MC-Blur: A Comprehensive Benchmark for Image Deblurring

Blur artifacts can seriously degrade the visual quality of images, and numerous deblurring methods have been proposed for specific scenarios. However, in most real-world images, blur is caused by different factors, e.g., motion, and defocus. In this paper, we address how other deblurring methods per...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 34; no. 5; pp. 3755 - 3767
Main Authors Zhang, Kaihao, Wang, Tao, Luo, Wenhan, Ren, Wenqi, Stenger, Bjorn, Liu, Wei, Li, Hongdong, Yang, Ming-Hsuan
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1051-8215
1558-2205
DOI10.1109/TCSVT.2023.3319330

Cover

Abstract Blur artifacts can seriously degrade the visual quality of images, and numerous deblurring methods have been proposed for specific scenarios. However, in most real-world images, blur is caused by different factors, e.g., motion, and defocus. In this paper, we address how other deblurring methods perform in the case of multiple types of blur. For in-depth performance evaluation, we construct a new large-scale multi-cause image deblurring dataset (MC-Blur), including real-world and synthesized blurry images with different blur factors. The images in the proposed MC-Blur dataset are collected using other techniques: averaging sharp images captured by a 1000-fps high-speed camera, convolving Ultra-High-Definition (UHD) sharp images with large-size kernels, adding defocus to images, and real-world blurry images captured by various camera models. Based on the MC-Blur dataset, we conduct extensive benchmarking studies to compare SOTA methods in different scenarios, analyze their efficiency, and investigate the buildataset's capacity. These benchmarking results provide a comprehensive overview of the advantages and limitations of current deblurring methods, revealing our dataset's advances. The dataset is available to the public at https://github.com/HDCVLab/MC-Blur-Dataset .
AbstractList Blur artifacts can seriously degrade the visual quality of images, and numerous deblurring methods have been proposed for specific scenarios. However, in most real-world images, blur is caused by different factors, e.g., motion, and defocus. In this paper, we address how other deblurring methods perform in the case of multiple types of blur. For in-depth performance evaluation, we construct a new large-scale multi-cause image deblurring dataset (MC-Blur), including real-world and synthesized blurry images with different blur factors. The images in the proposed MC-Blur dataset are collected using other techniques: averaging sharp images captured by a 1000-fps high-speed camera, convolving Ultra-High-Definition (UHD) sharp images with large-size kernels, adding defocus to images, and real-world blurry images captured by various camera models. Based on the MC-Blur dataset, we conduct extensive benchmarking studies to compare SOTA methods in different scenarios, analyze their efficiency, and investigate the buildataset’s capacity. These benchmarking results provide a comprehensive overview of the advantages and limitations of current deblurring methods, revealing our dataset’s advances. The dataset is available to the public at https://github.com/HDCVLab/MC-Blur-Dataset .
