Deep-Deterministic-Policy-Gradient-Based Task Offloading With Optimized K-Means in Edge-Computing-Enabled IoMT Cyber-Physical Systems
In recent years, the Internet of Medical Things (IoMT) is expanding its value as a key enabling technology for smart medical cyber-physical systems. In order to overcome the constraints of constrained local resources, smart medical equipment (ME) in IoMT cyber-physical systems offload data to edge o...
        Saved in:
      
    
          | Published in | IEEE systems journal Vol. 17; no. 4; pp. 5195 - 5206 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        01.12.2023
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1932-8184 1937-9234  | 
| DOI | 10.1109/JSYST.2023.3311454 | 
Cover
| Abstract | In recent years, the Internet of Medical Things (IoMT) is expanding its value as a key enabling technology for smart medical cyber-physical systems. In order to overcome the constraints of constrained local resources, smart medical equipment (ME) in IoMT cyber-physical systems offload data to edge or cloud servers for processing. However, due to the limited edge resources and huge time delay caused by offloading data to the cloud, the lack of a reasonable task unloading scheme will lead to the unbearable time delay and energy consumption of the IoMT system, resulting in uneven workloads among edge servers and threatening the security of medical data. To cope with these challenges, a deep deterministic policy gradient (DDPG)-based task-offloading method assisted by clustering is proposed. We first improved the initialization process of K -means, and based on this, designed an optimized K -means algorithm to carry out scientific and reasonable clustering of MEs according to their quality-of-service requirements. Then, DDPG is employed to obtain an optimal task-offloading scheme to minimize average latency and total energy consumption of IoMT and to ensure load balancing among edge servers. Finally, experimental results justify the scientific nature of optimized K -means and the superiority of DDPG in reducing the system overhead of IoMT. Compared with benchmark algorithms, DDPG reduces average time delay and total energy consumption by at least 16.9<inline-formula><tex-math notation="LaTeX"> \%</tex-math></inline-formula> and 12.3<inline-formula><tex-math notation="LaTeX"> \%</tex-math></inline-formula>, respectively. | 
    
|---|---|
| AbstractList | In recent years, the Internet of Medical Things (IoMT) is expanding its value as a key enabling technology for smart medical cyber-physical systems. In order to overcome the constraints of constrained local resources, smart medical equipment (ME) in IoMT cyber-physical systems offload data to edge or cloud servers for processing. However, due to the limited edge resources and huge time delay caused by offloading data to the cloud, the lack of a reasonable task unloading scheme will lead to the unbearable time delay and energy consumption of the IoMT system, resulting in uneven workloads among edge servers and threatening the security of medical data. To cope with these challenges, a deep deterministic policy gradient (DDPG)-based task-offloading method assisted by clustering is proposed. We first improved the initialization process of K -means, and based on this, designed an optimized K -means algorithm to carry out scientific and reasonable clustering of MEs according to their quality-of-service requirements. Then, DDPG is employed to obtain an optimal task-offloading scheme to minimize average latency and total energy consumption of IoMT and to ensure load balancing among edge servers. Finally, experimental results justify the scientific nature of optimized K -means and the superiority of DDPG in reducing the system overhead of IoMT. Compared with benchmark algorithms, DDPG reduces average time delay and total energy consumption by at least 16.9<inline-formula><tex-math notation="LaTeX"> \%</tex-math></inline-formula> and 12.3<inline-formula><tex-math notation="LaTeX"> \%</tex-math></inline-formula>, respectively. In recent years, the Internet of Medical Things (IoMT) is expanding its value as a key enabling technology for smart medical cyber-physical systems. In order to overcome the constraints of constrained local resources, smart medical equipment (ME) in IoMT cyber-physical systems offload data to edge or cloud servers for processing. However, due to the limited edge resources and huge time delay caused by offloading data to the cloud, the lack of a reasonable task unloading scheme will lead to the unbearable time delay and energy consumption of the IoMT system, resulting in uneven workloads among edge servers and threatening the security of medical data. To cope with these challenges, a deep deterministic policy gradient (DDPG)-based task-offloading method assisted by clustering is proposed. We first improved the initialization process of K -means, and based on this, designed an optimized K -means algorithm to carry out scientific and reasonable clustering of MEs according to their quality-of-service requirements. Then, DDPG is employed to obtain an optimal task-offloading scheme to minimize average latency and total energy consumption of IoMT and to ensure load balancing among edge servers. Finally, experimental results justify the scientific nature of optimized K -means and the superiority of DDPG in reducing the system overhead of IoMT. Compared with benchmark algorithms, DDPG reduces average time delay and total energy consumption by at least 16.9[Formula Omitted] and 12.3[Formula Omitted], respectively.  | 
    
