Deep-Deterministic-Policy-Gradient-Based Task Offloading With Optimized K-Means in Edge-Computing-Enabled IoMT Cyber-Physical Systems

In recent years, the Internet of Medical Things (IoMT) is expanding its value as a key enabling technology for smart medical cyber-physical systems. In order to overcome the constraints of constrained local resources, smart medical equipment (ME) in IoMT cyber-physical systems offload data to edge o...

Full description

Saved in:
Bibliographic Details
Published inIEEE systems journal Vol. 17; no. 4; pp. 5195 - 5206
Main Authors Yang, Chenyi, Xu, Xiaolong, Bilal, Muhammad, Wen, Yiping, Huang, Tao
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1932-8184
1937-9234
DOI10.1109/JSYST.2023.3311454

Cover

Abstract In recent years, the Internet of Medical Things (IoMT) is expanding its value as a key enabling technology for smart medical cyber-physical systems. In order to overcome the constraints of constrained local resources, smart medical equipment (ME) in IoMT cyber-physical systems offload data to edge or cloud servers for processing. However, due to the limited edge resources and huge time delay caused by offloading data to the cloud, the lack of a reasonable task unloading scheme will lead to the unbearable time delay and energy consumption of the IoMT system, resulting in uneven workloads among edge servers and threatening the security of medical data. To cope with these challenges, a deep deterministic policy gradient (DDPG)-based task-offloading method assisted by clustering is proposed. We first improved the initialization process of K -means, and based on this, designed an optimized K -means algorithm to carry out scientific and reasonable clustering of MEs according to their quality-of-service requirements. Then, DDPG is employed to obtain an optimal task-offloading scheme to minimize average latency and total energy consumption of IoMT and to ensure load balancing among edge servers. Finally, experimental results justify the scientific nature of optimized K -means and the superiority of DDPG in reducing the system overhead of IoMT. Compared with benchmark algorithms, DDPG reduces average time delay and total energy consumption by at least 16.9<inline-formula><tex-math notation="LaTeX"> \%</tex-math></inline-formula> and 12.3<inline-formula><tex-math notation="LaTeX"> \%</tex-math></inline-formula>, respectively.
AbstractList In recent years, the Internet of Medical Things (IoMT) is expanding its value as a key enabling technology for smart medical cyber-physical systems. In order to overcome the constraints of constrained local resources, smart medical equipment (ME) in IoMT cyber-physical systems offload data to edge or cloud servers for processing. However, due to the limited edge resources and huge time delay caused by offloading data to the cloud, the lack of a reasonable task unloading scheme will lead to the unbearable time delay and energy consumption of the IoMT system, resulting in uneven workloads among edge servers and threatening the security of medical data. To cope with these challenges, a deep deterministic policy gradient (DDPG)-based task-offloading method assisted by clustering is proposed. We first improved the initialization process of K -means, and based on this, designed an optimized K -means algorithm to carry out scientific and reasonable clustering of MEs according to their quality-of-service requirements. Then, DDPG is employed to obtain an optimal task-offloading scheme to minimize average latency and total energy consumption of IoMT and to ensure load balancing among edge servers. Finally, experimental results justify the scientific nature of optimized K -means and the superiority of DDPG in reducing the system overhead of IoMT. Compared with benchmark algorithms, DDPG reduces average time delay and total energy consumption by at least 16.9<inline-formula><tex-math notation="LaTeX"> \%</tex-math></inline-formula> and 12.3<inline-formula><tex-math notation="LaTeX"> \%</tex-math></inline-formula>, respectively.
In recent years, the Internet of Medical Things (IoMT) is expanding its value as a key enabling technology for smart medical cyber-physical systems. In order to overcome the constraints of constrained local resources, smart medical equipment (ME) in IoMT cyber-physical systems offload data to edge or cloud servers for processing. However, due to the limited edge resources and huge time delay caused by offloading data to the cloud, the lack of a reasonable task unloading scheme will lead to the unbearable time delay and energy consumption of the IoMT system, resulting in uneven workloads among edge servers and threatening the security of medical data. To cope with these challenges, a deep deterministic policy gradient (DDPG)-based task-offloading method assisted by clustering is proposed. We first improved the initialization process of K -means, and based on this, designed an optimized K -means algorithm to carry out scientific and reasonable clustering of MEs according to their quality-of-service requirements. Then, DDPG is employed to obtain an optimal task-offloading scheme to minimize average latency and total energy consumption of IoMT and to ensure load balancing among edge servers. Finally, experimental results justify the scientific nature of optimized K -means and the superiority of DDPG in reducing the system overhead of IoMT. Compared with benchmark algorithms, DDPG reduces average time delay and total energy consumption by at least 16.9[Formula Omitted] and 12.3[Formula Omitted], respectively.