Author Stenger, Bjorn
Liu, Wei
Ren, Wenqi
Zhang, Kaihao
Luo, Wenhan
Li, Hongdong
Yang, Ming-Hsuan
Wang, Tao
Author_xml – sequence: 1
  givenname: Kaihao
  orcidid: 0000-0002-4317-660X
  surname: Zhang
  fullname: Zhang, Kaihao
  email: kaihao.zhang@anu.edu.au
  organization: College of Engineering and Computer Science, The Australian National University, Canberra, Australia
– sequence: 2
  givenname: Tao
  orcidid: 0000-0002-0202-0174
  surname: Wang
  fullname: Wang, Tao
  email: taowangzj@gmail.com
  organization: State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
– sequence: 3
  givenname: Wenhan
  orcidid: 0000-0002-5697-4168
  surname: Luo
  fullname: Luo, Wenhan
  email: whluo.china@gmail.com
  organization: School of Cyber Science and Technology, Sun Yat-sen University, Guangzhou, China
– sequence: 4
  givenname: Wenqi
  orcidid: 0000-0001-5481-653X
  surname: Ren
  fullname: Ren, Wenqi
  email: rwq.renwenqi@gmail.com
  organization: School of Cyber Science and Technology, Sun Yat-sen University, Guangzhou, China
– sequence: 5
  givenname: Bjorn
  surname: Stenger
  fullname: Stenger, Bjorn
  email: bjorn.stenger@gmail.com
  organization: Rakuten Institute of Technology, Setagaya, Tokyo, Japan
– sequence: 6
  givenname: Wei
  orcidid: 0000-0002-3865-8145
  surname: Liu
  fullname: Liu, Wei
  email: wl2223@columbia.edu
  organization: Tencent Data Platform, Shenzhen, China
– sequence: 7
  givenname: Hongdong
  orcidid: 0000-0003-4125-1554
  surname: Li
  fullname: Li, Hongdong
  email: hongdong.li@anu.edu.au
  organization: College of Engineering and Computer Science, The Australian National University, Canberra, Australia
– sequence: 8
  givenname: Ming-Hsuan
  orcidid: 0000-0003-4848-2304
  surname: Yang
  fullname: Yang, Ming-Hsuan
  email: mhyang@ucmerced.edu
  organization: School of Engineering, University of California at Merced, Merced, CA, USA
BookMark eNp9kEtPwzAQhC1UJNrCH0AcInFO8SN2HG5teFUq4kDhaiVm3bq0TrETJP49Lu0BceC0e5hvZ3YGqOcaBwidEzwiBBdX8_L5dT6imLIRY6RgDB-hPuFcppRi3os75iSVlPATNAhhhTHJZJb3Uf5YppN156-TcVI2m62HJbhgPyGZgNPLTeXfE9P4ZLqpFpDcQB213rrFKTo21TrA2WEO0cvd7bx8SGdP99NyPEs1LUSbCs0MYZoKYxg2WJuYydTG6EzSHMuc5jXP8kxKwQDXsuASiHljVMiay1pKNkSX-7tb33x0EFq1ajrvoqVimDNaFPGRqKJ7lfZNCB6M2nobs38pgtWuIPVTkNoVpA4FRUj-gbRtq9Y2rvWVXf-PXuxRCwC_vKjICBXsG3X8c1s
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_JSEN_2024_3404964
crossref_primary_10_1109_TCSVT_2023_3338689
crossref_primary_10_1109_TCI_2024_3443732
crossref_primary_10_1007_s00371_023_03229_7
crossref_primary_10_3390_rs17050834
crossref_primary_10_1016_j_neucom_2023_126996
crossref_primary_10_1109_TCSVT_2024_3424675
crossref_primary_10_1007_s11760_024_03657_5
crossref_primary_10_1109_TCSVT_2024_3486756
crossref_primary_10_1109_ACCESS_2024_3354977
crossref_primary_10_1109_TGRS_2024_3480985
Cites_doi 10.1109/TIP.2012.2192126
10.1109/CVPR52729.2023.00552
10.1109/CVPR42600.2020.00366
