CRISPR/Cas-based colorimetric biosensors: a promising tool for the diagnosis of bacterial foodborne pathogens in food products

Some physical phenomena and various chemical substances newly introduced in nanotechnology have allowed scientists to develop valuable devices in the field of food sciences. Regarding such progress, the identification of foodborne pathogenic microorganisms is an imperative subject nowadays. These ba...

Full description

Saved in:
Bibliographic Details
Published inAnalytical methods Vol. 16; no. 22; pp. 3448 - 3463
Main Authors Saleh, Ebraheem Abdu Musad, Ali, Eyhab, Muxamadovna, Giyazova Malika, Kassem, Asmaa F, Kaur, Irwanjot, Kumar, Abhinav, Jabbar, Hijran Sanaan, Alwaily, Enas R, Elawady, Ahmed, Omran, Alaa A
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 06.06.2024
Subjects
Online AccessGet full text
ISSN1759-9660
1759-9679
1759-9679
DOI10.1039/d4ay00578c

Cover

Abstract Some physical phenomena and various chemical substances newly introduced in nanotechnology have allowed scientists to develop valuable devices in the field of food sciences. Regarding such progress, the identification of foodborne pathogenic microorganisms is an imperative subject nowadays. These bacterial species have been found to cause severe health impacts after food ingestion and can result in high mortality in acute cases. The rapid detection of foodborne bacterial species at low concentrations is in high demand in recent diagnostics. CRISPR/Cas-mediated biosensors possess the potential to overcome several challenges in classical assays such as complex pretreatments, long turnaround time, and insensitivity. Among them, colorimetric nanoprobes based on the CRISPR strategy afford promising devices for POCT (point-of-care testing) since they can be visualized with the naked eye and do not require diagnostic apparatus. In this study, we briefly classify and discuss the working principles of the different CRISPR/Cas protein agents that have been employed in biosensors so far. We assess the current status of the CRISPR system, specifically focusing on colorimetric biosensing platforms. We discuss the utilization of each Cas effector in the detection of foodborne pathogens and examine the restrictions of the existing technology. The challenges and future opportunities are also indicated and addressed. Some physical phenomena and various chemical substances newly introduced in nanotechnology have allowed scientists to develop valuable devices in the field of food sciences.
AbstractList Some physical phenomena and various chemical substances newly introduced in nanotechnology have allowed scientists to develop valuable devices in the field of food sciences. Regarding such progress, the identification of foodborne pathogenic microorganisms is an imperative subject nowadays. These bacterial species have been found to cause severe health impacts after food ingestion and can result in high mortality in acute cases. The rapid detection of foodborne bacterial species at low concentrations is in high demand in recent diagnostics. CRISPR/Cas-mediated biosensors possess the potential to overcome several challenges in classical assays such as complex pretreatments, long turnaround time, and insensitivity. Among them, colorimetric nanoprobes based on the CRISPR strategy afford promising devices for POCT (point-of-care testing) since they can be visualized with the naked eye and do not require diagnostic apparatus. In this study, we briefly classify and discuss the working principles of the different CRISPR/Cas protein agents that have been employed in biosensors so far. We assess the current status of the CRISPR system, specifically focusing on colorimetric biosensing platforms. We discuss the utilization of each Cas effector in the detection of foodborne pathogens and examine the restrictions of the existing technology. The challenges and future opportunities are also indicated and addressed.
Some physical phenomena and various chemical substances newly introduced in nanotechnology have allowed scientists to develop valuable devices in the field of food sciences. Regarding such progress, the identification of foodborne pathogenic microorganisms is an imperative subject nowadays. These bacterial species have been found to cause severe health impacts after food ingestion and can result in high mortality in acute cases. The rapid detection of foodborne bacterial species at low concentrations is in high demand in recent diagnostics. CRISPR/Cas-mediated biosensors possess the potential to overcome several challenges in classical assays such as complex pretreatments, long turnaround time, and insensitivity. Among them, colorimetric nanoprobes based on the CRISPR strategy afford promising devices for POCT (point-of-care testing) since they can be visualized with the naked eye and do not require diagnostic apparatus. In this study, we briefly classify and discuss the working principles of the different CRISPR/Cas protein agents that have been employed in biosensors so far. We assess the current status of the CRISPR system, specifically focusing on colorimetric biosensing platforms. We discuss the utilization of each Cas effector in the detection of foodborne pathogens and examine the restrictions of the existing technology. The challenges and future opportunities are also indicated and addressed. Some physical phenomena and various chemical substances newly introduced in nanotechnology have allowed scientists to develop valuable devices in the field of food sciences.
