Gait-Generation Strategy for Lower Limb Exoskeleton Based on Central Pattern Generator

To improve human-machine interactions, many studies have replicated the human motor nervous system to control lower limb exoskeletons. However, this approach is hindered by its intricacy and the disparities between human and machine capabilities, leading to suboptimal adaptability and constrained pr...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ASME transactions on mechatronics Vol. 29; no. 6; pp. 4191 - 4202
Main Authors Duan, Wen, Chen, Weihai, Wang, Jianhua, Liu, Jingmeng, Pei, Zhongcai, Chen, Jianer
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1083-4435
1941-014X
DOI10.1109/TMECH.2024.3367348

Cover

Abstract To improve human-machine interactions, many studies have replicated the human motor nervous system to control lower limb exoskeletons. However, this approach is hindered by its intricacy and the disparities between human and machine capabilities, leading to suboptimal adaptability and constrained practicality. This article presents a gait-generation strategy for lower limb exoskeletons utilizing central pattern generators (CPGs). This method offers a simplified model compared with the traditional CPG methods, significantly easing the parameter optimization process. The strategy is bifurcated into two segments. The initial segment encapsulates the human motor nervous system, constructs a musculoskeletal structure, and generates a basic bionic gait. The subsequent segment employs adaptive oscillators to assimilate and refine this basic gait through weak coupling theory. It further broadens the application range by integrating variational controllers and state observers. We implemented this strategy in a bench-type lower limb exoskeleton, allowing adjustments in walking speed and integrating a preference control algorithm for personalized exoskeleton management. Experimental evaluations confirmed the efficacy of this control system. The results indicated that our system can overcome the limitations of fixed training modes in bench-type lower limb exoskeletons and can adapt to the unique gait characteristics of various users, thereby facilitating gait customization.
AbstractList To improve human–machine interactions, many studies have replicated the human motor nervous system to control lower limb exoskeletons. However, this approach is hindered by its intricacy and the disparities between human and machine capabilities, leading to suboptimal adaptability and constrained practicality. This article presents a gait-generation strategy for lower limb exoskeletons utilizing central pattern generators (CPGs). This method offers a simplified model compared with the traditional CPG methods, significantly easing the parameter optimization process. The strategy is bifurcated into two segments. The initial segment encapsulates the human motor nervous system, constructs a musculoskeletal structure, and generates a basic bionic gait. The subsequent segment employs adaptive oscillators to assimilate and refine this basic gait through weak coupling theory. It further broadens the application range by integrating variational controllers and state observers. We implemented this strategy in a bench-type lower limb exoskeleton, allowing adjustments in walking speed and integrating a preference control algorithm for personalized exoskeleton management. Experimental evaluations confirmed the efficacy of this control system. The results indicated that our system can overcome the limitations of fixed training modes in bench-type lower limb exoskeletons and can adapt to the unique gait characteristics of various users, thereby facilitating gait customization.