Author Yang, Chenyi
Xu, Xiaolong
Huang, Tao
Bilal, Muhammad
Wen, Yiping
Author_xml – sequence: 1
  givenname: Chenyi
  orcidid: 0000-0002-5745-5044
  surname: Yang
  fullname: Yang, Chenyi
  email: 201983290234@nuist.edu.cn
  organization: School of Software, Nanjing University of Information Science and Technology, Nanjing, China
– sequence: 2
  givenname: Xiaolong
  orcidid: 0000-0003-4879-9803
  surname: Xu
  fullname: Xu, Xiaolong
  email: xlxu@ieee.org
  organization: School of Software, Nanjing University of Information Science and Technology, Nanjing, China
– sequence: 3
  givenname: Muhammad
  orcidid: 0000-0003-4221-0877
  surname: Bilal
  fullname: Bilal, Muhammad
  email: m.bilal@ieee.org
  organization: School of Computing and Communications, Lancaster University, Lancaster, U.K
– sequence: 4
  givenname: Yiping
  surname: Wen
  fullname: Wen, Yiping
  email: ypwen81@gmail.com
  organization: Hunan Key Laboratory for Service Computing and Novel Software Technology, Hunan University of Science and Technology, XiangTan, China
– sequence: 5
  givenname: Tao
  surname: Huang
  fullname: Huang, Tao
  email: nuisthuangtao@163.com
  organization: School of Computer Science and Technology, Silicon Lake College, Suzhou, China
BookMark eNp9kE1P3DAQhq2KSgXKH6h6iMTZiz-zzhGWhdKCFmkXVT1FjjMBQ2IH23tI7_zvGpZD1UNPM5p53hnpOUB7zjtA6AslM0pJdfJ9_Wu9mTHC-IxzSoUUH9A-rfgcV4yLvbeeYUWV-IQOYnwkRCo5r_bRyznAiM8hQRisszFZg299b82EL4NuLbiEz3SEttjo-FSsuq73eezui582PRSrMdnB_s7rH_gGtIuFdcWyvQe88MO4TRnES6ebPhNX_mZTLKYGAr59mKI1ui_WU0wwxM_oY6f7CEfv9RDdXSw3i2_4enV5tTi9xoZVZcJqLg0lkmpoGsqatuk4VEozpgTXwkjgQpsOmCpN2ZKKc6Ko5kJlVgIVJT9Ex7u7Y_DPW4ipfvTb4PLLmlUkE0QSkSm2o0zwMQbo6jHYQYeppqR-1V2_6a5fddfvunNI_RMyNulkvUtB2_7_0a-7qAWAv34xWTJO-R8mkZCV
CODEN ISJEB2
CitedBy_id crossref_primary_10_1007_s11277_024_11137_9
crossref_primary_10_1186_s13677_024_00674_0
crossref_primary_10_1016_j_eswa_2024_125662
crossref_primary_10_26599_TST_2024_9010142
Cites_doi 10.1109/jsen.2020.3020889
10.1109/tii.2022.3166813
10.1109/tii.2022.3195896
10.1109/tnsm.2021.3087258
10.1109/jiot.2021.3051419
10.1109/tii.2020.2987994
10.1109/jiot.2020.2996784
10.1109/tsc.2022.3142265
10.23919/icn.2020.0014
10.1016/0098-3004(84)90020-7
10.1109/mcom.002.2200424
10.1609/aaai.v32i1.11694
10.1109/tii.2022.3172489
10.1109/tii.2021.3128954
10.1109/tits.2022.3221975
10.1109/tnsm.2020.3020249
10.1109/tii.2022.3190380
10.1109/tccn.2019.2930521
10.1109/tfuzz.2022.3158000
10.1109/ecbios51820.2021.9510541
10.1109/tits.2020.3016002
10.1109/tvt.2016.2593486
10.1109/tcbb.2022.3184319
10.32657/10356/90191
10.1109/tmc.2020.3036871
10.1109/jsen.2021.3096245
10.1109/tetci.2020.3044082
10.1145/1721654.1721672
10.1109/tvt.2020.3041929
10.1109/jsen.2021.3057224
10.1109/tits.2020.2995622
10.1109/tcss.2022.3161627
10.1109/tits.2023.3239599
10.1109/tccn.2021.3093436
10.1109/tii.2022.3183000
10.1109/tsipn.2021.3070712
10.1109/tcss.2022.3217790
10.1109/tvt.2019.2904244
10.1109/jiot.2016.2579198
10.1016/j.patrec.2009.09.011
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/JSYST.2023.3311454
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library (LUT)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library (LUT)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1937-9234
EndPage 5206
ExternalDocumentID 10_1109_JSYST_2023_3311454
10256231
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of the Jiangsu Higher Education Institutions of China
  grantid: 21KJB520001
– fundername: National Natural Science Foundation of China
  grantid: 62372242; 62177014; 92267104
  funderid: 10.13039/501100001809
– fundername: Research Foundation of Hunan Provincial Education Department of China
  grantid: 20B222
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
RIA
RIE
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c296t-875c1051aebb12bdbf3e98a22843a4c5e34acfe286c6d0933081a34812b5e1463
IEDL.DBID RIE
ISSN 1932-8184
IngestDate Tue Aug 12 12:41:24 EDT 2025
Thu Apr 24 22:52:46 EDT 2025
Wed Oct 01 02:25:57 EDT 2025
Wed Aug 27 02:24:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-875c1051aebb12bdbf3e98a22843a4c5e34acfe286c6d0933081a34812b5e1463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4221-0877
0000-0002-5745-5044
0000-0003-4879-9803
PQID 2901460504
PQPubID 85494
PageCount 12
ParticipantIDs ieee_primary_10256231
crossref_primary_10_1109_JSYST_2023_3311454
proquest_journals_2901460504
crossref_citationtrail_10_1109_JSYST_2023_3311454
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE systems journal
PublicationTitleAbbrev JSYST
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Mnih (ref41) 2016
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Silver (ref42) 2014
References_xml – ident: ref6
  doi: 10.1109/jsen.2020.3020889
– ident: ref7
  doi: 10.1109/tii.2022.3166813
– ident: ref11
  doi: 10.1109/tii.2022.3195896
– ident: ref22
  doi: 10.1109/tnsm.2021.3087258
– ident: ref29
  doi: 10.1109/jiot.2021.3051419
– ident: ref23
  doi: 10.1109/tii.2020.2987994
– ident: ref14
  doi: 10.1109/jiot.2020.2996784
– ident: ref16
  doi: 10.1109/tsc.2022.3142265
– ident: ref35
  doi: 10.23919/icn.2020.0014
– ident: ref39
  doi: 10.1016/0098-3004(84)90020-7
– ident: ref25
  doi: 10.1109/mcom.002.2200424
– ident: ref27
  doi: 10.1609/aaai.v32i1.11694
– ident: ref21
  doi: 10.1109/tii.2022.3172489
– start-page: 387
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2014
  ident: ref42
  article-title: Deterministic policy gradient algorithms
– ident: ref5
  doi: 10.1109/tii.2021.3128954
– ident: ref8
  doi: 10.1109/tits.2022.3221975
– ident: ref24
  doi: 10.1109/tnsm.2020.3020249
– ident: ref9
  doi: 10.1109/tii.2022.3190380
– ident: ref33
  doi: 10.1109/tccn.2019.2930521
– ident: ref40
  doi: 10.1109/tfuzz.2022.3158000
– ident: ref4
  doi: 10.1109/ecbios51820.2021.9510541
– ident: ref37
  doi: 10.1109/tits.2020.3016002
– ident: ref17
  doi: 10.1109/tvt.2016.2593486
– ident: ref1
  doi: 10.1109/tcbb.2022.3184319
– ident: ref28
  doi: 10.32657/10356/90191
– ident: ref32
  doi: 10.1109/tmc.2020.3036871
– ident: ref34
  doi: 10.1109/jsen.2021.3096245
– ident: ref26
  doi: 10.1109/tetci.2020.3044082
– ident: ref10
  doi: 10.1145/1721654.1721672
– ident: ref31
  doi: 10.1109/tvt.2020.3041929
– ident: ref13
  doi: 10.1109/jsen.2021.3057224
– ident: ref12
  doi: 10.1109/tits.2020.2995622
– ident: ref30
  doi: 10.1109/tcss.2022.3161627
– ident: ref19
  doi: 10.1109/tits.2023.3239599
– ident: ref36
  doi: 10.1109/tccn.2021.3093436
– ident: ref3
  doi: 10.1109/tii.2022.3183000
– ident: ref20
  doi: 10.1109/tsipn.2021.3070712
– ident: ref2
  doi: 10.1109/tcss.2022.3217790
– ident: ref15
  doi: 10.1109/tvt.2019.2904244
– ident: ref18
  doi: 10.1109/jiot.2016.2579198