10.1109/CVPR.2009.5206815
10.1007/978-3-031-20071-7_29
10.1109/ICCV.2019.00897
10.1609/aaai.v34i07.6862
10.1109/CVPR52729.2023.00563
10.1109/TCSVT.2021.3093928
10.1109/ICCPhot.2012.6215221
10.1109/ICCV48922.2021.00426
10.1109/ICCV48922.2021.00460
10.1109/TCSVT.2021.3074799
10.1007/978-3-031-19797-0_24
10.1109/CVPR52729.2023.00570
10.1109/CVPR.2019.01047
10.1109/CVPR.2016.188
10.1109/CVPR42600.2020.00311
10.1007/978-3-030-58539-6_20
10.1007/978-3-319-46487-9_14
10.1109/CVPR46437.2021.01458
10.1109/CVPR.2018.00853
10.1109/ICCV.2019.00257
10.1109/ICCV.2011.6126276
10.1109/CVPR.2019.00613
10.1109/TIP.2018.2867733
10.5244/C.29.6
10.1007/s11263-022-01633-5
10.1109/ICCV.2017.435
10.1109/TCSVT.2019.2919159
10.1109/CVPRW.2019.00251
10.1109/CVPR.2017.35
10.1109/CVPR52729.2023.01344
10.1109/CVPR.2019.00184
10.1109/CVPR52729.2023.00406
10.1109/CVPRW.2019.00247
10.1007/978-3-030-58595-2_12
10.1016/j.neucom.2021.09.019
10.1109/CVPR.2019.01125
10.1109/CVPR.2017.33
10.1109/CVPR.2018.00854
10.1007/978-3-030-01237-3_45
10.1109/CVPR42600.2020.00585
10.1109/CVPR.2019.00397
10.1109/CVPR42600.2020.00281
10.1109/CVPR42600.2020.00338
10.1109/CVPR.2015.7298677
10.1109/CVPR.2018.00663
10.1109/CVPR42600.2020.00340
10.1109/TIP.2021.3101402
10.1109/ICCPHOT.2018.8368468
10.1109/TIP.2017.2753658
10.1109/CVPR.2018.00267
10.1109/CVPR46437.2021.00763
10.1109/WACV.2019.00208
10.1007/978-3-642-33786-4_3
10.1109/CVPR.2018.00862
10.1109/CVPR.2014.371
10.1109/ICCV.2019.00567
10.1109/TPAMI.2017.2753804
10.1109/CVPR.2019.00829
10.1109/TCSVT.2020.3034137
10.1109/ICCV.2017.509
10.1007/978-3-030-58607-2_7
10.1109/CVPR.2019.01048
10.1109/CVPR52688.2022.00564
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2023.3319330
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 3767
ExternalDocumentID 10_1109_TCSVT_2023_3319330
10264126
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62372480
  funderid: 10.13039/501100001809
– fundername: China Computer Federation (CCF)-Tencent Rhino-Bird Open Research Fund
  grantid: CCF-Tencent RAGR20230118
– fundername: Ford Alliance University Research Program (URP)
– fundername: Australian Research Council (ARC)-Discovery
  grantid: DP190102261; DP220100800
  funderid: 10.13039/501100000923
– fundername: Shenzhen Science and Technology Program
  grantid: JSGG20220831093004008
  funderid: 10.13039/501100017610
– fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation
  grantid: 2023A1515012839
  funderid: 10.13039/501100021171
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c296t-6c3f13c26ff30f0cf155fbffc482708727b54748863e0b8958e1fd3268b58b883
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 14:35:22 EDT 2025
Tue Jul 01 00:41:24 EDT 2025
Thu Apr 24 23:12:04 EDT 2025
Wed Aug 27 01:58:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-6c3f13c26ff30f0cf155fbffc482708727b54748863e0b8958e1fd3268b58b883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3865-8145
0000-0003-4125-1554
0000-0002-4317-660X
0000-0003-4848-2304
0000-0001-5481-653X
0000-0002-5697-4168
0000-0002-0202-0174
PQID 3053299148
PQPubID 85433
