised, weakly supervised, low-shot, incremental, domain-adaptive, and domain-generalizable ESA, we give the definition, summarize existing methods, and present our views on the quantitative and qualitative comparison. Finally, we provide several promising real-world applications, followed by unsolved challenges and potential future directions.
AbstractList Emotion and sentiment play a central role in various human activities, such as perception, decision-making, social interaction, and logical reasoning. Developing artificial emotional intelligence (AEI) for machines is becoming a bottleneck in human–computer interaction. The first step of AEI is to recognize the emotion and sentiment that are conveyed in different affective signals. Traditional supervised emotion and sentiment analysis (ESA) methods, especially deep learning-based ones, usually require large-scale labeled training data. However, due to the essential subjectivity, complexity, uncertainty and ambiguity, and subtlety, collecting such annotations is expensive, time-consuming, and difficult in practice. In this article, we introduce label-efficient ESA from the computational perspective. First, we present a hierarchical taxonomy for label-efficient learning based on the availability of sample labels, emotion categories, and data domains during training. Second, for each of the seven paradigms, i.e., unsupervised, semisupervised, weakly supervised, low-shot, incremental, domain-adaptive, and domain-generalizable ESA, we give the definition, summarize existing methods, and present our views on the quantitative and qualitative comparison. Finally, we provide several promising real-world applications, followed by unsolved challenges and potential future directions.
Author Zhao, Yanyan
Hong, Xiaopeng
Zhao, Sicheng
Ding, Guiguang
Yang, Jufeng
Author_xml – sequence: 1
  givenname: Sicheng
  orcidid: 0000-0001-5843-6411
  surname: Zhao
  fullname: Zhao, Sicheng
  email: schzhao@tsinghua.edu.cn
  organization: Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
– sequence: 2
  givenname: Xiaopeng
  surname: Hong
  fullname: Hong, Xiaopeng
  email: hongxiaopeng@hit.edu.cn
  organization: School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
– sequence: 3
  givenname: Jufeng
  orcidid: 0000-0003-0219-3443
  surname: Yang
  fullname: Yang, Jufeng
  email: yangjufeng@nankai.edu.cn
  organization: College of Computer Science, Nankai University, Tianjin, China
– sequence: 4
  givenname: Yanyan
  surname: Zhao
  fullname: Zhao, Yanyan
  email: yyzhao@ir.hit.edu.cn
  organization: School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
– sequence: 5
  givenname: Guiguang
  orcidid: 0000-0003-0137-9975
  surname: Ding
  fullname: Ding, Guiguang
  email: dinggg@tsinghua.edu.cn
  organization: Beijing National Research Center for Information Science and Technology (BNRist) and the School of Software, Tsinghua University, Beijing, China
BookMark eNp9kMtKAzEUhoNUsK2-gLgYcD315DrJspRalUJF6zqkMwmkTCc1mSJ9e2dsF-LC1YGf853LN0KDJjQWoVsME4xBPby8vq1mEwKETigFRZS6QEPMucwJ4WKAhgBY5opgdYVGKW0BgHJBh4ivw5eJVbY0G1vnc-d86W3TZvNdaH1oMtNU2XsX-F2fThtTH5NP1-jSmTrZm3Mdo4_H-Xr2lC9Xi-fZdJmXRIk2Nw6zjbBCbkpWgeRMSqM4sMKAAkkESFVRQakDZoqikryywlmBJRDHSkfoGN2f5u5j-DzY1OptOMTuiKSJLISQmCvVdZFTVxlDStE6vY9-Z-JRY9C9Hv2jR_d69FlPB8k_UOlb0__cRuPr_9G7E-qttb92EU4FZ_QbGPBzJg
CODEN IEEPAD
CitedBy_id crossref_primary_10_1016_j_inffus_2024_102909
crossref_primary_10_3390_bioengineering11100997
crossref_primary_10_1038_s41598_024_84532_8
crossref_primary_10_1007_s11263_024_02170_z
Cites_doi 10.1073/pnas.1322355111
10.1145/2700171.2791022
10.18653/v1/2020.emnlp-main.565
10.1145/3394171.3413718
10.1145/3382507.3418813
10.1075/is.17005.ihm
10.1109/TAFFC.2020.3032373
10.1609/aaai.v32i1.11280
10.1109/CVPR52688.2022.00926
10.1109/ICDM.2008.113
10.26615/978-954-452-072-4_067
10.1109/TNNLS.2020.3028503
10.1016/j.conb.2004.03.010
10.1109/ICCV48922.2021.00951
10.1145/3524499
10.18653/v1/D19-1408
10.18653/v1/2022.emnlp-main.780
10.5220/0010251202050217
10.1109/LSP.2021.3086395
10.1109/TAFFC.2018.2800046
10.1109/TKDE.2022.3178128
10.1016/j.knosys.2022.108346
10.21437/Interspeech.2021-666
10.1016/j.inffus.2020.01.011
10.1109/ICCV48922.2021.00814
10.1007/978-3-642-21616-9_65
10.1609/aaai.v33i01.3301110
10.1109/TMM.2021.3116434
10.1016/j.neunet.2019.03.010
10.1109/TAFFC.2022.3181033
10.1145/3038912.3052611
10.18653/v1/N18-1112
10.1109/TAFFC.2016.2563432
10.1109/TKDE.2011.48
10.1109/IJCNN52387.2021.9533310
10.1145/2337542.2337551
10.1109/ICCV.2017.244
10.1145/3240508.3240633
10.1145/3461702.3462566
10.18653/v1/P18-1233
10.1109/ACIIW.2019.8925021
10.1109/TCYB.2016.2633306
10.1609/aaai.v29i1.9179
10.1016/j.neucom.2019.09.106
10.1016/j.imavis.2011.07.002
10.1007/s10639-022-10943-7
10.1145/2502081.2502282
10.1007/978-3-030-18576-3_47
10.1109/ICABME.2015.7323251
10.1109/TAFFC.2021.3053275
10.1145/3394171.3413716
10.1145/2647868.2654916
10.1109/ICME.2005.1521424
10.1609/aaai.v30i1.10306
10.3115/v1/P14-2071
10.1162/089976698300017467
10.18653/v1/N19-1258
10.21437/Interspeech.2020-0032
10.1109/TPAMI.2016.2547397
10.24963/ijcai.2018/216
10.1016/j.imavis.2012.06.005
10.3115/1609067.1609142
10.1109/ICIP.2014.7026203
10.18653/v1/D18-1383
10.1037/a0014718
10.1109/TMM.2021.3087098
10.1016/j.knosys.2018.04.006
10.1142/S0218001493000339
10.1109/TPAMI.2018.2814042
10.1145/3323873.3325053
10.1109/TAFFC.2017.2667642
10.1109/TAFFC.2017.2714671
10.1145/2488388.2488442
10.1007/978-3-030-58577-8_7
10.1109/TAFFC.2020.2983669
10.1109/ICPR.2010.1132
10.1109/TMM.2019.2902100
10.1109/TASLP.2018.2867099
10.1109/TKDE.2012.103
10.1109/ACCESS.2020.3045225
10.1109/ICCV.2013.368
10.1016/j.inffus.2022.09.025
10.1109/TNN.2010.2091281
10.1016/j.neunet.2022.06.024
10.1609/aaai.v35i1.16169
10.1016/0921-8890(95)00004-Y
10.1109/MC.2018.3620963
10.1109/TCDS.2018.2826840
10.1109/TCSII.2022.3163141
10.1109/FG47880.2020.00110
10.1109/ACIIW52867.2021.9666338
10.1145/3529954
10.1109/TASLP.2019.2955252
10.18653/v1/2022.findings-naacl.58
10.1109/TAFFC.2018.2885474
10.1016/j.imavis.2017.08.003
10.24963/ijcai.2017/311
10.1609/aaai.v34i01.5364
10.1145/3394171.3413579
10.1109/TAFFC.2020.2981446
10.1109/TPAMI.2021.3094362
10.1002/asi.21416
10.1609/aaai.v33i01.33012620
10.1109/JAS.2022.105515
10.21437/Interspeech.2005-446
10.1109/JSTSP.2020.2987728