Author Duan, Wen
Liu, Jingmeng
Wang, Jianhua
Pei, Zhongcai
Chen, Jianer
Chen, Weihai
Author_xml – sequence: 1
  givenname: Wen
  orcidid: 0000-0002-8012-6134
  surname: Duan
  fullname: Duan, Wen
  email: duanwen@buaa.edu.cn
  organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
– sequence: 2
  givenname: Weihai
  orcidid: 0000-0001-7912-4505
  surname: Chen
  fullname: Chen, Weihai
  email: whchen@buaa.edu.cn
  organization: School of Electrical Engineering and Automation, Anhui University, Hefei, Anhui, China
– sequence: 3
  givenname: Jianhua
  orcidid: 0000-0002-5160-1901
  surname: Wang
  fullname: Wang, Jianhua
  email: jhwangbuaa@126.com
  organization: Hangzhou Innovation Institute, Beihang University, Hangzhou, Zhejiang, China
– sequence: 4
  givenname: Jingmeng
  orcidid: 0000-0001-6822-2812
  surname: Liu
  fullname: Liu, Jingmeng
  email: ljm@buaa.edu.cn
  organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
– sequence: 5
  givenname: Zhongcai
  orcidid: 0000-0001-7748-8591
  surname: Pei
  fullname: Pei, Zhongcai
  email: peizc@buaa.edu.cn
  organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
– sequence: 6
  givenname: Jianer
  orcidid: 0000-0002-7101-208X
  surname: Chen
  fullname: Chen, Jianer
  email: chenje@zcmu.edu.cn
  organization: Department of Geriatric Rehabilitation, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
BookMark eNp9kElPwzAQhS1UJNrCH0AcInFOseMlzhGiLkhFIFEQN8tJJigljYvtCvrvcZcD4sBl5h3em-UboF5nOkDokuARITi7WTyM89kowQkbUSpSyuQJ6pOMkRgT9tYLGksaM0b5GRo4t8QYM4JJH71OdePjKXRgtW9MFz37IOB9G9XGRnPzBaE2qyIafxv3AS344LnTDqooiBy6YG-jJ-092C46zjH2HJ3WunVwcexD9DIZL_JZPH-c3ue387hMMuHjTFDGiaY1A5kWVbipwLWGtAQNXEMSrgQisqwSBU1rKnjBuOQAQpZ1pYmgQ3R9mLu25nMDzqul2dgurFSUMMGlEHjnSg6u0hrnLNRqbZuVtltFsNrxU3t-asdPHfmFkPwTKhu_ZxRebtr_o1eHaAMAv3YxgVOe0B-pdYA7
CODEN IATEFW
CitedBy_id crossref_primary_10_1007_s42235_024_00525_3
crossref_primary_10_1063_5_0232481
Cites_doi 10.1109/THMS.2018.2860598
10.1109/TNSRE.2022.3172497
10.1109/TASE.2018.2886376
10.1109/ROBIO.2018.8664912
10.1109/TBME.2015.2472533
10.1007/s10514-009-9118-y
10.1007/s11517-011-0816-1
10.1007/978-94-007-6046-2_49
10.3389/fnbot.2021.730965
10.1007/BF00204049
10.1109/THMS.2022.3217971
10.1016/j.buildenv.2020.107013
10.3389/fnbot.2023.1186175
10.1109/TSMC.2017.2683524
10.1017/S0263574721001934
10.1016/j.physd.2006.02.009
10.1126/scirobotics.aay2627
10.1109/TSMC.2022.3163916
10.1186/s12984-021-00815-5
10.1016/j.robot.2020.103663
10.1109/LRA.2021.3125723
10.1016/j.jfranklin.2023.05.030
10.1109/TNSRE.2019.2927094
10.1038/s41598-023-43115-9
10.1109/TNSRE.2017.2703586
10.1109/TNNLS.2013.2280596
10.1007/BF00449593
10.1016/j.stem.2019.12.007
10.1109/ITAB.2007.4407405
10.1016/j.isatra.2021.05.039
10.1109/TMECH.2019.2891290
10.1109/TRO.2020.3005533
10.1186/s12984-022-01000-y
10.1016/j.enbuild.2022.112022
10.1109/LRA.2017.2656948
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TMECH.2024.3367348
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-014X
EndPage 4202
ExternalDocumentID 10_1109_TMECH_2024_3367348
10460752
Genre orig-research
GrantInformation_xml – fundername: Scientific Research Project of Agriculture and Social Development of Hangzhou
  grantid: 20212013B11
– fundername: Key Research and Development Program of Zhejiang Province
  grantid: 2021C03050
  funderid: 10.13039/100022963
– fundername: National Nature Science Foundation
  grantid: 62333023
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
ACKIV
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
OCL
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c296t-963451a3f4e87bd041b0fae7ceae5ae2004e1699d6b37f365b4585ee68cfda163
IEDL.DBID RIE
ISSN 1083-4435
IngestDate Mon Jun 30 13:13:12 EDT 2025
Wed Oct 01 05:02:41 EDT 2025
Thu Apr 24 22:54:42 EDT 2025
Wed Aug 27 02:30:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-963451a3f4e87bd041b0fae7ceae5ae2004e1699d6b37f365b4585ee68cfda163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8012-6134
0000-0001-7912-4505
0000-0002-7101-208X
0000-0001-6822-2812
0000-0001-7748-8591
0000-0002-5160-1901
PQID 3146586606
PQPubID 85420
PageCount 12
ParticipantIDs proquest_journals_3146586606
crossref_primary_10_1109_TMECH_2024_3367348
ieee_primary_10460752
crossref_citationtrail_10_1109_TMECH_2024_3367348
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE/ASME transactions on mechatronics
PublicationTitleAbbrev TMECH
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
Hernandez-Lobato (ref37) 2014
ref14
ref36
ref31
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
Ijspeert (ref30) 2002
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref12
  doi: 10.1109/THMS.2018.2860598
– ident: ref1
  doi: 10.1109/TNSRE.2022.3172497
– ident: ref32
  doi: 10.1109/TASE.2018.2886376
– ident: ref20
  doi: 10.1109/ROBIO.2018.8664912
– ident: ref24
  doi: 10.1109/TBME.2015.2472533
– ident: ref28
  doi: 10.1007/s10514-009-9118-y
– ident: ref17
  doi: 10.1007/s11517-011-0816-1
– ident: ref22
  doi: 10.1007/978-94-007-6046-2_49
– ident: ref7
  doi: 10.3389/fnbot.2021.730965
– ident: ref33
  doi: 10.1007/BF00204049
– ident: ref5
  doi: 10.1109/THMS.2022.3217971
– ident: ref35
  doi: 10.1016/j.buildenv.2020.107013
– ident: ref10
  doi: 10.3389/fnbot.2023.1186175
– ident: ref16
  doi: 10.1109/TSMC.2017.2683524
– ident: ref19
  doi: 10.1109/ROBIO.2018.8664912
– ident: ref9
  doi: 10.1017/S0263574721001934
– ident: ref29
  doi: 10.1016/j.physd.2006.02.009
– ident: ref14
  doi: 10.1126/scirobotics.aay2627
– ident: ref31
  doi: 10.1109/TSMC.2022.3163916
– ident: ref2
  doi: 10.1186/s12984-021-00815-5
– ident: ref27
  doi: 10.1016/j.robot.2020.103663
– ident: ref3
  doi: 10.1109/LRA.2021.3125723
– ident: ref21
  doi: 10.1016/j.jfranklin.2023.05.030
– ident: ref6
  doi: 10.1109/TNSRE.2019.2927094
– ident: ref4
  doi: 10.1038/s41598-023-43115-9
– ident: ref18
  doi: 10.1109/TNSRE.2017.2703586
– ident: ref23
  doi: 10.1109/TNNLS.2013.2280596
– ident: ref34
  doi: 10.1007/BF00449593
– ident: ref13
  doi: 10.1016/j.stem.2019.12.007
– ident: ref11
  doi: 10.1109/ITAB.2007.4407405
– ident: ref8
  doi: 10.1016/j.isatra.2021.05.039
– ident: ref15
  doi: 10.1109/TMECH.2019.2891290
– ident: ref25
  doi: 10.1109/TRO.2020.3005533
– ident: ref26
  doi: 10.1186/s12984-022-01000-y
– start-page: 1547
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  year: 2002
  ident: ref30
  article-title: Learning attractor landscapes for learning motor primitives
– start-page: 918
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2014
  ident: ref37
  article-title: Predictive entropy search for efficient global optimization of black-box functions
– ident: ref36
  doi: 10.1016/j.enbuild.2022.112022
– ident: ref38
  doi: 10.1109/LRA.2017.2656948
SSID ssj0004101
Score 2.4716098
Snippet To improve human-machine interactions, many studies have replicated the human motor nervous system to control lower limb exoskeletons. However, this approach...