PageCount 13
ParticipantIDs crossref_primary_10_1109_TCSVT_2023_3319330
crossref_citationtrail_10_1109_TCSVT_2023_3319330
proquest_journals_3053299148
ieee_primary_10264126
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref11
ref55
ref10
ref54
Nimisha (ref52)
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref67
ref26
ref25
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref66
  doi: 10.1109/TIP.2012.2192126
– ident: ref61
  doi: 10.1109/CVPR52729.2023.00552
– ident: ref56
  doi: 10.1109/CVPR42600.2020.00366
– ident: ref6
  doi: 10.1109/CVPR.2009.5206815
– ident: ref51
  doi: 10.1007/978-3-031-20071-7_29
– ident: ref36
  doi: 10.1109/ICCV.2019.00897
– ident: ref55
  doi: 10.1609/aaai.v34i07.6862
– ident: ref62
  doi: 10.1109/CVPR52729.2023.00563
– ident: ref58
  doi: 10.1109/TCSVT.2021.3093928
– ident: ref7
  doi: 10.1109/ICCPhot.2012.6215221
– ident: ref64
  doi: 10.1109/ICCV48922.2021.00426
– ident: ref67
  doi: 10.1109/ICCV48922.2021.00460
– ident: ref19
  doi: 10.1109/TCSVT.2021.3074799
– ident: ref59
  doi: 10.1007/978-3-031-19797-0_24
– ident: ref60
  doi: 10.1109/CVPR52729.2023.00570
– ident: ref53
  doi: 10.1109/CVPR.2019.01047
– ident: ref8
  doi: 10.1109/CVPR.2016.188
– ident: ref45
  doi: 10.1109/CVPR42600.2020.00311
– ident: ref57
  doi: 10.1007/978-3-030-58539-6_20
– ident: ref24
  doi: 10.1007/978-3-319-46487-9_14
– ident: ref40
  doi: 10.1109/CVPR46437.2021.01458
– ident: ref39
  doi: 10.1109/CVPR.2018.00853
– ident: ref44
  doi: 10.1109/ICCV.2019.00257
– ident: ref16
  doi: 10.1109/ICCV.2011.6126276
– ident: ref37
  doi: 10.1109/CVPR.2019.00613
– ident: ref46
  doi: 10.1109/TIP.2018.2867733
– ident: ref13
  doi: 10.5244/C.29.6
– ident: ref1
  doi: 10.1007/s11263-022-01633-5
– ident: ref28
  doi: 10.1109/ICCV.2017.435
– ident: ref17
  doi: 10.1109/TCSVT.2019.2919159
– start-page: 353
  volume-title: Proc. Eur. Conf. Comput. Vis.
  ident: ref52
  article-title: Unsupervised class-specific deblurring
– ident: ref2
  doi: 10.1109/CVPRW.2019.00251
– ident: ref9
  doi: 10.1109/CVPR.2017.35
– ident: ref54
  doi: 10.1109/CVPR52729.2023.01344
– ident: ref22
  doi: 10.1109/CVPR.2019.00184
– ident: ref65
  doi: 10.1109/CVPR52729.2023.00406
– ident: ref31
  doi: 10.1109/CVPRW.2019.00247
– ident: ref4
  doi: 10.1007/978-3-030-58595-2_12
– ident: ref48
  doi: 10.1016/j.neucom.2021.09.019
– ident: ref15
  doi: 10.1109/CVPR.2019.01125
– ident: ref12
  doi: 10.1109/CVPR.2017.33
– ident: ref35
  doi: 10.1109/CVPR.2018.00854
– ident: ref29
  doi: 10.1007/978-3-030-01237-3_45
– ident: ref34
  doi: 10.1109/CVPR42600.2020.00585
– ident: ref42
  doi: 10.1109/CVPR.2019.00397
– ident: ref49
  doi: 10.1109/CVPR42600.2020.00281
– ident: ref11
  doi: 10.1109/CVPR42600.2020.00338
– ident: ref23
  doi: 10.1109/CVPR.2015.7298677
– ident: ref27
  doi: 10.1109/CVPR.2018.00663
– ident: ref43
  doi: 10.1109/CVPR42600.2020.00340
– ident: ref47
  doi: 10.1109/TIP.2021.3101402
– ident: ref50
  doi: 10.1109/ICCPHOT.2018.8368468
– ident: ref26
  doi: 10.1109/TIP.2017.2753658
– ident: ref38
  doi: 10.1109/CVPR.2018.00267
– ident: ref63
