One‐Bit Distributed Sparse Spectrum Sensing Based on the DQA‐ZA‐LMS and DQA‐RZA‐LMS Algorithms Over Adaptive Networks

In this paper, we proposed the distributed quantization and sparsity aware zero attracting least mean square (DQA‐ZA‐LMS) and its reweighted version (DQA‐RZA‐LMS) algorithms that can perform sparse spectrum sensing with the lowest power possible. The usage of the quantization aware diffusion adaptiv...

Full description

Saved in:
Bibliographic Details
Published inIET signal processing Vol. 2024; no. 1
Main Authors Mostafapour, Ehsan, Ghobadi, Changiz, Nourinia, Javad, Borjali Navesi, Ramin
Format Journal Article
LanguageEnglish
Published Wiley 2024
Online AccessGet full text
ISSN1751-9675
1751-9683
1751-9683
DOI10.1049/2024/9622167

Cover

Abstract In this paper, we proposed the distributed quantization and sparsity aware zero attracting least mean square (DQA‐ZA‐LMS) and its reweighted version (DQA‐RZA‐LMS) algorithms that can perform sparse spectrum sensing with the lowest power possible. The usage of the quantization aware diffusion adaptive networks has recently been proposed and they can be used in many possible mobile communicative applications. The sparsity aware feature of the proposed algorithm can help the network to track and estimate sparse random vectors that are shown to be the case with the spectrum of the new generation wireless communication systems such as 4G, 5G, 6G, and beyond. The spectrum sensing is considered in this paper to be performed by small cell eNode Bs (SC‐eNBs) for the 4 th generation long term evolution (LTE) and the next generation eNB (ng‐eNB) networks for the 5 th and 6 th generation mobile communication systems that are scattered in an area collecting distributed quantized data from the environment and working collaboratively to estimate the sparse spectrum vectors. Our findings show that in comparison with the nonquantized version of the distributed ZA‐LMS (DZA‐LMS) and distributed regularized ZA‐LMS (DRZA‐LMS) algorithms, our proposed schemes perform considerably well using the quantized data and also reduce power consumption.
AbstractList In this paper, we proposed the distributed quantization and sparsity aware zero attracting least mean square (DQA-ZA-LMS) and its reweighted version (DQA-RZA-LMS) algorithms that can perform sparse spectrum sensing with the lowest power possible. The usage of the quantization aware diffusion adaptive networks has recently been proposed and they can be used in many possible mobile communicative applications. The sparsity aware feature of the proposed algorithm can help the network to track and estimate sparse random vectors that are shown to be the case with the spectrum of the new generation wireless communication systems such as 4G, 5G, 6G, and beyond. The spectrum sensing is considered in this paper to be performed by small cell eNode Bs (SC-eNBs) for the 4th generation long term evolution (LTE) and the next generation eNB (ng-eNB) networks for the 5th and 6th generation mobile communication systems that are scattered in an area collecting distributed quantized data from the environment and working collaboratively to estimate the sparse spectrum vectors. Our findings show that in comparison with the nonquantized version of the distributed ZA-LMS (DZA-LMS) and distributed regularized ZA-LMS (DRZA-LMS) algorithms, our proposed schemes perform considerably well using the quantized data and also reduce power consumption.
In this paper, we proposed the distributed quantization and sparsity aware zero attracting least mean square (DQA‐ZA‐LMS) and its reweighted version (DQA‐RZA‐LMS) algorithms that can perform sparse spectrum sensing with the lowest power possible. The usage of the quantization aware diffusion adaptive networks has recently been proposed and they can be used in many possible mobile communicative applications. The sparsity aware feature of the proposed algorithm can help the network to track and estimate sparse random vectors that are shown to be the case with the spectrum of the new generation wireless communication systems such as 4G, 5G, 6G, and beyond. The spectrum sensing is considered in this paper to be performed by small cell eNode Bs (SC‐eNBs) for the 4 th generation long term evolution (LTE) and the next generation eNB (ng‐eNB) networks for the 5 th and 6 th generation mobile communication systems that are scattered in an area collecting distributed quantized data from the environment and working collaboratively to estimate the sparse spectrum vectors. Our findings show that in comparison with the nonquantized version of the distributed ZA‐LMS (DZA‐LMS) and distributed regularized ZA‐LMS (DRZA‐LMS) algorithms, our proposed schemes perform considerably well using the quantized data and also reduce power consumption.
