One‐Bit Distributed Sparse Spectrum Sensing Based on the DQA‐ZA‐LMS and DQA‐RZA‐LMS Algorithms Over Adaptive Networks
In this paper, we proposed the distributed quantization and sparsity aware zero attracting least mean square (DQA‐ZA‐LMS) and its reweighted version (DQA‐RZA‐LMS) algorithms that can perform sparse spectrum sensing with the lowest power possible. The usage of the quantization aware diffusion adaptiv...
Saved in:
| Published in | IET signal processing Vol. 2024; no. 1 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Wiley
2024
|
| Online Access | Get full text |
| ISSN | 1751-9675 1751-9683 1751-9683 |
| DOI | 10.1049/2024/9622167 |
Cover
| Abstract | In this paper, we proposed the distributed quantization and sparsity aware zero attracting least mean square (DQA‐ZA‐LMS) and its reweighted version (DQA‐RZA‐LMS) algorithms that can perform sparse spectrum sensing with the lowest power possible. The usage of the quantization aware diffusion adaptive networks has recently been proposed and they can be used in many possible mobile communicative applications. The sparsity aware feature of the proposed algorithm can help the network to track and estimate sparse random vectors that are shown to be the case with the spectrum of the new generation wireless communication systems such as 4G, 5G, 6G, and beyond. The spectrum sensing is considered in this paper to be performed by small cell eNode Bs (SC‐eNBs) for the 4 th generation long term evolution (LTE) and the next generation eNB (ng‐eNB) networks for the 5 th and 6 th generation mobile communication systems that are scattered in an area collecting distributed quantized data from the environment and working collaboratively to estimate the sparse spectrum vectors. Our findings show that in comparison with the nonquantized version of the distributed ZA‐LMS (DZA‐LMS) and distributed regularized ZA‐LMS (DRZA‐LMS) algorithms, our proposed schemes perform considerably well using the quantized data and also reduce power consumption. |
|---|---|
| AbstractList | In this paper, we proposed the distributed quantization and sparsity aware zero attracting least mean square (DQA-ZA-LMS) and its reweighted version (DQA-RZA-LMS) algorithms that can perform sparse spectrum sensing with the lowest power possible. The usage of the quantization aware diffusion adaptive networks has recently been proposed and they can be used in many possible mobile communicative applications. The sparsity aware feature of the proposed algorithm can help the network to track and estimate sparse random vectors that are shown to be the case with the spectrum of the new generation wireless communication systems such as 4G, 5G, 6G, and beyond. The spectrum sensing is considered in this paper to be performed by small cell eNode Bs (SC-eNBs) for the 4th generation long term evolution (LTE) and the next generation eNB (ng-eNB) networks for the 5th and 6th generation mobile communication systems that are scattered in an area collecting distributed quantized data from the environment and working collaboratively to estimate the sparse spectrum vectors. Our findings show that in comparison with the nonquantized version of the distributed ZA-LMS (DZA-LMS) and distributed regularized ZA-LMS (DRZA-LMS) algorithms, our proposed schemes perform considerably well using the quantized data and also reduce power consumption. In this paper, we proposed the distributed quantization and sparsity aware zero attracting least mean square (DQA‐ZA‐LMS) and its reweighted version (DQA‐RZA‐LMS) algorithms that can perform sparse spectrum sensing with the lowest power possible. The usage of the quantization aware diffusion adaptive networks has recently been proposed and they can be used in many possible mobile communicative applications. The sparsity aware feature of the proposed algorithm can help the network to track and estimate sparse random vectors that are shown to be the case with the spectrum of the new generation wireless communication systems such as 4G, 5G, 6G, and beyond. The spectrum sensing is considered in this paper to be performed by small cell eNode Bs (SC‐eNBs) for the 4 th generation long term evolution (LTE) and the next generation eNB (ng‐eNB) networks for the 5 th and 6 th generation mobile communication systems that are scattered in an area collecting distributed quantized data from the environment and working collaboratively to estimate the sparse spectrum vectors. Our findings show that in comparison with the nonquantized version of the distributed ZA‐LMS (DZA‐LMS) and distributed regularized ZA‐LMS (DRZA‐LMS) algorithms, our proposed schemes perform considerably well using the quantized data and also reduce power consumption. |
| Author | Borjali Navesi, Ramin Mostafapour, Ehsan Ghobadi, Changiz Nourinia, Javad |
| Author_xml | – sequence: 1 givenname: Ehsan orcidid: 0000-0003-0031-087X surname: Mostafapour fullname: Mostafapour, Ehsan – sequence: 2 givenname: Changiz orcidid: 0000-0001-8306-922X surname: Ghobadi fullname: Ghobadi, Changiz – sequence: 3 givenname: Javad orcidid: 0000-0002-0436-3883 surname: Nourinia fullname: Nourinia, Javad – sequence: 4 givenname: Ramin orcidid: 0000-0001-8169-454X surname: Borjali Navesi fullname: Borjali Navesi, Ramin |
| BookMark | eNp9UUtOKzEQtBBIfHccwAdgwP-Jl-GPlEcEgQ2bkWO3g2EyE9kOiBUcgTNykjchUZaopa5WdXVJrdpFm03bAEKHlBxTIvQJI0ycaMUYVeUG2qGlpIVWPb65nku5jXZTeiFEKknZDvocNvDz9X0aMj4PKccwnmdweDQzMUEHYHOcT_EImhSaCT41qdu2Dc7PgM_v-t3p06IN_o2wadyKul9z_XrSxpCfpwkP3yDivjOzHN4A30J-b-Nr2kdb3tQJDla4hx4vLx7OrovB8OrmrD8oLNMqF9oa5bxi3RtEcOcceEao1ZQL6ahUhnFNpfW2lBxKL0TpiQPaldWcec330M3S17XmpZrFMDXxo2pNqH6JNk4qE3OwNVS9sRBcmzFnAoRlrqeU4doJ0pPejQnvvIql17yZmY93U9drQ0qqRRLVIolqlUSnP1rqbWxTiuD_lv8HuTqORQ |