To improve human–machine interactions, many studies have replicated the human motor nervous system to control lower limb exoskeletons. However, this approach...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4191
SubjectTerms Algorithms
Bionics
Central pattern generator (CPG)
Control algorithms
Control theory
Exoskeletons
Gait
Generators
Legged locomotion
lower limb exoskeleton
Muscles
Nervous system
optimal control
Optimization
Oscillators
Segments
speed change
State observers
Torque
walking gait
Title Gait-Generation Strategy for Lower Limb Exoskeleton Based on Central Pattern Generator
URI https://ieeexplore.ieee.org/document/10460752
https://www.proquest.com/docview/3146586606
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-014X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004101
  issn: 1083-4435
  databaseCode: RIE
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT8IwEG6UJ33wJ0YUTR98MwPGum59VAISA8QHMLwtbXdLiAoGRqL-9V67oqjR-NZka9Pctf3u2rvvCLlIuZRKyMBjvuQeM7E1SsbmzVVwHWcqZpZIuz_g3RG7HYdjl6xuc2EAwAafQc007Vt-OtNLc1VWN--RCHF44m5GMS-StT6TIH1b69hHm8JjaASsMmQaoj7st1td9AWbrBYE3PC5fEEhW1blx1lsAaazSwarqRVxJQ-1Za5q-u0ba-O_575HdpypSa-KtbFPNmB6QLbXCAgPyf2NnOReQT1tNEQdWe0rRVuW9kwFNdqbPCnafpktHhCh0FKk1wh8KcWGuxmmd5ajc0rdOLN5mYw67WGr67lKC55uCp57uAtZ6MsgYxBHKkVZqkYmIdIgIZRgdhL4XIiUqyDKAh4qhm4GAI91lko06Y5IaTqbwjGhEOMnqfHckimLNBMRgGhKHzIlQsS-CvFXkk-0oyE31TAeE-uONERitZUYbSVOWxVy-dHnuSDh-PPvshH_2p-F5CukutJw4jbqIgkQKcKYoxt38ku3U7JlRi9CWKqklM-XcIaGSK7O7QJ8B5ci2F0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT8IwEG6MPqgP_jaiqH3wzQwZ67r1UQmICsQHMLwtbXdLjAoGRqL-9V67oqjR-LZk7dbctf3u2rvvCDlJuZRKyMBjvuQeM7E1SsbmzlVwHWcqZpZIu9PlrT67HoQDl6xuc2EAwAafQcU82rv8dKSn5qjszNxHIsThjrsUMsbCIl3rMw3St9WOfbQqPIZmwCxHpirOep1GvYXeYI1VgoAbRpcvOGQLq_zYjS3ENNdJdza4IrLkoTLNVUW_feNt_PfoN8iaMzbpeTE7NskCDLfI6hwF4Ta5u5T3uVeQTxsdUUdX-0rRmqVtU0ONtu-fFG28jCYPiFFoK9ILhL6U4oM7G6a3lqVzSN13RuMd0m82evWW52oteLomeO7hOmShL4OMQRypFGWpqpmESIOEUIJZS-BzIVKugigLeKgYOhoAPNZZKtGo2yWLw9EQ9giFGF9JjTuXTFmkmYgARE36kCkRIvqViD-TfKIdEbmph_GYWIekKhKrrcRoK3HaKpHTjz7PBQ3Hn613jPjnWhaSL5HyTMOJW6qTJECsCGOOjtz-L92OyXKr12kn7avuzQFZMX8qAlrKZDEfT-EQzZJcHdnJ-A4V0tuq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gait-Generation+Strategy+for+Lower+Limb+Exoskeleton+Based+on+Central+Pattern+Generator&rft.jtitle=IEEE%2FASME+transactions+on+mechatronics&rft.au=Duan%2C+Wen&rft.au=Chen%2C+Weihai&rft.au=Wang%2C+Jianhua&rft.au=Liu%2C+Jingmeng&rft.date=2024-12-01&rft.pub=IEEE&rft.issn=1083-4435&rft.volume=29&rft.issue=6&rft.spage=4191&rft.epage=4202&rft_id=info:doi/10.1109%2FTMECH.2024.3367348&rft.externalDocID=10460752
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4435&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4435&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4435&client=summon