Author Borjali Navesi, Ramin
Mostafapour, Ehsan
Ghobadi, Changiz
Nourinia, Javad
Author_xml – sequence: 1
  givenname: Ehsan
  orcidid: 0000-0003-0031-087X
  surname: Mostafapour
  fullname: Mostafapour, Ehsan
– sequence: 2
  givenname: Changiz
  orcidid: 0000-0001-8306-922X
  surname: Ghobadi
  fullname: Ghobadi, Changiz
– sequence: 3
  givenname: Javad
  orcidid: 0000-0002-0436-3883
  surname: Nourinia
  fullname: Nourinia, Javad
– sequence: 4
  givenname: Ramin
  orcidid: 0000-0001-8169-454X
  surname: Borjali Navesi
  fullname: Borjali Navesi, Ramin
BookMark eNp9UUtOKzEQtBBIfHccwAdgwP-Jl-GPlEcEgQ2bkWO3g2EyE9kOiBUcgTNykjchUZaopa5WdXVJrdpFm03bAEKHlBxTIvQJI0ycaMUYVeUG2qGlpIVWPb65nku5jXZTeiFEKknZDvocNvDz9X0aMj4PKccwnmdweDQzMUEHYHOcT_EImhSaCT41qdu2Dc7PgM_v-t3p06IN_o2wadyKul9z_XrSxpCfpwkP3yDivjOzHN4A30J-b-Nr2kdb3tQJDla4hx4vLx7OrovB8OrmrD8oLNMqF9oa5bxi3RtEcOcceEao1ZQL6ahUhnFNpfW2lBxKL0TpiQPaldWcec330M3S17XmpZrFMDXxo2pNqH6JNk4qE3OwNVS9sRBcmzFnAoRlrqeU4doJ0pPejQnvvIql17yZmY93U9drQ0qqRRLVIolqlUSnP1rqbWxTiuD_lv8HuTqORQ
Cites_doi 10.1109/TSP.2018.2827326
10.1109/TCCN.2017.2749232
10.1109/TIT.2019.2916845
10.1109/TSP.2009.2038417
10.1007/s00034-017-0610-x
10.1109/ICCSPA.2013.6487313
10.1109/SCIoT62588.2024.10570126
10.1109/JSEN.2017.2760925
10.1109/SAM.2016.7569634
10.1109/TIT.2008.917637
10.1109/TSP.2013.2252171
10.1186/s13634-018-0535-y
10.1109/ACSSC.2012.6489012
10.1109/TVT.2017.2779982
10.1109/TSP.2012.2232663
10.1109/TIT.2016.2527637
10.1016/j.jfranklin.2024.01.012
10.1109/SSP.2018.8450797
10.1049/cmu2.12691
10.1109/MWC.2013.6507397
10.1109/T-WC.2008.070928
10.1109/LSP.2016.2613898
10.1109/LSP.2021.3051522
10.1109/LSP.2013.2287373
10.1109/TVT.2009.2031181
10.1109/TSP.2009.2028938
10.1109/TSP.2013.2258342
10.1109/JSTSP.2010.2053016
10.1109/COMST.2016.2631080
10.1109/TIT.2006.885507
10.1109/ICIT.2018.8352422
10.1007/s11704-017-6132-7
10.1109/LWC.2015.2487347
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1049/2024/9622167
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-9683
ExternalDocumentID oai_doaj_org_article_8b4439ab324e4c2d866a39d4085fdb03
10.1049/2024/9622167
10_1049_2024_9622167
GroupedDBID .DC
0R~
0ZK
1OC
24P
29I
4.4
5GY
6IK
8FE
8FG
AAHJG
AAJGR
AAMMB
AAYXX
ABJCF
ABMDY
ABQXS
ACCMX
ACESK
ACGFO
ACGFS
ACIWK
ACXQS
ADEYR
AEFGJ
AEGXH
AENEX
AFKRA
AGXDD
AIAGR
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
EBS
EJD
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IDLOA
IGS
IPLJI
ITC
J9A
K6V
K7-
L6V
LAI
M43
M7S
MCNEO
O9-
OK1
P2P
P62
PHGZM
PHGZT
PQGLB
PTHSS
PUEGO