| Cites_doi | 10.1109/TSP.2018.2827326 10.1109/TCCN.2017.2749232 10.1109/TIT.2019.2916845 10.1109/TSP.2009.2038417 10.1007/s00034-017-0610-x 10.1109/ICCSPA.2013.6487313 10.1109/SCIoT62588.2024.10570126 10.1109/JSEN.2017.2760925 10.1109/SAM.2016.7569634 10.1109/TIT.2008.917637 10.1109/TSP.2013.2252171 10.1186/s13634-018-0535-y 10.1109/ACSSC.2012.6489012 10.1109/TVT.2017.2779982 10.1109/TSP.2012.2232663 10.1109/TIT.2016.2527637 10.1016/j.jfranklin.2024.01.012 10.1109/SSP.2018.8450797 10.1049/cmu2.12691 10.1109/MWC.2013.6507397 10.1109/T-WC.2008.070928 10.1109/LSP.2016.2613898 10.1109/LSP.2021.3051522 10.1109/LSP.2013.2287373 10.1109/TVT.2009.2031181 10.1109/TSP.2009.2028938 10.1109/TSP.2013.2258342 10.1109/JSTSP.2010.2053016 10.1109/COMST.2016.2631080 10.1109/TIT.2006.885507 10.1109/ICIT.2018.8352422 10.1007/s11704-017-6132-7 10.1109/LWC.2015.2487347 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.1049/2024/9622167 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1751-9683 |
| ExternalDocumentID | oai_doaj_org_article_8b4439ab324e4c2d866a39d4085fdb03 10.1049/2024/9622167 10_1049_2024_9622167 |
| GroupedDBID | .DC 0R~ 0ZK 1OC 24P 29I 4.4 5GY 6IK 8FE 8FG AAHJG AAJGR AAMMB AAYXX ABJCF ABMDY ABQXS ACCMX ACESK ACGFO ACGFS ACIWK ACXQS ADEYR AEFGJ AEGXH AENEX AFKRA AGXDD AIAGR AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU CITATION CS3 DU5 EBS EJD GROUPED_DOAJ HCIFZ HZ~ IAO IDLOA IGS IPLJI ITC J9A K6V K7- L6V LAI M43 M7S MCNEO O9- OK1 P2P P62 PHGZM PHGZT PQGLB PTHSS PUEGO RNS RUI S0W UNMZH WIN ~ZZ ADTOC UNPAY |
| ID | FETCH-LOGICAL-c296t-9ca6df62175043dddef201c91345d156a23915cfc753e7f447f0de1e1ec932f93 |
| IEDL.DBID | DOA |
| ISSN | 1751-9675 1751-9683 |
| IngestDate | Fri Oct 03 12:40:01 EDT 2025 Mon Oct 20 02:40:53 EDT 2025 Wed Oct 01 06:36:51 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c296t-9ca6df62175043dddef201c91345d156a23915cfc753e7f447f0de1e1ec932f93 |
| ORCID | 0000-0002-0436-3883 0000-0001-8306-922X 0000-0001-8169-454X 0000-0003-0031-087X |
| OpenAccessLink | https://doaj.org/article/8b4439ab324e4c2d866a39d4085fdb03 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8b4439ab324e4c2d866a39d4085fdb03 unpaywall_primary_10_1049_2024_9622167 crossref_primary_10_1049_2024_9622167 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-00-00 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 2024-00-00 |
| PublicationDecade | 2020 |
| PublicationTitle | IET signal processing |
| PublicationYear | 2024 |
| Publisher | Wiley |
| Publisher_xml | – name: Wiley |
| References | e_1_2_10_22_2 e_1_2_10_23_2 e_1_2_10_20_2 e_1_2_10_21_2 Aliabadi A. (e_1_2_10_26_2) 2017; 8 e_1_2_10_19_2 e_1_2_10_1_2 e_1_2_10_3_2 e_1_2_10_17_2 e_1_2_10_2_2 e_1_2_10_18_2 e_1_2_10_5_2 e_1_2_10_15_2 e_1_2_10_4_2 e_1_2_10_16_2 e_1_2_10_7_2 e_1_2_10_13_2 e_1_2_10_6_2 e_1_2_10_14_2 e_1_2_10_35_2 e_1_2_10_9_2 e_1_2_10_11_2 e_1_2_10_34_2 e_1_2_10_8_2 e_1_2_10_12_2 e_1_2_10_33_2 e_1_2_10_32_2 e_1_2_10_10_2 e_1_2_10_31_2 e_1_2_10_30_2 e_1_2_10_28_2 e_1_2_10_29_2 e_1_2_10_27_2 e_1_2_10_24_2 e_1_2_10_25_2 |
| References_xml | – ident: e_1_2_10_17_2 doi: 10.1109/TSP.2018.2827326 – ident: e_1_2_10_4_2 doi: 10.1109/TCCN.2017.2749232 – ident: e_1_2_10_24_2 doi: 10.1109/TIT.2019.2916845 – ident: e_1_2_10_27_2 doi: 10.1109/TSP.2009.2038417 – ident: e_1_2_10_34_2 – ident: e_1_2_10_7_2 doi: 10.1007/s00034-017-0610-x – ident: e_1_2_10_22_2 doi: 10.1109/ICCSPA.2013.6487313 – ident: e_1_2_10_35_2 doi: 10.1109/SCIoT62588.2024.10570126 – ident: e_1_2_10_5_2 doi: 10.1109/JSEN.2017.2760925 – ident: e_1_2_10_18_2 doi: 10.1109/SAM.2016.7569634 – ident: e_1_2_10_19_2 doi: 10.1109/TIT.2008.917637 – ident: e_1_2_10_13_2 doi: 10.1109/TSP.2013.2252171 – ident: e_1_2_10_16_2 doi: 10.1186/s13634-018-0535-y – ident: e_1_2_10_31_2 doi: 10.1109/ACSSC.2012.6489012 – ident: e_1_2_10_11_2 doi: 10.1109/TVT.2017.2779982 – ident: e_1_2_10_21_2 doi: 10.1109/TSP.2012.2232663 – ident: e_1_2_10_15_2 doi: 10.1109/TIT.2016.2527637 – ident: e_1_2_10_32_2 doi: 10.1016/j.jfranklin.2024.01.012 – ident: e_1_2_10_12_2 doi: 10.1109/SSP.2018.8450797 – ident: e_1_2_10_33_2 doi: 10.1049/cmu2.12691 – ident: e_1_2_10_3_2 doi: 10.1109/MWC.2013.6507397 – ident: e_1_2_10_2_2 doi: 10.1109/T-WC.2008.070928 – ident: e_1_2_10_8_2 doi: 10.1109/LSP.2016.2613898 – ident: e_1_2_10_23_2 doi: 10.1109/LSP.2021.3051522 – ident: e_1_2_10_25_2 doi: 10.1109/LSP.2013.2287373 – volume: 8 start-page: 11 year: 2017 ident: e_1_2_10_26_2 article-title: Sparse Spectrum Sensing Using Improved Sparsity Aware Diffusion Adaptive Algorithms Over Small Cell Networks publication-title: International Journal of Information & Communication Tech. Reasearch – ident: e_1_2_10_28_2 doi: 10.1109/TVT.2009.2031181 – ident: e_1_2_10_20_2 doi: 10.1109/TSP.2009.2028938 – ident: e_1_2_10_30_2 doi: 10.1109/TSP.2013.2258342 – ident: e_1_2_10_29_2 doi: 10.1109/JSTSP.2010.2053016 – ident: e_1_2_10_1_2 doi: 10.1109/COMST.2016.2631080 – ident: e_1_2_10_6_2 doi: 10.1109/TIT.2006.885507 – ident: e_1_2_10_9_2 doi: 10.1109/ICIT.2018.8352422 – ident: e_1_2_10_14_2 doi: 10.1007/s11704-017-6132-7 – ident: e_1_2_10_10_2 doi: 10.1109/LWC.2015.2487347 |
| SSID | ssj0056512 |
| Score | 2.3219914 |
| Snippet | In this paper, we proposed the distributed quantization and sparsity aware zero attracting least mean square (DQA‐ZA‐LMS) and its reweighted version... In this paper, we proposed the distributed quantization and sparsity aware zero attracting least mean square (DQA-ZA-LMS) and its reweighted version... |
| SourceID | doaj unpaywall crossref |
| SourceType | Open Website Open Access Repository Index Database |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7BcgAOfVBQty_5AL0FSOJ442O2gFBVltLtSsAl8nOLumRXkFXVXtqf0N_YX9KZJLsCDoAiRYlly5bHj288428ANkPfMZp7FwirUUFJlQ9SJ-MgkWFqXQUBKgfZnjgc8I-nyekCbM7uwtyy33NJujnfkSKKQtFZhCWRIOJuwdKg9zk7q-46UpR4UfHpNt9p3Pi33y1-a-epCPpXYXlaTNTPH2o0urGrHDyF_Vl7ameS79vTUm-bX3eoGh9q8DN40sBKltXj4DksuGINVm-QDb6A38eF-_fnb_eiZHvElkuBrpxl_Qmqto5RHPryanrJ-uTRXgxZF7c3y8YFQ4TI9k4yLHpOr09HfaYK2yR9madlo-H46qL8dnnNjnF6sMyqCS2lrFc7ml-vw-Bg_-uHw6AJvxCYSIoykEYJ6wXqLMRyZnEd9IgWDJnqE4tqn4qIXN54gxqP63jOO37XuhAfg6DQy3gDWsW4cC-BhdpF5GjhFR1g4sKmUxuJyFvpYpFY0YatmWjySc2ykVfWcS5z6tC86dA2dElu8zzEjV0loATyZqrlqeaIspRGqOi4iWwqhIqlJSo3b_Vu3Ib3c6nfW9urx2Z8DSv0W5_MvIEWisu9RaxS6nfNUP0P4NTimA priority: 102 providerName: Unpaywall |
| Title | One‐Bit Distributed Sparse Spectrum Sensing Based on the DQA‐ZA‐LMS and DQA‐RZA‐LMS Algorithms Over Adaptive Networks |
| URI | https://doi.org/10.1049/2024/9622167 https://doaj.org/article/8b4439ab324e4c2d866a39d4085fdb03 |
| UnpaywallVersion | publishedVersion |
| Volume | 2024 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 1751-9683 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056512 issn: 1751-9683 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBHI databaseName: IET Digital Library Open Access customDbUrl: eissn: 1751-9683 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056512 issn: 1751-9683 databaseCode: IDLOA dateStart: 20130201 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 1751-9683 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056512 issn: 1751-9683 databaseCode: AVUZU dateStart: 20130201 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-9683 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056512 issn: 1751-9683 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQGaAD4inKo_IAbBbESdx4TCmoQlAepRKwRE5sl0ptGkEqxL_nLgmlEywokyMrju6su--zT98RcuTYVhJ71jChYyAogbIsMNJlvnQCbQoIUBTI9kR34F09-U8Lrb6wJqyUBy4NdxrEHuRMFUPiN17CdSCEcqVGYS6r41Ln8yyQ32SqjMGAUhxelbkDBEaG751KwblT9JP_SUCFTn-drMzSTH1-qPF4IblcrpO1ChXSsPybDbJk0k1SX9AK3CKz29Sw9iinHZS6xS5VRtN-BrzUUGwin7_NJrSP5ejpkLYhN2k6TSnAO9q5D9lLyK5v-lSluhg-VONwPJy-jfLXyTu9hT1NQ60yjH-0V1aHv2-TweXF43mXVT0TWMKlyJlMlNBWANFAaTINwctCik_wft3XwNUUR0X4xCZAU0zLel7LnmnjwJMAkrPS3SG1dJqaXUKd2HCsjrAKTx0hGsWB5oJbLY0rfC0a5PjbkFFWSmNExZW2JyM0eFQZvEHaaOX5HBS0Ll6Am6PKzdFfbm6Qk7mPfl1t7z9W2yer-M3yqOWA1MCF5hDARx43i33WJMuD3l34_AXE9tUJ |
| linkProvider | Directory of Open Access Journals |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7BcgAOfVBQty_5AL0FSOJ442O2gFBVltLtSsAl8nOLumRXkFXVXtqf0N_YX9KZJLsCDoAiRYlly5bHj288428ANkPfMZp7FwirUUFJlQ9SJ-MgkWFqXQUBKgfZnjgc8I-nyekCbM7uwtyy33NJujnfkSKKQtFZhCWRIOJuwdKg9zk7q-46UpR4UfHpNt9p3Pi33y1-a-epCPpXYXlaTNTPH2o0urGrHDyF_Vl7ameS79vTUm-bX3eoGh9q8DN40sBKltXj4DksuGINVm-QDb6A38eF-_fnb_eiZHvElkuBrpxl_Qmqto5RHPryanrJ-uTRXgxZF7c3y8YFQ4TI9k4yLHpOr09HfaYK2yR9madlo-H46qL8dnnNjnF6sMyqCS2lrFc7ml-vw-Bg_-uHw6AJvxCYSIoykEYJ6wXqLMRyZnEd9IgWDJnqE4tqn4qIXN54gxqP63jOO37XuhAfg6DQy3gDWsW4cC-BhdpF5GjhFR1g4sKmUxuJyFvpYpFY0YatmWjySc2ykVfWcS5z6tC86dA2dElu8zzEjV0loATyZqrlqeaIspRGqOi4iWwqhIqlJSo3b_Vu3Ib3c6nfW9urx2Z8DSv0W5_MvIEWisu9RaxS6nfNUP0P4NTimA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One-Bit+Distributed+Sparse+Spectrum+Sensing+Based+on+the+DQA-ZA-LMS+and+DQA-RZA-LMS+Algorithms+Over+Adaptive+Networks&rft.jtitle=IET+signal+processing&rft.au=Ehsan+Mostafapour&rft.au=Changiz+Ghobadi&rft.au=Javad+Nourinia&rft.au=Ramin+Borjali+Navesi&rft.date=2024&rft.pub=Wiley&rft.eissn=1751-9683&rft.volume=2024&rft_id=info:doi/10.1049%2F2024%2F9622167&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8b4439ab324e4c2d866a39d4085fdb03 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9675&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9675&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9675&client=summon |