| Author | Yang, Chenyi Xu, Xiaolong Huang, Tao Bilal, Muhammad Wen, Yiping  | 
    
| Author_xml | – sequence: 1 givenname: Chenyi orcidid: 0000-0002-5745-5044 surname: Yang fullname: Yang, Chenyi email: 201983290234@nuist.edu.cn organization: School of Software, Nanjing University of Information Science and Technology, Nanjing, China – sequence: 2 givenname: Xiaolong orcidid: 0000-0003-4879-9803 surname: Xu fullname: Xu, Xiaolong email: xlxu@ieee.org organization: School of Software, Nanjing University of Information Science and Technology, Nanjing, China – sequence: 3 givenname: Muhammad orcidid: 0000-0003-4221-0877 surname: Bilal fullname: Bilal, Muhammad email: m.bilal@ieee.org organization: School of Computing and Communications, Lancaster University, Lancaster, U.K – sequence: 4 givenname: Yiping surname: Wen fullname: Wen, Yiping email: ypwen81@gmail.com organization: Hunan Key Laboratory for Service Computing and Novel Software Technology, Hunan University of Science and Technology, XiangTan, China – sequence: 5 givenname: Tao surname: Huang fullname: Huang, Tao email: nuisthuangtao@163.com organization: School of Computer Science and Technology, Silicon Lake College, Suzhou, China  | 
    
| BookMark | eNp9kE1P3DAQhq2KSgXKH6h6iMTZiz-zzhGWhdKCFmkXVT1FjjMBQ2IH23tI7_zvGpZD1UNPM5p53hnpOUB7zjtA6AslM0pJdfJ9_Wu9mTHC-IxzSoUUH9A-rfgcV4yLvbeeYUWV-IQOYnwkRCo5r_bRyznAiM8hQRisszFZg299b82EL4NuLbiEz3SEttjo-FSsuq73eezui582PRSrMdnB_s7rH_gGtIuFdcWyvQe88MO4TRnES6ebPhNX_mZTLKYGAr59mKI1ui_WU0wwxM_oY6f7CEfv9RDdXSw3i2_4enV5tTi9xoZVZcJqLg0lkmpoGsqatuk4VEozpgTXwkjgQpsOmCpN2ZKKc6Ko5kJlVgIVJT9Ex7u7Y_DPW4ipfvTb4PLLmlUkE0QSkSm2o0zwMQbo6jHYQYeppqR-1V2_6a5fddfvunNI_RMyNulkvUtB2_7_0a-7qAWAv34xWTJO-R8mkZCV | 
    
| CODEN | ISJEB2 | 
    
| CitedBy_id | crossref_primary_10_1007_s11277_024_11137_9 crossref_primary_10_1186_s13677_024_00674_0 crossref_primary_10_1016_j_eswa_2024_125662 crossref_primary_10_26599_TST_2024_9010142  | 
    
| Cites_doi | 10.1109/jsen.2020.3020889 10.1109/tii.2022.3166813 10.1109/tii.2022.3195896 10.1109/tnsm.2021.3087258 10.1109/jiot.2021.3051419 10.1109/tii.2020.2987994 10.1109/jiot.2020.2996784 10.1109/tsc.2022.3142265 10.23919/icn.2020.0014 10.1016/0098-3004(84)90020-7 10.1109/mcom.002.2200424 10.1609/aaai.v32i1.11694 10.1109/tii.2022.3172489 10.1109/tii.2021.3128954 10.1109/tits.2022.3221975 10.1109/tnsm.2020.3020249 10.1109/tii.2022.3190380 10.1109/tccn.2019.2930521 10.1109/tfuzz.2022.3158000 10.1109/ecbios51820.2021.9510541 10.1109/tits.2020.3016002 10.1109/tvt.2016.2593486 10.1109/tcbb.2022.3184319 10.32657/10356/90191 10.1109/tmc.2020.3036871 10.1109/jsen.2021.3096245 10.1109/tetci.2020.3044082 10.1145/1721654.1721672 10.1109/tvt.2020.3041929 10.1109/jsen.2021.3057224 10.1109/tits.2020.2995622 10.1109/tcss.2022.3161627 10.1109/tits.2023.3239599 10.1109/tccn.2021.3093436 10.1109/tii.2022.3183000 10.1109/tsipn.2021.3070712 10.1109/tcss.2022.3217790 10.1109/tvt.2019.2904244 10.1109/jiot.2016.2579198 10.1016/j.patrec.2009.09.011  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 | 
    
| DBID | 97E RIA RIE AAYXX CITATION  | 
    
| DOI | 10.1109/JSYST.2023.3311454 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library (LUT) CrossRef  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library (LUT) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1937-9234 | 
    
| EndPage | 5206 | 
    
| ExternalDocumentID | 10_1109_JSYST_2023_3311454 10256231  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Natural Science Foundation of the Jiangsu Higher Education Institutions of China grantid: 21KJB520001 – fundername: National Natural Science Foundation of China grantid: 62372242; 62177014; 92267104 funderid: 10.13039/501100001809 – fundername: Research Foundation of Hunan Provincial Education Department of China grantid: 20B222  | 
    
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL RIA RIE RNS AAYXX CITATION  | 
    
| ID | FETCH-LOGICAL-c296t-875c1051aebb12bdbf3e98a22843a4c5e34acfe286c6d0933081a34812b5e1463 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1932-8184 | 
    
| IngestDate | Tue Aug 12 12:41:24 EDT 2025 Thu Apr 24 22:52:46 EDT 2025 Wed Oct 01 02:25:57 EDT 2025 Wed Aug 27 02:24:43 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c296t-875c1051aebb12bdbf3e98a22843a4c5e34acfe286c6d0933081a34812b5e1463 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-4221-0877 0000-0002-5745-5044 0000-0003-4879-9803  | 
    
| PQID | 2901460504 | 
    
| PQPubID | 85494 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | ieee_primary_10256231 crossref_primary_10_1109_JSYST_2023_3311454 proquest_journals_2901460504 crossref_citationtrail_10_1109_JSYST_2023_3311454  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-12-01 | 
    
| PublicationDateYYYYMMDD | 2023-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | IEEE systems journal | 
    
| PublicationTitleAbbrev | JSYST | 
    
| PublicationYear | 2023 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Mnih (ref41) 2016 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Silver (ref42) 2014  | 
    
| References_xml | – ident: ref6 doi: 10.1109/jsen.2020.3020889 – ident: ref7 doi: 10.1109/tii.2022.3166813 – ident: ref11 doi: 10.1109/tii.2022.3195896 – ident: ref22 doi: 10.1109/tnsm.2021.3087258 – ident: ref29 doi: 10.1109/jiot.2021.3051419 – ident: ref23 doi: 10.1109/tii.2020.2987994 – ident: ref14 doi: 10.1109/jiot.2020.2996784 – ident: ref16 doi: 10.1109/tsc.2022.3142265 – ident: ref35 doi: 10.23919/icn.2020.0014 – ident: ref39 doi: 10.1016/0098-3004(84)90020-7 – ident: ref25 doi: 10.1109/mcom.002.2200424 – ident: ref27 doi: 10.1609/aaai.v32i1.11694 – ident: ref21 doi: 10.1109/tii.2022.3172489 – start-page: 387 volume-title: Proc. Int. Conf. Mach. Learn. year: 2014 ident: ref42 article-title: Deterministic policy gradient algorithms – ident: ref5 doi: 10.1109/tii.2021.3128954 – ident: ref8 doi: 10.1109/tits.2022.3221975 – ident: ref24 doi: 10.1109/tnsm.2020.3020249 – ident: ref9 doi: 10.1109/tii.2022.3190380 – ident: ref33 doi: 10.1109/tccn.2019.2930521 – ident: ref40 doi: 10.1109/tfuzz.2022.3158000 – ident: ref4 doi: 10.1109/ecbios51820.2021.9510541 – ident: ref37 doi: 10.1109/tits.2020.3016002 – ident: ref17 doi: 10.1109/tvt.2016.2593486 – ident: ref1 doi: 10.1109/tcbb.2022.3184319 – ident: ref28 doi: 10.32657/10356/90191 – ident: ref32 doi: 10.1109/tmc.2020.3036871 – ident: ref34 doi: 10.1109/jsen.2021.3096245 – ident: ref26 doi: 10.1109/tetci.2020.3044082 – ident: ref10 doi: 10.1145/1721654.1721672 – ident: ref31 doi: 10.1109/tvt.2020.3041929 – ident: ref13 doi: 10.1109/jsen.2021.3057224 – ident: ref12 doi: 10.1109/tits.2020.2995622 – ident: ref30 doi: 10.1109/tcss.2022.3161627 – ident: ref19 doi: 10.1109/tits.2023.3239599 – ident: ref36 doi: 10.1109/tccn.2021.3093436 – ident: ref3 doi: 10.1109/tii.2022.3183000 – ident: ref20 doi: 10.1109/tsipn.2021.3070712 – ident: ref2 doi: 10.1109/tcss.2022.3217790 – ident: ref15 doi: 10.1109/tvt.2019.2904244 – ident: ref18 doi: 10.1109/jiot.2016.2579198 – ident: ref38 doi: 10.1016/j.patrec.2009.09.011 – start-page: 1928 volume-title: Proc. Int. Conf. Mach. Learn. year: 2016 ident: ref41 article-title: Asynchronous methods for deep reinforcement learning  | 
    
| SSID | ssj0058579 | 
    
| Score | 2.359372 | 
    
| Snippet | In recent years, the Internet of Medical Things (IoMT) is expanding its value as a key enabling technology for smart medical cyber-physical systems. In order... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 5195 | 
    