RNS
RUI
S0W
UNMZH
WIN
~ZZ
ADTOC
UNPAY
ID FETCH-LOGICAL-c296t-9ca6df62175043dddef201c91345d156a23915cfc753e7f447f0de1e1ec932f93
IEDL.DBID DOA
ISSN 1751-9675
1751-9683
IngestDate Fri Oct 03 12:40:01 EDT 2025
Mon Oct 20 02:40:53 EDT 2025
Wed Oct 01 06:36:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-9ca6df62175043dddef201c91345d156a23915cfc753e7f447f0de1e1ec932f93
ORCID 0000-0002-0436-3883
0000-0001-8306-922X
0000-0001-8169-454X
0000-0003-0031-087X
OpenAccessLink https://doaj.org/article/8b4439ab324e4c2d866a39d4085fdb03
ParticipantIDs doaj_primary_oai_doaj_org_article_8b4439ab324e4c2d866a39d4085fdb03
unpaywall_primary_10_1049_2024_9622167
crossref_primary_10_1049_2024_9622167
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationTitle IET signal processing
PublicationYear 2024
Publisher Wiley
Publisher_xml – name: Wiley
References e_1_2_10_22_2
e_1_2_10_23_2
e_1_2_10_20_2
e_1_2_10_21_2
Aliabadi A. (e_1_2_10_26_2) 2017; 8
e_1_2_10_19_2
e_1_2_10_1_2
e_1_2_10_3_2
e_1_2_10_17_2
e_1_2_10_2_2
e_1_2_10_18_2
e_1_2_10_5_2
e_1_2_10_15_2
e_1_2_10_4_2
e_1_2_10_16_2
e_1_2_10_7_2
e_1_2_10_13_2
e_1_2_10_6_2
e_1_2_10_14_2
e_1_2_10_35_2
e_1_2_10_9_2
e_1_2_10_11_2
e_1_2_10_34_2
e_1_2_10_8_2
e_1_2_10_12_2
e_1_2_10_33_2
e_1_2_10_32_2
e_1_2_10_10_2
e_1_2_10_31_2
e_1_2_10_30_2
e_1_2_10_28_2
e_1_2_10_29_2
e_1_2_10_27_2
e_1_2_10_24_2
e_1_2_10_25_2
References_xml – ident: e_1_2_10_17_2
  doi: 10.1109/TSP.2018.2827326
– ident: e_1_2_10_4_2
  doi: 10.1109/TCCN.2017.2749232
– ident: e_1_2_10_24_2
  doi: 10.1109/TIT.2019.2916845
– ident: e_1_2_10_27_2
  doi: 10.1109/TSP.2009.2038417
– ident: e_1_2_10_34_2
– ident: e_1_2_10_7_2
  doi: 10.1007/s00034-017-0610-x
– ident: e_1_2_10_22_2
  doi: 10.1109/ICCSPA.2013.6487313
– ident: e_1_2_10_35_2
  doi: 10.1109/SCIoT62588.2024.10570126
– ident: e_1_2_10_5_2
  doi: 10.1109/JSEN.2017.2760925
– ident: e_1_2_10_18_2
  doi: 10.1109/SAM.2016.7569634
– ident: e_1_2_10_19_2
  doi: 10.1109/TIT.2008.917637
– ident: e_1_2_10_13_2
  doi: 10.1109/TSP.2013.2252171
– ident: e_1_2_10_16_2
  doi: 10.1186/s13634-018-0535-y
– ident: e_1_2_10_31_2
  doi: 10.1109/ACSSC.2012.6489012
– ident: e_1_2_10_11_2
  doi: 10.1109/TVT.2017.2779982
– ident: e_1_2_10_21_2
  doi: 10.1109/TSP.2012.2232663
– ident: e_1_2_10_15_2
  doi: 10.1109/TIT.2016.2527637
– ident: e_1_2_10_32_2
  doi: 10.1016/j.jfranklin.2024.01.012
– ident: e_1_2_10_12_2
  doi: 10.1109/SSP.2018.8450797
– ident: e_1_2_10_33_2
  doi: 10.1049/cmu2.12691
– ident: e_1_2_10_3_2
  doi: 10.1109/MWC.2013.6507397
– ident: e_1_2_10_2_2