Some physical phenomena and various chemical substances newly introduced in nanotechnology have allowed scientists to develop valuable devices in the field of food sciences. Regarding such progress, the identification of foodborne pathogenic microorganisms is an imperative subject nowadays. These bacterial species have been found to cause severe health impacts after food ingestion and can result in high mortality in acute cases. The rapid detection of foodborne bacterial species at low concentrations is in high demand in recent diagnostics. CRISPR/Cas-mediated biosensors possess the potential to overcome several challenges in classical assays such as complex pretreatments, long turnaround time, and insensitivity. Among them, colorimetric nanoprobes based on the CRISPR strategy afford promising devices for POCT (point-of-care testing) since they can be visualized with the naked eye and do not require diagnostic apparatus. In this study, we briefly classify and discuss the working principles of the different CRISPR/Cas protein agents that have been employed in biosensors so far. We assess the current status of the CRISPR system, specifically focusing on colorimetric biosensing platforms. We discuss the utilization of each Cas effector in the detection of foodborne pathogens and examine the restrictions of the existing technology. The challenges and future opportunities are also indicated and addressed.Some physical phenomena and various chemical substances newly introduced in nanotechnology have allowed scientists to develop valuable devices in the field of food sciences. Regarding such progress, the identification of foodborne pathogenic microorganisms is an imperative subject nowadays. These bacterial species have been found to cause severe health impacts after food ingestion and can result in high mortality in acute cases. The rapid detection of foodborne bacterial species at low concentrations is in high demand in recent diagnostics. CRISPR/Cas-mediated biosensors possess the potential to overcome several challenges in classical assays such as complex pretreatments, long turnaround time, and insensitivity. Among them, colorimetric nanoprobes based on the CRISPR strategy afford promising devices for POCT (point-of-care testing) since they can be visualized with the naked eye and do not require diagnostic apparatus. In this study, we briefly classify and discuss the working principles of the different CRISPR/Cas protein agents that have been employed in biosensors so far. We assess the current status of the CRISPR system, specifically focusing on colorimetric biosensing platforms. We discuss the utilization of each Cas effector in the detection of foodborne pathogens and examine the restrictions of the existing technology. The challenges and future opportunities are also indicated and addressed.
Author Jabbar, Hijran Sanaan
Ali, Eyhab
Saleh, Ebraheem Abdu Musad
Elawady, Ahmed
Kumar, Abhinav
Kaur, Irwanjot
Alwaily, Enas R
Muxamadovna, Giyazova Malika
Omran, Alaa A
Kassem, Asmaa F
AuthorAffiliation Assistant Teacher of the Physiology Department
The Islamic University
AL-Nisour University College
Bukhara State Medical Institute
College of Pharmacy
Department of Engineering
Department of Chemistry
Jain (Deemed-to-be) University
Department of Nuclear and Renewable Energy
Salahaddin University-Erbil
Microbiology Research Group
Chemistry of Natural and Microbial Products Department
College of Science
Al-Zahraa University for Women
The Islamic University of Al Diwaniyah
Department of Biotechnology and Genetics
Prince Sattam Bin Abdulaziz University
Vivekananda Global University
Ural Federal University Named After the First President of Russia Boris Yeltsin
The Islamic University of Babylon
College of Science and Humanities in Al-Kharj
Al-Ayen University
Department of Allied Healthcare and Sciences
College of Technical Engineering
Pharmaceutical and Drug Industries Research Institute
National Research Centre
AuthorAffiliation_xml – sequence: 0
  name: Department of Biotechnology and Genetics
– sequence: 0
  name: Salahaddin University-Erbil
– sequence: 0
  name: College of Technical Engineering
– sequence: 0
  name: The Islamic University of Babylon
– sequence: 0
  name: Prince Sattam Bin Abdulaziz University
– sequence: 0
  name: Department of Chemistry
– sequence: 0
  name: College of Science and Humanities in Al-Kharj
– sequence: 0
  name: National Research Centre
– sequence: 0
  name: Microbiology Research Group
– sequence: 0
