Gait-Generation Strategy for Lower Limb Exoskeleton Based on Central Pattern Generator
To improve human-machine interactions, many studies have replicated the human motor nervous system to control lower limb exoskeletons. However, this approach is hindered by its intricacy and the disparities between human and machine capabilities, leading to suboptimal adaptability and constrained pr...
Saved in:
| Published in | IEEE/ASME transactions on mechatronics Vol. 29; no. 6; pp. 4191 - 4202 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.12.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1083-4435 1941-014X |
| DOI | 10.1109/TMECH.2024.3367348 |
Cover
| Abstract | To improve human-machine interactions, many studies have replicated the human motor nervous system to control lower limb exoskeletons. However, this approach is hindered by its intricacy and the disparities between human and machine capabilities, leading to suboptimal adaptability and constrained practicality. This article presents a gait-generation strategy for lower limb exoskeletons utilizing central pattern generators (CPGs). This method offers a simplified model compared with the traditional CPG methods, significantly easing the parameter optimization process. The strategy is bifurcated into two segments. The initial segment encapsulates the human motor nervous system, constructs a musculoskeletal structure, and generates a basic bionic gait. The subsequent segment employs adaptive oscillators to assimilate and refine this basic gait through weak coupling theory. It further broadens the application range by integrating variational controllers and state observers. We implemented this strategy in a bench-type lower limb exoskeleton, allowing adjustments in walking speed and integrating a preference control algorithm for personalized exoskeleton management. Experimental evaluations confirmed the efficacy of this control system. The results indicated that our system can overcome the limitations of fixed training modes in bench-type lower limb exoskeletons and can adapt to the unique gait characteristics of various users, thereby facilitating gait customization. |
|---|---|
| AbstractList | To improve human–machine interactions, many studies have replicated the human motor nervous system to control lower limb exoskeletons. However, this approach is hindered by its intricacy and the disparities between human and machine capabilities, leading to suboptimal adaptability and constrained practicality. This article presents a gait-generation strategy for lower limb exoskeletons utilizing central pattern generators (CPGs). This method offers a simplified model compared with the traditional CPG methods, significantly easing the parameter optimization process. The strategy is bifurcated into two segments. The initial segment encapsulates the human motor nervous system, constructs a musculoskeletal structure, and generates a basic bionic gait. The subsequent segment employs adaptive oscillators to assimilate and refine this basic gait through weak coupling theory. It further broadens the application range by integrating variational controllers and state observers. We implemented this strategy in a bench-type lower limb exoskeleton, allowing adjustments in walking speed and integrating a preference control algorithm for personalized exoskeleton management. Experimental evaluations confirmed the efficacy of this control system. The results indicated that our system can overcome the limitations of fixed training modes in bench-type lower limb exoskeletons and can adapt to the unique gait characteristics of various users, thereby facilitating gait customization. |