| SubjectTerms | Algorithms Cloud computing Clustering Computation offloading Constraints Cyber-physical systems deep reinforcement learning Delay effects Delays Edge computing Energy consumption Internet of medical things Internet of Medical Things (IoMT) Medical diagnostic imaging Medical equipment Reinforcement learning Servers Task analysis task offloading Time lag  | 
    
| Title | Deep-Deterministic-Policy-Gradient-Based Task Offloading With Optimized K-Means in Edge-Computing-Enabled IoMT Cyber-Physical Systems | 
    
| URI | https://ieeexplore.ieee.org/document/10256231 https://www.proquest.com/docview/2901460504  | 
    
| Volume | 17 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore Digital Library (LUT) customDbUrl: eissn: 1937-9234 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0058579 issn: 1932-8184 databaseCode: RIE dateStart: 20070101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELagJzhQHkWEFuQDt8pL1o_t7hHahFCUBKmpKKeVH-M2akmqdHOg9_7vjr3eqoBA3FZa27I04_lm7JlvCHnnC6Er4RVDqygwQLGSGacqpkF7a5TmIvZPGU-K0bE8PFEnqVg91sIAQEw-gyx8xrd8t7TrcFWGJ5wHuMZg5-FeWbTFWp3ZRbc3EusFh4QhCsmuQqZfvT88-n40y0Kj8EwIDACU_AWFYluVP2xxBJjhJpl0W2vzSs6zdWMye_0ba-N_7_0peZJcTfqh1Y1n5AEsnpPH9wgIX5CbA4BLdpBSYiJnM2uZgtmnVUwGa9hHxDlHZ_rqnE69v1jGpHv6bd6c0Snamx_za_z9hY0BQY_OF3TgToG1zSJwIBvE4ixHPy_HM7r_08CKfU26QRNd-hY5Hg5m-yOWGjMwy6uiQQuqLPpluQZjcm6c8QKqUnOEOqGlVSCkth54WdjCxSuTMteh4pcbBWiaxUuysVgu4BWh3qPPUwlZWM9lwV2Vc6_2nOl70MarskfyTlC1TazloXnGRR2jl35VR-HWQbh1Em6P7N7NuWw5O_45eitI697IVlA9stMpRJ3O9VUdX50xAuzL13-Ztk0ehdXbjJcdstGs1vAG_ZbGvI36eguEzekr | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZQOQAHyqOoaQv4wA15yfqxzR5pm5I-kiJ1K8pp5ccYopakSjeH9s7_Zuz1ogICcVtpbdnSjOebsWe-IeSNL4QuhVcMraLAAMVKZpwqmQbtrVGai9g_ZTwpRmfy8Fydp2L1WAsDADH5DLLwGd_y3dwuw1UZnnAe4BqDnftKSqnacq3O8KLjG6n1gkvCEIdkVyPTL98dnn4-rbLQKjwTAkMAJX_BodhY5Q9rHCFmf5VMus21mSUX2bIxmb39jbfxv3f_hDxOziZ932rHU3IPZs_IozsUhM_J9z2AK7aXkmIiazNruYLZh0VMB2vYDiKdo5W-vqAn3l_OY9o9_TRtvtITtDjfprf4-4iNAWGPTmd06L4Aa9tF4EA2jOVZjh7MxxXdvTGwYB-TdtBEmL5GzvaH1e6IpdYMzPKyaNCGKoueWa7BmJwbZ7yAcqA5gp3Q0ioQUlsPfFDYwsVLk0GuQ80vNwrQOIsXZGU2n8E6od6j11MKWVjPZcFdmXOvtp3pe9DGq0GP5J2gapt4y0P7jMs6xi_9so7CrYNw6yTcHnn7c85Vy9rxz9FrQVp3RraC6pGtTiHqdLKv6_jujDFgX278Zdpr8mBUjY_r44PJ0SZ5GFZq81-2yEqzWMJL9GIa8yrq7g_f8ux4 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-Deterministic-Policy-Gradient-Based+Task+Offloading+With+Optimized+K-Means+in+Edge-Computing-Enabled+IoMT+Cyber-Physical+Systems&rft.jtitle=IEEE+systems+journal&rft.au=Yang%2C+Chenyi&rft.au=Xu%2C+Xiaolong&rft.au=Bilal%2C+Muhammad&rft.au=Wen%2C+Yiping&rft.date=2023-12-01&rft.pub=IEEE&rft.issn=1932-8184&rft.volume=17&rft.issue=4&rft.spage=5195&rft.epage=5206&rft_id=info:doi/10.1109%2FJSYST.2023.3311454&rft.externalDocID=10256231 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-8184&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-8184&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-8184&client=summon |