  name: Al-Ayen University
– sequence: 0
  name: College of Pharmacy
– sequence: 0
  name: The Islamic University
– sequence: 0
  name: AL-Nisour University College
– sequence: 0
  name: Al-Zahraa University for Women
– sequence: 0
  name: Bukhara State Medical Institute
– sequence: 0
  name: Pharmaceutical and Drug Industries Research Institute
– sequence: 0
  name: Department of Allied Healthcare and Sciences
– sequence: 0
  name: Vivekananda Global University
– sequence: 0
  name: The Islamic University of Al Diwaniyah
– sequence: 0
  name: Department of Engineering
– sequence: 0
  name: College of Science
– sequence: 0
  name: Chemistry of Natural and Microbial Products Department
– sequence: 0
  name: Jain (Deemed-to-be) University
– sequence: 0
  name: Assistant Teacher of the Physiology Department
– sequence: 0
  name: Ural Federal University Named After the First President of Russia Boris Yeltsin
– sequence: 0
  name: Department of Nuclear and Renewable Energy
Author_xml – sequence: 1
  givenname: Ebraheem Abdu Musad
  surname: Saleh
  fullname: Saleh, Ebraheem Abdu Musad
– sequence: 2
  givenname: Eyhab
  surname: Ali
  fullname: Ali, Eyhab
– sequence: 3
  givenname: Giyazova Malika
  surname: Muxamadovna
  fullname: Muxamadovna, Giyazova Malika
– sequence: 4
  givenname: Asmaa F
  surname: Kassem
  fullname: Kassem, Asmaa F
– sequence: 5
  givenname: Irwanjot
  surname: Kaur
  fullname: Kaur, Irwanjot
– sequence: 6
  givenname: Abhinav
  surname: Kumar
  fullname: Kumar, Abhinav
– sequence: 7
  givenname: Hijran Sanaan
  surname: Jabbar
  fullname: Jabbar, Hijran Sanaan
– sequence: 8
  givenname: Enas R
  surname: Alwaily
  fullname: Alwaily, Enas R
– sequence: 9
  givenname: Ahmed
  surname: Elawady
  fullname: Elawady, Ahmed
– sequence: 10
  givenname: Alaa A
  surname: Omran
  fullname: Omran, Alaa A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38804827$$D View this record in MEDLINE/PubMed
BookMark eNpd0U1v1DAQBmALFdEPuHAHWeKCkNLaceIPblWAUqkSqMCBU-TYk62rrL14kkMv_Ha83XaRerJlPxqP5z0mBzFFIOQ1Z6ecCXPmG3vHWKu0e0aOuGpNZaQyB_u9ZIfkGPGWMWmE5C_IodCaNbpWR-Rvd3354_v1WWexGiyCpy5NKYc1zDk4OoSEEDFl_Egt3eS0Dhjiis4pTXRMmc43QH2wq5gwIE0jHaybIQe7vU5-SDkC3dj5Jq1KHRri_fG2kl_cjC_J89FOCK8e1hPy68vnn93X6urbxWV3flW52si5Erxm3jPQTHovJTRKefDWqHYwRvBxbHkLxo6MOaGk4160NXcg2FDrRoIVJ-T9rm55-M8COPflIw6myUZIC_aCSc6FlnVd6Lsn9DYtOZbutqrRWumWF_X2QS3DGny_KSOz-a5_nGwBH3bA5YSYYdwTzvptbP2n5vz3fWxdwW92OKPbu_-xin8Z_ZQv
Cites_doi 10.1038/nrmicro3569
10.1016/j.bios.2018.12.023
10.1002/fft2.286
10.1016/j.snb.2023.134581
10.1016/j.snb.2022.133005
10.1016/j.foodchem.2022.134240
10.1016/j.snb.2023.133546
10.1016/j.trac.2020.115943
10.1021/acs.analchem.1c04022
10.1093/nar/gkaa673
10.1016/j.foodcont.2022.109451
10.1021/acs.jafc.2c08888
10.1016/j.bios.2022.114984
10.1016/j.snb.2021.130586
10.1016/j.microc.2023.109268
10.1002/smll.202300057
10.1021/acs.analchem.2c05384
10.1007/s00264-011-1366-8
10.1016/j.trac.2019.02.002
10.1021/acs.analchem.0c03968
10.1098/rstb.2015.0496
10.1128/jb.169.12.5429-5433.1987
10.1016/j.bios.2019.111603
10.1016/j.tibtech.2018.12.005
10.1038/s41589-022-01135-y
10.3923/pjbs.2020.491.500
10.1016/j.cofs.2019.03.006
10.1038/s41596-019-0210-2
10.1021/acs.analchem.1c00805
10.1021/acsomega.3c04180
10.1016/j.aca.2023.340827
10.1016/j.bios.2020.112906
10.1016/j.trac.2023.117269
10.1631/jzus.B2100009
10.1016/j.aca.2023.340885
10.3389/fbioe.2022.845688
10.1021/jacs.9b09211
10.1016/j.trac.2017.10.015
10.1016/j.bios.2021.113541
10.1016/j.aca.2022.340357
10.1021/acs.analchem.1c03468
10.1007/s00122-021-03984-y
10.1016/j.cell.2015.09.038
10.1021/acsnano.1c02372
10.1093/nar/gkn968
10.1021/acssynbio.9b00209
10.1016/j.trac.2022.116788
10.1016/j.aca.2021.338882
10.1080/07388551.2022.2095253
10.1016/j.foodchem.2022.134035
10.1016/j.bios.2021.113073
10.3168/jds.2016-11320
10.7554/eLife.69949
10.1016/j.foodcont.2023.109728
10.1016/j.foodcont.2022.109353
10.1016/j.jare.2020.10.003
10.1016/j.bios.2022.114885
10.1016/j.talanta.2023.125273
10.2144/btn-2020-0057
10.1016/j.tifs.2022.09.023
10.1021/acssensors.0c02365
10.1016/j.talanta.2022.123388
10.1126/science.1231143
10.1016/j.talanta.2023.124318
10.1080/10408398.2013.777021
10.1002/asia.202100043
10.1021/acssensors.9b00900
10.1080/10408398.2023.2248515
10.1080/10408347.2021.1919987
10.1038/nprot.2013.143
10.1038/nrmicro2577
10.1080/10408347.2023.2274050
10.1002/jssc.201600197
10.1016/j.bios.2015.05.056
10.1016/j.talanta.2023.124455
10.1126/science.aaq0179
10.1016/j.tifs.2022.02.030