| Author | Duan, Wen Liu, Jingmeng Wang, Jianhua Pei, Zhongcai Chen, Jianer Chen, Weihai |
| Author_xml | – sequence: 1 givenname: Wen orcidid: 0000-0002-8012-6134 surname: Duan fullname: Duan, Wen email: duanwen@buaa.edu.cn organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China – sequence: 2 givenname: Weihai orcidid: 0000-0001-7912-4505 surname: Chen fullname: Chen, Weihai email: whchen@buaa.edu.cn organization: School of Electrical Engineering and Automation, Anhui University, Hefei, Anhui, China – sequence: 3 givenname: Jianhua orcidid: 0000-0002-5160-1901 surname: Wang fullname: Wang, Jianhua email: jhwangbuaa@126.com organization: Hangzhou Innovation Institute, Beihang University, Hangzhou, Zhejiang, China – sequence: 4 givenname: Jingmeng orcidid: 0000-0001-6822-2812 surname: Liu fullname: Liu, Jingmeng email: ljm@buaa.edu.cn organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China – sequence: 5 givenname: Zhongcai orcidid: 0000-0001-7748-8591 surname: Pei fullname: Pei, Zhongcai email: peizc@buaa.edu.cn organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China – sequence: 6 givenname: Jianer orcidid: 0000-0002-7101-208X surname: Chen fullname: Chen, Jianer email: chenje@zcmu.edu.cn organization: Department of Geriatric Rehabilitation, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China |
| BookMark | eNp9kElPwzAQhS1UJNrCH0AcInFOseMlzhGiLkhFIFEQN8tJJigljYvtCvrvcZcD4sBl5h3em-UboF5nOkDokuARITi7WTyM89kowQkbUSpSyuQJ6pOMkRgT9tYLGksaM0b5GRo4t8QYM4JJH71OdePjKXRgtW9MFz37IOB9G9XGRnPzBaE2qyIafxv3AS344LnTDqooiBy6YG-jJ-092C46zjH2HJ3WunVwcexD9DIZL_JZPH-c3ue387hMMuHjTFDGiaY1A5kWVbipwLWGtAQNXEMSrgQisqwSBU1rKnjBuOQAQpZ1pYmgQ3R9mLu25nMDzqul2dgurFSUMMGlEHjnSg6u0hrnLNRqbZuVtltFsNrxU3t-asdPHfmFkPwTKhu_ZxRebtr_o1eHaAMAv3YxgVOe0B-pdYA7 |
| CODEN | IATEFW |
| CitedBy_id | crossref_primary_10_1007_s42235_024_00525_3 crossref_primary_10_1063_5_0232481 |
| Cites_doi | 10.1109/THMS.2018.2860598 10.1109/TNSRE.2022.3172497 10.1109/TASE.2018.2886376 10.1109/ROBIO.2018.8664912 10.1109/TBME.2015.2472533 10.1007/s10514-009-9118-y 10.1007/s11517-011-0816-1 10.1007/978-94-007-6046-2_49 10.3389/fnbot.2021.730965 10.1007/BF00204049 10.1109/THMS.2022.3217971 10.1016/j.buildenv.2020.107013 10.3389/fnbot.2023.1186175 10.1109/TSMC.2017.2683524 10.1017/S0263574721001934 10.1016/j.physd.2006.02.009 10.1126/scirobotics.aay2627 10.1109/TSMC.2022.3163916 10.1186/s12984-021-00815-5 10.1016/j.robot.2020.103663 10.1109/LRA.2021.3125723 10.1016/j.jfranklin.2023.05.030 10.1109/TNSRE.2019.2927094 10.1038/s41598-023-43115-9 10.1109/TNSRE.2017.2703586 10.1109/TNNLS.2013.2280596 10.1007/BF00449593 10.1016/j.stem.2019.12.007 10.1109/ITAB.2007.4407405 10.1016/j.isatra.2021.05.039 10.1109/TMECH.2019.2891290 10.1109/TRO.2020.3005533 10.1186/s12984-022-01000-y 10.1016/j.enbuild.2022.112022 10.1109/LRA.2017.2656948 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| DOI | 10.1109/TMECH.2024.3367348 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-014X |
| EndPage | 4202 |
| ExternalDocumentID | 10_1109_TMECH_2024_3367348 10460752 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Scientific Research Project of Agriculture and Social Development of Hangzhou grantid: 20212013B11 – fundername: Key Research and Development Program of Zhejiang Province grantid: 2021C03050 funderid: 10.13039/100022963 – fundername: National Nature Science Foundation grantid: 62333023 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK ACKIV AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P H~9 IFIPE IFJZH IPLJI JAVBF LAI M43 OCL RIA RIE RNS TN5 VH1 AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c296t-963451a3f4e87bd041b0fae7ceae5ae2004e1699d6b37f365b4585ee68cfda163 |
| IEDL.DBID | RIE |
| ISSN | 1083-4435 |
| IngestDate | Mon Jun 30 13:13:12 EDT 2025 Wed Oct 01 05:02:41 EDT 2025 Thu Apr 24 22:54:42 EDT 2025 Wed Aug 27 02:30:44 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c296t-963451a3f4e87bd041b0fae7ceae5ae2004e1699d6b37f365b4585ee68cfda163 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8012-6134 0000-0001-7912-4505 0000-0002-7101-208X 0000-0001-6822-2812 0000-0001-7748-8591 0000-0002-5160-1901 |
| PQID | 3146586606 |
| PQPubID | 85420 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_3146586606 crossref_primary_10_1109_TMECH_2024_3367348 ieee_primary_10460752 crossref_citationtrail_10_1109_TMECH_2024_3367348 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE/ASME transactions on mechatronics |
| PublicationTitleAbbrev | TMECH |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 Hernandez-Lobato (ref37) 2014 ref14 ref36 ref31 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 Ijspeert (ref30) 2002 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref12 doi: 10.1109/THMS.2018.2860598 – ident: ref1 doi: 10.1109/TNSRE.2022.3172497 – ident: ref32 doi: 10.1109/TASE.2018.2886376 – ident: ref20 doi: 10.1109/ROBIO.2018.8664912 – ident: ref24 doi: 10.1109/TBME.2015.2472533 – ident: ref28 doi: 10.1007/s10514-009-9118-y – ident: ref17 doi: 10.1007/s11517-011-0816-1 – ident: ref22 doi: 10.1007/978-94-007-6046-2_49 – ident: ref7 doi: 10.3389/fnbot.2021.730965 – ident: ref33 doi: 10.1007/BF00204049 – ident: ref5 doi: 10.1109/THMS.2022.3217971 – ident: ref35 doi: 10.1016/j.buildenv.2020.107013 – ident: ref10 doi: 10.3389/fnbot.2023.1186175 – ident: ref16 doi: 10.1109/TSMC.2017.2683524 – ident: ref19 doi: 10.1109/ROBIO.2018.8664912 – ident: ref9 doi: 10.1017/S0263574721001934 – ident: ref29 doi: 10.1016/j.physd.2006.02.009 – ident: ref14 doi: 10.1126/scirobotics.aay2627 – ident: ref31 doi: 10.1109/TSMC.2022.3163916 – ident: ref2 doi: 10.1186/s12984-021-00815-5 – ident: ref27 doi: 10.1016/j.robot.2020.103663 – ident: ref3 doi: 10.1109/LRA.2021.3125723 – ident: ref21 doi: 10.1016/j.jfranklin.2023.05.030 – ident: ref6 doi: 10.1109/TNSRE.2019.2927094 – ident: ref4 doi: 10.1038/s41598-023-43115-9 – ident: ref18 doi: 10.1109/TNSRE.2017.2703586 – ident: ref23 doi: 10.1109/TNNLS.2013.2280596 – ident: ref34 doi: 10.1007/BF00449593 – ident: ref13 doi: 10.1016/j.stem.2019.12.007 – ident: ref11 doi: 10.1109/ITAB.2007.4407405 – ident: ref8 doi: 10.1016/j.isatra.2021.05.039 – ident: ref15 doi: 10.1109/TMECH.2019.2891290 – ident: ref25 doi: 10.1109/TRO.2020.3005533 – ident: ref26 doi: 10.1186/s12984-022-01000-y – start-page: 1547 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. year: 2002 ident: ref30 article-title: Learning attractor landscapes for learning motor primitives – start-page: 918 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2014 ident: ref37 article-title: Predictive entropy search for efficient global optimization of black-box functions – ident: ref36 doi: 10.1016/j.enbuild.2022.112022 – ident: ref38 doi: 10.1109/LRA.2017.2656948 |
| SSID | ssj0004101 |
| Score | 2.4716098 |
| Snippet | To improve human-machine interactions, many studies have replicated the human motor nervous system to control lower limb exoskeletons. However, this approach... To improve human–machine interactions, many studies have replicated the human motor nervous system to control lower limb exoskeletons. However, this approach... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4191 |
| SubjectTerms | Algorithms Bionics Central pattern generator (CPG) Control algorithms Control theory Exoskeletons Gait Generators Legged locomotion lower limb exoskeleton Muscles Nervous system optimal control Optimization Oscillators Segments speed change State observers Torque walking gait |
| Title | Gait-Generation Strategy for Lower Limb Exoskeleton Based on Central Pattern Generator |
| URI | https://ieeexplore.ieee.org/document/10460752 https://www.proquest.com/docview/3146586606 |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1941-014X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004101 issn: 1083-4435 databaseCode: RIE dateStart: 19960101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT8IwEG6UJ33wJ0YUTR98MwPGum59VAISA8QHMLwtbXdLiAoGRqL-9V67oqjR-NZka9Pctf3u2rvvCLlIuZRKyMBjvuQeM7E1SsbmzVVwHWcqZpZIuz_g3RG7HYdjl6xuc2EAwAafQc007Vt-OtNLc1VWN--RCHF44m5GMS-StT6TIH1b69hHm8JjaASsMmQaoj7st1td9AWbrBYE3PC5fEEhW1blx1lsAaazSwarqRVxJQ-1Za5q-u0ba-O_575HdpypSa-KtbFPNmB6QLbXCAgPyf2NnOReQT1tNEQdWe0rRVuW9kwFNdqbPCnafpktHhCh0FKk1wh8KcWGuxmmd5ajc0rdOLN5mYw67WGr67lKC55uCp57uAtZ6MsgYxBHKkVZqkYmIdIgIZRgdhL4XIiUqyDKAh4qhm4GAI91lko06Y5IaTqbwjGhEOMnqfHckimLNBMRgGhKHzIlQsS-CvFXkk-0oyE31TAeE-uONERitZUYbSVOWxVy-dHnuSDh-PPvshH_2p-F5CukutJw4jbqIgkQKcKYoxt38ku3U7JlRi9CWKqklM-XcIaGSK7O7QJ8B5ci2F0 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT8IwEG6MPqgP_jaiqH3wzQwZ67r1UQmICsQHMLwtbXdLjAoGRqL-9V67oqjR-LZk7dbctf3u2rvvCDlJuZRKyMBjvuQeM7E1SsbmzlVwHWcqZpZIu9PlrT67HoQDl6xuc2EAwAafQcU82rv8dKSn5qjszNxHIsThjrsUMsbCIl3rMw3St9WOfbQqPIZmwCxHpirOep1GvYXeYI1VgoAbRpcvOGQLq_zYjS3ENNdJdza4IrLkoTLNVUW_feNt_PfoN8iaMzbpeTE7NskCDLfI6hwF4Ta5u5T3uVeQTxsdUUdX-0rRmqVtU0ONtu-fFG28jCYPiFFoK9ILhL6U4oM7G6a3lqVzSN13RuMd0m82evWW52oteLomeO7hOmShL4OMQRypFGWpqpmESIOEUIJZS-BzIVKugigLeKgYOhoAPNZZKtGo2yWLw9EQ9giFGF9JjTuXTFmkmYgARE36kCkRIvqViD-TfKIdEbmph_GYWIekKhKrrcRoK3HaKpHTjz7PBQ3Hn613jPjnWhaSL5HyTMOJW6qTJECsCGOOjtz-L92OyXKr12kn7avuzQFZMX8qAlrKZDEfT-EQzZJcHdnJ-A4V0tuq |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gait-Generation+Strategy+for+Lower+Limb+Exoskeleton+Based+on+Central+Pattern+Generator&rft.jtitle=IEEE%2FASME+transactions+on+mechatronics&rft.au=Duan%2C+Wen&rft.au=Chen%2C+Weihai&rft.au=Wang%2C+Jianhua&rft.au=Liu%2C+Jingmeng&rft.date=2024-12-01&rft.pub=IEEE&rft.issn=1083-4435&rft.volume=29&rft.issue=6&rft.spage=4191&rft.epage=4202&rft_id=info:doi/10.1109%2FTMECH.2024.3367348&rft.externalDocID=10460752 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4435&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4435&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4435&client=summon |