10.1109/ACCESS.2022.3185132
10.18653/v1/2022.emnlp-main.332
10.1007/978-3-642-42051-1_16
10.1109/ITSC.2015.424
10.1145/1651461.1651470
10.1145/2858036.2858217
10.18653/v1/P16-1029
10.1016/j.future.2020.08.002
10.1145/3136755.3143005
10.1109/TAFFC.2022.3226252
10.1145/3240508.3240591
10.1145/3386252
10.1109/BIBM52615.2021.9669542
10.1109/ICASSP.2016.7472666
10.1016/j.patrec.2020.11.013
10.1037/h0030377
10.18653/v1/D19-1466
10.1109/TASLP.2020.3023632
10.1109/JPROC.2023.3273517
10.1609/aaai.v34i05.6288
10.1109/34.799905
10.1145/3123266.3123367
10.1109/SLT48900.2021.9383534
10.1093/nsr/nwx106
10.1109/TKDE.2017.2756658
10.18653/v1/2020.coling-main.49
10.1109/TITS.2020.2987724
10.1109/TKDE.2021.3136606
10.1145/3240508.3240578
10.1109/TAFFC.2020.2973158
10.1145/1553374.1553517
10.23919/EUSIPCO54536.2021.9616296
10.1145/1873951.1873965
10.1145/3240508.3240528
10.18653/v1/2020.acl-main.341
10.1109/ICIP.2018.8451580
10.1007/978-3-030-58536-5_8
10.3115/v1/P14-1051
10.21437/Interspeech.2018-1832
10.1109/CVPRW.2010.5543262
10.18653/v1/2021.acl-long.269
10.1049/iet-ipr.2019.1270
10.1109/ICDMW.2014.146
10.1186/s40537-019-0197-0
10.1016/j.patrec.2014.01.008
10.1109/TCSS.2022.3153660
10.1609/aaai.v34i03.5651
10.1109/CVPR.2018.00791
10.1136/bmjopen-2017-018815
10.1109/MSP.2021.3119273
10.18653/v1/2021.metanlp-1.9
10.1109/TITS.2010.2070839
10.18653/v1/2021.naacl-main.378
10.18653/v1/2020.acl-main.374
10.3389/fnbot.2018.00078
10.1109/CVPR.2018.00810
10.1007/s11280-021-00992-2
10.18653/v1/2020.acl-main.370
10.1109/TAFFC.2021.3065726
10.1016/j.specom.2019.12.001
10.1109/CVPR.2018.00131
10.1145/3343031.3351032
10.1109/TKDE.2009.191
10.1631/FITEE.1900618
10.3115/v1/D14-1162
10.1007/978-3-030-01216-8_36
10.1109/ICCV.2019.00124
10.1109/CVPR46437.2021.00222
10.1109/ACII.2019.8925513
10.1007/s10994-019-05855-6
10.1109/CVPR.2015.7298687
10.1145/3474085.3475484
10.1016/j.neucom.2021.03.058
10.1109/TPAMI.2020.3046647
10.1609/aaai.v33i01.33015773
10.1109/DASC.2013.103
10.1016/j.neucom.2017.06.084
10.1109/TPAMI.2022.3213473
10.1007/978-3-030-36708-4_3
10.1109/LSP.2017.2672753
10.1109/MSP.2020.2975749
10.1145/3503044
10.1007/978-3-030-04221-9_25
10.1016/j.chb.2021.106855
10.18653/v1/2021.emnlp-main.728
10.1109/ICCVE.2013.6799859
10.1109/TAFFC.2016.2628787
10.1109/TCSS.2021.3130401
10.1007/978-3-030-81465-6_4
10.18653/v1/N19-1036
10.1109/CVPR42600.2020.01312
10.1016/j.neucom.2021.02.048
10.1145/1772690.1772767
10.1007/1-4020-4102-0_1
10.1109/TITS.2011.2168215
10.1109/TCYB.2021.3062750
10.1109/TAFFC.2017.2705696
10.1145/3400066
10.1145/3510030
10.1016/j.neunet.2020.12.003
10.1609/aaai.v35i7.16753
10.1109/ACII52823.2021.9597449
10.1109/AFGR.1998.670949
10.1145/3363560
10.3389/frai.2022.856232
10.1109/TAFFC.2020.2994159
10.1109/TPAMI.2018.2858821
10.18653/v1/2020.emnlp-main.346
10.1109/CVPR.2016.90
10.1016/j.jbusres.2018.10.004
10.1109/TCDS.2020.2999337
10.1145/3485447.3511994
10.1109/TAFFC.2016.2625250
10.1109/ICAICA.2019.8873466
10.18653/v1/2022.acl-long.578
10.1016/j.eswa.2019.112851
10.18653/v1/2022.acl-long.174
10.1007/978-3-030-58598-3_45
10.1109/MSP.2021.3106895
10.1109/ICCVW54120.2021.00463
10.1109/ICCE-TW52618.2021.9603010
10.1145/3173574.3174239
10.1145/3511808.3557365
10.1109/TAFFC.2018.2818685
10.18653/v1/D18-1403
10.1109/TMM.2017.2757769
10.1145/3326335
10.3115/v1/P15-1008
10.1145/2184436.2184437
10.18653/v1/D16-1023
10.1016/j.knosys.2019.105254
10.1609/aaai.v36i1.19873
10.1609/aaai.v27i1.8684
10.3390/sym14040687
10.1023/A:1007379606734
10.1002/widm.1253
10.1609/aaai.v36i10.21318
10.1145/2168752.2168754
10.1109/TAFFC.2020.2970399
10.1145/3388790
10.1037/h0054570
10.1145/3442381.3449981
10.18653/v1/2021.findings-acl.129
10.1109/ICASSP39728.2021.9414930
10.1109/LSP.2014.2324759
10.1145/3462244.3481274
10.1109/TAFFC.2018.2874986
10.1109/TAFFC.2017.2740923
10.1145/3477495.3531984
10.1609/aaai.v32i1.11275
10.1609/aaai.v36i5.20474
10.1016/j.ins.2021.10.005
10.1007/s11063-021-10596-6
10.1109/TASLP.2022.3178232
10.1007/978-3-030-68796-0_49
10.1016/j.eswa.2021.115581
10.18653/v1/2021.emnlp-main.550
10.1109/TAFFC.2022.3184995
10.1109/TCSS.2020.3013938
10.1007/978-3-030-04221-9_36
10.1109/FG52635.2021.9667048
10.1109/CVPR.2011.5995347
10.1109/CVPR52688.2022.01553
10.1109/JPROC.2020.3004555
10.1109/ICPR56361.2022.9956540
10.1109/JIOT.2020.3022427
10.1109/ICPR.2018.8545284
10.1109/TCYB.2019.2914512
10.1007/s11263-018-1131-1
10.3389/fpubh.2022.1045777
10.1109/ICASSP39728.2021.9414496
10.18653/v1/2020.findings-emnlp.101
10.1109/TCSS.2021.3127935
10.1109/TPAMI.2019.2945942
10.1109/TAFFC.2022.3189222
10.18653/v1/D18-1498
10.3389/fpsyg.2021.809459
10.1109/ICCVW.2017.45
10.3115/v1/P15-2123
10.18653/v1/W19-3205
10.3115/v1/D14-1127
10.1109/TKDE.2015.2475761
10.18653/v1/D19-3001
10.1109/MIS.2013.27
10.1073/pnas.1611835114
10.1109/CVPR.2009.5206848
10.1109/IJCNN48605.2020.9206635
10.1073/pnas.1903070116
10.1007/s11063-019-10035-7
10.1109/TPAMI.2021.3131222
10.1109/ICIP.2016.7532430
10.1609/aaai.v30i1.9987
10.1145/1341531.1341561
10.1109/MSP.2014.2347059
10.1109/TAFFC.2022.3210441
10.18653/v1/P18-1104
10.1109/CVPR52688.2022.01519
10.1007/978-3-030-92310-5_24
10.1109/ICCV48922.2021.00934
10.1109/TKDE.2020.2985365
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/JPROC.2023.3309299
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2256
EndPage 1197
ExternalDocumentID 10_1109_JPROC_2023_3309299
10253654
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: AUGA5710011522
  funderid: 10.13039/501100012226
– fundername: CCF-DiDi GAIA Collaborative Research Funds for Young Scholars
– fundername: Natural Science Foundation of Tianjin, China
  grantid: 20JCJQJC00020
  funderid: 10.13039/501100006606
– fundername: National Natural Science Foundation of China
  grantid: 62076195; 62176078; U1936202
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2018AAA0100400
– fundername: Supercomputing Center of Nankai University (NKSC)
  funderid: 10.13039/501100004945
GroupedDBID -DZ
-~X
.DC
0R~
123
1OL
29P
3EH
4.4
6IK
85S
97E
9M8
AAJGR
AAWTH
ABAZT
ABFSI
ABJNI
ABQJQ
ABVLG
ACBEA
ACGFS
AENEX
AETEA
AETIX
AFOGA
AGNAY
AGQYO
AGSQL
AHBIQ
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
FA8
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MVM
O9-
OCL
RIA
RIE
RIU
RNS
TAE
TN5
TWZ
UDY
UHB
UKR
UQL
VOH
WHG
XJT
XOL
YNT
ZCA
ZXP
ZY4
~02
AAYXX
CITATION
7SP
8FD
L7M
RIG