10.1016/j.aca.2022.340751
10.1016/j.bios.2022.114437
10.1016/j.snb.2023.134601
10.1016/j.foodchem.2022.133219
10.1016/j.tifs.2023.04.002
10.1126/science.1225829
10.1016/j.ab.2017.11.010
10.1002/ange.201910772
10.1126/science.add5064
10.1016/j.bios.2020.112954
10.1126/science.aar6245
10.1021/acs.analchem.1c03533
10.4315/0362-028X.JFP-17-133
10.1016/j.bios.2023.115109
10.1021/acssensors.1c00686
10.1016/j.talanta.2021.123186
10.1126/science.aaf5573
10.1016/j.jhazmat.2023.132398
10.1016/j.jhazmat.2021.126962
10.1016/j.bj.2019.10.005
10.1016/j.aca.2023.341559
10.1021/acs.analchem.1c04133
10.1007/s10142-023-01024-0
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SE
7SR
7U5
8BQ
8FD
FR3
H8G
JG9
L7M
P64
7X8
DOI 10.1039/d4ay00578c
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Corrosion Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Copper Technical Reference Library
Materials Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Aluminium Industry Abstracts
Technology Research Database
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef

MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1759-9679
EndPage 3463
ExternalDocumentID 38804827
10_1039_D4AY00578C
d4ay00578c
Genre Journal Article
Review
GroupedDBID -JG
0-7
0R~
23M
53G
6J9
705
7~J
AAEMU
AAHBH
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACPRK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
F5P
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
OK1
R7E
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
RVUXY
SLF
AAYXX
AFRZK
AKMSF
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SE
7SR
7U5
8BQ
8FD
FR3
H8G
JG9
L7M
P64
7X8
ID FETCH-LOGICAL-c296t-3120dd0e806dd66e477deda975b9931ff515e9af00c376c1d3521ce30b2846ea3
ISSN 1759-9660
1759-9679
IngestDate Thu Jul 10 19:30:03 EDT 2025
Mon Jun 30 11:59:45 EDT 2025
Mon Jul 21 06:06:45 EDT 2025
Tue Jul 01 03:36:43 EDT 2025
Tue Dec 17 20:57:56 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c296t-3120dd0e806dd66e477deda975b9931ff515e9af00c376c1d3521ce30b2846ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0009-0008-7225-1622
0000-0002-6383-4438
0000-0003-1777-7994
PMID 38804827
PQID 3064887851
PQPubID 2047493
PageCount 16
ParticipantIDs crossref_primary_10_1039_D4AY00578C
proquest_journals_3064887851
pubmed_primary_38804827
proquest_miscellaneous_3061138622
rsc_primary_d4ay00578c
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-06
PublicationDateYYYYMMDD 2024-06-06
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-06
  day: 06
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Analytical methods
PublicationTitleAlternate Anal Methods
PublicationYear 2024
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Xu (D4AY00578C/cit28/1) 2023; 1243
Zetsche (D4AY00578C/cit48/1) 2015; 163
Ran (D4AY00578C/cit34/1) 2013; 8
Chaudhuri (D4AY00578C/cit47/1) 2022; 135
Pang (D4AY00578C/cit14/1) 2018; 542
Asmamaw (D4AY00578C/cit46/1) 2021
Iwasaki (D4AY00578C/cit38/1) 2020; 48
Lin (D4AY00578C/cit2/1) 2023
Gong (D4AY00578C/cit84/1) 2021; 93
Panwar (D4AY00578C/cit15/1) 2023; 43
Liu (D4AY00578C/cit58/1) 2021; 176
Mahari (D4AY00578C/cit64/1) 2022; 390
Shen (D4AY00578C/cit76/1) 2022; 213
Wang (D4AY00578C/cit52/1) 2021; 1185
Gupta (D4AY00578C/cit59/1) 2023; 194
Mahmoudpour (D4AY00578C/cit4/1) 2019; 127
Li (D4AY00578C/cit69/1) 2023; 4
Wei (D4AY00578C/cit87/1) 2022; 1230
Gadkar (D4AY00578C/cit16/1) 2014; 16
Makarova (D4AY00578C/cit30/1) 2011; 9
Dai (D4AY00578C/cit50/1) 2019; 131
Qing (D4AY00578C/cit83/1) 2021; 93
Zhang (D4AY00578C/cit57/1) 2021; 176
Xu (D4AY00578C/cit82/1) 2019; 26
Shim (D4AY00578C/cit66/1) 2009; 37
Jiang (D4AY00578C/cit99/1) 2023; 71
Warneford-Thomson (D4AY00578C/cit21/1) 2022; 11
Cong (D4AY00578C/cit33/1) 2013; 339
Gootenberg (D4AY00578C/cit36/1) 2018; 360
Zhao (D4AY00578C/cit1/1) 2023
Chen (D4AY00578C/cit39/1) 2018; 360
Hoffmann (D4AY00578C/cit10/1) 2013
He (D4AY00578C/cit98/1) 2022; 423
Zhai (D4AY00578C/cit70/1) 2023; 257
Fu (D4AY00578C/cit71/1) 2023
Su (D4AY00578C/cit78/1) 2023; 95
Hu (D4AY00578C/cit107/1) 2023; 8
Wei (D4AY00578C/cit90/1) 2023; 222
Shi (D4AY00578C/cit27/1) 2021; 16
Li (D4AY00578C/cit53/1) 2021; 179
Qiu (D4AY00578C/cit24/1) 2022; 129
Kellner (D4AY00578C/cit41/1) 2019; 14
Bhupathi (D4AY00578C/cit91/1) 2023
Jiang (D4AY00578C/cit85/1) 2021; 6
Seghrouchni (D4AY00578C/cit106/1) 2012; 36
Hu (D4AY00578C/cit93/1) 2023; 149
Yue (D4AY00578C/cit26/1) 2021; 15
Chen (D4AY00578C/cit95/1) 2021; 93
Hu (D4AY00578C/cit55/1) 2022; 377
Huo (D4AY00578C/cit56/1) 2023; 23
Shi (D4AY00578C/cit108/1) 2022; 10