  doi: 10.1109/CVPR46437.2021.00763
– ident: ref32
  doi: 10.1109/WACV.2019.00208
– ident: ref3
  doi: 10.1007/978-3-642-33786-4_3
– ident: ref14
  doi: 10.1109/CVPR.2018.00862
– ident: ref20
  doi: 10.1109/CVPR.2014.371
– ident: ref10
  doi: 10.1109/ICCV.2019.00567
– ident: ref21
  doi: 10.1109/TPAMI.2017.2753804
– ident: ref30
  doi: 10.1109/CVPR.2019.00829
– ident: ref18
  doi: 10.1109/TCSVT.2020.3034137
– ident: ref25
  doi: 10.1109/ICCV.2017.509
– ident: ref5
  doi: 10.1007/978-3-030-58607-2_7
– ident: ref33
  doi: 10.1109/CVPR.2019.01048
– ident: ref41
  doi: 10.1109/CVPR52688.2022.00564
SSID ssj0014847
Score 2.5717814
Snippet Blur artifacts can seriously degrade the visual quality of images, and numerous deblurring methods have been proposed for specific scenarios. However, in most...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3755
SubjectTerms Benchmark testing
Benchmarks
Cameras
Datasets
Deblurring benchmark
defocus deblur
High definition
High speed cameras
Image quality
Image restoration
large-scale multi-cause dataset
motion deblur
Performance evaluation
Quality assessment
real-world deblur
Training
UHD deblur
Videos
Title MC-Blur: A Comprehensive Benchmark for Image Deblurring
URI https://ieeexplore.ieee.org/document/10264126
https://www.proquest.com/docview/3053299148
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-Ekx78xIii2cGb6dzWrrx5AyJBE7gIhttCSysJX2bCxb_e124QotF426Fdmvf5e-37IOQ2Egq4NBE1ECeUC1BUKhlTpk0ARscsCW3tcLcnOgP-PIyHRbG6q4XRWrvkM-3bT_eWP16qtb0qQw1H9x1GokRKKGd5sdb2yYCDmyaGeCGkgI5sUyETJPf91str37eDwn2GIsdsyvOOF3JjVX7YYudg2kektzlanlcy9dcr6avPb10b_332Y3JYQE2vkcvGCdnTi1NysNOA8IzUuy3anK2zB6_hWcuQ6Ume0O41UXon81E29RDVek9zNDse2qaZvTFcvFXIoP3Yb3VoMUqBqigRKyoUMyFTkTCGBSZQBmGEkcYo2wU0AAQxMuZ1VGbBdCAhiUGHZozQDmQMEoCdk_JiudAXxBuDYtFIGjnihkM4ggQhlcKwJ1QYGmpRJeGGtKkq-ozbcRez1MUbQZI6dqSWHWnBjiq52-55z7ts_Lm6Yum7szInbZXUNixMC038SJkdfYEgmMPlL9uuyD7-nedZjDVSXmVrfY1IYyVvnIR9AdwUy-4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGICBN6JQIAMbckhix1zY2grUAu1CQWxR7dogUQoq7cKv5-ykqAKB2DzYsnV3vvvOvgfAcSI1CmUTZjHNmJComdIqZdzYCK1JeRa73OF2RzbvxNVD-lAmq_tcGGOMDz4zoRv6v_z-q564pzK64WS-40TOw2JKbgUW6VpfnwYCfT8xQgwxQzJl0xyZKDvtNm7vu6FrFR5yEjrugp5n7JBvrPJDG3sTc7kGnenhisiS53AyVqH--Fa38d-nX4fVEmwGtUI6NmDODDdhZaYE4RactRusPpiMzoNa4HTDyDwVIe1BneT36aU3eg4I1watF1I8AWmngXszHD5uw93lRbfRZGUzBaaTTI6Z1NzGXCfSWh7ZSFsCElZZq10d0AgJxqhUnBFRJTeRwixFE9s-gTtUKSpEvgMLw9eh2YWgj5onPWVVT1iBcQ8zAlWaHJ9Yk3NoZAXiKWlzXVYadw0vBrn3OKIs9-zIHTvykh0VOPla81bU2fhz9raj78zMgrQVqE5ZmJd38T3nrvkFwWCBe78sO4KlZrd9k9-0Otf7sEw7iSKmsQoL49HEHBDuGKtDL22fyPzPQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MC-Blur%3A+A+Comprehensive+Benchmark+for+Image+Deblurring&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Zhang%2C+Kaihao&rft.au=Wang%2C+Tao&rft.au=Luo%2C+Wenhan&rft.au=Ren%2C+Wenqi&rft.date=2024-05-01&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=34&rft.issue=5&rft.spage=3755&rft.epage=3767&rft_id=info:doi/10.1109%2FTCSVT.2023.3319330&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSVT_2023_3319330
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon