CRISPR/Cas-based colorimetric biosensors: a promising tool for the diagnosis of bacterial foodborne pathogens in food products
Some physical phenomena and various chemical substances newly introduced in nanotechnology have allowed scientists to develop valuable devices in the field of food sciences. Regarding such progress, the identification of foodborne pathogenic microorganisms is an imperative subject nowadays. These ba...
Saved in:
Published in | Analytical methods Vol. 16; no. 22; pp. 3448 - 3463 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
06.06.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1759-9660 1759-9679 1759-9679 |
DOI | 10.1039/d4ay00578c |
Cover
Abstract | Some physical phenomena and various chemical substances newly introduced in nanotechnology have allowed scientists to develop valuable devices in the field of food sciences. Regarding such progress, the identification of foodborne pathogenic microorganisms is an imperative subject nowadays. These bacterial species have been found to cause severe health impacts after food ingestion and can result in high mortality in acute cases. The rapid detection of foodborne bacterial species at low concentrations is in high demand in recent diagnostics. CRISPR/Cas-mediated biosensors possess the potential to overcome several challenges in classical assays such as complex pretreatments, long turnaround time, and insensitivity. Among them, colorimetric nanoprobes based on the CRISPR strategy afford promising devices for POCT (point-of-care testing) since they can be visualized with the naked eye and do not require diagnostic apparatus. In this study, we briefly classify and discuss the working principles of the different CRISPR/Cas protein agents that have been employed in biosensors so far. We assess the current status of the CRISPR system, specifically focusing on colorimetric biosensing platforms. We discuss the utilization of each Cas effector in the detection of foodborne pathogens and examine the restrictions of the existing technology. The challenges and future opportunities are also indicated and addressed.
Some physical phenomena and various chemical substances newly introduced in nanotechnology have allowed scientists to develop valuable devices in the field of food sciences. |
---|---|
AbstractList | Some physical phenomena and various chemical substances newly introduced in nanotechnology have allowed scientists to develop valuable devices in the field of food sciences. Regarding such progress, the identification of foodborne pathogenic microorganisms is an imperative subject nowadays. These bacterial species have been found to cause severe health impacts after food ingestion and can result in high mortality in acute cases. The rapid detection of foodborne bacterial species at low concentrations is in high demand in recent diagnostics. CRISPR/Cas-mediated biosensors possess the potential to overcome several challenges in classical assays such as complex pretreatments, long turnaround time, and insensitivity. Among them, colorimetric nanoprobes based on the CRISPR strategy afford promising devices for POCT (point-of-care testing) since they can be visualized with the naked eye and do not require diagnostic apparatus. In this study, we briefly classify and discuss the working principles of the different CRISPR/Cas protein agents that have been employed in biosensors so far. We assess the current status of the CRISPR system, specifically focusing on colorimetric biosensing platforms. We discuss the utilization of each Cas effector in the detection of foodborne pathogens and examine the restrictions of the existing technology. The challenges and future opportunities are also indicated and addressed. Some physical phenomena and various chemical substances newly introduced in nanotechnology have allowed scientists to develop valuable devices in the field of food sciences. Regarding such progress, the identification of foodborne pathogenic microorganisms is an imperative subject nowadays. These bacterial species have been found to cause severe health impacts after food ingestion and can result in high mortality in acute cases. The rapid detection of foodborne bacterial species at low concentrations is in high demand in recent diagnostics. CRISPR/Cas-mediated biosensors possess the potential to overcome several challenges in classical assays such as complex pretreatments, long turnaround time, and insensitivity. Among them, colorimetric nanoprobes based on the CRISPR strategy afford promising devices for POCT (point-of-care testing) since they can be visualized with the naked eye and do not require diagnostic apparatus. In this study, we briefly classify and discuss the working principles of the different CRISPR/Cas protein agents that have been employed in biosensors so far. We assess the current status of the CRISPR system, specifically focusing on colorimetric biosensing platforms. We discuss the utilization of each Cas effector in the detection of foodborne pathogens and examine the restrictions of the existing technology. The challenges and future opportunities are also indicated and addressed. Some physical phenomena and various chemical substances newly introduced in nanotechnology have allowed scientists to develop valuable devices in the field of food sciences. Some physical phenomena and various chemical substances newly introduced in nanotechnology have allowed scientists to develop valuable devices in the field of food sciences. Regarding such progress, the identification of foodborne pathogenic microorganisms is an imperative subject nowadays. These bacterial species have been found to cause severe health impacts after food ingestion and can result in high mortality in acute cases. The rapid detection of foodborne bacterial species at low concentrations is in high demand in recent diagnostics. CRISPR/Cas-mediated biosensors possess the potential to overcome several challenges in classical assays such as complex pretreatments, long turnaround time, and insensitivity. Among them, colorimetric nanoprobes based on the CRISPR strategy afford promising devices for POCT (point-of-care testing) since they can be visualized with the naked eye and do not require diagnostic apparatus. In this study, we briefly classify and discuss the working principles of the different CRISPR/Cas protein agents that have been employed in biosensors so far. We assess the current status of the CRISPR system, specifically focusing on colorimetric biosensing platforms. We discuss the utilization of each Cas effector in the detection of foodborne pathogens and examine the restrictions of the existing technology. The challenges and future opportunities are also indicated and addressed.Some physical phenomena and various chemical substances newly introduced in nanotechnology have allowed scientists to develop valuable devices in the field of food sciences. Regarding such progress, the identification of foodborne pathogenic microorganisms is an imperative subject nowadays. These bacterial species have been found to cause severe health impacts after food ingestion and can result in high mortality in acute cases. The rapid detection of foodborne bacterial species at low concentrations is in high demand in recent diagnostics. CRISPR/Cas-mediated biosensors possess the potential to overcome several challenges in classical assays such as complex pretreatments, long turnaround time, and insensitivity. Among them, colorimetric nanoprobes based on the CRISPR strategy afford promising devices for POCT (point-of-care testing) since they can be visualized with the naked eye and do not require diagnostic apparatus. In this study, we briefly classify and discuss the working principles of the different CRISPR/Cas protein agents that have been employed in biosensors so far. We assess the current status of the CRISPR system, specifically focusing on colorimetric biosensing platforms. We discuss the utilization of each Cas effector in the detection of foodborne pathogens and examine the restrictions of the existing technology. The challenges and future opportunities are also indicated and addressed. |
Author | Jabbar, Hijran Sanaan Ali, Eyhab Saleh, Ebraheem Abdu Musad Elawady, Ahmed Kumar, Abhinav Kaur, Irwanjot Alwaily, Enas R Muxamadovna, Giyazova Malika Omran, Alaa A Kassem, Asmaa F |
AuthorAffiliation | Assistant Teacher of the Physiology Department The Islamic University AL-Nisour University College Bukhara State Medical Institute College of Pharmacy Department of Engineering Department of Chemistry Jain (Deemed-to-be) University Department of Nuclear and Renewable Energy Salahaddin University-Erbil Microbiology Research Group Chemistry of Natural and Microbial Products Department College of Science Al-Zahraa University for Women The Islamic University of Al Diwaniyah Department of Biotechnology and Genetics Prince Sattam Bin Abdulaziz University Vivekananda Global University Ural Federal University Named After the First President of Russia Boris Yeltsin The Islamic University of Babylon College of Science and Humanities in Al-Kharj Al-Ayen University Department of Allied Healthcare and Sciences College of Technical Engineering Pharmaceutical and Drug Industries Research Institute National Research Centre |
AuthorAffiliation_xml | – sequence: 0 name: Department of Biotechnology and Genetics – sequence: 0 name: Salahaddin University-Erbil – sequence: 0 name: College of Technical Engineering – sequence: 0 name: The Islamic University of Babylon – sequence: 0 name: Prince Sattam Bin Abdulaziz University – sequence: 0 name: Department of Chemistry – sequence: 0 name: College of Science and Humanities in Al-Kharj – sequence: 0 name: National Research Centre – sequence: 0 name: Microbiology Research Group – sequence: 0 name: Al-Ayen University – sequence: 0 name: College of Pharmacy – sequence: 0 name: The Islamic University – sequence: 0 name: AL-Nisour University College – sequence: 0 name: Al-Zahraa University for Women – sequence: 0 name: Bukhara State Medical Institute – sequence: 0 name: Pharmaceutical and Drug Industries Research Institute – sequence: 0 name: Department of Allied Healthcare and Sciences – sequence: 0 name: Vivekananda Global University – sequence: 0 name: The Islamic University of Al Diwaniyah – sequence: 0 name: Department of Engineering – sequence: 0 name: College of Science – sequence: 0 name: Chemistry of Natural and Microbial Products Department – sequence: 0 name: Jain (Deemed-to-be) University – sequence: 0 name: Assistant Teacher of the Physiology Department – sequence: 0 name: Ural Federal University Named After the First President of Russia Boris Yeltsin – sequence: 0 name: Department of Nuclear and Renewable Energy |
Author_xml | – sequence: 1 givenname: Ebraheem Abdu Musad surname: Saleh fullname: Saleh, Ebraheem Abdu Musad – sequence: 2 givenname: Eyhab surname: Ali fullname: Ali, Eyhab – sequence: 3 givenname: Giyazova Malika surname: Muxamadovna fullname: Muxamadovna, Giyazova Malika – sequence: 4 givenname: Asmaa F surname: Kassem fullname: Kassem, Asmaa F – sequence: 5 givenname: Irwanjot surname: Kaur fullname: Kaur, Irwanjot – sequence: 6 givenname: Abhinav surname: Kumar fullname: Kumar, Abhinav – sequence: 7 givenname: Hijran Sanaan surname: Jabbar fullname: Jabbar, Hijran Sanaan – sequence: 8 givenname: Enas R surname: Alwaily fullname: Alwaily, Enas R – sequence: 9 givenname: Ahmed surname: Elawady fullname: Elawady, Ahmed – sequence: 10 givenname: Alaa A surname: Omran fullname: Omran, Alaa A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38804827$$D View this record in MEDLINE/PubMed |
BookMark | eNpd0U1v1DAQBmALFdEPuHAHWeKCkNLaceIPblWAUqkSqMCBU-TYk62rrL14kkMv_Ha83XaRerJlPxqP5z0mBzFFIOQ1Z6ecCXPmG3vHWKu0e0aOuGpNZaQyB_u9ZIfkGPGWMWmE5C_IodCaNbpWR-Rvd3354_v1WWexGiyCpy5NKYc1zDk4OoSEEDFl_Egt3eS0Dhjiis4pTXRMmc43QH2wq5gwIE0jHaybIQe7vU5-SDkC3dj5Jq1KHRri_fG2kl_cjC_J89FOCK8e1hPy68vnn93X6urbxWV3flW52si5Erxm3jPQTHovJTRKefDWqHYwRvBxbHkLxo6MOaGk4160NXcg2FDrRoIVJ-T9rm55-M8COPflIw6myUZIC_aCSc6FlnVd6Lsn9DYtOZbutqrRWumWF_X2QS3DGny_KSOz-a5_nGwBH3bA5YSYYdwTzvptbP2n5vz3fWxdwW92OKPbu_-xin8Z_ZQv |
Cites_doi | 10.1038/nrmicro3569 10.1016/j.bios.2018.12.023 10.1002/fft2.286 10.1016/j.snb.2023.134581 10.1016/j.snb.2022.133005 10.1016/j.foodchem.2022.134240 10.1016/j.snb.2023.133546 10.1016/j.trac.2020.115943 10.1021/acs.analchem.1c04022 10.1093/nar/gkaa673 10.1016/j.foodcont.2022.109451 10.1021/acs.jafc.2c08888 10.1016/j.bios.2022.114984 10.1016/j.snb.2021.130586 10.1016/j.microc.2023.109268 10.1002/smll.202300057 10.1021/acs.analchem.2c05384 10.1007/s00264-011-1366-8 10.1016/j.trac.2019.02.002 10.1021/acs.analchem.0c03968 10.1098/rstb.2015.0496 10.1128/jb.169.12.5429-5433.1987 10.1016/j.bios.2019.111603 10.1016/j.tibtech.2018.12.005 10.1038/s41589-022-01135-y 10.3923/pjbs.2020.491.500 10.1016/j.cofs.2019.03.006 10.1038/s41596-019-0210-2 10.1021/acs.analchem.1c00805 10.1021/acsomega.3c04180 10.1016/j.aca.2023.340827 10.1016/j.bios.2020.112906 10.1016/j.trac.2023.117269 10.1631/jzus.B2100009 10.1016/j.aca.2023.340885 10.3389/fbioe.2022.845688 10.1021/jacs.9b09211 10.1016/j.trac.2017.10.015 10.1016/j.bios.2021.113541 10.1016/j.aca.2022.340357 10.1021/acs.analchem.1c03468 10.1007/s00122-021-03984-y 10.1016/j.cell.2015.09.038 10.1021/acsnano.1c02372 10.1093/nar/gkn968 10.1021/acssynbio.9b00209 10.1016/j.trac.2022.116788 10.1016/j.aca.2021.338882 10.1080/07388551.2022.2095253 10.1016/j.foodchem.2022.134035 10.1016/j.bios.2021.113073 10.3168/jds.2016-11320 10.7554/eLife.69949 10.1016/j.foodcont.2023.109728 10.1016/j.foodcont.2022.109353 10.1016/j.jare.2020.10.003 10.1016/j.bios.2022.114885 10.1016/j.talanta.2023.125273 10.2144/btn-2020-0057 10.1016/j.tifs.2022.09.023 10.1021/acssensors.0c02365 10.1016/j.talanta.2022.123388 10.1126/science.1231143 10.1016/j.talanta.2023.124318 10.1080/10408398.2013.777021 10.1002/asia.202100043 10.1021/acssensors.9b00900 10.1080/10408398.2023.2248515 10.1080/10408347.2021.1919987 10.1038/nprot.2013.143 10.1038/nrmicro2577 10.1080/10408347.2023.2274050 10.1002/jssc.201600197 10.1016/j.bios.2015.05.056 10.1016/j.talanta.2023.124455 10.1126/science.aaq0179 10.1016/j.tifs.2022.02.030 10.1016/j.aca.2022.340751 10.1016/j.bios.2022.114437 10.1016/j.snb.2023.134601 10.1016/j.foodchem.2022.133219 10.1016/j.tifs.2023.04.002 10.1126/science.1225829 10.1016/j.ab.2017.11.010 10.1002/ange.201910772 10.1126/science.add5064 10.1016/j.bios.2020.112954 10.1126/science.aar6245 10.1021/acs.analchem.1c03533 10.4315/0362-028X.JFP-17-133 10.1016/j.bios.2023.115109 10.1021/acssensors.1c00686 10.1016/j.talanta.2021.123186 10.1126/science.aaf5573 10.1016/j.jhazmat.2023.132398 10.1016/j.jhazmat.2021.126962 10.1016/j.bj.2019.10.005 10.1016/j.aca.2023.341559 10.1021/acs.analchem.1c04133 10.1007/s10142-023-01024-0 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SE 7SR 7U5 8BQ 8FD FR3 H8G JG9 L7M P64 7X8 |
DOI | 10.1039/d4ay00578c |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Corrosion Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Copper Technical Reference Library Materials Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Aluminium Industry Abstracts Technology Research Database Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1759-9679 |
EndPage | 3463 |
ExternalDocumentID | 38804827 10_1039_D4AY00578C d4ay00578c |
Genre | Journal Article Review |
GroupedDBID | -JG 0-7 0R~ 23M 53G 6J9 705 7~J AAEMU AAHBH AAIWI AAJAE AANOJ AARTK AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACPRK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K EBS ECGLT EE0 EF- F5P GGIMP H13 HZ~ H~N J3I O-G O9- OK1 R7E RAOCF RCNCU RNS RPMJG RRC RSCEA RVUXY SLF AAYXX AFRZK AKMSF CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SE 7SR 7U5 8BQ 8FD FR3 H8G JG9 L7M P64 7X8 |
ID | FETCH-LOGICAL-c296t-3120dd0e806dd66e477deda975b9931ff515e9af00c376c1d3521ce30b2846ea3 |
ISSN | 1759-9660 1759-9679 |
IngestDate | Thu Jul 10 19:30:03 EDT 2025 Mon Jun 30 11:59:45 EDT 2025 Mon Jul 21 06:06:45 EDT 2025 Tue Jul 01 03:36:43 EDT 2025 Tue Dec 17 20:57:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c296t-3120dd0e806dd66e477deda975b9931ff515e9af00c376c1d3521ce30b2846ea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0009-0008-7225-1622 0000-0002-6383-4438 0000-0003-1777-7994 |
PMID | 38804827 |
PQID | 3064887851 |
PQPubID | 2047493 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1039_D4AY00578C proquest_journals_3064887851 pubmed_primary_38804827 proquest_miscellaneous_3061138622 rsc_primary_d4ay00578c |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-06 |
PublicationDateYYYYMMDD | 2024-06-06 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Analytical methods |
PublicationTitleAlternate | Anal Methods |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Xu (D4AY00578C/cit28/1) 2023; 1243 Zetsche (D4AY00578C/cit48/1) 2015; 163 Ran (D4AY00578C/cit34/1) 2013; 8 Chaudhuri (D4AY00578C/cit47/1) 2022; 135 Pang (D4AY00578C/cit14/1) 2018; 542 Asmamaw (D4AY00578C/cit46/1) 2021 Iwasaki (D4AY00578C/cit38/1) 2020; 48 Lin (D4AY00578C/cit2/1) 2023 Gong (D4AY00578C/cit84/1) 2021; 93 Panwar (D4AY00578C/cit15/1) 2023; 43 Liu (D4AY00578C/cit58/1) 2021; 176 Mahari (D4AY00578C/cit64/1) 2022; 390 Shen (D4AY00578C/cit76/1) 2022; 213 Wang (D4AY00578C/cit52/1) 2021; 1185 Gupta (D4AY00578C/cit59/1) 2023; 194 Mahmoudpour (D4AY00578C/cit4/1) 2019; 127 Li (D4AY00578C/cit69/1) 2023; 4 Wei (D4AY00578C/cit87/1) 2022; 1230 Gadkar (D4AY00578C/cit16/1) 2014; 16 Makarova (D4AY00578C/cit30/1) 2011; 9 Dai (D4AY00578C/cit50/1) 2019; 131 Qing (D4AY00578C/cit83/1) 2021; 93 Zhang (D4AY00578C/cit57/1) 2021; 176 Xu (D4AY00578C/cit82/1) 2019; 26 Shim (D4AY00578C/cit66/1) 2009; 37 Jiang (D4AY00578C/cit99/1) 2023; 71 Warneford-Thomson (D4AY00578C/cit21/1) 2022; 11 Cong (D4AY00578C/cit33/1) 2013; 339 Gootenberg (D4AY00578C/cit36/1) 2018; 360 Zhao (D4AY00578C/cit1/1) 2023 Chen (D4AY00578C/cit39/1) 2018; 360 Hoffmann (D4AY00578C/cit10/1) 2013 He (D4AY00578C/cit98/1) 2022; 423 Zhai (D4AY00578C/cit70/1) 2023; 257 Fu (D4AY00578C/cit71/1) 2023 Su (D4AY00578C/cit78/1) 2023; 95 Hu (D4AY00578C/cit107/1) 2023; 8 Wei (D4AY00578C/cit90/1) 2023; 222 Shi (D4AY00578C/cit27/1) 2021; 16 Li (D4AY00578C/cit53/1) 2021; 179 Qiu (D4AY00578C/cit24/1) 2022; 129 Kellner (D4AY00578C/cit41/1) 2019; 14 Bhupathi (D4AY00578C/cit91/1) 2023 Jiang (D4AY00578C/cit85/1) 2021; 6 Seghrouchni (D4AY00578C/cit106/1) 2012; 36 Hu (D4AY00578C/cit93/1) 2023; 149 Yue (D4AY00578C/cit26/1) 2021; 15 Chen (D4AY00578C/cit95/1) 2021; 93 Hu (D4AY00578C/cit55/1) 2022; 377 Huo (D4AY00578C/cit56/1) 2023; 23 Shi (D4AY00578C/cit108/1) 2022; 10 Makarova (D4AY00578C/cit31/1) 2015; 13 Zhou (D4AY00578C/cit92/1) 2023; 144 Mahmoudpour (D4AY00578C/cit5/1) 2022; 52 Ki (D4AY00578C/cit89/1) 2023; 460 Paul (D4AY00578C/cit37/1) 2020; 43 Hille (D4AY00578C/cit44/1) 2016; 371 Ma (D4AY00578C/cit72/1) 2021; 6 Xing (D4AY00578C/cit63/1) 2023; 220 Zhang (D4AY00578C/cit94/1) 2022; 243 Gao (D4AY00578C/cit11/1) 2022; 157 Chi (D4AY00578C/cit60/1) 2023; 396 Jiang (D4AY00578C/cit80/1) 2023; 396 Lu (D4AY00578C/cit25/1) 2023; 135 Yeni (D4AY00578C/cit9/1) 2016; 56 Mahmoudpour (D4AY00578C/cit3/1) 2020; 129 Mousavi (D4AY00578C/cit6/1) 2016; 39 Wu (D4AY00578C/cit86/1) 2023; 382 Li (D4AY00578C/cit40/1) 2019; 8 Wu (D4AY00578C/cit12/1) 2019; 113 Zhu (D4AY00578C/cit17/1) 2020; 69 Shaizadinova (D4AY00578C/cit103/1) 2023; 14 Patra (D4AY00578C/cit8/1) 2022 Shan (D4AY00578C/cit13/1) 2016; 99 Yi (D4AY00578C/cit79/1) 2023; 258 Garg (D4AY00578C/cit19/1) 2022; 3 Xianyu (D4AY00578C/cit74/1) 2019; 4 Hasan (D4AY00578C/cit61/1) 2022; 11 Huang (D4AY00578C/cit73/1) 2023; 400 Marei (D4AY00578C/cit105/1) 2020; 23 Song (D4AY00578C/cit81/1) 2023; 225 Yang (D4AY00578C/cit54/1) 2023; 19 Yin (D4AY00578C/cit65/1) 2021; 347 Li (D4AY00578C/cit42/1) 2019; 37 Xu (D4AY00578C/cit97/1) 2015; 74 Ishino (D4AY00578C/cit29/1) 1987; 169 Zhou (D4AY00578C/cit88/1) 2023; 145 Lobato (D4AY00578C/cit18/1) 2018; 98 Xiong (D4AY00578C/cit51/1) 2019; 142 Lee (D4AY00578C/cit101/1) 2022; 241 Jinek (D4AY00578C/cit32/1) 2012; 337 Mao (D4AY00578C/cit22/1) 2022; 122 Zhou (D4AY00578C/cit62/1) 2023; 1248 Song (D4AY00578C/cit100/1) 2023; 1239 Goyon (D4AY00578C/cit77/1) 2021; 93 Yin (D4AY00578C/cit43/1) 2021; 193 Ge (D4AY00578C/cit96/1) 2021; 93 Song (D4AY00578C/cit110/1) 2023; 376 Mahmoudpour (D4AY00578C/cit7/1) 2019; 143 Zhang (D4AY00578C/cit45/1) 2021; 29 Abudayyeh (D4AY00578C/cit49/1) 2016; 353 Lin (D4AY00578C/cit68/1) 2024; 267 Lu (D4AY00578C/cit23/1) 2022 Li (D4AY00578C/cit35/1) 2021; 22 Wang (D4AY00578C/cit104/1) 2023; 403 Afroj (D4AY00578C/cit20/1) 2017; 80 Wei (D4AY00578C/cit75/1) 2021; 93 Li (D4AY00578C/cit109/1) 2023; 4 Yuan (D4AY00578C/cit67/1) 2023 Song (D4AY00578C/cit102/1) 2023; 376 |
References_xml | – issn: 2013 publication-title: Making Sense of Recent Cost-Of-Foodborne-Illness Estimates doi: Hoffmann Anekwe – volume: 13 start-page: 722 year: 2015 ident: D4AY00578C/cit31/1 publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro3569 – volume: 127 start-page: 72 year: 2019 ident: D4AY00578C/cit4/1 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.12.023 – volume: 4 start-page: 2070 year: 2023 ident: D4AY00578C/cit109/1 publication-title: Food Front. doi: 10.1002/fft2.286 – volume: 16 start-page: 1 year: 2014 ident: D4AY00578C/cit16/1 publication-title: Curr. Issues Mol. Biol. – start-page: 1 year: 2022 ident: D4AY00578C/cit23/1 publication-title: Crit. Rev. Food Sci. Nutr. – volume: 396 start-page: 134581 year: 2023 ident: D4AY00578C/cit80/1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2023.134581 – volume: 376 start-page: 133005 year: 2023 ident: D4AY00578C/cit102/1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2022.133005 – volume: 403 start-page: 134240 year: 2023 ident: D4AY00578C/cit104/1 publication-title: Food Chem. doi: 10.1016/j.foodchem.2022.134240 – volume: 382 start-page: 133546 year: 2023 ident: D4AY00578C/cit86/1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2023.133546 – volume: 129 start-page: 115943 year: 2020 ident: D4AY00578C/cit3/1 publication-title: TrAC, Trends Anal. Chem. doi: 10.1016/j.trac.2020.115943 – volume: 93 start-page: 14885 year: 2021 ident: D4AY00578C/cit96/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c04022 – volume: 48 start-page: e101 year: 2020 ident: D4AY00578C/cit38/1 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa673 – volume: 145 start-page: 109451 year: 2023 ident: D4AY00578C/cit88/1 publication-title: Food Control doi: 10.1016/j.foodcont.2022.109451 – volume: 71 start-page: 4193 year: 2023 ident: D4AY00578C/cit99/1 publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.2c08888 – volume-title: Making Sense of Recent Cost-Of-Foodborne-Illness Estimates year: 2013 ident: D4AY00578C/cit10/1 – volume: 222 start-page: 114984 year: 2023 ident: D4AY00578C/cit90/1 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2022.114984 – volume: 14 start-page: 100721 year: 2023 ident: D4AY00578C/cit103/1 publication-title: J. Agric. Food Res. – volume: 347 start-page: 130586 year: 2021 ident: D4AY00578C/cit65/1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2021.130586 – volume: 194 start-page: 109268 year: 2023 ident: D4AY00578C/cit59/1 publication-title: Microchem. J. doi: 10.1016/j.microc.2023.109268 – start-page: 2300057 year: 2023 ident: D4AY00578C/cit71/1 publication-title: Small doi: 10.1002/smll.202300057 – volume: 95 start-page: 5927 year: 2023 ident: D4AY00578C/cit78/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c05384 – volume: 36 start-page: 1065 year: 2012 ident: D4AY00578C/cit106/1 publication-title: Int. Orthop. doi: 10.1007/s00264-011-1366-8 – volume: 113 start-page: 140 year: 2019 ident: D4AY00578C/cit12/1 publication-title: TrAC, Trends Anal. Chem. doi: 10.1016/j.trac.2019.02.002 – volume: 93 start-page: 6613 year: 2021 ident: D4AY00578C/cit75/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c03968 – volume: 371 start-page: 20150496 year: 2016 ident: D4AY00578C/cit44/1 publication-title: Philos. Trans. R. Soc., B doi: 10.1098/rstb.2015.0496 – volume: 169 start-page: 5429 year: 1987 ident: D4AY00578C/cit29/1 publication-title: J. Bacteriol. doi: 10.1128/jb.169.12.5429-5433.1987 – volume: 143 start-page: 111603 year: 2019 ident: D4AY00578C/cit7/1 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2019.111603 – volume: 4 start-page: 2070 year: 2023 ident: D4AY00578C/cit69/1 publication-title: Food Front. doi: 10.1002/fft2.286 – volume: 37 start-page: 730 year: 2019 ident: D4AY00578C/cit42/1 publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2018.12.005 – volume: 19 start-page: 45 year: 2023 ident: D4AY00578C/cit54/1 publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-022-01135-y – start-page: 1 year: 2022 ident: D4AY00578C/cit8/1 publication-title: Crit. Rev. Anal. Chem. – volume: 23 start-page: 491 year: 2020 ident: D4AY00578C/cit105/1 publication-title: Pak. J. Biol. Sci. doi: 10.3923/pjbs.2020.491.500 – volume: 26 start-page: 57 year: 2019 ident: D4AY00578C/cit82/1 publication-title: Curr. Opin. Food Sci. doi: 10.1016/j.cofs.2019.03.006 – volume: 14 start-page: 2986 year: 2019 ident: D4AY00578C/cit41/1 publication-title: Nat. Protoc. doi: 10.1038/s41596-019-0210-2 – volume: 93 start-page: 7499 year: 2021 ident: D4AY00578C/cit83/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c00805 – volume: 8 start-page: 34852 year: 2023 ident: D4AY00578C/cit107/1 publication-title: ACS Omega doi: 10.1021/acsomega.3c04180 – volume: 1243 start-page: 340827 year: 2023 ident: D4AY00578C/cit28/1 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2023.340827 – volume: 176 start-page: 112906 year: 2021 ident: D4AY00578C/cit57/1 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2020.112906 – start-page: 117269 year: 2023 ident: D4AY00578C/cit1/1 publication-title: TrAC, Trends Anal. Chem. doi: 10.1016/j.trac.2023.117269 – volume: 22 start-page: 253 year: 2021 ident: D4AY00578C/cit35/1 publication-title: J. Zhejiang Univ., Sci., B doi: 10.1631/jzus.B2100009 – volume: 1248 start-page: 340885 year: 2023 ident: D4AY00578C/cit62/1 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2023.340885 – volume: 10 start-page: 845688 year: 2022 ident: D4AY00578C/cit108/1 publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2022.845688 – volume: 142 start-page: 207 year: 2019 ident: D4AY00578C/cit51/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b09211 – volume: 98 start-page: 19 year: 2018 ident: D4AY00578C/cit18/1 publication-title: TrAC, Trends Anal. Chem. doi: 10.1016/j.trac.2017.10.015 – volume: 193 start-page: 113541 year: 2021 ident: D4AY00578C/cit43/1 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2021.113541 – volume: 1230 start-page: 340357 year: 2022 ident: D4AY00578C/cit87/1 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2022.340357 – volume: 93 start-page: 14300 year: 2021 ident: D4AY00578C/cit95/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c03468 – volume: 135 start-page: 367 year: 2022 ident: D4AY00578C/cit47/1 publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-021-03984-y – volume: 163 start-page: 759 year: 2015 ident: D4AY00578C/cit48/1 publication-title: Cell doi: 10.1016/j.cell.2015.09.038 – volume: 15 start-page: 7848 year: 2021 ident: D4AY00578C/cit26/1 publication-title: ACS Nano doi: 10.1021/acsnano.1c02372 – volume: 37 start-page: 972 year: 2009 ident: D4AY00578C/cit66/1 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn968 – volume: 8 start-page: 2228 year: 2019 ident: D4AY00578C/cit40/1 publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.9b00209 – volume: 157 start-page: 116788 year: 2022 ident: D4AY00578C/cit11/1 publication-title: TrAC, Trends Anal. Chem. doi: 10.1016/j.trac.2022.116788 – volume: 1185 start-page: 338882 year: 2021 ident: D4AY00578C/cit52/1 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2021.338882 – volume: 43 start-page: 982 year: 2023 ident: D4AY00578C/cit15/1 publication-title: Crit. Rev. Biotechnol. doi: 10.1080/07388551.2022.2095253 – volume: 400 start-page: 134035 year: 2023 ident: D4AY00578C/cit73/1 publication-title: Food Chem. doi: 10.1016/j.foodchem.2022.134035 – volume: 179 start-page: 113073 year: 2021 ident: D4AY00578C/cit53/1 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2021.113073 – volume: 99 start-page: 7025 year: 2016 ident: D4AY00578C/cit13/1 publication-title: J. Dairy Sci. doi: 10.3168/jds.2016-11320 – volume: 11 start-page: e69949 year: 2022 ident: D4AY00578C/cit21/1 publication-title: Elife doi: 10.7554/eLife.69949 – volume: 149 start-page: 109728 year: 2023 ident: D4AY00578C/cit93/1 publication-title: Food Control doi: 10.1016/j.foodcont.2023.109728 – volume: 144 start-page: 109353 year: 2023 ident: D4AY00578C/cit92/1 publication-title: Food Control doi: 10.1016/j.foodcont.2022.109353 – volume: 29 start-page: 207 year: 2021 ident: D4AY00578C/cit45/1 publication-title: J. Adv. Res. doi: 10.1016/j.jare.2020.10.003 – volume: 220 start-page: 114885 year: 2023 ident: D4AY00578C/cit63/1 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2022.114885 – volume: 267 start-page: 125273 year: 2024 ident: D4AY00578C/cit68/1 publication-title: Talanta doi: 10.1016/j.talanta.2023.125273 – volume: 69 start-page: 317 year: 2020 ident: D4AY00578C/cit17/1 publication-title: BioTechniques doi: 10.2144/btn-2020-0057 – volume: 129 start-page: 364 year: 2022 ident: D4AY00578C/cit24/1 publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2022.09.023 – volume: 6 start-page: 1086 year: 2021 ident: D4AY00578C/cit85/1 publication-title: ACS Sens. doi: 10.1021/acssensors.0c02365 – volume: 3 start-page: 100120 year: 2022 ident: D4AY00578C/cit19/1 publication-title: Curr. Res. Microb. Sci. – volume: 243 start-page: 123388 year: 2022 ident: D4AY00578C/cit94/1 publication-title: Talanta doi: 10.1016/j.talanta.2022.123388 – volume: 339 start-page: 819 year: 2013 ident: D4AY00578C/cit33/1 publication-title: Science doi: 10.1126/science.1231143 – volume: 257 start-page: 124318 year: 2023 ident: D4AY00578C/cit70/1 publication-title: Talanta doi: 10.1016/j.talanta.2023.124318 – volume: 56 start-page: 1532 year: 2016 ident: D4AY00578C/cit9/1 publication-title: Crit. Rev. Food Sci. Nutr. doi: 10.1080/10408398.2013.777021 – volume: 16 start-page: 857 year: 2021 ident: D4AY00578C/cit27/1 publication-title: Chem.–Asian J. doi: 10.1002/asia.202100043 – volume: 4 start-page: 1942 year: 2019 ident: D4AY00578C/cit74/1 publication-title: ACS Sens. doi: 10.1021/acssensors.9b00900 – start-page: 1 year: 2023 ident: D4AY00578C/cit2/1 publication-title: Crit. Rev. Food Sci. Nutr. doi: 10.1080/10408398.2023.2248515 – volume: 52 start-page: 1818 year: 2022 ident: D4AY00578C/cit5/1 publication-title: Crit. Rev. Anal. Chem. doi: 10.1080/10408347.2021.1919987 – volume: 8 start-page: 2281 year: 2013 ident: D4AY00578C/cit34/1 publication-title: Nat. Protoc. doi: 10.1038/nprot.2013.143 – volume: 376 start-page: 133005 year: 2023 ident: D4AY00578C/cit110/1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2022.133005 – volume: 9 start-page: 467 year: 2011 ident: D4AY00578C/cit30/1 publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2577 – start-page: 1 year: 2023 ident: D4AY00578C/cit91/1 publication-title: Crit. Rev. Anal. Chem. doi: 10.1080/10408347.2023.2274050 – volume: 39 start-page: 2815 year: 2016 ident: D4AY00578C/cit6/1 publication-title: J. Sep. Sci. doi: 10.1002/jssc.201600197 – volume: 74 start-page: 1 year: 2015 ident: D4AY00578C/cit97/1 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2015.05.056 – volume: 258 start-page: 124455 year: 2023 ident: D4AY00578C/cit79/1 publication-title: Talanta doi: 10.1016/j.talanta.2023.124455 – volume: 360 start-page: 439 year: 2018 ident: D4AY00578C/cit36/1 publication-title: Science doi: 10.1126/science.aaq0179 – volume: 122 start-page: 211 year: 2022 ident: D4AY00578C/cit22/1 publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2022.02.030 – volume: 1239 start-page: 340751 year: 2023 ident: D4AY00578C/cit100/1 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2022.340751 – volume: 213 start-page: 114437 year: 2022 ident: D4AY00578C/cit76/1 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2022.114437 – volume: 396 start-page: 134601 year: 2023 ident: D4AY00578C/cit60/1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2023.134601 – volume: 390 start-page: 133219 year: 2022 ident: D4AY00578C/cit64/1 publication-title: Food Chem. doi: 10.1016/j.foodchem.2022.133219 – start-page: 353 year: 2021 ident: D4AY00578C/cit46/1 publication-title: Biol.: Targets Ther. – volume: 135 start-page: 174 year: 2023 ident: D4AY00578C/cit25/1 publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2023.04.002 – volume: 337 start-page: 816 year: 2012 ident: D4AY00578C/cit32/1 publication-title: Science doi: 10.1126/science.1225829 – volume: 542 start-page: 58 year: 2018 ident: D4AY00578C/cit14/1 publication-title: Anal. Biochem. doi: 10.1016/j.ab.2017.11.010 – volume: 131 start-page: 17560 year: 2019 ident: D4AY00578C/cit50/1 publication-title: Angew. Chem. doi: 10.1002/ange.201910772 – volume: 377 start-page: 1278 year: 2022 ident: D4AY00578C/cit55/1 publication-title: Science doi: 10.1126/science.add5064 – volume: 176 start-page: 112954 year: 2021 ident: D4AY00578C/cit58/1 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2020.112954 – volume: 360 start-page: 436 year: 2018 ident: D4AY00578C/cit39/1 publication-title: Science doi: 10.1126/science.aar6245 – volume: 93 start-page: 14792 year: 2021 ident: D4AY00578C/cit77/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c03533 – volume: 80 start-page: 1944 year: 2017 ident: D4AY00578C/cit20/1 publication-title: J. Food Prot. doi: 10.4315/0362-028X.JFP-17-133 – volume: 225 start-page: 115109 year: 2023 ident: D4AY00578C/cit81/1 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2023.115109 – volume: 6 start-page: 2920 year: 2021 ident: D4AY00578C/cit72/1 publication-title: ACS Sens. doi: 10.1021/acssensors.1c00686 – volume: 241 start-page: 123186 year: 2022 ident: D4AY00578C/cit101/1 publication-title: Talanta doi: 10.1016/j.talanta.2021.123186 – volume: 11 start-page: 100142 year: 2022 ident: D4AY00578C/cit61/1 publication-title: Biosens. Bioelectron.: X – volume: 353 start-page: aaf5573 year: 2016 ident: D4AY00578C/cit49/1 publication-title: Science doi: 10.1126/science.aaf5573 – volume: 460 start-page: 132398 year: 2023 ident: D4AY00578C/cit89/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2023.132398 – volume: 423 start-page: 126962 year: 2022 ident: D4AY00578C/cit98/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.126962 – volume: 43 start-page: 8 year: 2020 ident: D4AY00578C/cit37/1 publication-title: Biomed. J. doi: 10.1016/j.bj.2019.10.005 – start-page: 341559 year: 2023 ident: D4AY00578C/cit67/1 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2023.341559 – volume: 93 start-page: 15216 year: 2021 ident: D4AY00578C/cit84/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c04133 – volume: 23 start-page: 98 year: 2023 ident: D4AY00578C/cit56/1 publication-title: Funct. Integr. Genomics doi: 10.1007/s10142-023-01024-0 |
SSID | ssj0069361 |
Score | 2.354325 |
SecondaryResourceType | review_article |
Snippet | Some physical phenomena and various chemical substances newly introduced in nanotechnology have allowed scientists to develop valuable devices in the field of... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 3448 |
SubjectTerms | Bacteria Bacteria - genetics Bacteria - isolation & purification Biosensing Techniques - methods Biosensors Cellular apoptosis susceptibility protein Colorimetry Colorimetry - methods CRISPR CRISPR-Cas Systems Food Food Microbiology - methods Foodborne Diseases - diagnosis Foodborne Diseases - microbiology Foodborne Diseases - prevention & control Foodborne pathogens Humans Ingestion Low concentrations Microorganisms Nanotechnology Pathogens |
Title | CRISPR/Cas-based colorimetric biosensors: a promising tool for the diagnosis of bacterial foodborne pathogens in food products |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38804827 https://www.proquest.com/docview/3064887851 https://www.proquest.com/docview/3061138622 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZKd-GCGDDoGMgIDqAqzIldp-FWlcIGFKGtk8YpsmNXq1Ab1DQT3YG_hD-WZztxggYScIkqu00iv8_vh_ve9xB6JqiCYCchgcpoFICWhD1HlQxA8SVSJ0xnzNQ7Tz_yozP27nxw3un8aGUtlRv5Mrv6bV3J_0gVxkCupkr2HyTrbwoD8BnkC1eQMFz_Ssbjk-PTTyeG4lYUgbFHpkTNpNQtTZ-srC8XeQFhar4uXE0zaEsQqy2QMtSbdYahcul2jplEOvpmW9eYK0AIeKGmbXEOb2FzZ82wuZMhii3avq3lN3FH464vtXfXT8EK2eObCcTmF1ov-yOpyv60LITyiHN12pPthZANCr6JpVD5pStce7vYiqv8UvSnEDx88fbkPfj_2sJ6VCyFqHKVq5OMiNmMK95SvvHAsYU629Qecw1nvMbmLWS6suZK_1LmeDsrW06Z057X7AShhmZVMbE11bjDrLGGPkexmbyBdqIYPLMu2hlNZscfakvPE-r4eOv3rulvaXLY_PpXh-daFAM-zbruNWN9mtltdKsKRvDIIWsXdfTqDtqt1H2Bn1ec5C_uou8OaoceaLgNNNwA7RUW2MMMG5hhgBkGmGEPM5zPsYcZ9jDDHmZ4sbLDuIbZPXT2ZjIbHwVV644gixK-AcseEaWIHhKuFOeaxbHSSiTxQIJDHM7n4EbrRMwJycDCZaGCOCDMNCUS3CWuBd1D3VW-0g8QVhFh8yQmKhYRU4TLKI6koGzIqQoJET30tF7f9KtjaEltZgVN0tds9NlKYdxDB_XSp9UOLlITfYORhaCjh574aVgh86eZWOm8tN8JQwpxf9RD953I_GMMkZKh0e2hPZChH25kv_-niYfoZrMDDlB3sy71I_BuN_JxBbKfVZWpBA |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CRISPR%2FCas-based+colorimetric+biosensors%3A+a+promising+tool+for+the+diagnosis+of+bacterial+foodborne+pathogens+in+food+products&rft.jtitle=Analytical+methods&rft.au=Saleh%2C+Ebraheem+Abdu+Musad&rft.au=Ali%2C+Eyhab&rft.au=Muxamadovna%2C+Giyazova+Malika&rft.au=Kassem%2C+Asmaa+F&rft.date=2024-06-06&rft.issn=1759-9660&rft.eissn=1759-9679&rft.volume=16&rft.issue=22&rft.spage=3448&rft.epage=3463&rft_id=info:doi/10.1039%2Fd4ay00578c&rft.externalDocID=d4ay00578c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-9660&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-9660&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-9660&client=summon |