  doi: 10.1109/T-WC.2008.070928
– ident: e_1_2_10_8_2
  doi: 10.1109/LSP.2016.2613898
– ident: e_1_2_10_23_2
  doi: 10.1109/LSP.2021.3051522
– ident: e_1_2_10_25_2
  doi: 10.1109/LSP.2013.2287373
– volume: 8
  start-page: 11
  year: 2017
  ident: e_1_2_10_26_2
  article-title: Sparse Spectrum Sensing Using Improved Sparsity Aware Diffusion Adaptive Algorithms Over Small Cell Networks
  publication-title: International Journal of Information & Communication Tech. Reasearch
– ident: e_1_2_10_28_2
  doi: 10.1109/TVT.2009.2031181
– ident: e_1_2_10_20_2
  doi: 10.1109/TSP.2009.2028938
– ident: e_1_2_10_30_2
  doi: 10.1109/TSP.2013.2258342
– ident: e_1_2_10_29_2
  doi: 10.1109/JSTSP.2010.2053016
– ident: e_1_2_10_1_2
  doi: 10.1109/COMST.2016.2631080
– ident: e_1_2_10_6_2
  doi: 10.1109/TIT.2006.885507
– ident: e_1_2_10_9_2
  doi: 10.1109/ICIT.2018.8352422
– ident: e_1_2_10_14_2
  doi: 10.1007/s11704-017-6132-7
– ident: e_1_2_10_10_2
  doi: 10.1109/LWC.2015.2487347
SSID ssj0056512
Score 2.3219914
Snippet In this paper, we proposed the distributed quantization and sparsity aware zero attracting least mean square (DQA‐ZA‐LMS) and its reweighted version...
In this paper, we proposed the distributed quantization and sparsity aware zero attracting least mean square (DQA-ZA-LMS) and its reweighted version...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Index Database
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7BcgAOfVBQty_5AL0FSOJ442O2gFBVltLtSsAl8nOLumRXkFXVXtqf0N_YX9KZJLsCDoAiRYlly5bHj288428ANkPfMZp7FwirUUFJlQ9SJ-MgkWFqXQUBKgfZnjgc8I-nyekCbM7uwtyy33NJujnfkSKKQtFZhCWRIOJuwdKg9zk7q-46UpR4UfHpNt9p3Pi33y1-a-epCPpXYXlaTNTPH2o0urGrHDyF_Vl7ameS79vTUm-bX3eoGh9q8DN40sBKltXj4DksuGINVm-QDb6A38eF-_fnb_eiZHvElkuBrpxl_Qmqto5RHPryanrJ-uTRXgxZF7c3y8YFQ4TI9k4yLHpOr09HfaYK2yR9madlo-H46qL8dnnNjnF6sMyqCS2lrFc7ml-vw-Bg_-uHw6AJvxCYSIoykEYJ6wXqLMRyZnEd9IgWDJnqE4tqn4qIXN54gxqP63jOO37XuhAfg6DQy3gDWsW4cC-BhdpF5GjhFR1g4sKmUxuJyFvpYpFY0YatmWjySc2ykVfWcS5z6tC86dA2dElu8zzEjV0loATyZqrlqeaIspRGqOi4iWwqhIqlJSo3b_Vu3Ib3c6nfW9urx2Z8DSv0W5_MvIEWisu9RaxS6nfNUP0P4NTimA
  priority: 102
  providerName: Unpaywall
Title One‐Bit Distributed Sparse Spectrum Sensing Based on the DQA‐ZA‐LMS and DQA‐RZA‐LMS Algorithms Over Adaptive Networks
URI https://doi.org/10.1049/2024/9622167
https://doaj.org/article/8b4439ab324e4c2d866a39d4085fdb03
UnpaywallVersion publishedVersion
Volume 2024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1751-9683
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056512
  issn: 1751-9683
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 1751-9683
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056512
  issn: 1751-9683
  databaseCode: IDLOA
  dateStart: 20130201
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 1751-9683
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056512
  issn: 1751-9683
  databaseCode: AVUZU
  dateStart: 20130201
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-9683
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056512
  issn: 1751-9683
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQGaAD4inKo_IAbBbESdx4TCmoQlAepRKwRE5sl0ptGkEqxL_nLgmlEywokyMrju6su--zT98RcuTYVhJ71jChYyAogbIsMNJlvnQCbQoIUBTI9kR34F09-U8Lrb6wJqyUBy4NdxrEHuRMFUPiN17CdSCEcqVGYS6r41Ln8yyQ32SqjMGAUhxelbkDBEaG751KwblT9JP_SUCFTn-drMzSTH1-qPF4IblcrpO1ChXSsPybDbJk0k1SX9AK3CKz29Sw9iinHZS6xS5VRtN-BrzUUGwin7_NJrSP5ejpkLYhN2k6TSnAO9q5D9lLyK5v-lSluhg-VONwPJy-jfLXyTu9hT1NQ60yjH-0V1aHv2-TweXF43mXVT0TWMKlyJlMlNBWANFAaTINwctCik_wft3XwNUUR0X4xCZAU0zLel7LnmnjwJMAkrPS3SG1dJqaXUKd2HCsjrAKTx0hGsWB5oJbLY0rfC0a5PjbkFFWSmNExZW2JyM0eFQZvEHaaOX5HBS0Ll6Am6PKzdFfbm6Qk7mPfl1t7z9W2yer-M3yqOWA1MCF5hDARx43i33WJMuD3l34_AXE9tUJ
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7BcgAOfVBQty_5AL0FSOJ442O2gFBVltLtSsAl8nOLumRXkFXVXtqf0N_YX9KZJLsCDoAiRYlly5bHj288428ANkPfMZp7FwirUUFJlQ9SJ-MgkWFqXQUBKgfZnjgc8I-nyekCbM7uwtyy33NJujnfkSKKQtFZhCWRIOJuwdKg9zk7q-46UpR4UfHpNt9p3Pi33y1-a-epCPpXYXlaTNTPH2o0urGrHDyF_Vl7ameS79vTUm-bX3eoGh9q8DN40sBKltXj4DksuGINVm-QDb6A38eF-_fnb_eiZHvElkuBrpxl_Qmqto5RHPryanrJ-uTRXgxZF7c3y8YFQ4TI9k4yLHpOr09HfaYK2yR9madlo-H46qL8dnnNjnF6sMyqCS2lrFc7ml-vw-Bg_-uHw6AJvxCYSIoykEYJ6wXqLMRyZnEd9IgWDJnqE4tqn4qIXN54gxqP63jOO37XuhAfg6DQy3gDWsW4cC-BhdpF5GjhFR1g4sKmUxuJyFvpYpFY0YatmWjySc2ykVfWcS5z6tC86dA2dElu8zzEjV0loATyZqrlqeaIspRGqOi4iWwqhIqlJSo3b_Vu3Ib3c6nfW9urx2Z8DSv0W5_MvIEWisu9RaxS6nfNUP0P4NTimA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One-Bit+Distributed+Sparse+Spectrum+Sensing+Based+on+the+DQA-ZA-LMS+and+DQA-RZA-LMS+Algorithms+Over+Adaptive+Networks&rft.jtitle=IET+signal+processing&rft.au=Ehsan+Mostafapour&rft.au=Changiz+Ghobadi&rft.au=Javad+Nourinia&rft.au=Ramin+Borjali+Navesi&rft.date=2024&rft.pub=Wiley&rft.eissn=1751-9683&rft.volume=2024&rft_id=info:doi/10.1049%2F2024%2F9622167&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8b4439ab324e4c2d866a39d4085fdb03
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9675&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9675&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9675&client=summon