– ident: ref38
  doi: 10.1016/j.patrec.2009.09.011
– start-page: 1928
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2016
  ident: ref41
  article-title: Asynchronous methods for deep reinforcement learning
SSID ssj0058579
Score 2.359372
Snippet In recent years, the Internet of Medical Things (IoMT) is expanding its value as a key enabling technology for smart medical cyber-physical systems. In order...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5195
SubjectTerms Algorithms
Cloud computing
Clustering
Computation offloading
Constraints
Cyber-physical systems
deep reinforcement learning
Delay effects
Delays
Edge computing
Energy consumption
Internet of medical things
Internet of Medical Things (IoMT)
Medical diagnostic imaging
Medical equipment
Reinforcement learning
Servers
Task analysis
task offloading
Time lag
Title Deep-Deterministic-Policy-Gradient-Based Task Offloading With Optimized K-Means in Edge-Computing-Enabled IoMT Cyber-Physical Systems
URI https://ieeexplore.ieee.org/document/10256231
https://www.proquest.com/docview/2901460504
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library (LUT)
  customDbUrl:
  eissn: 1937-9234
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0058579
  issn: 1932-8184
  databaseCode: RIE
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELagJzhQHkWEFuQDt8pL1o_t7hHahFCUBKmpKKeVH-M2akmqdHOg9_7vjr3eqoBA3FZa27I04_lm7JlvCHnnC6Er4RVDqygwQLGSGacqpkF7a5TmIvZPGU-K0bE8PFEnqVg91sIAQEw-gyx8xrd8t7TrcFWGJ5wHuMZg5-FeWbTFWp3ZRbc3EusFh4QhCsmuQqZfvT88-n40y0Kj8EwIDACU_AWFYluVP2xxBJjhJpl0W2vzSs6zdWMye_0ba-N_7_0peZJcTfqh1Y1n5AEsnpPH9wgIX5CbA4BLdpBSYiJnM2uZgtmnVUwGa9hHxDlHZ_rqnE69v1jGpHv6bd6c0Snamx_za_z9hY0BQY_OF3TgToG1zSJwIBvE4ixHPy_HM7r_08CKfU26QRNd-hY5Hg5m-yOWGjMwy6uiQQuqLPpluQZjcm6c8QKqUnOEOqGlVSCkth54WdjCxSuTMteh4pcbBWiaxUuysVgu4BWh3qPPUwlZWM9lwV2Vc6_2nOl70MarskfyTlC1TazloXnGRR2jl35VR-HWQbh1Em6P7N7NuWw5O_45eitI697IVlA9stMpRJ3O9VUdX50xAuzL13-Ztk0ehdXbjJcdstGs1vAG_ZbGvI36eguEzekr
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZQOQAHyqOoaQv4wA15yfqxzR5pm5I-kiJ1K8pp5ccYopakSjeH9s7_Zuz1ogICcVtpbdnSjOebsWe-IeSNL4QuhVcMraLAAMVKZpwqmQbtrVGai9g_ZTwpRmfy8Fydp2L1WAsDADH5DLLwGd_y3dwuw1UZnnAe4BqDnftKSqnacq3O8KLjG6n1gkvCEIdkVyPTL98dnn4-rbLQKjwTAkMAJX_BodhY5Q9rHCFmf5VMus21mSUX2bIxmb39jbfxv3f_hDxOziZ932rHU3IPZs_IozsUhM_J9z2AK7aXkmIiazNruYLZh0VMB2vYDiKdo5W-vqAn3l_OY9o9_TRtvtITtDjfprf4-4iNAWGPTmd06L4Aa9tF4EA2jOVZjh7MxxXdvTGwYB-TdtBEmL5GzvaH1e6IpdYMzPKyaNCGKoueWa7BmJwbZ7yAcqA5gp3Q0ioQUlsPfFDYwsVLk0GuQ80vNwrQOIsXZGU2n8E6od6j11MKWVjPZcFdmXOvtp3pe9DGq0GP5J2gapt4y0P7jMs6xi_9so7CrYNw6yTcHnn7c85Vy9rxz9FrQVp3RraC6pGtTiHqdLKv6_jujDFgX278Zdpr8mBUjY_r44PJ0SZ5GFZq81-2yEqzWMJL9GIa8yrq7g_f8ux4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-Deterministic-Policy-Gradient-Based+Task+Offloading+With+Optimized+K-Means+in+Edge-Computing-Enabled+IoMT+Cyber-Physical+Systems&rft.jtitle=IEEE+systems+journal&rft.au=Yang%2C+Chenyi&rft.au=Xu%2C+Xiaolong&rft.au=Bilal%2C+Muhammad&rft.au=Wen%2C+Yiping&rft.date=2023-12-01&rft.pub=IEEE&rft.issn=1932-8184&rft.volume=17&rft.issue=4&rft.spage=5195&rft.epage=5206&rft_id=info:doi/10.1109%2FJSYST.2023.3311454&rft.externalDocID=10256231
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-8184&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-8184&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-8184&client=summon