ID FETCH-LOGICAL-c296t-af14b6e68bc4d085488a95047a090826089d3633f04a77d85de6fe61802f4cf23
IEDL.DBID RIE
ISSN 0018-9219
IngestDate Fri Jul 25 05:59:42 EDT 2025
Thu Apr 24 23:06:50 EDT 2025
Wed Oct 01 04:31:56 EDT 2025
Wed Aug 27 02:25:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-af14b6e68bc4d085488a95047a090826089d3633f04a77d85de6fe61802f4cf23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0137-9975
0000-0001-5843-6411
0000-0003-0219-3443
PQID 2876681599
PQPubID 85453
PageCount 39
ParticipantIDs crossref_primary_10_1109_JPROC_2023_3309299
proquest_journals_2876681599
crossref_citationtrail_10_1109_JPROC_2023_3309299
ieee_primary_10253654
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Proceedings of the IEEE
PublicationTitleAbbrev JPROC
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref207
ref328
ref208
ref329
ref59
ref326
ref58
ref206
ref53
ref203
ref52
ref325
ref55
ref322
ref54
ref202
zheng (ref267) 2018
zheng (ref241) 2016
ref210
ref331
ref211
ref332
ref51
ref330
ref46
ref339
ref45
ref48
ref216
ref337
ref217
clark (ref85) 2019
ref42
ref336
ref44
ref212
ref333
ref213
ref334
ref100
ref221
ref101
ref222
ref343
ref40
ref340
ref220
ref341
ref35
ref306
ref34
ref307
ref37
ref304
ref36
ref305
ref31
ref302
ref30
ref303
ref33
ref301
ref39
zhang (ref49) 2022; 44
ref308
ref309
ref310
chen (ref223) 2012
ref24
ref317
ref23
ref318
ref26
ref315
ref25
ref316
ref20
ref313
ref314
ref22
ref21
ref312
ref28
ref27
gong (ref319) 2012
ref29
li (ref335) 2022
zhang (ref119) 2021
ref320
martin (ref225) 2006
ref128
ref249
ref129
ref97
ref126
ref247
ref368
ref96
ref127
ref248
ref369
ref99
ref124
ref245
ref366
ref125
ref246
ref367
ref93
ref254
ref375
ref134
ref255
ref376
ref131
ref252
ref373
ref94
ref132
ref253
ref374
zhang (ref138) 2022
ref250
ref371
ref130
ref251
ref372
ref91
ref90
ref370
ref89
ref139
ref86
ref137
ref258
ref379
ref259
ref88
ref135
ref256
ref377
ref87
ref136
ref257
ref378
zhang (ref170) 2022
xu (ref142) 2019
sohn (ref115) 2020
koch (ref189) 2015
balaji (ref342) 2018
ref265
ref145
ref266
ref387
ref263
ref384
ref143
ref264
ref385
ben (ref14) 2022; 44
kenton (ref84) 2019
ref140
ref261
ref382
ref141
ref262
ref383
ref380
ref260
ref381
ref108
ref229
ref109
sutskever (ref148) 2014
ref106
ref227
ref348
ref107
ref228
ref349
ref104
ref105
ref226
ref347
ref77
ref102
ref76
ref224
gepperth (ref200) 2016
ref71
ref111
ref232
ref353
ref70
ref233
ref73
ref230
ref351
ref72
ref110
ref231
ref352
ref350
masana (ref47) 2023; 45
ref68
ref67
ref117
ref238
ref69
ref239
ref64
ref236
ref357
ref63
ref116
ref358
ref66
ref113
ref234
ref355
ref65
ref114
ref235
ref356
wang (ref80) 2015
kingma (ref98) 2014
ref60
ref243
ref364
ref123
ref244
ref365
ref62
ref120
ref362
ref242
ref363
ref360
ref361
ref168
ref289
esuli (ref144) 2006
ref290
ref291
volpi (ref344) 2018
ref298
ref299
ref175
ref296
ref176
ref297
ref173
ref294
ruvolo (ref205) 2013
ref174
ref295
ref292
ref172
ref293
peng (ref388) 2020
ref179
kollias (ref158) 2019
zhou (ref56) 2023; 45
stewart (ref178) 2020
ref180
ref181
gretton (ref321) 2012; 13
ref188
ref186
ref184
ref183
ref269
ref149
ref147
ref268
ref390
kollias (ref159) 2021
ref276
ref156
ref277
lamprinidis (ref160) 2021
ref153
ref274
ref154
ref275
jialin pan (ref50) 2010; 22
shorten (ref151) 2019; 6
ref272
ref152
ref273
ref270
ref391
ref150
ref271
ref392
ref157
ref278
ref279
guan (ref133) 2016
ref280
bengio (ref146) 2000; 13
ref287
ruvolo (ref204) 2013
ref167
ref288
ref164
ref285
ref165
ref286
ref283
ref163
ref281
ref161
latif (ref282) 2022
healey (ref177) 2020
esuli (ref75) 2007; 17
grandvalet (ref118) 2004
ref2
ref192
ref190
ref199
andreevskaia (ref74) 2006
sabour (ref219) 2017
ref197
ref198
shi (ref240) 2012
ref195
ref193
chen (ref185) 2018
zhao (ref300) 2018
schuller (ref359) 2008
goldberg (ref95) 2006
ramalho (ref191) 2018
de lange (ref209) 2022; 44
zhao (ref162) 2021
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ganin (ref323) 2016; 17
tarvainen (ref121) 2017
yang (ref41) 2022
bengio (ref38) 2012
zeng (ref79) 2020
van den oord (ref82) 2018
zhang (ref327) 2022
brown (ref81) 2020
ciubotaru (ref155) 2019
fang (ref389) 2023
glorot (ref284) 2011
saganowski (ref32) 2022
feng (ref166) 2021
pourpanah (ref43) 2023; 45
lian (ref103) 2022
snell (ref187) 2017
ke (ref92) 2019
li (ref171) 2021
ke (ref214) 2020
sun (ref311) 2011
zhang (ref169) 2022
shen (ref338) 2022
xu (ref122) 2021
zhang (ref345) 2018
ref13
radford (ref83) 2021
ref12
finn (ref194) 2017
ref15
ref11
ref10
zhao (ref78) 2012
ref17
ref16
ref19
ref18
lang (ref386) 2005
ke (ref218) 2020
ma (ref354) 2017
james (ref201) 2017; 114
minsky (ref1) 1986
sagawa (ref346) 2019
patel (ref196) 2016
hung (ref237) 2019
ekman (ref182) 2004
li (ref112) 2011
jia (ref61) 2022
ke (ref215) 2021
goodfellow (ref324) 2014
References_xml – year: 2004
  ident: ref182
  publication-title: Micro-expression Training Tool
– ident: ref12
  doi: 10.1073/pnas.1322355111
– ident: ref208
  doi: 10.1145/2700171.2791022
– ident: ref238
  doi: 10.18653/v1/2020.emnlp-main.565
– ident: ref212
  doi: 10.1145/3394171.3413718
– ident: ref313
  doi: 10.1145/3382507.3418813
– ident: ref353
  doi: 10.1075/is.17005.ihm
– ident: ref26
  doi: 10.1109/TAFFC.2020.3032373
– ident: ref69
  doi: 10.1609/aaai.v32i1.11280
– ident: ref382
  doi: 10.1109/CVPR52688.2022.00926
– ident: ref97
  doi: 10.1109/ICDM.2008.113
– ident: ref113
  doi: 10.26615/978-954-452-072-4_067
– ident: ref55
  doi: 10.1109/TNNLS.2020.3028503
– ident: ref183
  doi: 10.1016/j.conb.2004.03.010
– ident: ref380
  doi: 10.1109/ICCV48922.2021.00951
– ident: ref33
  doi: 10.1145/3524499
– ident: ref176
  doi: 10.18653/v1/D19-1408
– start-page: 3719
  year: 2016
  ident: ref133
  article-title: Weakly-supervised deep learning for customer review sentiment classification
  publication-title: Proc Int Joint Conf Artif Intell
– ident: ref90
  doi: 10.18653/v1/2022.emnlp-main.780
– ident: ref232
  doi: 10.5220/0010251202050217
– start-page: 1195
  year: 2017
  ident: ref121
  article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref167
  doi: 10.1109/LSP.2021.3086395
– ident: ref251
  doi: 10.1109/TAFFC.2018.2800046
– ident: ref57
  doi: 10.1109/TKDE.2022.3178128
– ident: ref341
  doi: 10.1016/j.knosys.2022.108346
– ident: ref293
  doi: 10.21437/Interspeech.2021-666
– ident: ref35
  doi: 10.1016/j.inffus.2020.01.011
– start-page: 1
  year: 2020
  ident: ref177
  article-title: Sequential dependence and non-linearity in affective responses: A skin conductance example
  publication-title: Proc Workshop Artif Intell Affective Comput
– ident: ref376
  doi: 10.1109/ICCV48922.2021.00814
– start-page: 13647
  year: 2019
  ident: ref237
  article-title: Compacting, picking and growing for unforgetting continual learning
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref358
  doi: 10.1007/978-3-642-21616-9_65
– ident: ref367
  doi: 10.1609/aaai.v33i01.3301110
– ident: ref227
  doi: 10.1109/TMM.2021.3116434
– start-page: 1126
  year: 2017
  ident: ref194
  article-title: Model-agnostic meta-learning for fast adaptation of deep networks
  publication-title: Proc Int Conf Mach Learn
– start-page: 529
  year: 2004
  ident: ref118
  article-title: Semi-supervised learning by entropy minimization
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref202
  doi: 10.1016/j.neunet.2019.03.010
– year: 2020
  ident: ref79
  article-title: A variational approach to unsupervised sentiment analysis
  publication-title: arXiv 2008 09394
– ident: ref211
  doi: 10.1109/TAFFC.2022.3181033
– ident: ref141
  doi: 10.1145/3038912.3052611
– start-page: 2672
  year: 2014
  ident: ref324
  article-title: Generative adversarial nets
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref333
  doi: 10.18653/v1/N18-1112
– ident: ref249
  doi: 10.1109/TAFFC.2016.2563432
– start-page: 507
  year: 2013
  ident: ref204
  article-title: ELLA: An efficient lifelong learning algorithm
  publication-title: Proc Int Conf Mach Learn
– ident: ref128
  doi: 10.1109/TKDE.2011.48
– ident: ref265
  doi: 10.1109/IJCNN52387.2021.9533310
– ident: ref59
  doi: 10.1145/2337542.2337551
– ident: ref325
  doi: 10.1109/ICCV.2017.244
– ident: ref326
  doi: 10.1145/3240508.3240633
– ident: ref392
  doi: 10.1145/3461702.3462566
– ident: ref261
  doi: 10.18653/v1/P18-1233
– year: 2022
  ident: ref327
  article-title: Learning disentangled representation for multimodal cross-domain sentiment analysis
  publication-title: IEEE Trans Neural Netw Learn Syst
– ident: ref152
  doi: 10.1109/ACIIW.2019.8925021
– ident: ref248
  doi: 10.1109/TCYB.2016.2633306
– ident: ref137
  doi: 10.1609/aaai.v29i1.9179
– ident: ref315
  doi: 10.1016/j.neucom.2019.09.106
– ident: ref331
  doi: 10.1016/j.imavis.2011.07.002
– ident: ref375
  doi: 10.1007/s10639-022-10943-7
– ident: ref126
  doi: 10.1145/2502081.2502282
– ident: ref235
  doi: 10.1007/978-3-030-18576-3_47
– ident: ref356
  doi: 10.1109/ICABME.2015.7323251
– year: 2018
  ident: ref185
  article-title: A closer look at few-shot classification
  publication-title: Proc Int Conf Learn Represent
– ident: ref21
  doi: 10.1109/TAFFC.2021.3053275
– ident: ref390
  doi: 10.1145/3394171.3413716
– ident: ref312
  doi: 10.1145/2647868.2654916
– ident: ref330
  doi: 10.1109/ICME.2005.1521424
– ident: ref246
  doi: 10.1609/aaai.v30i1.10306
– start-page: 45
  year: 2006
  ident: ref95
  article-title: Seeing stars when there aren't many stars: Graph-based semi-supervised learning for sentiment categorization
  publication-title: Proc 1st Workshop Graph Based Methods Natural Lang Process
– ident: ref110
  doi: 10.3115/v1/P14-2071
– ident: ref317
  doi: 10.1162/089976698300017467
– ident: ref260
  doi: 10.18653/v1/N19-1258
– year: 2022
  ident: ref32
  article-title: Emotion recognition for everyday life using physiological signals from wearables: A systematic literature review
  publication-title: IEEE Trans Affect Comput
– start-page: 2732
  year: 2016
  ident: ref241
  article-title: Personalizing EEG-based affective models with transfer learning
  publication-title: Proc Int Joint Conf Artif Intell
– year: 2022
  ident: ref282
  article-title: Self supervised adversarial domain adaptation for cross-corpus and cross-language speech emotion recognition
  publication-title: IEEE Trans Affect Comput
– ident: ref350
  doi: 10.21437/Interspeech.2020-0032
– ident: ref72
  doi: 10.1109/TPAMI.2016.2547397
– ident: ref274
  doi: 10.24963/ijcai.2018/216
– ident: ref15
  doi: 10.1016/j.imavis.2012.06.005
– ident: ref96
  doi: 10.3115/1609067.1609142
– ident: ref357
  doi: 10.1109/ICIP.2014.7026203
– ident: ref259
  doi: 10.18653/v1/D18-1383
– ident: ref229
  doi: 10.1037/a0014718
– ident: ref174
  doi: 10.1109/TMM.2021.3087098
– ident: ref132
  doi: 10.1016/j.knosys.2018.04.006
– ident: ref188
  doi: 10.1142/S0218001493000339
– ident: ref322
  doi: 10.1109/TPAMI.2018.2814042
– ident: ref210
  doi: 10.1145/3323873.3325053
– year: 2023
  ident: ref389
  article-title: Source-free unsupervised domain adaptation: A survey
  publication-title: arXiv 2301 00265
– ident: ref19
  doi: 10.1109/TAFFC.2017.2667642
– ident: ref31
  doi: 10.1109/TAFFC.2017.2714671
– ident: ref60
  doi: 10.1145/2488388.2488442
– year: 2022
  ident: ref335
  article-title: Benchmarking domain generalization on EEG-based emotion recognition
  publication-title: arXiv 2204 09016
– ident: ref88
  doi: 10.1007/978-3-030-58577-8_7
– ident: ref100
  doi: 10.1109/TAFFC.2020.2983669
– ident: ref360
  doi: 10.1109/ICPR.2010.1132
– ident: ref343
  doi: 10.1109/TMM.2019.2902100
– ident: ref264
  doi: 10.1109/TASLP.2018.2867099
– ident: ref304
  doi: 10.1109/TKDE.2012.103
– year: 2019
  ident: ref158
  article-title: Face behavior a la carte: Expressions, affect and action units in a single network
  publication-title: arXiv 1910 11111
– ident: ref298
  doi: 10.1109/ACCESS.2020.3045225
– year: 2013
  ident: ref205
  article-title: Scalable lifelong learning with active task selection
  publication-title: Proc AAAI Spring Symp Lifelong Mach Learn
– ident: ref247
  doi: 10.1109/ICCV.2013.368
– year: 2021
  ident: ref166
  article-title: Few-shot learning in emotion recognition of spontaneous speech using a Siamese neural network with adaptive sample pair formation
  publication-title: IEEE Trans Affect Comput
– start-page: 3581
  year: 2014
  ident: ref98
  article-title: Semi-supervised learning with deep generative models
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref36
  doi: 10.1016/j.inffus.2022.09.025
– ident: ref318
  doi: 10.1109/TNN.2010.2091281
– ident: ref197
  doi: 10.1016/j.neunet.2022.06.024
– ident: ref310
  doi: 10.1609/aaai.v35i1.16169
– ident: ref203
  doi: 10.1016/0921-8890(95)00004-Y
– ident: ref2
  doi: 10.1109/MC.2018.3620963
– start-page: 11525
  year: 2021
  ident: ref122
  article-title: Dash: Semi-supervised learning with dynamic thresholding
  publication-title: Proc Int Conf Mach Learn
– year: 2022
  ident: ref41
  article-title: A survey on deep semi-supervised learning
  publication-title: IEEE Trans Knowl Data Eng
– ident: ref239
  doi: 10.1109/TCDS.2018.2826840
– volume: 17
  start-page: 1
  year: 2007
  ident: ref75
  article-title: SentiWordNet: A high-coverage lexical resource for opinion mining
  publication-title: EVAluation
– ident: ref116
  doi: 10.1109/TCSII.2022.3163141
– ident: ref213
  doi: 10.1109/FG47880.2020.00110
– ident: ref231
  doi: 10.1109/ACIIW52867.2021.9666338
– ident: ref180
  doi: 10.1145/3529954
– ident: ref252
  doi: 10.1109/TASLP.2019.2955252
– year: 1986
  ident: ref1
  publication-title: The Society of Mind
– start-page: 2378
  year: 2015
  ident: ref80
  article-title: Unsupervised sentiment analysis for social media images
  publication-title: Proc Int Joint Conf Artif Intell
– ident: ref157
  doi: 10.18653/v1/2022.findings-naacl.58
– ident: ref275
  doi: 10.1109/TAFFC.2018.2885474
– ident: ref34
  doi: 10.1016/j.imavis.2017.08.003
– ident: ref266
  doi: 10.24963/ijcai.2017/311
– ident: ref381
  doi: 10.1609/aaai.v34i01.5364
– start-page: 1
  year: 2006
  ident: ref225
  article-title: The eNTERFACE'05 audio-visual emotion database
  publication-title: Proc 22nd Int'l Conf Data Eng Workshops (ICDE '06)
– ident: ref105
  doi: 10.1145/3394171.3413579
– ident: ref16
  doi: 10.1109/TAFFC.2020.2981446
– ident: ref5
  doi: 10.1109/TPAMI.2021.3094362
– ident: ref145
  doi: 10.1002/asi.21416
– start-page: 505
  year: 2011
  ident: ref311
  article-title: A two-stage weighting framework for multi-source domain adaptation
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 493
  year: 2022
  ident: ref61
  article-title: S2-VER: Semi-supervised visual emotion recognition
  publication-title: Proc Eur Conf Comput Vis
– ident: ref290
  doi: 10.1609/aaai.v33i01.33012620
– year: 2021
  ident: ref171
  article-title: Meta auxiliary learning for facial action unit detection
  publication-title: IEEE Trans Affect Comput
– start-page: 1006
  year: 2018
  ident: ref342
  article-title: MetaReg: Towards domain generalization using meta-regularization
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref295
  doi: 10.1109/JAS.2022.105515
– ident: ref224
  doi: 10.21437/Interspeech.2005-446
– ident: ref73
  doi: 10.1109/JSTSP.2020.2987728
– ident: ref255
  doi: 10.1109/ACCESS.2022.3185132
– ident: ref94
  doi: 10.18653/v1/2022.emnlp-main.332
– ident: ref329
  doi: 10.1007/978-3-642-42051-1_16
– ident: ref355
  doi: 10.1109/ITSC.2015.424
– ident: ref124
  doi: 10.1145/1651461.1651470
– ident: ref374
  doi: 10.1145/2858036.2858217
– start-page: 8748
  year: 2021
  ident: ref83
  article-title: Learning transferable visual models from natural language supervision
  publication-title: Proc Int Conf Mach Learn
– ident: ref299
  doi: 10.18653/v1/P16-1029
– ident: ref233
  doi: 10.1016/j.future.2020.08.002
– ident: ref101
  doi: 10.1145/3136755.3143005
– start-page: 4171
  year: 2019
  ident: ref84
  article-title: BERT: Pre-training of deep bidirectional transformers for language understanding
  publication-title: Proc Conf North Amer Chapter Assoc Comput Linguistics Hum Lang Technol
– ident: ref30
  doi: 10.1109/TAFFC.2022.3226252
– ident: ref289
  doi: 10.1145/3240508.3240591
– ident: ref42
  doi: 10.1145/3386252
– ident: ref164
  doi: 10.1109/BIBM52615.2021.9669542
– ident: ref108
  doi: 10.1109/ICASSP.2016.7472666
– ident: ref262
  doi: 10.1016/j.patrec.2020.11.013
– start-page: 1275
  year: 2012
  ident: ref240
  article-title: Information-theoretical learning of discriminative clusters for unsupervised domain adaptation
  publication-title: Proc Int Conf Mach Learn
– ident: ref6
  doi: 10.1037/h0030377
– ident: ref271
  doi: 10.18653/v1/D19-1466
– ident: ref99
  doi: 10.1109/TASLP.2020.3023632
– volume: 17
  start-page: 2030
  year: 2016
  ident: ref323
  article-title: Domain-adversarial training of neural networks
  publication-title: J Mach Learn Res
– ident: ref3
  doi: 10.1109/JPROC.2023.3273517
– ident: ref263
  doi: 10.1609/aaai.v34i05.6288
– ident: ref181
  doi: 10.1109/34.799905
– year: 2015
  ident: ref189
  article-title: Siamese neural networks for one-shot image recognition
  publication-title: Proc ICML Deep Learn Workshop
– start-page: 62
  year: 2021
  ident: ref160
  article-title: Universal joy: A data set and results for classifying emotions across languages
  publication-title: Proc Workshop Comput Approaches Subjectivity Sentiment Social Media Anal
– volume: 13
  start-page: 932
  year: 2000
  ident: ref146
  article-title: A neural probabilistic language model
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref253
  doi: 10.1145/3123266.3123367
– ident: ref340
  doi: 10.1109/SLT48900.2021.9383534
– ident: ref48
  doi: 10.1093/nsr/nwx106
– ident: ref150
  doi: 10.1109/TKDE.2017.2756658
– ident: ref334
  doi: 10.18653/v1/2020.coling-main.49
– ident: ref296
  doi: 10.1109/TITS.2020.2987724
– ident: ref292
  doi: 10.1109/TKDE.2021.3136606
– ident: ref314
  doi: 10.1145/3240508.3240578
– ident: ref221
  doi: 10.1109/TAFFC.2020.2973158
– ident: ref228
  doi: 10.1145/1553374.1553517
– ident: ref66
  doi: 10.23919/EUSIPCO54536.2021.9616296
– start-page: 596
  year: 2020
  ident: ref115
  article-title: FixMatch: Simplifying semi-supervised learning with consistency and confidence
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 1826
  year: 2011
  ident: ref112
  article-title: Semi-supervised learning for imbalanced sentiment classification
  publication-title: Proc Int Joint Conf Artif Intell
– ident: ref9
  doi: 10.1145/1873951.1873965
– ident: ref102
  doi: 10.1145/3240508.3240528
– ident: ref91
  doi: 10.18653/v1/2020.acl-main.341
– year: 2018
  ident: ref82
  article-title: Representation learning with contrastive predictive coding
  publication-title: arXiv 1807 03748
– start-page: 1627
  year: 2012
  ident: ref223
  article-title: Marginalized denoising autoencoders for domain adaptation
  publication-title: Proc Int Conf Mach Learn
– ident: ref377
  doi: 10.1109/ICIP.2018.8451580
– year: 2005
  ident: ref386
  publication-title: International affective picture system (IAPS) Affective ratings of pictures and instruction manual
– ident: ref347
  doi: 10.1007/978-3-030-58536-5_8
– ident: ref111
  doi: 10.3115/v1/P14-1051
– ident: ref193
  doi: 10.21437/Interspeech.2018-1832
– start-page: 1877
  year: 2020
  ident: ref81
  article-title: Language models are few-shot learners
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref220
  doi: 10.1109/CVPRW.2010.5543262
– ident: ref351
  doi: 10.18653/v1/2021.acl-long.269
– ident: ref28
  doi: 10.1049/iet-ipr.2019.1270
– year: 2022
  ident: ref138
  article-title: Weakly-supervised learning for fine-grained emotion recognition using physiological signals
  publication-title: IEEE Trans Affect Comput
– ident: ref107
  doi: 10.1109/ICDMW.2014.146
– volume: 6
  start-page: 1
  year: 2019
  ident: ref151
  article-title: A survey on image data augmentation for deep learning
  publication-title: J Big Data
  doi: 10.1186/s40537-019-0197-0
– volume: 45
  start-page: 4051
  year: 2023
  ident: ref43
  article-title: A review of generalized zero-shot learning methods
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: ref37
  doi: 10.1016/j.patrec.2014.01.008
– ident: ref303
  doi: 10.1109/TCSS.2022.3153660
– ident: ref308
  doi: 10.1609/aaai.v34i03.5651
– ident: ref131
  doi: 10.1109/CVPR.2018.00791
– ident: ref348
  doi: 10.1136/bmjopen-2017-018815
– ident: ref39
  doi: 10.1109/MSP.2021.3119273
– ident: ref179
  doi: 10.18653/v1/2021.metanlp-1.9
– ident: ref363
  doi: 10.1109/TITS.2010.2070839
– start-page: 2066
  year: 2012
  ident: ref319
  article-title: Geodesic flow kernel for unsupervised domain adaptation
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref216
  doi: 10.18653/v1/2021.naacl-main.378
– ident: ref93
  doi: 10.18653/v1/2020.acl-main.374
– ident: ref230
  doi: 10.3389/fnbot.2018.00078
– start-page: 5852
  year: 2018
  ident: ref267
  article-title: Hierarchical attention transfer network for cross-domain sentiment classification
  publication-title: Proc AAAI Conf Artif Intell
– ident: ref234
  doi: 10.1109/CVPR.2018.00810
– start-page: 417
  year: 2006
  ident: ref144
  article-title: SentiWordNet: A publicly available lexical resource for opinion mining
  publication-title: Proc Int Conf Lang Resour Eval
– ident: ref368
  doi: 10.1007/s11280-021-00992-2
– ident: ref269
  doi: 10.18653/v1/2020.acl-main.370
– start-page: 18493
  year: 2020
  ident: ref218
  article-title: Continual learning of a mixed sequence of similar and dissimilar tasks
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2012
  ident: ref38
  article-title: Unsupervised feature learning and deep learning: A review and new perspectives
  publication-title: arXiv 1206 5538
– start-page: 1
  year: 2008
  ident: ref359
  article-title: Speaker, noise, and acoustic space adaptation for emotion recognition in the automotive environment
  publication-title: Proc ITG Conf Voice Commun
– year: 2018
  ident: ref345
  article-title: mixup: Beyond empirical risk minimization
  publication-title: Proc Int Conf Learn Represent
– ident: ref379
  doi: 10.1109/TAFFC.2021.3065726
– ident: ref25
  doi: 10.1016/j.specom.2019.12.001
– ident: ref190
  doi: 10.1109/CVPR.2018.00131
– ident: ref153
  doi: 10.1145/3343031.3351032
– start-page: 22443
  year: 2021
  ident: ref215
  article-title: Achieving forgetting prevention and knowledge transfer in continual learning
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 22
  start-page: 1345
  year: 2010
  ident: ref50
  article-title: A survey on transfer learning
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2009.191
– ident: ref135
  doi: 10.1631/FITEE.1900618
– ident: ref147
  doi: 10.3115/v1/D14-1162
– ident: ref140
  doi: 10.1007/978-3-030-01216-8_36
– ident: ref65
  doi: 10.1109/ICCV.2019.00124
– ident: ref391
  doi: 10.1109/CVPR46437.2021.00222
– ident: ref279
  doi: 10.1109/ACII.2019.8925513
– ident: ref40
  doi: 10.1007/s10994-019-05855-6
– ident: ref10
  doi: 10.1109/CVPR.2015.7298687
– ident: ref283
  doi: 10.1145/3474085.3475484
– ident: ref195
  doi: 10.1016/j.neucom.2021.03.058
– volume: 44
  start-page: 5866
  year: 2022
  ident: ref49
  article-title: Weakly supervised object localization and detection: A survey
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2020.3046647
– start-page: 3104
  year: 2014
  ident: ref148
  article-title: Sequence to sequence learning with neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref268
  doi: 10.1609/aaai.v33i01.33015773
– ident: ref106
  doi: 10.1109/DASC.2013.103
– ident: ref45
  doi: 10.1016/j.neucom.2017.06.084
– volume: 45
  start-page: 5513
  year: 2023
  ident: ref47
  article-title: Class-incremental learning: Survey and performance evaluation on image classification
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2022.3213473
– ident: ref339
  doi: 10.1007/978-3-030-36708-4_3
– ident: ref285
  doi: 10.1109/LSP.2017.2672753
– ident: ref387
  doi: 10.1109/MSP.2020.2975749
– ident: ref23
  doi: 10.1145/3503044
– ident: ref280
  doi: 10.1007/978-3-030-04221-9_25
– ident: ref373
  doi: 10.1016/j.chb.2021.106855
– ident: ref172
  doi: 10.18653/v1/2021.emnlp-main.728
– start-page: 8568
  year: 2018
  ident: ref300
  article-title: Adversarial multiple source domain adaptation
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref362
  doi: 10.1109/ICCVE.2013.6799859
– ident: ref383
  doi: 10.1109/TAFFC.2016.2628787
– ident: ref173
  doi: 10.1109/TCSS.2021.3130401
– ident: ref27
  doi: 10.1007/978-3-030-81465-6_4
– ident: ref130
  doi: 10.18653/v1/N19-1036
– ident: ref63
  doi: 10.1109/CVPR42600.2020.01312
– start-page: 678
  year: 2017
  ident: ref354
  article-title: Automatic detection of a driver's complex mental states
  publication-title: Proc Int Conf Comput Sci Appl
– ident: ref276
  doi: 10.1016/j.neucom.2021.02.048
– ident: ref244
  doi: 10.1145/1772690.1772767
– ident: ref76
  doi: 10.1007/1-4020-4102-0_1
– ident: ref364
  doi: 10.1109/TITS.2011.2168215
– ident: ref278
  doi: 10.1109/TCYB.2021.3062750
– start-page: 12697
  year: 2021
  ident: ref162
  article-title: Calibrate before use: Improving few-shot performance of language models
  publication-title: Proc Int Conf Mach Learn
– ident: ref250
  doi: 10.1109/TAFFC.2017.2705696
– ident: ref53
  doi: 10.1145/3400066
– ident: ref44
  doi: 10.1145/3510030
– ident: ref46
  doi: 10.1016/j.neunet.2020.12.003
– volume: 13
  start-page: 723
  year: 2012
  ident: ref321
  article-title: A kernel two-sample test
  publication-title: J Mach Learn Res
– ident: ref114
  doi: 10.1609/aaai.v35i7.16753
– ident: ref70
  doi: 10.1109/ACII52823.2021.9597449
– start-page: 209
  year: 2006
  ident: ref74
  article-title: Mining WordNet for a fuzzy sentiment: Sentiment tag extraction from WordNet glosses
  publication-title: Proc Conf Eur Chapter Assoc Comput Linguistics
– ident: ref332
  doi: 10.1109/AFGR.1998.670949
– ident: ref385
  doi: 10.1145/3363560
– ident: ref378
  doi: 10.3389/frai.2022.856232
– ident: ref272
  doi: 10.1109/TAFFC.2020.2994159
– ident: ref117
  doi: 10.1109/TPAMI.2018.2858821
– ident: ref89
  doi: 10.18653/v1/2020.emnlp-main.346
– ident: ref226
  doi: 10.1109/CVPR.2016.90
– ident: ref372
  doi: 10.1016/j.jbusres.2018.10.004
– ident: ref270
  doi: 10.1109/TCDS.2020.2999337
– ident: ref154
  doi: 10.1145/3485447.3511994
– ident: ref11
  doi: 10.1109/TAFFC.2016.2625250
– ident: ref64
  doi: 10.1109/ICAICA.2019.8873466
– year: 2020
  ident: ref178
  article-title: Personalized acute stress classification from physiological signals with neural processes
  publication-title: arXiv 2002 04176
– ident: ref370
  doi: 10.18653/v1/2022.acl-long.578
– ident: ref156
  doi: 10.1016/j.eswa.2019.112851
– ident: ref301
  doi: 10.18653/v1/2022.acl-long.174
– ident: ref198
  doi: 10.1007/978-3-030-58598-3_45
– year: 2022
  ident: ref338
  article-title: Contrastive learning of subject-invariant EEG representations for cross-subject emotion recognition
  publication-title: IEEE Trans Affect Comput
– ident: ref4
  doi: 10.1109/MSP.2021.3106895
– ident: ref199
  doi: 10.1109/ICCVW54120.2021.00463
– ident: ref349
  doi: 10.1109/ICCE-TW52618.2021.9603010
– ident: ref361
  doi: 10.1145/3173574.3174239
– ident: ref384
  doi: 10.1145/3511808.3557365
– ident: ref8
  doi: 10.1109/TAFFC.2018.2818685
– ident: ref139
  doi: 10.18653/v1/D18-1403
– start-page: 160
  year: 2012
  ident: ref78
  article-title: Collocation polarity disambiguation using web-based pseudo contexts
  publication-title: Proc Joint Conf Empirical Methods Natural Lang Process Comput Natural Lang Learn
– year: 2016
  ident: ref200
  article-title: Incremental learning algorithms and applications
  publication-title: Proc Eur Symp Artif Neural Netw
– ident: ref68
  doi: 10.1109/TMM.2017.2757769
– ident: ref136
  doi: 10.1145/3326335
– year: 2018
  ident: ref191
  article-title: Adaptive posterior learning: Few-shot learning with a surprise-based memory module
  publication-title: Proc Int Conf Learn Represent
– ident: ref129
  doi: 10.3115/v1/P15-1008
– ident: ref127
  doi: 10.1145/2184436.2184437
– ident: ref286
  doi: 10.18653/v1/D16-1023
– ident: ref294
  doi: 10.1016/j.knosys.2019.105254
– ident: ref175
  doi: 10.1609/aaai.v36i1.19873
– ident: ref206
  doi: 10.1609/aaai.v27i1.8684
– year: 2022
  ident: ref170
  article-title: Discriminative few shot learning of facial dynamics in interview videos for autism trait classification
  publication-title: IEEE Trans Affect Comput
– start-page: 18408
  year: 2021
  ident: ref119
  article-title: FlexMatch: Boosting semi-supervised learning with curriculum pseudo labeling
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref365
  doi: 10.3390/sym14040687
– ident: ref192
  doi: 10.1023/A:1007379606734
– ident: ref20
  doi: 10.1002/widm.1253
– ident: ref163
  doi: 10.1609/aaai.v36i10.21318
– volume: 45
  start-page: 4396
  year: 2023
  ident: ref56
  article-title: Domain generalization: A survey
  publication-title: IEEE Trans Pattern Anal Mach Intell
– start-page: 513
  year: 2011
  ident: ref284
  article-title: Domain adaptation for large-scale sentiment classification: A deep learning approach
  publication-title: Proc Int Conf Mach Learn
– ident: ref24
  doi: 10.1145/2168752.2168754
– ident: ref22
  doi: 10.1109/TAFFC.2020.2970399
– ident: ref352
  doi: 10.1145/3388790
– ident: ref7
  doi: 10.1037/h0054570
– ident: ref307
  doi: 10.1145/3442381.3449981
– ident: ref161
  doi: 10.18653/v1/2021.findings-acl.129
– ident: ref288
  doi: 10.1109/ICASSP39728.2021.9414930
– ident: ref67
  doi: 10.1109/LSP.2014.2324759
– ident: ref109
  doi: 10.1145/3462244.3481274
– ident: ref29
  doi: 10.1109/TAFFC.2018.2874986
– year: 2019
  ident: ref346
  article-title: Distributionally robust neural networks
  publication-title: Proc Int Conf Learn Represent
– ident: ref328
  doi: 10.1109/TAFFC.2017.2740923
– start-page: 2258
  year: 2016
  ident: ref196
  article-title: Selective deep features for micro-expression recognition
  publication-title: Proc Int Conf Pattern Recognit (ICPR)
– ident: ref277
  doi: 10.1145/3477495.3531984
– start-page: 2324
  year: 2019
  ident: ref142
  article-title: Bert post-training for review reading comprehension and aspect-based sentiment analysis
  publication-title: Proc Conf North Amer Chapter Assoc Comput Linguistics Hum Lang Technol
– volume: 44
  start-page: 5826
  year: 2022
  ident: ref14
  article-title: Video-based facial micro-expression analysis: A survey of datasets, features and algorithms
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: ref134
  doi: 10.1609/aaai.v32i1.11275
– ident: ref168
  doi: 10.1609/aaai.v36i5.20474
– ident: ref17
  doi: 10.1016/j.ins.2021.10.005
– start-page: 5339
  year: 2018
  ident: ref344
  article-title: Generalizing to unseen domains via adversarial data augmentation
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref62
  doi: 10.1007/s11063-021-10596-6
– ident: ref306
  doi: 10.1109/TASLP.2022.3178232
– ident: ref254
  doi: 10.1007/978-3-030-68796-0_49
– ident: ref309
  doi: 10.1016/j.eswa.2021.115581
– ident: ref236
  doi: 10.18653/v1/2021.emnlp-main.550
– ident: ref18
  doi: 10.1109/TAFFC.2022.3184995
– ident: ref297
  doi: 10.1109/TCSS.2020.3013938
– ident: ref258
  doi: 10.1007/978-3-030-04221-9_36
– ident: ref287
  doi: 10.1109/FG52635.2021.9667048
– ident: ref316
  doi: 10.1109/CVPR.2011.5995347
– ident: ref58
  doi: 10.1109/CVPR52688.2022.01553
– ident: ref51
  doi: 10.1109/JPROC.2020.3004555
– ident: ref242
  doi: 10.1109/ICPR56361.2022.9956540
– ident: ref165
  doi: 10.1109/JIOT.2020.3022427
– year: 2020
  ident: ref388
  article-title: Federated adversarial domain adaptation
  publication-title: Proc Int Conf Learn Represent
– ident: ref291
  doi: 10.1109/ICPR.2018.8545284
– ident: ref320
  doi: 10.1109/TCYB.2019.2914512
– ident: ref13
  doi: 10.1007/s11263-018-1131-1
– ident: ref371
  doi: 10.3389/fpubh.2022.1045777
– ident: ref273
  doi: 10.1109/ICASSP39728.2021.9414496
– ident: ref217
  doi: 10.18653/v1/2020.findings-emnlp.101
– ident: ref366
  doi: 10.1109/TCSS.2021.3127935
– ident: ref54
  doi: 10.1109/TPAMI.2019.2945942
– ident: ref256
  doi: 10.1109/TAFFC.2022.3189222
– ident: ref305
  doi: 10.18653/v1/D18-1498
– ident: ref302
  doi: 10.3389/fpsyg.2021.809459
– year: 2019
  ident: ref155
  article-title: Revisiting few-shot learning for facial expression recognition
  publication-title: arXiv 1912 02751
– start-page: 3856
  year: 2017
  ident: ref219
  article-title: Dynamic routing between capsules
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref143
  doi: 10.1109/ICCVW.2017.45
– ident: ref207
  doi: 10.3115/v1/P15-2123
– ident: ref369
  doi: 10.18653/v1/W19-3205
– ident: ref123
  doi: 10.3115/v1/D14-1127
– ident: ref245
  doi: 10.1109/TKDE.2015.2475761
– ident: ref125
  doi: 10.18653/v1/D19-3001
– year: 2022
  ident: ref169
  article-title: Few-shot learning for fine-grained emotion recognition using physiological signals
  publication-title: IEEE Trans Multimedia
– ident: ref71
  doi: 10.1109/MIS.2013.27
– volume: 114
  start-page: 3521
  year: 2017
  ident: ref201
  article-title: Overcoming catastrophic forgetting in neural networks
  publication-title: Proc Nat Acad Sci USA
  doi: 10.1073/pnas.1611835114
– ident: ref186
  doi: 10.1109/CVPR.2009.5206848
– year: 2022
  ident: ref103
  article-title: SMIN: Semi-supervised multi-modal interaction network for conversational emotion recognition
  publication-title: IEEE Trans Affect Comput
– ident: ref336
  doi: 10.1109/IJCNN48605.2020.9206635
– ident: ref184
  doi: 10.1073/pnas.1903070116
– ident: ref257
  doi: 10.1007/s11063-019-10035-7
– ident: ref281
  doi: 10.1109/TPAMI.2021.3131222
– ident: ref149
  doi: 10.1109/ICIP.2016.7532430
– start-page: 683
  year: 2020
  ident: ref214
  article-title: Continual learning with knowledge transfer for sentiment classification
  publication-title: Proc Eur Conf Mach Learn Knowl Discovery Databases
– ident: ref222
  doi: 10.1609/aaai.v30i1.9987
– ident: ref87
  doi: 10.1145/1341531.1341561
– ident: ref52
  doi: 10.1109/MSP.2014.2347059
– ident: ref104
  doi: 10.1109/TAFFC.2022.3210441
– ident: ref77
  doi: 10.18653/v1/P18-1104
– start-page: 4077
  year: 2017
  ident: ref187
  article-title: Prototypical networks for few-shot learning
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref86
  doi: 10.1109/CVPR52688.2022.01519
– ident: ref337
  doi: 10.1007/978-3-030-92310-5_24
– ident: ref120
  doi: 10.1109/ICCV48922.2021.00934
– ident: ref243
  doi: 10.1109/TKDE.2020.2985365
– year: 2021
  ident: ref159
  article-title: Distribution matching for heterogeneous multi-task learning: A large-scale face study
  publication-title: arXiv 2105 03790
– year: 2019
  ident: ref92
  article-title: SentiLARE: Sentiment-aware language representation learning with linguistic knowledge
  publication-title: arXiv 1911 02493
– volume: 44
  start-page: 3366
  year: 2022
  ident: ref209
  article-title: A continual learning survey: Defying forgetting in classification tasks
  publication-title: IEEE Trans Pattern Anal Mach Intell
– start-page: 1
  year: 2019
  ident: ref85
  article-title: Electra: Pre-training text encoders as discriminators rather than generators
  publication-title: Proc Int Conf Learn Represent
SSID ssj0003563
Score 2.49033
Snippet Emotion and sentiment play a central role in various human activities, such as perception, decision-making, social interaction, and logical reasoning....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1159
SubjectTerms Affective computing
Annotations
artificial emotional intelligence (AEI)
Artificial intelligence
Cognition & reasoning
Complexity theory
Data mining
Deep learning
emotion and sentiment analysis (ESA)
Emotion recognition
Emotions
Human factors
label-efficient learning
Labeling
Labels
Sentiment analysis
Social factors
Speech recognition
Taxonomy
Training
Title Toward Label-Efficient Emotion and Sentiment Analysis
URI https://ieeexplore.ieee.org/document/10253654
https://www.proquest.com/docview/2876681599
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2256
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003563
  issn: 0018-9219
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7RTjDwLCJQUAY2lODEj8QjqlpVFSoIWqlb5NjOQpUiSBd-PbaTVAUEYstgn6w7n33n3H0fwLXCcaS15gERxCYopAh4KlFABSaxYA51y1ZbTNl4TiYLumia1V0vjJnois90aD_dv3y1kmv7VGY8PKaYUdKBTpLwullrc-xi2tCmRcaDjR-2HTKI304enx4GoSUKD036bgIC_uUWcrQqP85id8GMDmDaLq2uK3kJ11Ueyo9vqI3_Xvsh7Dehpn9X740j2NHlMextARCeAJ25qln_XuR6GQwdnIQR4w9rch9flMp_tvVEVrjfApj0YD4azgbjoCFSCGTMWRWIIiI50yzNJVEmxjJOKzhFJBHIMp4zlHKFGcYFIiJJVEqVZoVmFhyuILKI8Sl0y1Wpz8BPRSwF0gkhXNludE6oJiK2zXwqL3TqQdQqNpMNyrglu1hmLttAPHPGyKwxssYYHtxs5rzWGBt_ju5Z7W6NrBXrQb81YNb44Xtm8kHGUhOy8fNfpl3ArpVe1-f1oVu9rfWliTOq_Mrtr0_GzMs-
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCBZxGFAhnYUEIethOPqGpVSikIWqmb5djOQpUiSBd-PbaTVAUEYsvgc6w7n32X3H0fwKWMwkApRV3EkUlQUObSRPgu5hEKObGoW6baYkT6EzSY4mnVrG57YbSgLT5Tnnm0__LlXCzMpzLt4SGOCEbrsIF1WhGX7VrLgzfCFXFaoH1Ye2LdI-PT68Hj00PHM1Thnk7gdUhAv9xDlljlx2lsr5jeLozqxZWVJS_eokg98fENt_Hfq9-DnSrYdG7K3bEPayo_gO0VCMJDwGNbN-sMeapmbtcCSuhpnG5J7-PwXDrPpqLITO7UECZNmPS6407fragUXBFSUrg8C1BKFElSgaSOsrTbcop9FHPfcJ4TP6EyIlGU-YjHsUywVCRTxMDDZUhkYXQEjXyeq2NwEh4K7qsYISpNPzpFWCEemnY-mWYqaUFQK5aJCmfc0F3MmM03fMqsMZgxBquM0YKrpcxribLx5-im0e7KyFKxLWjXBmSVJ74znRESkuigjZ78InYBm_3x_ZANb0d3p7Bl3lRW67WhUbwt1JmOOor03O61T6RHzo8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Label-Efficient+Emotion+and+Sentiment+Analysis&rft.jtitle=Proceedings+of+the+IEEE&rft.au=Zhao%2C+Sicheng&rft.au=Hong%2C+Xiaopeng&rft.au=Yang%2C+Jufeng&rft.au=Zhao%2C+Yanyan&rft.date=2023-10-01&rft.issn=0018-9219&rft.eissn=1558-2256&rft.volume=111&rft.issue=10&rft.spage=1159&rft.epage=1197&rft_id=info:doi/10.1109%2FJPROC.2023.3309299&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JPROC_2023_3309299
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9219&client=summon