Makarova (D4AY00578C/cit31/1) 2015; 13
Zhou (D4AY00578C/cit92/1) 2023; 144
Mahmoudpour (D4AY00578C/cit5/1) 2022; 52
Ki (D4AY00578C/cit89/1) 2023; 460
Paul (D4AY00578C/cit37/1) 2020; 43
Hille (D4AY00578C/cit44/1) 2016; 371
Ma (D4AY00578C/cit72/1) 2021; 6
Xing (D4AY00578C/cit63/1) 2023; 220
Zhang (D4AY00578C/cit94/1) 2022; 243
Gao (D4AY00578C/cit11/1) 2022; 157
Chi (D4AY00578C/cit60/1) 2023; 396
Jiang (D4AY00578C/cit80/1) 2023; 396
Lu (D4AY00578C/cit25/1) 2023; 135
Yeni (D4AY00578C/cit9/1) 2016; 56
Mahmoudpour (D4AY00578C/cit3/1) 2020; 129
Mousavi (D4AY00578C/cit6/1) 2016; 39
Wu (D4AY00578C/cit86/1) 2023; 382
Li (D4AY00578C/cit40/1) 2019; 8
Wu (D4AY00578C/cit12/1) 2019; 113
Zhu (D4AY00578C/cit17/1) 2020; 69
Shaizadinova (D4AY00578C/cit103/1) 2023; 14
Patra (D4AY00578C/cit8/1) 2022
Shan (D4AY00578C/cit13/1) 2016; 99
Yi (D4AY00578C/cit79/1) 2023; 258
Garg (D4AY00578C/cit19/1) 2022; 3
Xianyu (D4AY00578C/cit74/1) 2019; 4
Hasan (D4AY00578C/cit61/1) 2022; 11
Huang (D4AY00578C/cit73/1) 2023; 400
Marei (D4AY00578C/cit105/1) 2020; 23
Song (D4AY00578C/cit81/1) 2023; 225
Yang (D4AY00578C/cit54/1) 2023; 19
Yin (D4AY00578C/cit65/1) 2021; 347
Li (D4AY00578C/cit42/1) 2019; 37
Xu (D4AY00578C/cit97/1) 2015; 74
Ishino (D4AY00578C/cit29/1) 1987; 169
Zhou (D4AY00578C/cit88/1) 2023; 145
Lobato (D4AY00578C/cit18/1) 2018; 98
Xiong (D4AY00578C/cit51/1) 2019; 142
Lee (D4AY00578C/cit101/1) 2022; 241
Jinek (D4AY00578C/cit32/1) 2012; 337
Mao (D4AY00578C/cit22/1) 2022; 122
Zhou (D4AY00578C/cit62/1) 2023; 1248
Song (D4AY00578C/cit100/1) 2023; 1239
Goyon (D4AY00578C/cit77/1) 2021; 93
Yin (D4AY00578C/cit43/1) 2021; 193
Ge (D4AY00578C/cit96/1) 2021; 93
Song (D4AY00578C/cit110/1) 2023; 376
Mahmoudpour (D4AY00578C/cit7/1) 2019; 143
Zhang (D4AY00578C/cit45/1) 2021; 29
Abudayyeh (D4AY00578C/cit49/1) 2016; 353
Lin (D4AY00578C/cit68/1) 2024; 267
Lu (D4AY00578C/cit23/1) 2022
Li (D4AY00578C/cit35/1) 2021; 22
Wang (D4AY00578C/cit104/1) 2023; 403
Afroj (D4AY00578C/cit20/1) 2017; 80
Wei (D4AY00578C/cit75/1) 2021; 93
Li (D4AY00578C/cit109/1) 2023; 4
Yuan (D4AY00578C/cit67/1) 2023
Song (D4AY00578C/cit102/1) 2023; 376
References_xml – issn: 2013
  publication-title: Making Sense of Recent Cost-Of-Foodborne-Illness Estimates
  doi: Hoffmann Anekwe
– volume: 13
  start-page: 722
  year: 2015
  ident: D4AY00578C/cit31/1
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro3569
– volume: 127
  start-page: 72
  year: 2019
  ident: D4AY00578C/cit4/1
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2018.12.023
– volume: 4
  start-page: 2070
  year: 2023
  ident: D4AY00578C/cit109/1
  publication-title: Food Front.
  doi: 10.1002/fft2.286
– volume: 16
  start-page: 1
  year: 2014
  ident: D4AY00578C/cit16/1
  publication-title: Curr. Issues Mol. Biol.
– start-page: 1
  year: 2022
  ident: D4AY00578C/cit23/1
  publication-title: Crit. Rev. Food Sci. Nutr.
– volume: 396
  start-page: 134581
  year: 2023
  ident: D4AY00578C/cit80/1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2023.134581
– volume: 376
  start-page: 133005
  year: 2023
  ident: D4AY00578C/cit102/1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2022.133005
– volume: 403
  start-page: 134240
  year: 2023
  ident: D4AY00578C/cit104/1
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2022.134240
– volume: 382
  start-page: 133546
  year: 2023
  ident: D4AY00578C/cit86/1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2023.133546
– volume: 129
  start-page: 115943
  year: 2020
  ident: D4AY00578C/cit3/1
  publication-title: TrAC, Trends Anal. Chem.
  doi: 10.1016/j.trac.2020.115943
– volume: 93
  start-page: 14885
  year: 2021
  ident: D4AY00578C/cit96/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.1c04022
– volume: 48
  start-page: e101
  year: 2020
  ident: D4AY00578C/cit38/1
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa673
– volume: 145
  start-page: 109451
  year: 2023
  ident: D4AY00578C/cit88/1
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2022.109451
– volume: 71
  start-page: 4193
  year: 2023
  ident: D4AY00578C/cit99/1
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.2c08888
– volume-title: Making Sense of Recent Cost-Of-Foodborne-Illness Estimates
  year: 2013
  ident: D4AY00578C/cit10/1
– volume: 222
  start-page: 114984
  year: 2023
  ident: D4AY00578C/cit90/1
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2022.114984
– volume: 14
  start-page: 100721
  year: 2023
  ident: D4AY00578C/cit103/1
  publication-title: J. Agric. Food Res.
– volume: 347
  start-page: 130586
  year: 2021
  ident: D4AY00578C/cit65/1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2021.130586
– volume: 194
  start-page: 109268
  year: 2023
  ident: D4AY00578C/cit59/1
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2023.109268
– start-page: 2300057
  year: 2023
  ident: D4AY00578C/cit71/1
  publication-title: Small
  doi: 10.1002/smll.202300057
– volume: 95
  start-page: 5927
  year: 2023
  ident: D4AY00578C/cit78/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.2c05384
– volume: 36
  start-page: 1065
  year: 2012
  ident: D4AY00578C/cit106/1
  publication-title: Int. Orthop.
  doi: 10.1007/s00264-011-1366-8
– volume: 113
  start-page: 140
  year: 2019
  ident: D4AY00578C/cit12/1
  publication-title: TrAC, Trends Anal. Chem.
  doi: 10.1016/j.trac.2019.02.002
– volume: 93
  start-page: 6613
  year: 2021
  ident: D4AY00578C/cit75/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c03968
– volume: 371
  start-page: 20150496
  year: 2016
  ident: D4AY00578C/cit44/1
  publication-title: Philos. Trans. R. Soc., B
  doi: 10.1098/rstb.2015.0496
– volume: 169
  start-page: 5429
  year: 1987
  ident: D4AY00578C/cit29/1
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.169.12.5429-5433.1987
– volume: 143
  start-page: 111603
  year: 2019
  ident: D4AY00578C/cit7/1
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2019.111603
– volume: 4
  start-page: 2070
  year: 2023
  ident: D4AY00578C/cit69/1
  publication-title: Food Front.
  doi: 10.1002/fft2.286
– volume: 37
  start-page: 730
  year: 2019
  ident: D4AY00578C/cit42/1
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2018.12.005
– volume: 19
  start-page: 45
  year: 2023
  ident: D4AY00578C/cit54/1
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-022-01135-y
– start-page: 1
  year: 2022
  ident: D4AY00578C/cit8/1
  publication-title: Crit. Rev. Anal. Chem.
– volume: 23
  start-page: 491
  year: 2020
  ident: D4AY00578C/cit105/1
  publication-title: Pak. J. Biol. Sci.
  doi: 10.3923/pjbs.2020.491.500
– volume: 26
  start-page: 57
  year: 2019
  ident: D4AY00578C/cit82/1
  publication-title: Curr. Opin. Food Sci.
  doi: 10.1016/j.cofs.2019.03.006
– volume: 14
  start-page: 2986
  year: 2019
  ident: D4AY00578C/cit41/1
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-019-0210-2
– volume: 93
  start-page: 7499
  year: 2021
  ident: D4AY00578C/cit83/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.1c00805
– volume: 8
  start-page: 34852
  year: 2023
  ident: D4AY00578C/cit107/1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.3c04180
– volume: 1243
  start-page: 340827
  year: 2023
  ident: D4AY00578C/cit28/1
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2023.340827
– volume: 176
  start-page: 112906
  year: 2021
  ident: D4AY00578C/cit57/1
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2020.112906
– start-page: 117269
  year: 2023
  ident: D4AY00578C/cit1/1
  publication-title: TrAC, Trends Anal. Chem.
  doi: 10.1016/j.trac.2023.117269
– volume: 22
  start-page: 253
  year: 2021
  ident: D4AY00578C/cit35/1
  publication-title: J. Zhejiang Univ., Sci., B
  doi: 10.1631/jzus.B2100009
– volume: 1248
  start-page: 340885
  year: 2023
  ident: D4AY00578C/cit62/1
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2023.340885
– volume: 10
  start-page: 845688
  year: 2022
  ident: D4AY00578C/cit108/1
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2022.845688
– volume: 142
  start-page: 207
  year: 2019
  ident: D4AY00578C/cit51/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b09211
– volume: 98
  start-page: 19
  year: 2018
  ident: D4AY00578C/cit18/1
  publication-title: TrAC, Trends Anal. Chem.
  doi: 10.1016/j.trac.2017.10.015
– volume: 193
  start-page: 113541
  year: 2021
  ident: D4AY00578C/cit43/1
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2021.113541
– volume: 1230
  start-page: 340357
  year: 2022
  ident: D4AY00578C/cit87/1
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2022.340357
– volume: 93
  start-page: 14300
  year: 2021
  ident: D4AY00578C/cit95/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.1c03468
– volume: 135
  start-page: 367
  year: 2022
  ident: D4AY00578C/cit47/1
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-021-03984-y
– volume: 163
  start-page: 759
  year: 2015
  ident: D4AY00578C/cit48/1
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.038
– volume: 15
  start-page: 7848
  year: 2021
  ident: D4AY00578C/cit26/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c02372
– volume: 37
  start-page: 972
  year: 2009
  ident: D4AY00578C/cit66/1
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn968
– volume: 8
  start-page: 2228
  year: 2019
  ident: D4AY00578C/cit40/1
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.9b00209
– volume: 157
  start-page: 116788
  year: 2022
  ident: D4AY00578C/cit11/1
  publication-title: TrAC, Trends Anal. Chem.
  doi: 10.1016/j.trac.2022.116788
– volume: 1185
  start-page: 338882
  year: 2021
  ident: D4AY00578C/cit52/1
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2021.338882
– volume: 43
  start-page: 982
  year: 2023
  ident: D4AY00578C/cit15/1
  publication-title: Crit. Rev. Biotechnol.
  doi: 10.1080/07388551.2022.2095253
– volume: 400
  start-page: 134035
  year: 2023
  ident: D4AY00578C/cit73/1
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2022.134035
– volume: 179
  start-page: 113073
  year: 2021
  ident: D4AY00578C/cit53/1
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2021.113073
– volume: 99
  start-page: 7025
  year: 2016
  ident: D4AY00578C/cit13/1
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2016-11320
– volume: 11
  start-page: e69949
  year: 2022
  ident: D4AY00578C/cit21/1
  publication-title: Elife
  doi: 10.7554/eLife.69949
– volume: 149
  start-page: 109728
  year: 2023
  ident: D4AY00578C/cit93/1
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2023.109728
– volume: 144
  start-page: 109353
  year: 2023
  ident: D4AY00578C/cit92/1
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2022.109353
– volume: 29
  start-page: 207
  year: 2021
  ident: D4AY00578C/cit45/1
  publication-title: J. Adv. Res.
  doi: 10.1016/j.jare.2020.10.003
– volume: 220
  start-page: 114885
  year: 2023
  ident: D4AY00578C/cit63/1
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2022.114885
– volume: 267
  start-page: 125273
  year: 2024
  ident: D4AY00578C/cit68/1
  publication-title: Talanta
  doi: 10.1016/j.talanta.2023.125273
– volume: 69
  start-page: 317
  year: 2020
  ident: D4AY00578C/cit17/1
  publication-title: BioTechniques
  doi: 10.2144/btn-2020-0057
– volume: 129
  start-page: 364
  year: 2022
  ident: D4AY00578C/cit24/1
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2022.09.023
– volume: 6
  start-page: 1086
  year: 2021
  ident: D4AY00578C/cit85/1
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.0c02365
– volume: 3
  start-page: 100120
  year: 2022
  ident: D4AY00578C/cit19/1
  publication-title: Curr. Res. Microb. Sci.
– volume: 243
  start-page: 123388
  year: 2022
  ident: D4AY00578C/cit94/1
  publication-title: Talanta
  doi: 10.1016/j.talanta.2022.123388
– volume: 339
  start-page: 819
  year: 2013
  ident: D4AY00578C/cit33/1
  publication-title: Science
  doi: 10.1126/science.1231143
– volume: 257
  start-page: 124318
  year: 2023
  ident: D4AY00578C/cit70/1
  publication-title: Talanta
  doi: 10.1016/j.talanta.2023.124318
– volume: 56
  start-page: 1532
  year: 2016
  ident: D4AY00578C/cit9/1
  publication-title: Crit. Rev. Food Sci. Nutr.
  doi: 10.1080/10408398.2013.777021
– volume: 16
  start-page: 857
  year: 2021
  ident: D4AY00578C/cit27/1
  publication-title: Chem.–Asian J.
  doi: 10.1002/asia.202100043
– volume: 4
  start-page: 1942
  year: 2019
  ident: D4AY00578C/cit74/1
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.9b00900
– start-page: 1
  year: 2023
  ident: D4AY00578C/cit2/1
  publication-title: Crit. Rev. Food Sci. Nutr.
  doi: 10.1080/10408398.2023.2248515
– volume: 52
  start-page: 1818
  year: 2022
  ident: D4AY00578C/cit5/1
  publication-title: Crit. Rev. Anal. Chem.
  doi: 10.1080/10408347.2021.1919987
– volume: 8
  start-page: 2281
  year: 2013
  ident: D4AY00578C/cit34/1
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2013.143
– volume: 376
  start-page: 133005
  year: 2023
  ident: D4AY00578C/cit110/1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2022.133005
– volume: 9
  start-page: 467
  year: 2011
  ident: D4AY00578C/cit30/1
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2577
– start-page: 1
  year: 2023
  ident: D4AY00578C/cit91/1
  publication-title: Crit. Rev. Anal. Chem.
  doi: 10.1080/10408347.2023.2274050
– volume: 39
  start-page: 2815
  year: 2016
  ident: D4AY00578C/cit6/1
  publication-title: J. Sep. Sci.
  doi: 10.1002/jssc.201600197
– volume: 74
  start-page: 1
  year: 2015
  ident: D4AY00578C/cit97/1
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2015.05.056
– volume: 258
  start-page: 124455
  year: 2023
  ident: D4AY00578C/cit79/1
  publication-title: Talanta
  doi: 10.1016/j.talanta.2023.124455
– volume: 360
  start-page: 439
  year: 2018
  ident: D4AY00578C/cit36/1
  publication-title: Science
  doi: 10.1126/science.aaq0179
– volume: 122
  start-page: 211
  year: 2022
  ident: D4AY00578C/cit22/1
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2022.02.030
– volume: 1239
  start-page: 340751
  year: 2023
  ident: D4AY00578C/cit100/1
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2022.340751
– volume: 213
  start-page: 114437
  year: 2022
  ident: D4AY00578C/cit76/1
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2022.114437
– volume: 396
  start-page: 134601
  year: 2023
  ident: D4AY00578C/cit60/1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2023.134601
– volume: 390
  start-page: 133219
  year: 2022
  ident: D4AY00578C/cit64/1
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2022.133219
– start-page: 353
  year: 2021
  ident: D4AY00578C/cit46/1
  publication-title: Biol.: Targets Ther.
– volume: 135
  start-page: 174
  year: 2023
  ident: D4AY00578C/cit25/1
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2023.04.002
– volume: 337
  start-page: 816
  year: 2012
  ident: D4AY00578C/cit32/1
  publication-title: Science
  doi: 10.1126/science.1225829
– volume: 542
  start-page: 58
  year: 2018
  ident: D4AY00578C/cit14/1
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2017.11.010
– volume: 131
  start-page: 17560
  year: 2019
  ident: D4AY00578C/cit50/1
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201910772
– volume: 377
  start-page: 1278
  year: 2022
  ident: D4AY00578C/cit55/1
  publication-title: Science
  doi: 10.1126/science.add5064
– volume: 176
  start-page: 112954
  year: 2021
  ident: D4AY00578C/cit58/1
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2020.112954
– volume: 360
  start-page: 436
  year: 2018
  ident: D4AY00578C/cit39/1
  publication-title: Science
  doi: 10.1126/science.aar6245
– volume: 93
  start-page: 14792
  year: 2021
  ident: D4AY00578C/cit77/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.1c03533
– volume: 80
  start-page: 1944
  year: 2017
  ident: D4AY00578C/cit20/1
  publication-title: J. Food Prot.
  doi: 10.4315/0362-028X.JFP-17-133
– volume: 225
  start-page: 115109
  year: 2023
  ident: D4AY00578C/cit81/1
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2023.115109
– volume: 6
  start-page: 2920
  year: 2021
  ident: D4AY00578C/cit72/1
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.1c00686
– volume: 241
  start-page: 123186
  year: 2022
  ident: D4AY00578C/cit101/1
  publication-title: Talanta
  doi: 10.1016/j.talanta.2021.123186
– volume: 11
  start-page: 100142
  year: 2022
  ident: D4AY00578C/cit61/1
  publication-title: Biosens. Bioelectron.: X
– volume: 353
  start-page: aaf5573
  year: 2016
  ident: D4AY00578C/cit49/1
  publication-title: Science
  doi: 10.1126/science.aaf5573
– volume: 460
  start-page: 132398
  year: 2023
  ident: D4AY00578C/cit89/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2023.132398
– volume: 423
  start-page: 126962
  year: 2022
  ident: D4AY00578C/cit98/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.126962
– volume: 43
  start-page: 8
  year: 2020
  ident: D4AY00578C/cit37/1
  publication-title: Biomed. J.
  doi: 10.1016/j.bj.2019.10.005
– start-page: 341559
  year: 2023
  ident: D4AY00578C/cit67/1
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2023.341559
– volume: 93
  start-page: 15216
  year: 2021
  ident: D4AY00578C/cit84/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.1c04133
– volume: 23
  start-page: 98
  year: 2023
  ident: D4AY00578C/cit56/1
  publication-title: Funct. Integr. Genomics
  doi: 10.1007/s10142-023-01024-0
SSID ssj0069361
Score 2.354325
SecondaryResourceType review_article
Snippet Some physical phenomena and various chemical substances newly introduced in nanotechnology have allowed scientists to develop valuable devices in the field of...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Publisher
StartPage 3448
SubjectTerms Bacteria
Bacteria - genetics
Bacteria - isolation & purification
Biosensing Techniques - methods
Biosensors
Cellular apoptosis susceptibility protein
Colorimetry
Colorimetry - methods
CRISPR
CRISPR-Cas Systems
Food
Food Microbiology - methods
Foodborne Diseases - diagnosis
Foodborne Diseases - microbiology
Foodborne Diseases - prevention & control
Foodborne pathogens
Humans
Ingestion
Low concentrations
Microorganisms
Nanotechnology
Pathogens
Title CRISPR/Cas-based colorimetric biosensors: a promising tool for the diagnosis of bacterial foodborne pathogens in food products
URI https://www.ncbi.nlm.nih.gov/pubmed/38804827
https://www.proquest.com/docview/3064887851
https://www.proquest.com/docview/3061138622
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZKd-GCGDDoGMgIDqAqzIldp-FWlcIGFKGtk8YpsmNXq1Ab1DQT3YG_hD-WZztxggYScIkqu00iv8_vh_ve9xB6JqiCYCchgcpoFICWhD1HlQxA8SVSJ0xnzNQ7Tz_yozP27nxw3un8aGUtlRv5Mrv6bV3J_0gVxkCupkr2HyTrbwoD8BnkC1eQMFz_Ssbjk-PTTyeG4lYUgbFHpkTNpNQtTZ-srC8XeQFhar4uXE0zaEsQqy2QMtSbdYahcul2jplEOvpmW9eYK0AIeKGmbXEOb2FzZ82wuZMhii3avq3lN3FH464vtXfXT8EK2eObCcTmF1ov-yOpyv60LITyiHN12pPthZANCr6JpVD5pStce7vYiqv8UvSnEDx88fbkPfj_2sJ6VCyFqHKVq5OMiNmMK95SvvHAsYU629Qecw1nvMbmLWS6suZK_1LmeDsrW06Z057X7AShhmZVMbE11bjDrLGGPkexmbyBdqIYPLMu2hlNZscfakvPE-r4eOv3rulvaXLY_PpXh-daFAM-zbruNWN9mtltdKsKRvDIIWsXdfTqDtqt1H2Bn1ec5C_uou8OaoceaLgNNNwA7RUW2MMMG5hhgBkGmGEPM5zPsYcZ9jDDHmZ4sbLDuIbZPXT2ZjIbHwVV644gixK-AcseEaWIHhKuFOeaxbHSSiTxQIJDHM7n4EbrRMwJycDCZaGCOCDMNCUS3CWuBd1D3VW-0g8QVhFh8yQmKhYRU4TLKI6koGzIqQoJET30tF7f9KtjaEltZgVN0tds9NlKYdxDB_XSp9UOLlITfYORhaCjh574aVgh86eZWOm8tN8JQwpxf9RD953I_GMMkZKh0e2hPZChH25kv_-niYfoZrMDDlB3sy71I_BuN_JxBbKfVZWpBA
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CRISPR%2FCas-based+colorimetric+biosensors%3A+a+promising+tool+for+the+diagnosis+of+bacterial+foodborne+pathogens+in+food+products&rft.jtitle=Analytical+methods&rft.au=Saleh%2C+Ebraheem+Abdu+Musad&rft.au=Ali%2C+Eyhab&rft.au=Muxamadovna%2C+Giyazova+Malika&rft.au=Kassem%2C+Asmaa+F&rft.date=2024-06-06&rft.issn=1759-9660&rft.eissn=1759-9679&rft.volume=16&rft.issue=22&rft.spage=3448&rft.epage=3463&rft_id=info:doi/10.1039%2Fd4ay00578c&rft.externalDocID=d4ay00578c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-9660&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-9660&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-9660&client=summon